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1 Introduction

Single-cell RNAseq and its importance in cancer research: In recent years, single-cell RNA sequenc-
ing (scRNA-seq) has dramatically transformed cancer research by providing unprecedented resolution into
tumor biology. Unlike bulk RNA sequencing, which masks cellular differences by averaging gene expression,
scRNA-seq profiles individual cells, enabling the identification of distinct subpopulations and rare cell types
within tumors [9]. This technology has surmounted issues of tumor heterogeneity and impurity that plagued
earlier studies, allowing researchers to dissect the complex cellular composition of cancers and their microen-
vironments. As a result, a vast body of data now illuminates intratumoral diversity at the transcriptional
level, revealing new insights into how cancers develop, evade treatment, and interact with their environment.
In particular, scRNA-seq has opened new frontiers in understanding intratumor heterogeneity, profiling the
tumor microenvironment (TME), uncovering mechanisms of treatment resistance, and discovering biomarkers
for diagnostics and prognostics.

The need for synthetic scRNAseq data: An exciting development in the single-cell field has been the
generation of synthetic scRNA-seq data to augment research. As powerful as scRNA-seq is, studies often
face practical limitations: the number of cells that can be profiled from rare populations or precious pa-
tient samples may be low, and certain cell states (especially those relevant to disease) might be exceedingly
rare or even missing in a given dataset [12]. Additionally most available datasets are heavily skewed toward
healthy control samples, while studies focusing on rare diseases, specialized tissues, and uncommon cell types
are underrepresented. Both of these scarcities can limit statistical power and impede the training of robust
computational models [12]. In the past few years (2020–2025), researchers have turned to deep learning and
generative modeling techniques to create artificial single-cell transcriptomes that mimic real cells, thereby
expanding datasets in silico. These synthetic data approaches aim to model rare cell states, improve algo-
rithm performance, and provide testbeds for method development without needing infinite lab experiments
[12, 8, 2, 15]. Synthetic scRNA-seq data generated through these methods can advance use-cases like method
development and benchmarking. Researchers can generate a large synthetic single-cell dataset with known
“ground truth” (since they control the generative process) and then test how well clustering or trajectory
inference algorithms perform. This was difficult to do with limited real data, but now frameworks like AC-
TIVA [7] or scGFT [12] can produce realistic benchmarks. Additionally, synthetic cells can aid in experiment
planning: one can simulate an experiment’s outcome (e.g., if I sequence 10,000 cells from this tumor, will I be
able to detect a hypothesized rare cell type?) and adjust the design accordingly. This helps optimize the use
of expensive sequencing resources. As of 2025, these synthetic data generation techniques are still mostly in
the research phase, but they are rapidly maturing. They represent a convergence of genomics with advanced
computational modeling, exemplifying how cross-disciplinary innovation is pushing the boundaries of cancer
data analysis.

In this abstract, we explore and compare multiple types of synthetic data generators (SDGs) to generate single-
cell RNA-seq (scRNA-seq) data using the OneK1K dataset provided by the CAMDA Healthcare Challenge1.
Specifically, we evaluate both the statistical methods scDesign2 [14] and Private-PGM [11] (which also provides
formal differential privacy guarantees) as well as the recent diffusion-based model cfDiffusion [19]. Our analysis
follows the evaluation pipeline and metrics defined by the challenge organizers.

1https://benchmarks.elsa-ai.eu/?ch=4&com=introduction
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2 Methodology

Dataset description. The OneK1K dataset is a large scRNA-seq dataset containing expression quantitative
trait loci (EQTL) for peripheral blood mononuclear cells (PBMCs) from 982 North European donors, with
individual donors contributing between 544 and 3401 cells each [17]. Cells were assigned to donors using
reference-based demultiplexing. Following doublet and empty droplet removal, counts data were normalized
by the library size, sex, and age. Cell type (label) assignment involved an initial stage of “supervised clustering”
of cell expression data based on a published PBMC dataset (yielding distinct clusters for Myeloid, NK, CD4,
CD8, and B cells) followed by additional unsupervised clustering identifying fourteen cell types in total [17].
In total, this produced 1.2 million cells, which were aligned to 25,834 genes.

Synthetic data generation using multiple methods. The OneK1K data can be represented as tabular
data in which the rows are cells and the columns are genes (or vice versa). While the landscape of synthetic
data generation (SDG) algorithms is substantial and expanding, nearly all SDG algorithms for tabular data
belong to one of two prominent classes. The first class consists of statistics based algorithms that (roughly
speaking) learn a probability distribution over the real data and subsequently sample from it. This class
includes SDG algorithms such as Private-PGM [11], PrivBayes [18], and RAP [1]. The second class consists
of neural network-based methods. These rely on training neural networks that generate data resembling the
training data. This class includes algorithms such as CTGAN [16], and diffusion based SDG algorithms such
as TabDDPM [10]. Many, though not all, of these SDG algorithms offer formal privacy guarantees through the
use of differential privacy (see below). In addition to these generic SDG algorithms for tabular data, recently
several SDG methods were proposed specifically for RNA-seq data. These include the statistics based SDG
algorithm scDesign2 [13] and the neural network based SDG algorithms cfDiffusion [19]. In this abstract we
perform an empirical comparison of the statistics based scDesign2 technique with the neural network-based
cfDiffusion method, evaluating the fidelity of each approach for the generation of single cell RNA-seq data. We
further compare their performance with Private-PGM, an SDG technique known to achieve good performance
for bulk RNA-seq data [5].

