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Abstract. Various clustering methods based on the behaviour of real
ants have been proposed. In this paper, we develop a new algorithm in
which the behaviour of the artificial ants is governed by fuzzy IF–THEN
rules. Our algorithm is conceptually simple, robust and easy to use due
to observed dataset independence of the parameter values involved.

1 Introduction

While the behaviour of individual ants is very primitive, the resulting behaviour
on the colony-level can be quite complex. A particularly interesting example is
the clustering of dead nestmates, as observed with several ant species under lab-
oratory conditions [3]. Without negotiating about where to gather the corpses,
ants manage to cluster all corpses into 1 or 2 piles. The conceptual simplicity of
this phenomenon, together with the lack of centralized control and a priori infor-
mation, are the main motivations for designing a clustering algorithm inspired
by this behaviour. Real ants are, because of their very limited brain capacity,
often assumed to reason only by means of rules of thumb [5]. Inspired by this
observation, we propose a clustering method in which the desired behaviour of
artificial ants (and more precisely, their stimuli for picking up and dropping
items) is expressed flexibly by fuzzy IF–THEN rules.

The paper is organized as follows: in Section 2, we review existing work in
the same direction, in particular the algorithm of Monmarché which served as
our main source of inspiration. Section 3 familiarizes the reader with important
notions about fuzzy set theory and fuzzy IF–THEN rules, while in Section 4
we outline the structure of our clustering algorithm and motivate its key design
principles. Some experimental results are presented in Section 5. Finally, Section
6 offers some concluding remarks.

2 Related Work

Deneubourg et al. [3] proposed an agent–based model to explain the clustering
behaviour of real ants. In this model, artificial ants (or agents) are moving ran-
domly on a square grid of cells on which some items are scattered. Each cell
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can only contain a single item and each ant can move the items on the grid by
picking up and dropping these items with a certain probability which depends
on an estimation of the density of items of the same type in the neighbourhood.

Lumer and Faieta [8] extended the model of Deneubourg et al., using a
dissimilarity–based evaluation of the local density, in order to make it suitable for
data clustering. Unfortunately, the resulting number of clusters is often too high
and convergence is slow. Therefore, a number of modifications were proposed,
by Lumer and Faieta themselves as well as by others (e.g. [4, 12]).

Monmarché [10] proposed an algorithm in which several items are allowed to
be on the same cell. Each cell with a non–zero number of items corresponds to a
cluster. Each (artificial) ant a is endowed with a certain capacity c(a). Instead of
carrying one item at a time, an ant a can carry a heap of c(a) items. Probabilities
for picking up at most c(a) items from a heap and for dropping the load onto a
heap are based on characteristics of the heap, such as the average dissimilarity
between items of the heap. Monmarché proposes to apply this algorithm twice.
The first time, the capacity of all ants is 1, which results in a high number of tight
clusters. Subsequently the algorithm is repeated with the clusters of the first pass
as atomic objects and ants with infinite capacity, to obtain a smaller number of
large clusters. After each pass k–means clustering is applied for handling small
classification errors.

In a similar way, in [6] an ant–based clustering algorithm is combined with the
fuzzy c–means algorithm. Although some work has been done on combining fuzzy
rules with ant-based algorithms for optimization problems [7], to our knowledge
until now fuzzy IF–THEN rules have not yet been used to control the behaviour
of artificial ants in a clustering algorithm.

3 Fuzzy IF–THEN Rules

A major asset of humans is their flexibility in dealing with imprecise, granular
information; i.e. their ability to abstract from superfluous details and to con-
centrate instead on more abstract concepts (represented by words from natural
language). One way to allow a machine to mimic such behaviour, is to construct
an explicit interface between the abstract symbolic level (i.e. linguistic terms like
“high”, “old”, . . . ) and an underlying, numerical representation that allows for
efficient processing; this strategy lies at the heart of fuzzy set theory [13], which
since its introduction in the sixties has rapidly acquired an immense popularity
as a formalism for the representation of vague, linguistic information, and which
in this paper we exploit as a convenient vehicle for constructing commonsense
rules that guide the behaviour of artificial ants in our clustering algorithm.

