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ABSTRACT
Geographic information retrieval (GIR) systems allow users
to specify a geographic context, in addition to a more tra-
ditional query, enabling the system to pinpoint interesting
search results whose relevancy is location-dependent. In
particular local search services have become a widely used
mechanism to find businesses, such as hotels, restaurants,
and shops, which satisfy a geographical restriction. Unfor-
tunately, many useful types of geographic restrictions are
currently not supported in these systems, including restric-
tions that specify the neighborhood in which the business
should be located. As the boundaries of city neighborhoods
are not readily available, automated techniques to construct
representations of the spatial extent of neighborhoods are
required to support this kind of restrictions. In this paper,
we propose such a technique, using fuzzy footprints to cope
with the inherent vagueness of most neighborhood bound-
aries, and we provide experimental results that demonstrate
the potential of our technique in a local search setting.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; H.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Geographic Information Retrieval, Fuzzy Footprints

1. INTRODUCTION
An increasing number of research efforts in information re-

trieval are concerned with providing users with more focused
information. For example, question answering systems [4,
16, 22] try to obtain the exact answer to a question of the
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user — posed in natural language — rather than return-
ing a list of documents, or even paragraphs, which might
contain this answer. Another witness of this trend are ge-
ographic information retrieval systems [5, 12, 17, 19] and
in particular local search services, such as Google Maps1,
Yahoo! local2 and Microsoft’s Live Search3. The purpose of
these services is to find lists of businesses of a given kind
that satisfy some geographical constraint, e.g., hotels near
the Dam square, Amsterdam. Usually, the kind of business
the user is interested in is specified as a list of keywords
and phrases, while the geographic constraint is specified by
providing an address (or landmark) near which the business
should be located.

Despite their overwhelming popularity, the existing local
search services suffer from two important limitations. First,
the content of the knowledge base that can be queried is to a
large extent based on structured information that is a priori
available to the system. The static nature of this knowl-
edge base stands in stark contrast to the way traditional
search engines work, using a crawler to dynamically update
their indices. This makes the creation and updating of the
knowledge base an expensive and time-consuming process,
and, moreover, it limits the information in the knowledge
base to the kind that is typically found in the well-known
yellow pages. Current research in GIR systems mainly aims
at automating the creation of such a knowledge base, which
involves, among others, identifying the geographical scope
of web resources based on the occurrence of place names,
full addresses, telephone numbers, etc.

Second, only very simple geographic constraints can be
specified. While current systems allow for geographic con-
straints of the form NEAR <address> or, to some extent,
NEAR <landmark>, other kinds of constraints may be de-
sirable in practice. One particularly useful example are con-
straints specifying the neighborhood in which the business
should be located, e.g., restaurants in Amsterdam’s Mu-
seum Quarter. Local search services and GIR systems in
general use gazetteers as their primary source of geograph-
ical background knowledge. Unfortunately, most gazetteers
contain no information at all about neighborhoods, districts
and other types of (non-political) regions, while others pro-
vide only a centroid, i.e., the geographical coordinates of a
location that is considered to be the center of the region.
The main reason for this is that the boundaries of most
regions are ill-defined. For example, the absence of region

1http://local.google.com
2http://local.yahoo.com
3http://local.live.com



boundaries in the well-known GNIS gazetteer is motivated
as follows4:

Regions are application driven and highly sus-
ceptible to perception. Sometimes, people might
agree on the core of a region, but agreement de-
teriorates rapidly outward from that core.

As a consequence, current local search services provide al-
most no support for geographical restrictions involving neigh-
borhood names.

In this paper, we propose a technique to automatically
construct a representation of the spatial extent of neighbor-
hoods. We are particularly interested in the impact of using
such a representation in a local search context. Because of
the subjective and vague nature of many neighborhoods, we
do not want to commit ourselves to one single boundary for
each neighborhood. Rather, we will represent the extent of
a neighborhood as a fuzzy set of locations, called a fuzzy
footprint, i.e., a mapping F from locations to the unit in-
terval [0, 1]. For a location x, F (x) expresses the degree to
which x belongs to the neighborhood.

