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1 Introduction

Advanced analytical tools in computational biology, including those based on artificial intelligence
(AI), are heavily data-driven. This data often includes sensitive individual-level information such
as genomics data which are subject to strict privacy regulations. Due to this, such data commonly
requires tight access control and, as a result, ends up siloed in research centers and health systems.
In many cases, even when health data is advertised as “open”, researchers who want to use it
must navigate long and cumbersome processes to access each silo, such as establishing onerous
contractual agreements with data controllers, completing lengthy training processes, or working
within data enclaves [17]. This significantly hinders the data’s ability to be Findable, Accessible,
Interoperable, and Reusable, effectively making it “dark data”. Dark data is a widespread issue
among biomedical communities and is one of the major barrier to progress in biomedical research
and limited reproducibility in healthcare research [9].

A promising direction to address the challenge of dark data is Synthetic Data Generation (SDG).
SDG generates artificial data using a synthesizer trained on real data, thus offering an appealing solu-
tion for making data available while mitigating privacy concerns [6, 13]. When done well, synthetic
data has the same characteristics as the original data but, crucially, without replicating personal
information.

While there are a number of methods available for synthetic data generation, including approaches
based on generative adversarial networks like CTAB-GAN [18], variational autoencoders like CVAE
[1], and more recently, diffusion-based SDGs like TabDDPM [7], only a subset of these approaches
offer formal privacy guarantees. Differential Privacy (DP) is a rigorous privacy framework that limits
the risk of reidentifying individuals in a dataset, even when an adversary has access to auxiliary in-
formation [4]. Among SDG methods that provide DP guarantees, statistical-based SDGs – including
marginals-based methods such as MST [11] and AIM [12] – are reported to achieve higher utility
for synthetic tabular data generation than their above mentioned neural network-based counterparts
[3, 14].

In the genomics domain, several works have proposed synthetic data generators tailored to specific
biological data types, such as for bulk RNA-Seq data [15]. However, only a few of them incorporate
DP when generating synthetic tabular bulk RNA-Seq data. This raises a key research question – “Do
state-of-the-art, DP SDG methods for tabular data perform well on genomics data?”. To address
this, Chen et al. investigated how DP generative models perform on gene expression data in the
context of acute myeloid leukemia (AML) datasets [2]. Building on this, in this abstract, we study
the performance of the marginal-based DP SDG method Private-PGM [10] on two gene expression
(bulk RNA-Seq) datasets provided in the CAMDA Health Privacy Challenge.1

CAMDA Health Privacy Challenge – Track I The goal of this challenge was to “develop
privacy preserving generative methods that can mitigate privacy risks while preserving biological
insights for bulk gene expression datasets”. The platform for this challenge provided pre-processed
versions of two open-access TCGA RNA-seq datasets: (a) TCGA-BRCA consisting of 1,089 samples
and 978 gene expression features with 5 cancer subtypes for prediction and (b) TCGA-Combined

1https://benchmarks.elsa-ai.eu/?ch=4&com=introduction
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consisting of 4,323 samples and 97 features labeled for prediction of 10 different cancer tissue origins.
The challenge also provided an evaluation pipeline to assess the quality and privacy of the generated
synthetic data. In the following sections, we briefly describe our submission as a blue team to the
challenge, the SDGs we experimented with, and our findings.

2 Methodology

Differential Privacy (DP). DP guarantees plausible deniability regarding an instance being
present in a dataset, hence providing privacy guarantees [4]. Consider two neighboring datasets D
and D′ that differ by a single record. A randomized algorithm F is said to be (ϵ, δ)-DP if, for any
pair of neighboring datasets D and D′ and for all subsets O in the range of the output of F , it holds
that Pr(F (D) ∈ O) ≤ eϵ ·Pr(F (D′) ∈ O) + δ. ϵ and δ are the privacy parameters that represent the
privacy budget ϵ (measure of privacy loss), and the probability δ of the privacy being compromised,
respectively [4]. DP ensures that the inclusion of any entry in the real dataset is obscured, in the
sense that any output (synthetic dataset) obtained from computations over the real dataset would
have been similarly likely to be reached whether the entry was present or not. The smaller the
values of ϵ and δ, the stronger the privacy guarantees. A DP algorithm F is usually created out of an
algorithm F ∗ by adding noise proportional to the sensitivity of F ∗, where sensitivity is the maximum
possible change in F ∗’s output when comparing outputs on D and D′. The Gaussian Mechanism
achieves this by adding noise drawn from a Gaussian (normal) distribution with 0 mean and with a
standard deviation scaled to the l2-sensitivity of F ∗.

