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Abstract—Domain Generation Algorithms (DGAs) are a pop-
ular technique used by contemporary malware for command-
and-control (C&C) purposes. Such malware utilizes DGAs to
create a set of domain names that, when resolved, provide
information necessary to establish a link to a C&C server.
Automated discovery of such domain names in real-time DNS
traffic is critical for network security as it allows to detect
infection, and, in some cases, take countermeasures to disrupt
the communication and identify infected machines. Detection
of the specific DGA malware family provides the administrator
valuable information about the kind of infection and steps that
need to be taken. In this paper we compare and evaluate machine
learning methods that classify domain names as benign or DGA,
and label the latter according to their malware family. Unlike
previous work, we select data for test and training sets according
to observation time and known seeds. This allows us to assess
the robustness of the trained classifiers for detecting domains
generated by the same families at a different time or when
seeds change. Our study includes tree ensemble models based
on human-engineered features and deep neural networks that
learn features automatically from domain names. We find that
all state-of-the-art classifiers are significantly better at catching
domain names from malware families with a time-dependent seed
compared to time-invariant DGAs. In addition, when applying
the trained classifiers on a day of real traffic, we find that many
domain names unjustifiably are flagged as malicious, thereby
revealing the shortcomings of relying on a standard whitelist for
training a production grade DGA detection system.

Index Terms—domain generation algorithms, malware, seed,
deep learning, tree ensembles

I. INTRODUCTION

Malware installed on infected computers often seeks to
establish a communication channel with a command-and-
control server (C&C), for instance to send stolen information
to the malware designer (the botmaster) behind the C&C
server, or to receive instructions, or a newer version of the
malware to update itself with. Domain Generation Algorithms
(DGAs) are commonly used to create such a communication
channel between infected computers and the botmaster [1].
A DGA dynamically generates a list of domain names, for
instance using a publicly available random seed such as the
date or the weather forecasts. One of these domain names is
registered by the botmaster. Each infected machine queries
the domain names from the automatically generated list. Once
such a query is successfully resolved, the infected machine
has found the domain name registered by the botmaster, and
communication can take place. When the registered malicious
domain name is discovered by law enforcement and black-

listed, the malware on the infected botnet and the botmaster
can simply restart the process by generating a new list of
domain names.

There is a growing interest in machine learning (ML)
models that can detect DGA domain names in real-time to
prevent any C&C communication [2]-[5]. Such systems need
to deal with domain names originating from a variety of DGA
malware families. Some DGA families are time-dependent,
meaning that they incorporate a time source such as the system
time of the compromised host or the date field in a HTTP
response in their seed [1] while others use a seed that does
not depend on time. To be useful in practice, trained DGA
classifiers need to be sufficiently robust to detect both time-
dependent and time-invariant DGA families, even when these
DGAs start generating domain names based on new seeds that
were not seen during training time.

Being able to detect whether a domain name is malicious or
not, purely based on the domain name string, can be thought of
as a binary text classification problem. Unsurprisingly, existing
work on the development of DGA classifiers has drawn
inspiration from the field of natural language processing. This
includes both methods that leverage human defined lexical
features extracted from domain names [5], [6], as well as deep
learning methods that learn important features automatically
as part of the training process [3], [7], [8].

In addition to distinguishing DGA vs. non-DGA domain
names, network administrators are interested in the multi-
class classification problem of labeling malicious domains
according to their malware family. Detection of the specific
DGA malware family provides network administrators with
additional information to validate the result and, furthermore,
to trust the detection decision with higher confidence. From
an ML perspective, DGA malware family classification is a
challenging problem because there are many different families,
some of which generate many more distinct domain names
than others in daily traffic. This corresponds to a multiclass
classification task with many different class labels and great
class imbalance. The research on DGA malware family clas-
sification is still in an initial stage, with varying success,
depending on the particular DGA families [3], [7], [9], [10].

The standard approach followed in the literature to train and
evaluate ML models for DGA detection is to collect known
benign domain names from a whitelist, known DGA domain
names from a blacklist, and to randomly assign some of these



domain names for training and others for testing, for instance
in a 80%-20% stratified split, or using k-fold cross-validation.
In practice, DGA algorithms change their seeds in an attempt
to evade detection. To allow for a more reliable evaluation
of the robustness of trained DGA classifiers, in this paper we
therefore create training and testing datasets that are purposely
split across seed boundaries, i.e. to avoid seed overlap between
the data used for training on one hand, and the data used for
validation on the other hand.

Using this data, which originates from a real-traffic stream
of passive DNS data, we train and evaluate both kinds of
state-of-the-art methods for DGA detection and DGA family
classification, namely (1) tree ensemble models based on
human engineered features extracted from the domain names,
and (2) deep neural networks that learn features automatically.
To the best of our knowledge, our work is the first such
experimental evaluation of the robustness of DGA classifiers
against seed changes observed in real-traffic data. We find
that all state-of-the-art classifiers cope well with seed changes
of time-dependent malware families, while being significantly
less resilient against seed changes of malware families that do
not depend on time.

The data used in our study is compromised of domain
names from Alexa (whitelist) and Bambenek (blacklist) that
were observed in real traffic. When we subsequently apply the
trained classifiers to large batches of domain names observed
in real traffic, we find that they flag many domain names
unjustifiably — yet with great confidence — as malicious. This
finding casts doubt on the practical usefulness of the typical
whitelist/blacklist trained DGA classifiers that are presented in
the literature as solutions for malware detection, in particular
whether a whitelist such as Alexa is sufficiently representative
of all non-malicious domain names that appear in real traffic.
To the best of our knowledge no such analyses were ever
presented in the literature.

This paper is structured as follows: after giving an overview
of related work on ML methods for DGA classification and
DGA malware family detection in Section II, in Section III
we provide details about the raw data collected for this study.
In Section IV, we describe how we split this data into training
and testing sets according to time and seed. In addition, we
describe the binary and multiclass classification tasks, and
provide a brief justification of the evaluation metrics employed
later in the paper. Section V contains a description of the
tree-ensemble and deep learning methods used to train the
DGA classifiers. Detailed results are presented and analyzed
in Section VI, where we highlight the difference in the ability
of the classifiers to catch time-dependent and time-invariant
DGAs. Finally, in Section VII we present and discuss our
findings when applying the trained classifiers to large batches
of domain names observed in real traffic.