Particularly for an information retrieval task, fuzzy foot-
prints are more suitable than regions with crisp boundaries,
since the membership degrees allow to rank the results based
on the extent to which they satisfy the geographical con-
straint. First, businesses in the core of the neighborhood
are returned as everybody would agree that these businesses
satisfy the geographical constraint. Next, businesses with a
decreasing degree of membership are returned, i.e., busi-
nesses for which there might be an increasing amount of
disagreement.

This paper is structured as follows. In the next section,
we review some existing work on the representation of vague
regions. In Section 3, we introduce our algorithm for con-
structing fuzzy footprints of neighborhoods. Next, in Sec-
tion 4, we evaluate the performance of our fuzzy footprints
in the context of geographic information retrieval. Finally,
Section 5 presents some concluding remarks and directions
for future work.

2. RELATED WORK
More often than not, the boundaries of a geographic re-

gion are only vaguely defined (e.g., [2, 3, 10, 11, 26]). Vari-
ous formalisms have already been adopted to represent the
spatial extent of such a vague region, including supervalua-
tion semantics [2, 18, 26], pairs of crisp (i.e., non-fuzzy) sets
[3, 7, 9] and fuzzy footprints [13, 14, 15, 25].

In [20], a user study was conducted which indicates that
neighborhoods like downtown are indeed perceived as vague
by most people. Moreover, when comparing the interpreta-
tions of the same neighborhood by different people, a fair
amount of agreement was witnessed, although two people
seldom agree on the exact (vague) boundaries. The results
of this study are important as they indicate that construct-
ing a fuzzy set to represent the spatial extent of a neigh-
borhood is indeed meaningful. In [14], a statistical model is
described that predicts the probability that a user would use
a particular neighborhood name R to describe the location
of a particular shop s. This model provides some evidence
that this probability depends on the distance between s and

4http://geonames.usgs.gov/faqs.html#25, accessed Jan-
uary 18, 2007.

the center c of R, and on the density of shops on the path
between c and s.

A few automatic procedures to construct representations
of vague regions already exist. In some approaches, a single
crisp boundary is constructed to represent a vague region,
assuming that the vagueness of the boundary is not impor-
tant for the intended application. In [23], for example, an
algorithm is discussed to find a reasonable polygon for a
vague region R, based on a set of points that are assumed
to lie in the region, and a set of points that are assumed to
lie outside the region. These sets are extracted automati-
cally from web pages containing phrases like x is located in
R. Another way of obtaining such a polygon is proposed in
[1], pursuing a similar strategy.

A graded approach is introduced in [21], using an interpo-
lation technique to obtain a representation similar to fuzzy
footprints from a weighted set of points that are assumed
to lie in the region. This set of points is obtained by query-
ing Google5 for pages about the region and assuming that
every place on these pages is located in the region. In this
way, many false positives are obtained, i.e., places that are
incorrectly assumed to lie in the region. To make the ap-
proach more robust to such errors in the input, the points
are weighted based on their frequency of occurrence [8].
These weights, however, reflect the importance of a particu-
lar place, rather than a degree of membership in the corre-
sponding region. Finally, [25] presents a technique to refine
the definition of a fuzzy footprint, using natural language
constraints found in web documents such as x is located in
the north of R.

All of the aforementioned approaches deal only with large-
scale regions such as the Alpes, Western Europe, etc. To
our knowledge, the automatic construction of (fuzzy) foot-
prints for city neighborhoods has not yet been considered.
As for large-scale regions, official boundaries for city neigh-
borhoods are usually nonexistent. Moreover, various users
studies (e.g., [24, 6]) have shown that in cases where official
definitions do exist, these definitions rarely correspond to
residents’ perception of the neighborhood boundaries.

3. FUZZY FOOTPRINTS

3.1 Finding places in a neighborhood
To construct a fuzzy footprint for a neighborhood L, we

use the web to extract names of places that are assumed to
lie in L. For large-scale regions, simple patterns are often
used to find out, for example, that Amsterdam and Brussels
are located in Western Europe, from a sentence like Many
cities in Western Europe, including Amsterdam and Brus-
sels, . . . For most city neighborhoods, too few places can
be obtained in this way.