Synthetic data generation. Motivated by advances and the demonstrated success of deep learn-
ing models in biomedical applications, we began our study by exploring deep learning–based SDGs,
even SDG algorithms that do not provide DP guarantees. Our initial experiments included GAN-
based and diffusion-based SDGs, both of which were specifically designed for bulk RNA-seq data2.
These approaches did not perform well on the CAMDA datasets. They were computationally inten-
sive, time-consuming to adapt, produced synthetic data of generally low quality (reflected in utility
metrics such as a low accuracy of 20% in cell type prediction with the TCGA-Combined data gen-
erated with diffusion model) lacking in meaningful biological correlations, leading to poor clustering
across cell types. We also explored the use of large language models (LLMs) such as GPT-4, inspired
by recent work on using LLMs for tabular and genomic data generation [16, 8]. Limitations of the
model’s context window led to poor scalability for long gene expression profiles, resulting in high
generation costs and low quality of generated data. Given these challenges, and motivated by [2], we
turned our focus to Private-PGM [10], an SDG algorithm with the additional advantage of offering
formal DP guarantees.

Private-PGM. Private-PGM is a marginals based SDG that constructs an undirected graphical
model from measurements over low-dimensional marginals, which facilitates the generation of new
synthetic samples via sampling from the learned graphical model. Private-PGM provides DP guar-
antees by perturbing the measured marginals with Gaussian noise. The scale of the noise is, among
other things, controlled by a privacy budget parameter ε. As mentioned above, the smaller the value
of ε, the higher the formal privacy guarantees.

Private-PGM works by modeling and sampling from a DP approximation of the data’s marginal
probability distributions. Private-PGM requires categorical or discretized inputs. To make the
pre-processed CAMDA dataset compatible with Private-PGM, we discretized the continuous gene
expression values using quantile binning, transforming each feature into 4 equidepth discrete bins. We
then computed a set of 1-way and 2-way marginals: the former capture univariate distributions for

2https://forge.ibisc.univ-evry.fr/alacan/rna-diffusion
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each gene, while the latter include gene-label pairwise marginals to preserve relationships between
features and class labels. These marginals are then made DP (by adding calibrated noise to the
marginals) and these DP marginals are used to construct a probabilistic graphical model (PGM)
as per the Private-PGM algorithm [10]. The learned PGM is then used to sample synthetic data
samples.

3 Analysis

We present an analysis of the synthetic datasets generated using Private-PGM on two TCGA bulk
RNA-seq datasets from the CAMDA challenge. Table 1 reports utility, fidelity, and privacy metrics
according to the evaluation pipeline provided by the CAMDA Health Challenge. The first two
columns, Accuracy (Acc.) and Area Under the Precision-Recall Curve (AUPRC), correspond to
training a one-vs-rest logistic regression model on the synthetic data and testing it on the real data.
Higher values indicate better utility. For reference, when the model is trained and tested on real
data, the metrics for TCGA-BRCA are: Accuracy = 0.8650, AUPRC = 0.8656; and for TCGA-
Combined: Accuracy = 0.9783, AUPRC = 0.9919. The third column reports statistical utility,
measured by the number of overlapping important features (genes) between real and synthetic data;
higher values indicate better agreement in feature importance. The next two columns, MMD and
discriminative score, assess the fidelity of the generated synthetic data. While MMD (Maximum
Mean Discrepancy) measures the distance between the probability distributions of synthetic and
real datasets, discriminative score is the F1 score of a classifier trained to distinguish synthetic from
real samples. Lower values for MMD and discriminative score are better. DCR (Distance to the
Closest Real sample) is a privacy metric indicating the average distance from each synthetic data
point to its nearest neighbor in the real dataset. Higher values suggest better privacy preservation.
For comparison, the DCR on real data is 24.04 for TCGA-BRCA and 23.27 for TCGA-Combined.