II. RELATED WORK

ML for DGA detection. A variety of machine learning
(ML) approaches for DGA detection have been proposed
over the last few years. A useful way to distinguish them

is based on the kind of input they require when deployed
for DGA detection. There are for instance techniques that
retrospectively analyze entire groups of domains extracted
from DNS queries that occurred in a certain time window [2],
[11] vs. techniques that can classify individual domain names
in real-time [3], [5]. There are ML models that only expect
the domain name string itself [3], [4], [8] as input vs. ML
models that exploit additional context features such as the IP-
addresses that the domains are mapped to, or temporal access
patterns (e.g. how often the domain was requested, and when)
[6], [11]-[13]. Our focus in this paper is on techniques that can
detect DGA domains in real-time based purely on the domain
name string.

Real-time DGA detection based on domain name string.
ML approaches that leverage the domain name string for
DGA detection can be categorized into two groups: so-called
“featureful” methods that rely on human defined lexical fea-
tures extracted from the domain names, such as domain name
length, vowel-character ratio, bigrams, etc. [2], [5], [6] and
“featureless” methods in which the automatic discovery of
good features is part of the overall ML model training process,
as a form of representation learning [3], [14]. Popular kinds of
classifiers used in the featureful approach for DGA detection
are logistic regression and tree ensemble methods, while the
featureless approach relies on the use of deep neural networks,
namely Long Short-Term Memory (LSTM) networks and
Convolutional Neural Networks (CNN). Most papers about
the featureless approach include a featureful approach as a
baseline method [3], [7], [8], [10], [14], and the featureless
approach is typically reported to yield better, more accurate
results. A note of caution is that in supervised learning in
general, the predictive performance of feature based methods
heavily relies on the choice of features, and that authors who
want to highlight the benefits of featureless, deep learning
approaches, might not necessarily go out of their way to
carefully select and craft features to strengthen the featureful
baseline approach. The fact that featureless approaches do not
require such a labor-intensive process of feature engineering,
is of course a major advantage of deep learning methods.

Malware family classification. Most of the work on DGA
detection is concerned with distinguishing DGA traffic from
non-DGA traffic, often treated as a binary classification task.
In this paper, we are interested in identifying the malware
family that generated the domain name as well, which is
a multiclass classification task. In ML, there are two main
approaches for multiclass classification. In direct multiclass
classification, a classifier is trained to select the proper target
label for a new instance. In One-versus-All (OVA) classi-
fication, a binary classifier is trained per target label, and
new instances are assigned the label of the winning classifier,
i.e. the classifier with the highest confidence for the instance
at hand. Both techniques have been used already for DGA
family classification, often including non-DGA domain names
as an additional “benign family”.

The earliest attempt, to the best of our knowledge, is the
proposal of Antonakakis et al. [2] to train an HMM per target



family, i.e. OVA-HMM. This is a featureless approach, since
the HMMs consume each domain name as a sequence of
characters. This OVA-HMM approach was evaluated on 4
malware families and the benign family in [2] and was later
reported to be significantly outperformed by other methods
(see below) [3], [10].

Woodbridge et al. [3] were the first to propose a deep
neural network approach for DGA detection and family clas-
sification. They trained an LSTM network on data from the
Alexa' whitelist and DGA domain names from the Bambenek
Consulting? blacklist, including all DGA malware families
considered in this paper, except for locky. They extended
their LSTM network for binary classification (DGA vs. non-
DGA) to an LSTM network with a softmax layer for direct
multiclass classification (which DGA family), and compared
the latter with an OVA-RF (One-versus-All Random Forest)
approach, including Alexa as a “benign family”. They ob-
served that the LSTM approach outperformed the OVA-RF
approach for all families, yet still failed to identify some of
the families correctly. Plausible reasons given for this were
that the representation of some families in the dataset was
too small to be able to do meaningful learning, and that
some families (like Cryptolocker) were easily mistaken by the
classifier for a similar family (like ramnit). As a workaround,
Woodbridge et al. [3] therefore proposed to train a classifier
that assigns domain names to superfamilies, effectively making
the multiclass classification problem easier, and resulting in
higher predictive accuracy scores. Anderson et al. [15] further
extended the approach from Woodbridge et al. [3] by using
a character-based generative adversarial network (GAN) to
augment training sets in order to harden other ML models
(like RF) against yet-to-be-observed DGAs.

Lison and Mavroeidis [7] followed up with a similar LSTM
approach, trained and tested on a larger dataset consisting of
domain names collected from the whitelists Alexa, Statvoo,
and Cisco, and DGA domain names collected from the
DGArchive?, the Bambenek Consulting feeds, and by running
reverse engineered domain generators. Their observations are
along the same lines as Woodbridge et al. [3], i.e. the trained
LSTM network does a good job in identifying some DGA
families while performing poorly for others.

Refining the earlier work of Woodbridge et al. [3] further,
most recently Tran et al. [10] proposed the use of a cost-
sensitive learning algorithm to train an LSTM network for
DGA family classification that takes class imbalances into
account. In addition, they use a hierarchical classifier archi-
tecture: in a first step, domain names are classified as DGA
or non-DGA by an LSTM trained for binary classification,
and in a second step, domains that were labeled as DGA,
are further assigned a family label with an LSTM trained for
multiclass classification.* Tran et al. [10] trained and evaluated
their approach on data from Alexa and Bambenek. Their most

Thttps://www.alexa.com/topsites
Zhttp://osint.bambenekconsulting.com/feeds/
3https://dgarchive.caad.fkie fraunhofer.de/
“https://github.com/bkcs- hust/Istm-mi

TABLE I
NUMBER OF UNIQUE DOMAIN NAMES LISTED PER MALWARE FAMILY IN
THE BAMBENEK DGA DOMAIN FEED FOR JULY 19, 2018, AS WELL AS
HOW MANY, AND HOW OFTEN, WE OBSERVED THEM IN REAL TRAFFIC ON
JULY 19, 2018. THE BOTTOM ROW PRESENTS SIMILAR INFORMATION,
BASED ON THE ALEXA TOP 1 MILLION DOMAIN NAMES INSTEAD OF ON
THE BAMBENEK DGA DOMAIN FEED.