One possible solution would be to query Google for pages
about the neighborhood and extract all addresses on these
pages, in a similar way as was done in [8, 21] for large-scale
regions. However, this requires disambiguation techniques
to decide which pages are focusing on the intended neigh-
borhood, and which pages are focusing on neighborhoods in
other cities, or even non-geographical entities with the same
name. As an alternative, we use the Yahoo! local API6 to

5http://www.google.com
6http://developer.yahoo.com/search/local/V2/
localSearch.html



find appropriate places. Queries to Yahoo! local consist of
two parts: a geographic restriction and the actual keyword-
based query specifying which businesses we are interested
in. For example, to find places that lie in Seattle’s Bell-
town neighborhood, we would send a query with Seattle as
the geographic restriction and Belltown as the actual query.
What is returned is a list of businesses in Seattle that con-
tain the word Belltown in the name of the business, in the
accompanying natural language description of the business,
in a user review, or in one of the other fields describing the
business.

3.2 Weighting the input data
Using Yahoo! local, we usually obtain a relatively high

number of places for the neighborhood of interest. However,
not all of these places are actually located in the neigh-
borhood. To increase the robustness of the algorithm, we
attach weights to each of the places, expressing our confi-
dence that they are actually located in the neighborhood.
Let p1, p2, . . . , pk be the list of places that was returned for
some neighborhood of interest L. Our confidence in each of
these places is based on two different assumptions:

1. The position of a place in the list that was returned
by Yahoo! local is a good indication of the probability
that the place is actually located in the neighborhood.

2. The further a place is from the center of a neighbor-
hood, the less likely it is located in this neighborhood.

The first assumption is inspired by the fact that the order-
ing of the businesses in the list returned by Yahoo! local,
is based on the importance of the query terms (i.e., the
neighborhood name) in their descriptions. For example, the
places with the highest ranks are places whose name con-
tains the name of the neighborhood. We can be quite con-
fident that these places are indeed located in the neighbor-
hood; e.g., Belltown Pizza is probably located in the Bell-
town neighborhood. On the other hand, places that are
further down the list often contain the neighborhood name,
for example, only in some user review. Our confidence ai

in the fact that pi is indeed located in L, based on the first
assumption, is defined by:

ai =

(
1 if L occurs in the name of pi

max(0.3, 1 − i
k
) otherwise

Note that our confidence in the correctness of a place is at
least 0.3. This ensures that even the places towards the end
of the list will have some — albeit limited — impact on the
final result.

The idea behind the second assumption is that, although
quite a few of the places returned by Yahoo! local may not
be located in the corresponding neighborhood, we can still
identify the center of the neighborhood in a very accurate
way. To model this notion of center, we use the medoid m

of the set p1, p2, . . . , pk, defined by:

m = argmin
p∈{p1,...,pk}

kX
i=1

d(p, pi) (1)

where d is the straight-line distance (circle distance). In
other words, the medoid is the place for which the sum of the
distances to all the other places is minimal. Our confidence
bi in the fact that pi is indeed located in L, based on the

second assumption, is defined as a decreasing function of the
distance between pi and m:

bi =

8><>:1 if d(pi, m) ≤ α
α+β−d(pi,m)

β
if α < d(pi, m) < α + β

0 if d(pi, m) ≥ α + β

Note how the values of α and β reflect how tolerant we are
w.r.t. our second assumption. We can, for example, define
these values based on how close to the medoid most of the
places are located. In particular, let π1, π2, . . . , πk be a per-
mutation of 1, 2, . . . , k such that d(pπ1

, m) ≤ d(pπ2
, m) ≤

· · · ≤ d(pπk
, m). We assume that at least 60% of the places

are correct, i.e., located in the neighborhood L. This is
reflected in the following definition of α (assuming, for sim-
plicity, that k is a multiple of 5):

α = d(pπ0.6k
, m) (2)

The value of β will determine how tolerant we are for the re-
maining places. The idea is that the difference d(pπ0.6k

, m)−
d(pπ0.4k

, m) gives a good indication of how tightly the neigh-
borhood is clustered around the center m. This leads to the
following definition of β:

β = 4(d(pπ0.6k
, m) − d(pπ0.4k

, m))

Finally, our overall confidence ci in the correctness of a place
pi is defined as the product of ai and bi:

ci = aibi

3.3 Defining neighborhoods
Neighborhood boundaries are generally considered to be

inherently fuzzy [24]. However, apart from their gradual
nature, neighborhood boundaries are also ill-defined because
of a lack of agreement between different people. Several
studies have shown, for example, that the perception of the
boundaries of a neighborhood is influenced by factors such
as age, gender, length of residence, socio-econonomic class,
etc. (e.g., [6]). Hence, the degree of membership of a place
in a fuzzy footprint should reflect how much people agree
that this place is part of the neighborhood.