Let us recall some basic definitions. A fuzzy set A in a universe U is a mapping
from U to the unit interval [0, 1]. For any u in U , the number A(u) is called the
membership degree of u to A; it expresses to what extent the element u exhibits
the property A. A fuzzy set R in U ×V is also called a fuzzy relation from U to
V . Fuzzy relations embody the principle that elements may be related to each
other to a certain extent only. When U = V , R is also called a binary fuzzy
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relation in U . Classical set theory is tightly linked to boolean logic, in a sense
that e.g. the operations of set complement, intersection and union are defined
by means of logical negation, conjunction and disjunction respectively. This link
is also maintained under the generalization from {0, 1} to [0, 1]. For instance,
to extend boolean conjunction, a wide class of operators called t–norms is at
our disposal: a t–norm is any symmetric, associative, increasing [0, 1]2 → [0, 1]
mapping T satisfying T (1, x) = x for every x ∈ [0, 1]. Common t–norms include
the minimum and the product in [0, 1], but also the �Lukasiewicz t–norm TW

which has several desirable properties (see e.g. [11]) and which is defined by, for
x, y in [0, 1],

TW (x, y) = max(0, x + y − 1) (1)

Another prominent contribution of fuzzy set theory is the ability to per-
form approximate reasoning. In particular, we may summarize flexible, generic
knowledge in a fuzzy rulebase like1

IF X is A1 and Y is B1 THEN Z is C1

IF X is A2 and Y is B2 THEN Z is C2

. . .
IF X is An and Y is Bn THEN Z is Cn

where X , Y and Z are variables taking values in the respective universes U , V
and W , and where for i in {1, . . . , n}, Ai (resp. Bi and Ci) is a fuzzy set in U
(resp. V and W ). Our aim is then to deduce a suitable conclusion about Z for
every specific input of X and Y . Numerous approaches exist to implement this,
with varying levels of sophistication; for our purposes, we used the conceptually
simple and very efficient Mamdani method [9], that uses real numbers as inputs
and outputs. It can be seen as a four–step process:

1. Given the observed values u of X and v of Y , we calculate for the ith rule
its activation level αi = min(Ai(u), Bi(v)).

2. We “cut off” Ci at level αi, i.e. we compute C′
i(w) = min(αi, Ci(w)) for w

in W . We thus obtain n individual conclusions.
3. The C′

i’s are aggregated into the global inference result C′ by means of
C′(w) =

n
max
i=1

C′
i(w), for w in W .

4. Finally, a defuzzification method is used to transform the result into a crisp
value of W ; this can be, for instance, the center of gravity of the area below
the mapping C′ (center–of–gravity method, COG).

Another way of looking at Mamdani’s method, is as a flexible way to inter-
polate an unknown, underlying (possibly very complex) mapping from U ×V to
W by means of linguistic labels.

1 This can of course be generalized to an arbitrary number of variables in the an-
tecedent.
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4 Fuzzy Ants

Our algorithm is in many ways inspired by the algorithm of Monmarché [10].
We will consider however only one ant, since the use of multiple ants on a
non–parallel implementation has no advantages2. Instead of introducing several
passes, our ant can pick up one item from a heap or an entire heap. Which case
applies is governed by a model of division of labour in social insects by Bonabeau
et al. [2]. In this model, a certain stimulus and a response threshold value are
associated with each task a (real) ant can perform. The response threshold value
is fixed, but the stimulus can change and represents the need for the ant to
perform the task. The probability that an ant starts performing a task with
stimulus s and response threshold value θ is given by

Tn(s; θ) =
sn

sn + θn
(2)

where n is a positive integer3. We will assume that s ∈ [0, 1] and θ ∈]0, 1].
Let us now apply this model to the problem at hand. A loaded ant can only

perform one task: dropping its load. Let sdrop be the stimulus associated with
this task and θdrop the response threshold value. The probability of dropping
the load is then given by

Pdrop = Tni(sdrop; θdrop) (3)

where i ∈ {1, 2} and n1, n2 are positive integers. When the ant is only carrying
one item n1 is used, otherwise n2 is used. An unloaded ant can perform two
tasks: picking up one item and picking up all the items. Let sone and sall be
the respective stimuli and θone and θall the respective response threshold values.
The probabilities for picking up one item and picking up all the items are given
by