Family Bambenek | Real-traffic Real-traffic

(unique) (unique) (total)
Cryptolocker-Flashback 6,000 2,570 54,912
dyre 7,998 1,813 36,610
locky 5,352 5,161 132,763
murofet 26,520 22,974 485,730
necurs 28,672 28,532 1,078,489
nymaim 6,000 5,936 168,600
Post Tovar GOZ 66,000 32,571 455,993
pykspa 14,215 14,215 1,815,591
gakbot 40,000 34,624 752,489
ranbyus 13,640 13,323 277,764
banjori 439,223 439,206 7,939,787
tinba 66,688 54,352 445,549
ramnit 56,174 56,138 1,793,601
simda 14,755 14,729 581,788
shiotob/urlzone/bebloh 12,521 12,517 399,143
Total 803,758 738,661 16,418,809

[ Alexa [ 1,000,000 ] 793,936 [ 128,292,104 |

important observation is that their approach allows them to
achieve a macro-average Fl-score that is substantially higher
than that of previous approaches, including the earlier work of
Woodbridge et al. [3], because their trained model performs
better for families with a limited representation in the data,
which is something that Woodbridge et al. [3] struggled with.
Still, there are families that are not correctly identified by Tran
et al’s approach at all [10], such as the family locky which
was not included in Woodbridge et al.’s original work [3].
Lison and Mavroeidis [7] reported reasonable results for locky,
which could be due to the use of a higher number of training
examples for this particular family than Tran et al. [10].

Also recently, Choudhary et al. [9] obtained first place for
a DGA family classification challenge in the DMD2018 com-
petition® with an OVA-RF approach, i.e. a model consisting
of binary RF classifiers, namely one per target family. Their
success in the competition might have been due to the use of
an additional, external dataset for training, instead of a specific
choice of features or machine learning algorithm.

Contrary to the work we present in this paper, in all studies
on malware family classification mentioned above [3], [7], [9],
[10], the data was split in datasets used for training and testing
without regard for time or seed.

III. RAW DATA

The data used in this study originates from a real-time
stream of passive DNS data. It consists of roughly 10 billion
DNS queries per day collected from multiple ISPs (Internet
Service Providers), schools and businesses distributed all over
the world. We collected 7 days of traffic, for the following
dates: Jul 19, 20, 22, 23 24, 25, and Aug 06, 2018. The time

Shttp://nlp.amrita.edu/DMD2018/



gap between the 6th and the 7th day is intentional, as will
become more clear in Section IV.

Out of all the collected traffic, we keep only valid (query and
response available) DNS queries of type A and AAAA (IPv4
and IPv6 address records) with response code 0 (SUCCESS)
and 3 (NXDOMAIN). Each domain in our dataset consists
of a second-level domain (SLD, e.g. google) and a top-level
domain (TLD, e.g. com), separated by a dot. We observed
between 50 to 70 million such unique domain names per day
in real traffic.

To obtain ground truth labels for the real-traffic data,
we matched it with the DGA domain feed from Bambenek
Consulting collected for the same days in July and August
2018. This DGA domain feed is generated on a daily basis
with reverse engineered DGA malware of 50+ known families.
For each family, the feed contains domain names that would
have been generated on that day by the DGA algorithm. In
Table I we show, as an example, statistics for the 15 DGA
families from Bambenek that we observed most frequently
in real traffic. The first column shows the DGA malware
family name, while the second column indicates the number
of distinct domain names that would have been generated by
the malware on July 19, 2018 according to the DGA domain
feed of Bambenek consulting. Next, we show how many of
those we observed in real traffic (unique count) and how
often (total count). Note that the same domain name can get
queried multiple times, possibly with different subdomains,
which explains why the numbers in the last two columns of
Table I vary.

The bottom row in Table I is different from the other rows. It
is based on the whitelist Alexa. Alexa ranks websites based on
their popularity in terms of number of page views and number
of unique visitors. For example, according to Alexa, the three
highest ranked domain names in terms of popularity in Aug
2018 were google.com, youtube.com, and facebook.com. For
the purposes of this study, we assume that the domain names
in the Alexa top 1 million list are not malicious. The bottom
row in Table I indicates how many of the top 1 million Alexa
domain names occurred in the real traffic data on July 19, and
how frequently they were requested.

Finally, we mention that the number of Bambenek domain
names observed in real traffic fluctuates somewhat from day to
day. As Figure 1 shows, 738,661 Bambenek domains for Jul
19 were also seen in the real traffic data on that day. Similarly,
we observed 737,927, 737,462, 722,077, 722,345, 736,728 and
720,192 Bambenek domains for the days of Jul 20, 22, 23, 24,
25, Aug 06 in real traffic for the same days.

IV. PROBLEM DESCRIPTION AND EVALUATION METRICS

We train ML models that can detect DGA domain names
in real traffic, based purely on the domain name string, and
say which malware family they belong to, without the need
to access reverse engineered malware. We evaluate the trained
models on a ground truth labeled dataset (described below) as
well as on an entire day of real traffic (see Section VII).
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Fig. 1. Number of Bambenek domains observed in real traffic domains on
the train and test days

TABLE 11
NUMBER OF IDENTIFIED DOMAIN NAMES OBSERVED IN REAL TRAFFIC ON
DAY 1 THROUGH DAY 6 ON ONE HAND, AND ON DAY 7 ON THE OTHER
HAND. DESPITE THE TIME GAP OF 12 DAYS THAT OCCURRED IN PRACTICE
BETWEEN DAY 6 AND DAY 7, THERE IS STILL SUBSTANTIAL OVERLAP
BETWEEN DAY 1-6 ON ONE HAND, AND DAY7 ON THE OTHER HAND, AS
INDICATED IN THE INTERSECTION COLUMN DAY 1-6 N DAY7.