A related problem is that the definition of neighborhood
boundaries is context-dependent. For example, in some con-
texts, Seattle’s Belltown neighborhood is considered to be
a part of Downtown Seattle, while in other contexts it is
assumed that the two neighborhoods are bordering on each
other. We cope with this by defining a neighborhood relative
to some list of neighborhoods L = {L1, L2, . . . , Ln}. In the
first context, L will contain both Downtown and Belltown,
while in the second context, Belltown will be excluded from
L. Intuitively, the list L defines a partitioning of a city into
a set of neighborhoods, i.e., such that the spatial extent of
the city is equal to the union of the spatial extents of the
neighborhoods in L, and such that the spatial extents of the
neighborhoods are pairwise disjoint. However, we also allow
default regions like Central Seattle, whose spatial extent, in
this context, would cover all places in Central Seattle that
are not contained in any of the other neighborhoods. In
this way, our approach can also be used when a complete
enumeration of every neighborhood is not available.

For convenience, we use Li both to refer to the name of
a neighborhood, and to the fuzzy footprint describing its
spatial extent. To construct this fuzzy footprint, we use
the places pi

1, p
i
2, . . . , p

i
ki

extracted from Yahoo! local, and



their confidence scores ci
1, c

i
2, . . . , c

i
ki

, where all the places pi
j

are assumed to be located in Li. Such a set of places has
been obtained for every neighborhood in L. Let P be the
set of all these places, and let Pi = {pi

1, p
i
2, . . . , p

i
ki
} be the

set of places corresponding to neighborhood Li; note that
P =

Sn

i=1 Pi.
The main idea to define the membership degree Li(x) of

an arbitrary location x (i.e., not necessarily corresponding
to a place in P) in the neighborhood Li, is to use the fraction
of nearby places that are assumed to lie in Li, i.e., included
in the set Pi. This idea is closely related to a voting model
for fuzzy sets, where the degree of membership of an object
in a fuzzy set modelling a certain vague property, reflects the
percentage of people that would answer positive when asked
whether or not this object satisfies the property. However,
rather than treating all nearby places (votes) in the same
way, the impact of each place is weighted based on its con-
fidence score and its distance to x:

Li(x) =

P
x0∈Nx

fi(x0)g(x, x0)P
x0∈Nx

maxn
j=1 fj(x0)g(x, x0)

(3)

where fj is defined for a place x0 as (j ∈ {1, 2, . . . , n})

fj(x0) =

(
cj

s if x0 = pj
s for some s ∈ {1, 2, . . . , kj}

0 otherwise

The value fj(x0) is equal to our confidence that x0 is located
in Lj , provided x0 ∈ Pj , i.e., provided x0 is contained in the
list of businesses returned by Yahoo! local for the neighbor-
hood Lj ; otherwise, fj(x0) = 0. The function g should be a
decreasing function of the distance between x and x0. We
used the function g defined for two locations x and x0 as

g(x, x0) =
1

1 + d(x, x0)

Finally, the set Nx is the set of places that are considered
to be nearby x (Nx ⊆ P).

3.4 Analyzing the fuzzy footprints
The impact of using different definitions of Nx is illus-

trated in Figures 1 and 2. In Figure 1 (resp. 2), the crosses
correspond to the places from P that are assumed to lie in
the Capitol Hill (resp. Downtown) neighborhood of Seattle,
while the dots correspond to the places that are assumed
to lie in one of the other neighborhoods. The empty area
in the lower left corner corresponds to the sea. Both figures
display the same places, although the crosses from one figure
will correspond to dots in the other figure.