Ppickup one =
sone

sone + sall
· Tm1(sone; θone) (4)

Ppickup all =
sall

sone + sall
· Tm2(sall; θall) (5)

where m1 and m2 are positive integers.
The values of the stimuli are calculated by evaluating fuzzy IF–THEN rules

as explained below. We assume that the objects that have to be clustered belong
to some set U , and that E is a binary fuzzy relation in U , which is reflexive (i.e.
E(u, u) = 1, for all u in U), symmetric (i.e. E(u, v) = E(v, u), for all u and v
in U) and TW –transitive (i.e. TW (E(u, v), E(v, w)) ≤ E(u, w), for all u, v and
w in U). For u and v in U , E(u, v) denotes the degree of similarity between the

2 Note, however, that the proposed changes do not exclude the use of multiple ants.
3 In fact, this is a slight generalization which was also used in [12]; in [2] only the case

were n = 2 is considered.
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items u and v. For a non-empty heap H ⊆ U with centre4 c in U , we define the
average and minimal similarity of H , respectively, by

avg(H) =
1
|H |

∑

h∈H

E(h, c) min(H) = min
h∈H

E(h, c) (6)

Furthermore, let E∗(H1, H2) be the similarity between the centres of the heap
H1 and the heap H2.

4.1 Dropping Items

The stimulus for a loaded ant to drop its load L on a cell which already contains
a heap H is based on the average similarity A = avg(H) and an estimation of
the average similarity between the centre of H and items of L. This estimation
is calculated as B = TW (E∗(L, H), avg(L)), which is a lower bound due to our
assumption about the TW –transitivity of E and can be implemented much more
efficiently than the exact value. If B is smaller than A, the stimulus for dropping
the load should be low; if B is greater than A, the stimulus should be high. Since
heaps should be able to grow, we should also allow the load to be dropped when
A is approximately equal to B. Our ant will perceive the values of A and B to
be Very High (VH), High (H), Medium (M), Low (L) or Very Low (VL). The
stimulus will be perceived as Very Very High (VVH), Very High (VH), High (H),
Rather High (RH), Medium (M), Rather Low (RL), Low (L), Very Low (VL)
or Very Very Low (VVL). These linguistic terms can be represented by fuzzy
sets in [0, 1]. The rules for dropping the load L onto an existing heap H are
summarized in Table 1(a).

Table 1. Fuzzy rules for inference of the stimulus for (a) dropping the load, (b) picking
up a heap.

�
��B
A

VH H M L VL

VH RH H VH VVH VVH

H L RH H VH VVH

M VVL L RH H VH

L VVL VVL L RH H

VL VVL VVL VVL L RH

�
��B
A

VH H M L VL

VH VVH - - - -

H M VH - - -

M L RL H - -

L VVL VL L RH -

VL VVL VVL VVL VL M

(a) (b)

4 We do not go into detail about how to define and/or compute the centre of a heap,
as this can be dependent on the kind of data that needs to be clustered.
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4.2 Picking up Items

An unloaded ant should pick up the most dissimilar item from a heap if the
similarity between this item and the centre of the heap is far less than the
average similarity of the heap. This means that by taking the item away, the
heap will become more homogeneous. An unloaded ant should only pick up
an entire heap, if the heap is already homogeneous. Thus, the stimulus for an
unloaded ant to pick up a single item from a heap H and the stimulus to pick
up all items from that heap are based on the average similarity A = avg(H)
and the minimal similarity M = min(H). The stimulus for picking up an entire
heap, for example, can be inferred using the fuzzy rules in Table 1(b).

4.3 The Algorithm

During the execution of the algorithm, we maintain a list of all heaps. Initially
there is a heap, consisting of a single element, for every item in the dataset.
Picking up an entire heap H corresponds to removing a heap from the list. At
each iteration our ant acts as follows. If the ant is unloaded, a heap from the
list is chosen at random; the probabilities for picking up a single element and for
picking up all elements are given by formulas (4)–(5). The case where H consists
of only 1 or 2 items, should be treated separately (i.e. without using fuzzy rules).
If the ant is loaded, a new heap containing the load L is added to the list of
heaps with a fixed probability. Otherwise, a heap H from the list is chosen at
random; the probability that H and L are merged is given by formula (3). The
case where H consists of a single item, should be treated separately.