[ Family [ Dayl-6 | Day7 [ Dayl-6 N Day7 |
Cryptolocker-Flashback 7,469 2,609 1
dyre 7,766 2,181 3
Tocky 9,234 3,883 1
murofet 49,284 22,383 1

E necurs 58,799 28,684 1,068
nymaim 12,496 6,048 439
Post Tovar GOZ 98,873 32,851 4
pykspa 19,964 14,261 10,188
qakbot 38,446 18,184 3
ranbyus 14,367 13,806 10,337
Total 316,698 | 144,890 22,045
banjori 439,207 | 439,205 439,205
tinba 59,564 53,995 53,952
E | ramnit 56,138 | 56,140 56,138
simda 14,729 14,730 14,729
shiotob/urlzone/bebloh 12,521 12,519 12,519
Total 582,159 | 576,589 576,543
[ Alexa [ 884,752 [ 792,278 ] 787718 |

Below, we use Day1-6 to refer to the dataset with all domain
names from Alexa and Bambenek that were observed in real
traffic on Jul 19, 20, 22, 23 24, 25, while Day7 contains the
Alexa and Bambenek domain names that were observed in
real traffic on Aug 06. Table II lists the number of domain
names per family, including Alexa, in each of these datasets.

We observed a good amount of overlap between both
datasets; column “Dayl-6 N Day7” in Table II contains
the number of domain names that occur in both datasets,
i.e. domain names that were requested on Day 7 (Aug 06,
2018) as well as on at least one of the six days in July 2018.
The existence of such overlap correlates with the nature of
the DGA algorithms. Indeed, some DGA algorithms are time-
dependent, meaning that they incorporate a time source such
as the system time of the compromised host or the date field



TABLE III
NUMBER OF DOMAIN NAMES IN TRAIN AND TEST DATA

[ Family [ Train | Test [ Train N Test |
Cryptolocker-Flashback 7,469 2,609 1
dyre 7,766 2,181 3
locky 9,234 3,883 1
murofet 49,284 22,383 1

E necurs 58,799 28,684 1,068
nymaim 12,496 6,048 439
Post Tovar GOZ 98,873 32,851 4
pykspa 19,964 14,261 10,188
gakbot 38,446 18,184 3
ranbyus 14,367 13,806 10,337
Total 316,698 | 144,890 22,045
banjori 24,997 7,000 0
tinba 42,212 12,882 2,093

E | ramnit 9,907 2,639 0
simda 4,006 2,008 22
shiotob/urlzone/bebloh 6,002 4,002 1,997
Total 87,124 28,531 4,112

[ Alexa [ 884,752 [ 792,278 ] 787,718 |

in a HTTP response in their seed [1] while others use a seed
that does not depend on time.

Whether a family is time-dependent (TD) or time-invariant
(TD), is indicated in Table II. For most of the time-dependent
DGA:s, the overlap between Dayl-6 and Day7 is moderate to
almost none. These DGAs generate a large number of com-
pletely fresh domain names on a daily basis. As expected, the
overlap between Dayl-6 and Day7 for the time-independent
domain names is a lot higher, with barely any new domain
names appearing on Day7 that had not already been used by
the DGA in Dayl-6. Note that even for time-invariant DGA
algorithms, blacklisting all domain names is not an adequate
defense strategy because the amount of domain names can be
very large (too large to check in real time) and once the seed
is changed, the blacklist would become useless.

To generate appropriate train and test datasets (cfr. Table
IIT) for our classifiers we adopt the following strategy:

« TD-DGA. For the time-dependent DGA families, we take
all the unique domains from Dayl-6 as training data,
and the domain names from Day7 as test data. As Table
III indicates, this means that for some of the TD-DGA
families, there is a moderate amount of overlap between
the train and test data.

o TI-DGA. For the time-independent DGA families, we
retain all domain names from Day1-6 and Day7 that we
were able to trace back to a specific seed using seed
information from the DGArchive. The total number of
such seeds and corresponding domain names is indicated
in Table IV, and varies per family. All these seeds
were active both in Dayl-6 and in Day7, so instead of
following a time-based split in train and test data as
for the TD-DGAs, we split the TI-DGA domain names
according to seed. To this end, we randomly select 80%
of the seeds of each TI-DGA family for training purposes,
and keep the remainder for test purposes. The number of
seeds and corresponding domain names in the train and

test data is shown for each TI-DGA family in Table IV.

o TI-Alexa. We use all Alexa domain names that were
observed in real traffic on Dayl-6 as training data, and
all Alexa domain names that were observed in real traffic
on Day7 as test data.

For each domain name in the test data, a trained ML model
should infer whether the domain name belongs to any of the
malware families from Table III, and if so, say which one.
Regardless of the ML method used, the first step can be
evaluated as a binary classification problem while the second
step is a multiclass classification problem.

Given that blocking legitimate traffic is highly undesirable,
a low false positive rate is very important in deployed DGA
detection systems. For this reason, for the binary classification
task, we evaluate the ML models in terms of the true positive
rate (TPR) and false positive rate (FPR). These are defined as
usual as TPR = TP/(TP+FN) and FPR = FP/(FP+TN) where
TP, FP, TN, and FN are the number of true positives, false
positives, true negatives, and false negatives respectively. ML
algorithms commonly include hyperparameters that can be
tuned to vary the TPR and FPR, resulting in a so-called ROC
curve of (FPR,TPR) pairs. In Section VI we also report the
AUC-score, which is calculated as the integral of the ROC
curve, and independent of any specific choice of threshold for
the FPR.

For the multiclass classification task of detecting the correct
malware family, we evaluate the ML models in terms of preci-
sion, recall, and F1-score per family, and we provide aggregate
results in terms of (weighted) macro-average. Precision is
defined as TP/(TP+FP), recall is the same as TPR, and the F1-
score is the harmonic mean of precision and recall. The macro-
average is an unweighted average of the scores per family,
while the weighted macro-average takes the class sizes into
account, thereby giving more importance to families which
have many instances in real traffic.