When Nx only contains the 5 places of P that are closest
to x, the resulting fuzzy footprint is very sensitive to the
actual input, i.e., to the businesses that were returned by
Yahoo! local. When increasing the number of places that are
considered, the resulting fuzzy footprint becomes smoother,
and less sensitive to individual places in the input. In the
remainder of this paper, we will assume that Nx contains
the 100 places that are closest to x. Note that when other
sources would be available which would allow to find large
sets of places for each neighborhood in a more accurate way,
optimal performance might be achieved by looking at a lower
number of nearby places.

Note that, as can be seen from Figure 2, a large part of
the area that is covered by the fuzzy footprint of Downtown
is actually located in the sea. Although this is clearly in-
correct, it is of no importance in the context of local search,

since there are no businesses located in the sea (otherwise
no parts of the sea would have been covered by the fuzzy
footprints in the first place). In contexts where this would
be a problem, this can easily be solved by intersecting the
fuzzy footprints with a detailed footprint of Seattle, based
on the official boundaries, which can be found in the Tiger
gazetteer7.

Dark regions in the representation of Capitol Hill in Fig-
ure 1 correspond to light regions in the representation of
Downtown in Figure 2, and vice versa. This is particularly
noticeable in Figures 1(a) and 2(a). More generally, we can
show that for any location x, it holds that

nX
i=1

Li(x) = 1

In other words, the fuzzy footprints L1, L2, . . . , Ln define
a fuzzy partition of the city under consideration. This is
important because it ensures that our intended intuitive
meaning of L as a an exhaustive and mutual exclusive set
of neighborhoods is reflected in the definition of the fuzzy
footprints.

Figure 3 illustrates our ability to deal with the context-
dependency of neighborhood boundaries. In particular, the
definition of Downtown Seattle is shown in two different
contexts. In the first context, Belltown is assumed to be
a neighborhood next to Downtown, i.e., Belltown, as well
as Downtown, is included in the list of neighborhoods L.
The resulting fuzzy footprints for Belltown and Downtown
are shown in Figures 3(a) and 3(b). In the second context,
Belltown is not included in the list of neighborhoods L, and
is thus implicitly assumed to be a part of Downtown. The
fuzzy footprint for Downtown in this second context is shown
in Figure 3(c). Note that the places and fuzzy footprints in
Figure 3 are shown at a smaller scale than those in Figures
1 and 2.

4. EXPERIMENTAL RESULTS
As there are no official boundaries for most city neigh-

borhoods, it is difficult to evaluate the quality of our fuzzy
footprints directly. Instead, we will analyse the impact of
using the fuzzy footprints in a local search context. To this
end, we will compare the results of a query of the form
restaurants in <neighborhood>, obtained using our fuzzy
footprints, against a manual classification of restaurants by
neighborhood. We extracted such a manual classification
from restaurants.com8 for 15 US cities: Atlanta, Austin,
Baltimore, Boston, Cambridge, Chicago, Las Vegas, Los
Angeles, Miami, Minneapolis, New York, Philadelphia, San
Diego, San Francisco, and Seattle. For these 15 cities, restau-
rants.com contains information about 13681 restaurants in
410 different neighborhoods. To allow for meaningful preci-
sion and recall scores, we limited our experiments to queries
about the 149 neighborhoods containing at least 25 restau-
rants.

In the first experiment, we investigate the precision and
recall (w.r.t. the manual classification from restaurants.com)
of the complete set of restaurants that are returned by the
system, ignoring any ranking of the restaurants. When us-
ing the fuzzy footprints, a threshold value λ in ]0, 1] has to

7http://www.census.gov/geo/tiger99/tl 1999.html
8http://www.restaurants.com



(a) Capitol Hill — 5 places (b) Capitol Hill — 20 places (c) Capitol Hill — 100 places

Figure 1: Definitions of the fuzzy footprints for Seattle’s Capitol Hill neighborhood for varying definitions of
the set Nx of places nearby x. In (a) the set Nx consists of the 5 places closest to x, while in (b) and (c), 20
places and 100 places are used respectively. Darker regions correspond to a higher degree of membership.