Table 1: Evaluation of synthetic data generated with Private-PGM with different values of privacy
loss (ε) for CAMDA Challenege datasets. Baseline refers to the non-private SDG (best among all the
baselines) provided by the competition organizers.

ε Acc. (↑) AUPR (↑) Feature
Overlap (↑)

MMD (↓) Discriminative
Score (↓)

DCR (↑)

B
R
C
A

Baseline 0.8476 0.8415 19.6 0.0180 0.5496 28.5348
1 0.7163 0.5535 12 0.0524 1.0000 28.138
2 0.7594 0.6669 12.4 0.0260 0.9996 27.869
5 0.8118 0.7535 14 0.0106 0.9234 27.247
7 0.8154 0.7630 15.4 0.0086 0.8638 27.219
10 0.8292 0.7757 15 0.0074 0.7769 24.042

C
O
M

B
IN

E
D Baseline 0.9755 0.9908 65.6 0.00938 0.57832 28.87758

1 0.8276 0.8190 42.2 0.0207 0.9831 33.70426
2 0.8804 0.9213 43.4 0.0121 0.8742 31.6821
5 0.9190 0.9587 44.6 0.0068 0.7248 29.9346
7 0.9288 0.9671 43.8 0.0061 0.6666 29.5171
10 0.9392 0.9656 47.8 0.0055 0.6357 29.2343

Table 1 summarizes the performance of Private-PGM on the CAMDA Health Challenge datasets
across a range of privacy budgets ε = (1, 2, 5, 7, 10). The baseline corresponds to the best-performing
non-private SDG provided by the challenge organizers. As the baseline does not provide formal pri-
vacy guarantees via DP, it performs the best for utility and fidelity metrics. For both TCGA-BRCA
and TCGA-Combined datasets, we observe that increasing the privacy loss ε improves utility (accu-
racy, AUPR, and feature overlap) and fidelity (MMD, discriminative score), gradually approaching
the performance of the non-private baseline. The TCGA-Combined dataset consistently yields higher
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utility scores than BRCA, even at lower ε values. This may be due to its larger sample size and lower
feature dimensionality, which make the data more amenable to marginal-based modeling. Interest-
ingly, the non-private baseline exhibits higher DCR than the privacy-preserving methods. Moreover
the trends in DCR with respect to ε do not follow the expected pattern as the other metrics did.
However, a higher DCR does not imply stronger privacy in the absence of formal guarantees. Since
DCR is only a heuristic measure of privacy, more rigorous evaluations, such as membership infer-
ence attacks (MIA) [5], are needed to assess the actual privacy risks associated with synthetic data
generation methods.

Figure 1 visualizes the 2D PCA projections of original and synthetic data. We observe that
Private-PGM-generated synthetic data (in orange) forms tight clusters aligned with dense regions
of the real data (in blue). We think this could be because the model relies on lower-dimensional
marginal statistics (e.g. 1-way and 2-way marginals) to reconstruct the joint distribution, which
tends to concentrate generation in regions with stronger statistical support. Moreover, we do not
see a particular trend with varying ε. One would expect a loosening of the clusters with increased
values of ε. We believe a more rigorous study is needed to capture the trends.

(a) TCGA-BRCA, ϵ = 7 (b) TCGA-BRCA, ϵ = 10

(c) TCGA-COMBINED, ϵ = 7 (d) TCGA-COMBINED, ϵ = 10

Figure 1: PCA Plots. Visual comparison between generated synthetic data and real data

While Private-PGM seemed to be offering better performance based on several statistical utility
and fidelity metrics in Table 1, the visualizations reveal that Private-PGM does not capture the
biological correlations well. This is in line with findings by [2] on a different dataset.

Based on our study, we conclude that there is a gap in the current literature for DP SDGs for
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genomics, i.e. for SDGs that offer formal differential privacy guarantees while preserving utility and
fidelity along with biological patterns.
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