V. METHODS

A. Feature Based Approach

From each domain name, we extract lexical/linguistic fea-
tures, many of which are well known in the literature on DGA
detection. We extract:

o The following 11 features used by Yu at al. [14]: ent
(normalized entropy of characters); nl2 (median of 2-gram);
nl3 (median of 3-gram); naz (symbol character ratio);
hex (hex character ratio); vwl (vowel character ratio); len
(domain label length); gni (gini index of characters); cer
(classification error of characters); tld (top level domain
hash); dgt (first character digit).

o The following 3 features proposed by Schiippen et al. [5]:
ratio of consecutive consonants; ratio of consecutive digits;
ratio of repeated characters.

o Length of TLD (tld_len): The number of characters in the
TLD.

o Length of SLD (sld_len) [2]: The number of characters in
the SLD.



TABLE IV
TRAIN AND TEST SEEDS AND UNIQUE DOMAIN NAMES PER TI-DGA FAMILY

Family No. of seeds No. of domains
Train | Test | Total Train Test Total
banjori 25 7 32 | 24,997 7,000 | 31,997
tinba 112 28 140 | 42,212 | 12,882 | 55,094
E [ ramnit 50 13 63 9,907 2,639 [ 12,546
simda 12 3 15 4,006 2,008 6,014
shiotob/urlzone/bebloh 4 2 6 6,002 4,002 10,004

o Consonant Ratio (con): The number of consonants in the
SLD divided by the length of the SLD.

« Digit Ratio (dig): The number of digits in the SLD divided
by the length of SLD.

e 2-gram Circular Median (2gram_cmed): The SLD of the
domain is duplicated and concatenated tail to head (e.g. “ap-
ple.com” becomes “appleapple”) and subsequently the 2-
gram median (i.e. the nl2 feature mentioned in [14]) for the
resulting string is computed.

e 3-gram Circular Median (3gram_cmed): The SLD of the
domain is duplicated and concatenated tail to head and sub-
sequently the 3-gram median (i.e. the nl3 feature mentioned
in [14]) for the resulting string is computed.

o Number of Unique Characters in domain (uni_domain):
The number of unique characters in domain name string
(including SLD and TLD, excluding ‘.’ and ‘-’).

o Number of Unique Characters in SLD (uni_sld): The num-
ber of unique characters in the SLD (excluding ‘. and °-’).

e Number of Tokens in SLD (tokens_sld): The number of
tokens in the SLD. A token is a sequence of characters
separated by “-”. For example, the tokens_sld value of the
domain “youtube-mp3.org” is 2.

e« Number of digits in SLD (digits_sld): The number of
numerical characters in the SLD.

« Longest Consonant Sequence in SLD (Ing_con_seq) [16]:
The length of the longest consonant sequence in the SLD
of the domain. For example, the longest consonant sequence
for the domain “google.com” is “gl”, hence the value of
Ing_con_seq is 2.

« Indication Malicious (flag_dga): Boolean flag (0 or 1) that
indicates if the domain contains any of the following TLDs
that are known to be frequently associated with malicious
activity®: “study”, “party”, “click”, “top”, “gdn”, “gq”,
“asia”, “cricket”, “biz”, “cf”. For example, if the domain
is “fff.cf”, the value of this feature would be 1.

Several of these features are clearly correlated, such as the
length of the TLD (tld_len), the length of the SLD (sld_len)
and the overall domain name length (len). Since we use the
features to train Random Forests (RFs), and the underlying
decision tree learning algorithm has a built-in mechanism for
good feature selection, we do not perform feature selection a
priori.

Our choice for RFs is motivated by the fact that for
supervised learning, tree ensemble methods (such as RFs)
are among the most common algorithms of choice for data

Shttps://www.spamhaus.org/statistics/tlds/, Accessed: 2018-07-18

scientists because of their general applicability and their state-

of-the-art performance. In addition to resulting in models with

good predictive accuracy, the RF training algorithm also scales

well to large dataset sizes, which helps to explain its popularity

for DGA detection in particular (see e.g. [3], [S], [10], [14]).
We train several kinds of RF models:

« B-RF: A binary RF classifier with 100 trees, each tree
being trained on a bootstrap sub-sample with a maximum
of 20 features and by using entropy as the criterion to select
splitting attributes. This classifier is trained on the train data
from Table III, with the Alexa domain names labeled non-
DGA (represented as label 0) and all other domain names
labeled DGA (represented as label 1).

o« M-RF: A multiclass RF classifier with the same parameter
values used in B-RF is adopted for the multiclass classifi-
cation problem of assigning a domain name to one of 16
classes from Table III, where Alexa is treated as “the benign
family”.

e OVA-RF: A One-versus-All RF classifier consisting of 15
binary RFs, namely one per DGA family from Table III,
with the same hyperparameter values as above. Each RF is
trained on a dataset that is designed to be balanced with 50%
domains belonging to the target family and 50% domains
belonging to the other families, including Alexa, in a strati-
fied mix. Once the individual training datasets are prepared,
the corresponding 15 binary RF classifiers are trained to
identify if the domain belongs to the respective DGA family
or not. To deploy the OVA-RF classifier, we directly pass
new domains to the B-RF classifier to categorize between
DGA and non-DGA domains. Only the domains that are
labeled as non-DGA by the B-RF classifier are then passed
to each of the 15 binary RF classifiers to perform multiclass
classification. Each RF outputs a probability that the new
domain belongs to its family. The classifier that outputs the
highest probability, indicating that the domain belongs to its
family, is taken as the final prediction.

B. Featureless Approach

In the feature-based approach described above, expert-
defined features are first extracted from the domain names and
subsequently used in feature vectors for training and deploying
RFs. In contrast, in a featureless approach, the domain name
string is passed directly as a sequence of characters as input
to the classifiers, which during training automatically learn to
extract useful features.