(a) Downtown — 5 places (b) Downtown — 20 places (c) Downtown — 100 places

Figure 2: Definitions of the fuzzy footprints for Downtown Seattle when the closest (a) 5 places, (b) 20 places,
and (c) 100 places are contained in Nx. Darker regions correspond to a higher degree of membership.

be chosen to decide which restaurants to return. The set of
restaurants that is returned is then equal to the set of restau-
rants whose degree of membership in the fuzzy footprint for
the neighborhood imposed by the query is at least λ. Clearly
this threshold parameter can be used to tune the perfor-
mance of the system towards better precision or better re-
call. Figure 4 shows the resulting precision/recall trade-off,
and compares our approach with two baseline techniques.

Both baseline systems return all restaurants that are lo-
cated within a certain radius of the medoid of the neighbor-
hood, as defined in (1). For the first baseline, this radius
is a constant r. By increasing or decreasing the value of r,
the precision/recall trade-off can be adjusted. The second
baseline system returns all restaurants within a radius of
r0α, where α is defined in (2), and r0 is a constant. The
idea here is that the value of α gives a good indication of
the size of the neighborhood, and should thus be useful to
determine an appropriate radius. As can be seen from Fig-
ure 4, neither of the two baselines is better than the other.
When high precision is needed, the first baseline performs

better than the second, while for higher recall values, the
second baseline outperforms the first.

Clearly, the system using our fuzzy footprints constitutes
a significant improvement over both baseline systems. For
low recall values, the precision is almost 1, from which we
can conclude that the fuzzy footprints correctly identify the
core of the neighborhoods. Towards the higher recall values,
the gain in performance over the baseline systems somewhat
decreases. This can be explained by the fact that to obtain
a high recall, some restaurants may have to be included for
which there might be disagreement about which neighbor-
hood they belong to. As the assignment of a single neigh-
borhood to such restaurants is, to some extent, arbitrary,
it becomes harder to make a more intelligent decision than
simply returning every restaurant within a certain radius. In
fact, a similar behaviour could be expected when comparing
different human assignments.

Using the fuzzy footprints, it is not possible to obtain a
recall value that is, on average, more than 0.83 for the 149
queries considered. This means that on average, 17% of the



(a) Belltown — Context 1 (b) Downtown — Context 1 (c) Downtown — Context 2

Figure 3: In (a), a fuzzy footprint of the Belltown neighborhood in Seattle is shown, where darker regions
correspond to a higher degree of membership. Figures (b) and (c) show a fuzzy footprint of Downtown
Seattle in two different contexts, viz. when Belltown is included in the list of neighborhoods L (Context 1),
and when it is not (Context 2).

Figure 4: Precision/recall trade-off for experiment
1, using a system based on fuzzy footprints and two
baseline systems. Each of the three systems involves
a parameter that can be adjusted in favor of preci-
sion or recall.

restaurants that are located in a neighborhood have mem-
bership degree 0 in the corresponding fuzzy footprint. The
main reason for this is that for some lesser known neighbor-
hoods, too few businesses are returned by Yahoo! local. As
a consequence, some of the fuzzy footprints are completely
incorrect, and cover (almost) none of the restaurants that
are actually located in the neighborhood. In other words,
the problem lies mainly in the data acquisition phase, rather
than in the construction of the fuzzy footprints. Note that
the precision values corresponding to the lower recall values
are not affected by this, because the membership degrees
of restaurants in the fuzzy footprints of these problematic
neighborhoods are all very low. If the threshold λ is set to be
sufficiently high, then no restaurants at all will be returned
for these neighborhoods.

The evaluation task in the first experiment can be seen

as a two–stage process. First, the restaurants have to be
ranked, based on how likely it is that they should be included
in the result set, and then a choice has to be made about how
many restaurants to return, i.e., at which point to cut off the
ranked list of restaurants. Note that the two baseline sys-
tems in our first experiment only differ in the second stage
of this process; both use the distance of the restaurants to
the medoid of the neighborhood as the ranking criterium. In
a second experiment, we only looked at the ranking of the
restaurants. In the system based on fuzzy footprints, the
degree of membership of a restaurant in the fuzzy footprint
of the neighborhood is used to rank the restaurants. The
distance between each of the restaurants and the medoid is
used to break ties, and, in particular, to rank the restaurants
that have membership degree 0. In the baseline system, the
restaurants are ranked according to their distance to the
medoid. For each of the 149 queries, the precision at differ-
ent recall levels, and at different list cutoffs, was calculated.
The resulting precision/recall graph is shown in Figure 5.