For evaluating the fuzzy rules, we used a Mamdani inference system with
COG as defuzzification method. All response threshold values were set to 0.5.
The other parameters are discussed in the next section.

5 Evaluation

We assume that the n objects to be clustered are characterized by m numerical
attributes, i.e. U = {u1, . . . , un} with ui ∈ R

m, i = 1, . . . , n. To compute the
similarity between vectors, we use the fuzzy relation E in U defined by, for ui

and uj in U ,

E(ui, uj) = 1 − d(ui, uj)
d∗(U)

(7)

where d represents Euclidean distance and d∗(U) is (an estimation of) the maxi-
mal distance between objects from U . It can be proven that E is indeed reflexive,
symmetric and TW –transitive. To evaluate the algorithm, we compare the ob-
tained clusters with the correct classification of the objects. For u in U , let k(u)
be the (unique) class that u belongs to and c(u) the heap u was put in after al-
gorithm execution. Following Monmarché [10], we define the classification error
Fc by

Fc =
1

|U |2
∑

1≤i,j≤n

εij =
2

|U |(|U | − 1)

∑

1≤i<j≤n

εij (8)

with
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εij =
{

0 if (k(ui) = k(uj) ∧ c(ui) = c(uj)) ∨ (k(ui) �= k(uj) ∧ c(ui) �= c(uj))
1 otherwise

(9)
As an important benefit, this evaluation criterion strongly penalizes a wrong
number of clusters [10]. As test cases for evaluating our algorithm, we took the
“Wine”, “Iris” and “Glass” datasets from the UCI Machine Learning Repos-
itory [1]. The “Wine” and “Iris” dataset consist of three classes; the “Glass”
dataset consists of two main classes, each of which can be further split up into
3 subclasses. Table 2 shows the effect of changing the parameter n1. For each
dataset, the average value for Fc over 50 runs is shown; (m1, m2, n2) = (5, 5, 20)
is kept constant. The results were obtained after 106 iterations of the algorithm.
This reveals that n1 = 10 is a good choice, and moreover small changes in the
value of n1 have little impact on the result. Similar conclusions can be drawn for
the other parameter values5. The table also contains the results Monmarché ob-
tained with his two–phase algorithm for these datasets. Clearly, for both “Wine”
and “Glass” our results are a significant improvement. We also remark that the
classification error of the “Glass” dataset was computed w.r.t. the 2 main classes,
while Monmarché considered the 6 subclasses. Our algorithm always identifies
the 2 main classes, while Monmarché’s fails to identify either the 6 subclasses or
the 2 main classes in a reliable way.

Initial experiments with artificial datasets suggest that for a dataset of size
n, cn (with c an appropriate integer constant) is a good choice for the number of
iterations. The corresponding execution time of the algorithm is approximately
proportional to n log2 n, while rule evaluation happens in linear time.

Table 2. Influence of n1 on Fc.

n1 = 5 n1 = 10 n1 = 15 n1 = 20 Monmarché

Wine 0.50 0.13 0.14 0.16 0.51

Iris 0.17 0.16 0.17 0.17 0.19

Glass 0.16 0.12 0.13 0.14 0.40

6 Concluding Remarks

We have presented a clustering algorithm, inspired by the behaviour of real
ants simulated by means of fuzzy IF-THEN rules. Like all ant-based clustering
algorithms, no initial partitioning of the data is needed, nor should the number
of clusters be known in advance. The machinery of approximate reasoning from
fuzzy set theory endows the ants with some intelligence. As a result, throughout
the whole clustering process, they are capable to decide for themselves to pick
up either one item or a heap. Hence the two phases of Monmarché’s original

5 Due to limited space, we omit the corresponding data.
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idea are smoothly merged into one, and k-means becomes superfluous. Initial
experimental results with artificial datasets indicate good scalability to large
datasets. Outliers in noisy data are left apart and hence do not influence the
result, and the parameter values are observed to be dataset-independent which
makes the algorithm robust.
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10. Monmarché, N.: Algorithmes de Fourmis Artificielles: Applications à la Classifica-
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