In the featureless approach, each domain name string is first
converted to lowercase and then represented as a sequence



of ASCII values corresponding to its characters. Following
Woodbridge et al. [3], we set the maximum length at 75
characters. While domains can technically be longer — the
maximum allowed length for SLDs and TLDs is 63 characters
each — in practice they are typically shorter. If a domain name
has less than 75 characters, we pad with zeroes on the left. If
it has more than 75 characters, then we truncate the domain
name by removing characters from the right side of the SLD
until the desired length is reached. We train a variety of neural
networks:

« B-Endgame: The B-Endgame classifier is a neural network
for binary classification (DGA vs. non-DGA) consisting of
an embedding layer, an LSTM layer, and a single node
output layer with sigmoid activation, proposed originally by
Woodbridge et al. [3].

« M-Endgame: An adaptation of the above with an output
layer with 16 nodes and “softmax” as the activation function
to ensure that the output values are in the range between 0
and 1 and can be used as predicted probabilities. The output
value with the largest probability is taken as the final class
predicted by the model. This model is used for malware
family classification.

¢ B-CMU: The B-CMU classifier is a bidirectional recurrent
neural network (RNN) used for binary classification (DGA
vs. non-DGA) which consists of an embedding layer, a
forward LSTM layer and a backward LSTM layer. In the
forward LSTM layer, the input sequence is processed from
the left to the right, as in a traditional RNN, while in the
backward layer, the processing happens from the right to the
left. The output from the forward and the backward layer
is then combined and passed on to further layers. We use
the same B-CMU classifier architecture as Yu et al. [8], who
adapted the bidirectional LSTM that was originally proposed
for tweet classification by Dhingra et al. [17] to the problem
of DGA detection.

o B-MIT: This B-MIT classifier is a hybrid neural network
consisting of an embedding layer, a CNN layer with 128
filters and ‘ReLLU’ as the activation function, followed by an
LSTM layer with 64 LSTM cells. We use the same B-MIT
classifier architecture as Yu et al. [8], who adapted the hybrid
neural network architecture that was originally proposed for
learning tweet embeddings by Vosoughi et al. [18] to the
problem of DGA detection.

« M-CMU and M-MIT: We have adapted the B-CMU and B-
MIT model for the multiclass classification task of malware
family detection by replacing the original output layer by a
layer with 16 nodes and “softmax” as the activation function.
Similarly as in the M-Endgame model, the output with the
largest probability is taken as the final class predicted by
the classifier.

e« B-LSTM.MI and M-LSTM.MI are deep learning models
with a similar architecture as B-Endgame and M-Endgame.
The main distinction is that the LSTM.MI models are trained
with a cost-sensitive learning algorithm that takes class
imbalances into account, as proposed by Tran et al. [10].
Another distinction is that, while the B-LSTM.MI model

is trained for binary classification (DGA vs. non-DGA)
just like the B-Endgame model, the M-LSTM.MI model is
trained to output one of the 15 malware family labels. This
is different from the M-Endgame model which is trained
to output one of 16 labels, i.e. with the benign family
included. During deployment of the LSTM.MI approach
for malware family classification, a domain name is first
classified as DGA or non-DGA by the trained B-LSTM.MI
model; domain names that received the DGA label are
further classified according to their malware family by the
M-LSTM.MI model.

All neural networks above were trained on a workstation
with an NVIDIA Titan Xp GPU and 12 GB RAM. We used
early stopping as the mechanism to select the number of
epochs (iterations) used for training: to prevent overfitting,
we stopped training when the validation loss (measured over
a validation set that was split off for this purpose from the
training data) was no longer improving. The LSTM.MI models
were the fastest to convergence, after 10 epochs. The B-
Endgame, B-CMU, and B-MIT models took an average of
20 epochs, while the M-Endgame and M-MIT models ran for
31 epochs. The M-CMU model took the largest number of
epochs to train, with 54 epochs in total.

VI. RESULTS

A. Binary Classification Results

All binary classifiers in this study output a probability that
a given instance belongs to the positive class, so we can
tune a threshold probability at which to consider a prediction
positive. For each model in Table V, we chose the threshold
that results in a 0.001 FPR over the test data, and we report
the corresponding TPR. A 0.001 FPR means that we allow for
no more than 792 of the 792,278 benign domain names in the
test data to be misclassified as malicious. The corresponding
TPR indicates what percentage of the malicious domain names
are caught by the classifier. In addition to the standard TPR,
we also report what percentage of the time-dependent (TD-
DGA) and what percentage of the time-invariant (TI-DGA)
domain names from the test data were caught by the classifier.
These numbers are provided in the columns TPR-TD and TPR-
TI respectively. Finally, we report the AUC-score, which is
independent of any classification threshold choice.

Table V contains the results of the binary classifiers from
Section V when trained on the train data and evaluated on the
test data from Table III. As can be seen in the Table V, all
classifiers are able to flag the time-dependent DGA domains
with a high TPR (recall). On the other hand, we also see that
the time-invariant DGA domains are difficult to catch by the
classifiers, resulting in a lower TPR. Another observation is
that the results obtained by Deep Neural Networks (DNNs) are
better than the ones obtained with RF. Indeed, all the DNN
models in Table V have a comparable performance which is
significantly higher than that of the RF model.



TABLE V
BINARY CLASSIFICATION RESULTS IN TERMS OF AUC, FPR (FALSE
POSITIVE RATE), TPR (TRUE POSITIVE RATE) = RECALL, TPR-TD (TPR
FOR TIME-DEPENDENT DOMAINS FROM TEST DATA), TPR-TI (TPR FOR
TIME-INVARIANT DOMAINS FROM TEST DATA)

[ Model | AUC | FPR | TPR | TPR-TD | TPR-TI |

B-RF 0.9366 | 0.001 | 0.8843 0.9199 0.6391
B-Endgame | 0.9897 | 0.001 | 0.9469 0.9753 0.8026
B-CMU 0.9912 | 0.001 | 0.9432 0.9744 0.7852
B-MIT 0.9974 | 0.001 | 0.9478 | 09741 | 0.8145
B-LSTM.MI | 0.9967 | 0.001 | 0.9524 0.9792 0.7613
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Fig. 2. Normalized confusion matrix for M-LSTM.MI

B. Multiclass Classification Results

The results obtained with the multiclass classifiers from
Section V on the data from Table III are presented in Table
VI and VII, with the best results in terms of Fl-score for
each family highlighted. It is immediately obvious from the
tables that the RF classifiers are outperformed by the DNN
classifiers. Furthermore, the performance of the M-RF and
OVA-RF approaches is very similar, offering no strong reason
to prefer one over the other. In comparison with the DNN
classifiers, the RF classifiers do particularly poorly on the
families nymaim and banjori.