This figure shows that using fuzzy footprints results in a
better ranking of the restaurants. However, the improve-
ment over the baseline system is less apparent than in the
first experiment. At very low recall points, the precision of
the fuzzy footprint approach and the baseline is even (al-
most) identical. This is because in both systems the top
restaurants in the list are usually the same, i.e., the restau-
rants in the immediate vicinity of the medoid of the neigh-
borhood. Similar conclusions can be drawn from the results
in Table 1, which compares the precision at different (fixed)
list cutoffs for both rankings.

For the task of ranking the restaurants, only the relative
order of the membership degrees is important. The sec-
ond stage of the process from experiment 1, on the other
hand, is based on the actual values of the membership de-
grees. Although the second experiment demonstrates that
the ordering of the restaurants imposed by the membership
degrees of the fuzzy footprints is useful, it also shows that a
significant gain in precision is achieved by choosing the right
cutoff position, based on the absolute membership degrees
of the fuzzy footprints.



Figure 5: Averaged precision/recall graph for ex-
periment 2, using a system based on fuzzy footprints
and a baseline system.

Table 1: Precision at fixed list cutoffs for the fuzzy
footprint approach and the baseline system in ex-
periment 2. P@n denotes the precision of the first n

restaurants in the list.
Baseline Fuzzy footprints

P@1 0.660 0.654
P@2 0.629 0.673
P@3 0.648 0.667
P@4 0.657 0.684
P@5 0.657 0.679
P@10 0.648 0.677
P@20 0.618 0.653
P@30 0.578 0.623
P@40 0.535 0.585
P@50 0.499 0.546

5. CONCLUDING REMARKS
In this paper, we introduced a technique to implement

neighborhood restrictions in GIR systems. We discussed
how places that lie in a given neighborhood can be found
using an existing local search service, how confidence scores
can be attached to these places to increase the robustness
of the approach, and how these places can be used to obtain
fuzzy footprints.

The difficulties in finding large sets of places that lie in
each neighborhood necessitate strategies that introduce a lot
of noise, i.e., many places will actually be located in a differ-
ent neighborhood than they are assumed to be. Therefore,
any technique to construct representations of city neighbor-
hoods, based on data gathered from the web, has to be
extremely robust to such falsely classified places. In our
approach, this robustness is achieved by considering a suf-
ficiently high number of nearby places in the set Nx in (3).
The higher this value, the less the definition of the fuzzy
footprints is influenced by one, or a few, places.

It is important to realize that neighborhood boundaries
are inherently ill-defined, and, to some extent, subjective,
and that a perfect definition of the spatial extent of neigh-
borhoods can therefore not exist. However, as previous stud-
ies have shown, people tend to agree on the core of a neigh-

borhood. The experimental results in this paper demon-
strate that our technique can successfully identify this core,
and that, moreover, a reasonable choice is made about the
degree of membership of the borderline cases, suggesting
that supporting neighborhood restrictions based on auto-
matically generated representations is indeed feasible.

Our fuzzy footprints are always defined relative to some
list of neighborhoods. In this way, different fuzzy footprints
can be obtained for the same neighborhood in different con-
texts. This is important, since the interpretation of the
boundaries of a neighborhood may be context-dependent.
However, we have not discussed how such a list can be ob-
tained. One possibility is to use manually defined lists of
neighborhoods for every city of interest. Another promising
solution would be to extract such a list automatically from
web documents. In this way, a more complete list of neigh-
borhoods may be obtained for some cities. Also, it may
be useful to try to extract information about spatial rela-
tionships between neighborhoods, districts, and other types
of regions in cities (e.g., A is a part of B, A is bordering
on B) . These spatial relationships could be used to weaken
queries that are too restrictive, to improve the quality of the
fuzzy footprints, and to try to find an appropriate context
(i.e., list of neighborhoods) automatically, depending on the
query or the user’s profile.
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