Out of all DNN methods M-LSTM.MI has the highest
macro-average F1 (0.7784), with M-CMU coming in as a
very close second (0.7731). Unlike the other DNN models, M-
LSTM.MI is trained with a cost-sensitive learning algorithm
that takes class imbalances into account, resulting in the high-
est weighted macro-average F1 (0.9701) among all models.

As the confusion matrix in Figure 2 reveals, the M-
LSTM.MI model performs very poorly for the malware family
banjori. Indeed, only 5% of banjori domain names in the data
are recognized as such by the M-LSTM.MI classifier, while
64% manage to evade the DGA classifier and are labeled
as benign. The remaining banjori domain names are either
mistaken for gakbot (21%) or ramnit (10%). Interestingly,
the reverse does not hold: there is not a single gakbot or

ramnit domain name in the test data that gets mistaken by the
classifier for a banjori domain name. The poor performance
of the M-LSTM.MI model for domain names generated by
banjori, which is a time-invariant DGA, sheds some insight
on the cause of the lower TPR for TI-DGAs reported in Table
V. Note that, as becomes clear from Figure 2, the other culprit
is the TI-DGA simda; 30% of the domain names generated
by this family evade the classifier and are labeled as benign.
Recall that in our experimental setup, TI-DGA domain names
are split between train and test datasets based on their seeds.
It is likely that domains generated based on different seeds
exhibit different character distributions and hence vary in terms
of linguistic features, making them more difficult to detect
after a seed change.

VII. REAL TRAFFIC ANALYSIS

We applied the best performing DNN classifier (B-
LSTM.MI) and the B-RF classifier from Section VI to a day
of resolved domains, collected for 2018-08-27. We restricted
our analysis to resolved domains only, since these indicate
potential active C&C centers. In the preprocessing step, we
removed all xn—— domains from the rest of the traffic in
order to reduce the false positive rate for our classifiers.” The
resulting data contains 57,667,269 unique resolved domains
consisting of a SLD and a TLD without a 3LD (third-level
domain). 7,416 of these domains occur in Bambenek and/or
DGArchive during the period 2018-08-25 through 2018-08-29,
indicating that they were successfully registered domains, used
for C&C communication. Note that 7,416 is low compared
to the number of overlapping DGAs between real traffic and
Bambenek in Fig. 1, because only a small fraction of DGA
domains are actually registered. 3,049 of the 7,416 resolved
known DGA domain names from Aug 27 belong to the 15
families used to train our classifiers from Section VI, while
the majority belongs to other families.

The columns with header “Original” in Table VIII contain
results for the models which were exactly as described and
trained in Section V and VI, when applied to all resolved
domains from Aug 27. The B-LSTM.MI classifier detects
an impressively high number of the resolved known DGA
domains (6,068 out of 7,416), while the B-RF classifier detects
roughly half. It is interesting to notice that the B-LSTM.MI
classifier manages to detect many domains from families that
it did not see during training.

As can be seen in Table VIII, about 1.45% of the domains
observed in real traffic on Aug 27 were flagged by the B-
LSTM.MI classifier as malicious (out of which 44% were
flagged with probability 1.0). We were able to locate 0.7%
of those flagged domains in DGA Archive and/or Bambenek.
99% of the flagged domains were not present in either of
these blacklists. As the numbers in Table VIII indicate, while
flagging substantially fewer domain names as malicious, the
original B-RF classifier likely has a much lower TPR (recall)
than the B-LSTM.MI classifier, which is in line with our
previous findings from Table V.

"https://umbrella.cisco.com/blog/2014/10/16/detecting- pinyin-domains/



TABLE VI
MULTICLASS CLASSIFICATION RESULTS - PART

Famil M-LSTM.MI M-RF OVA-RF
y Precision [ Recall [ Fl-score | Precision | Recall | Fl-score | Precision | Recall | Fl-score
Cryptolocker-Flashback 0.3442 0.5707 0.4294 0.2693 0.2169 0.2403 0.2101 0.4132 0.2786
dyre 0.9991 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tocky 0.6765 0.5892 0.6299 0.6155 0.4466 0.5176 0.5287 0.5367 0.5327
murofet 0.8885 0.9355 09114 0.8345 0.8702 0.8519 0.8647 0.8445 0.8545
A [ necurs 0.9567 0.8412 0.8952 0.9295 0.7999 0.8598 0.9769 0.7761 0.8650
& [Tnymaim 0.6702 0.8879 0.7638 0.3294 0.2379 0.2763 0.2814 0.3530 0.3131
Post Tovar GOZ 0.9999 0.9999 0.9999 1.0000 0.9997 0.9998 1.0000 0.9997 0.9998
pykspa 0.8572 0.8715 0.8643 0.6845 0.6657 0.6750 0.6941 0.5969 0.6419
qakbot 0.7781 0.6546 0.7110 0.6098 0.5786 0.5938 0.6847 0.5176 0.5895
ranbyus 0.8759 0.9320 0.9031 0.8870 0.8900 0.8885 0.8626 0.8771 0.8698
banjori 0.9887 0.2507 0.4000 0.1015 0.0384 0.0557 0.1203 0.0434 0.0638
tinba 0.9161 0.9892 0.9513 0.7909 0.8924 0.8386 0.7970 0.8776 0.8353
E | ramnit 0.2868 0.6582 0.3995 0.2530 0.2755 0.2637 0.2203 0.3441 0.2686
simda 0.9569 0.4980 0.6551 0.7350 0.4930 0.5902 0.6470 0.4920 0.5590
shiotob/urlzone/bebloh 0.9794 0.9163 0.9468 0.9740 0.8698 0.9190 0.9724 0.8621 0.9139
[ Alexa [ 09936 [ 09972 ] 09954 [ 0.9751 [ 09888 [ 0.9819 [ 09751 [ 0.9888 | 0.9819 |
Macro-average 0.8229 0.7870 0.7784 0.6868 0.6414 0.6595 0.6772 0.6576 0.6604
Weighted macro-average 0.9743 0.9707 0.9701 0.9402 0.9462 0.9427 0.9427 0.9442 0.9424
TABLE VII
MULTICLASS CLASSIFICATION RESULTS - PART II
Famil M-Endgame M-CMU M-MIT
y Precision [ Recall | Fl-score | Precision [ Recall [ Fl-score | Precision | Recall | FI-score
Cryptolocker - Flashback DGA 0.4069 0.3335 0.3665 0.3458 0.4534 0.3923 0.3481 0.4266 0.3834
dyre 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
locky 0.8947 0.4288 0.5797 0.6950 0.5547 0.6170 0.8121 0.4597 0.5871
murofet 0.8824 0.9410 0.9107 0.8716 0.9520 0.9100 0.8947 0.9213 0.9078
A | necurs 0.9344 0.8689 0.9004 0.9499 0.8507 0.8976 0.9520 0.8587 0.9030
= [Tnymaim 0.6876 0.8433 0.7575 0.6604 0.8420 0.7403 0.6979 0.8133 0.7512
Post Tovar GOZ DGA 1.0000 0.9999 1.0000 0.9999 0.9998 0.9999 1.0000 0.9998 0.9999
pykspa 0.8520 0.8789 0.8652 0.8630 0.8729 0.8679 0.8655 0.8500 0.8577
qakbot 0.8015 0.6700 0.7298 0.8224 0.6557 0.7296 0.7270 0.7097 0.7182
ranbyus 0.8783 0.9256 0.9013 0.8647 0.9500 0.9053 0.8668 0.9321 0.8983
banjori 0.9835 0.1786 0.3023 0.9712 0.1782 0.3012 0.5775 0.0059 0.0116
tinba 0.9148 0.9913 0.9515 0.9116 0.9927 0.9504 0.9218 0.9908 0.9550
E | ramnit 0.3806 0.5828 0.4605 0.4083 0.5528 0.4697 0.3177 0.6332 0.4231
simda 0.9552 0.4885 0.6465 0.9076 0.4995 0.6443 0.9174 0.4975 0.6451
shiotob/urlzone/bebloh 0.9973 0.9100 0.9517 0.9902 0.9130 0.9500 0.9932 0.9180 0.9542
[ Alexa 0.9886 [ 0.9986 0.9936 | 009893 [ 0.9971 [ 09932 [ 0.9899 [ 0.9979 [ 0.9939
Macro-average 0.8473 0.7524 0.7698 0.8282 0.7665 0.7731 0.8051 0.7509 0.7493
Weighted macro-average 0.9712 0.9707 0.9681 0.9711 0.9701 0.9680 0.9682 0.9690 0.9659
TABLE VIII
ANALYSIS ON ONE DAY OF REAL TRAFFIC DATA (27 AUG 2018)
B-LSTM.MI B-RF
Observation Original Adapted Original Adapted
Total number of resolved domain names 57,667,269 | 57,667,269 | 57,667,269 | 57,667,269
Totql Anumber of resol\'/ed domain names flagged as 839212 146,067 207,661 108,599
malicious by the classifier
Out of the flagged malicious resolved domains,
total number of domain names found in the 6,068 5,623 3,645 2,873
blacklists Bambenek or DGArchive
Out of the flagged malicious resolved domains,
total number of domain names found in the 774 674 14 886
whitelist Alexa
Out of the flagged ma_llclous resolved domains, $32.370 139,770 204,002 104,840
total number of domain names that are unaccounted




We manually inspected the domains that were flagged as
DGA but were not present in our blacklist and noticed a
substantial number (up to a few hundred thousand domains)
of legitimate domains, including content distribution networks
domains, well-known legitimate hostnames such as blogspot,
and dynamic DNS associated domains.

A likely cause for the high number of flagged domain
names that are unaccounted for, is that the whitelist Alexa
might not be sufficiently representative of the set of non-
malicious domains that occur in real traffic. To investigate
this further, we retrained the original B-RF and B-LSTM.MI
classifiers on a dataset which is created by replacing the Alexa
domain names from the training data in Table III with a
random sample of 1 million resolved domains that occurred
in real traffic on Aug 10, 2018. Labeling resolved domains as
benign for training purposes in this manner does not result in
a cleanly labeled ground truth dataset. Instead, it generates
a weakly labeled training dataset that very likely contains
some erroneous labels. However, since resolved DGAs are
very rare when compared to the total number of resolved
domains in a network, the noise in the labels in limited, and the
training dataset is still usable in practice. The corresponding
results, which are reported in the “Adapted” columns in
Table VIII, show that training the models on noisy benign
training examples obtained from real traffic data instead of
on a clean whitelist, helps to substantially reduce the number
of flagged domain names, making the B-LSTM.MI classifier
more suitable to deploy in practice. These results suggest that
using a heuristically labeled dataset such as in [14] is better
than just using Alexa.

VIII. CONCLUSION

In this paper we compared the performance of state-of-the-
art classifiers for DGA domain name detection when trained
and evaluated on test data split according to time and seed.
In line with previous work, we observed that, on ground
truth labeled data, deep learning based models outperformed
random forest models both for the task of binary classification
(i.e. identifying whether the domain name is malicious or
not) and multiclass classification (i.e. assigning a malicious
domain name to the generating malware family). We found
all classifiers are more robust against changes in the seed
of time-dependent DGA families compared to time-invariant
DGA families. The latter might be caused by the presence
of some TI-DGAs in our data which are particularly hard
to detect, such as banjori. Finally, when applying the best
performing classifier to large batches of real traffic data,
we observed that a high number of domain names are
unjustifiably classified as malicious with high confidence
by the classifier. This is likely due to the fact that Alexa is
not sufficiently representative of all non-malicious domain
names in real traffic, thereby casting doubt on the practical
usefulness of whitelist/blacklist trained DGA classifiers
typically proposed in the literature.
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