scDesign2: scDesign2 [13], a marginals-based method, was used for generation of synthetic scRNA-seq data.
For each gene and each cell type, it fits an individual marginal distribution, either using Maximum Likelihood
Estimates of Negative Binomial or Zero-Inflated Negative Binomial (ZINB) distributions for overdispersed
genes and Poisson or Zero-Inflated Poisson distributions for all others [13]. For the majority of genes, scDesign2
samples from these individual distributions to create synthetic data. For some subset of genes exceeding a
threshold of non-zero entries, scDesign2 incorporates individual distributions into a Gaussian copula by way of
the Probability Integral Transform. For each gene i, a uniform distribution ui is computed over the cumulative
distribution function (CDF) of the fitted distribution; the final multivariate distribution follows the following
formula, where Φp(...;R) denotes the CDF of a multivariate Gaussian distribution with covariance matrix R.

F (x1j , ..., xpj) = Φp(Φ
−1(u1), ...,Φ

−1(up);R) (1)

This enables scDesign2 to fit multiple types of distributions over individual genes while preserving correlations
between them. scDesign2 used highly variable genes (HVGs) to generate the synthetic data. Following library-
size and log1p-normalization, HVGs were selected according to the default parameters of scanpy, specifying a
maximum dispersion of 0.5, a maximum mean of 3, and a minimum mean of 0.0125. This yielded 1,118 HVGs
of 25,834 total genes.

Given the substantial memory and time requirements of scDesign2, we employed two strategies for synthetic
data generation. Our first method trained scDesign2 copulae models for each of the fourteen cell types over the
HVGs. Our second method used these copulae models to generate HVGs while fitting Poisson distributions
individually over the normalized counts distributions of all non-HVG genes. We ran three versions of scDesign2
(see Table 1): one using the 1118 HVGs computed according to the above mentioned method; another using
the top 5000 most variable HVGs; and a final method which used scDesign2 to generate counts for the 1118
HVGs while fitting Poisson distributions over the counts of the remaining genes following library-size and
log1p normalization.

Figure 1 shows the UMAP representation of real and synthetic data generated via the scDesign2 (1118
HVGs) method.
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Figure 1: UMAP of real vs synthetic data generated via scDesign2 over 1,118 HVGs.

Figure 2: Loss in diffusion model training Figure 3: Loss for fine-tuning cfDiffusion AE
from the pretrained SCimilarity model

Figure 4: AE latent representations of the
subsampled training dataset before and af-
ter fine-tuning AE

cfDiffusion: Deep learning based cfDiffusion model [19] was also used to generate synthetic data. cfDiffu-
sion consists of a combination of an Autoencoder (AE) followed by a diffusion model. First, the Autoencoder
(AE) based on SCimilarity foundation model [6] as its backbone, trained on 22.7 million cell corpus, is used to
obtain n-dimensional representations of the raw scRNA-seq counts, transforming the discrete gene expression
into a distribution. This latent representation is then used for predicting noise during the diffusion process
based on U-Net model comprising of several Multilayer Perceptron (MLP) layers. So, given an initial cell
embedding x0 ∼ q(x) from the training data distribution, the diffusion process gradually transforms it into a
noisy embedding xT by iteratively adding Gaussian noise over T time steps. The goal of training is to learn
the reverse diffusion process pθ(xt−1 | xt), which is also modeled as a Gaussian distribution. The resulting
diffusion model is then used as a generative model by sampling random Gaussian noise and transforming it
into realistic single-cell latent representations, such as ones produced by the AE. The AE is then used as a
decoder to transform the representations back to scRNA-seq counts. cfDiffusion incorporates the cell types
labels directly via a classifier-free mechanism during diffusion model training, to align the latent features to
the target class simplifying training. In Figure 3, we can see the fine-tuning process, and gradual improvement
of the model, with the loss decreasing as steps increase. In Figure 4 we can see the result of fine-tuning AE
on our dataset. While initially the latent representations seem to demonstrate little to no separation between
various cell types, after 800k epochs of fine-tuning the model on our dataset, the model learns to distinguish
different cell types more clearly in the latent space, which should lead to better performance.

Private-PGM. Private-PGM [11] is a marginals based SDG that constructs an undirected graphical model
from measurements over low-dimensional marginals, which facilitates the generation of new synthetic samples
via sampling from the learned graphical model. Private-PGM provides differential privacy (DP) guarantees
by perturbing the measured marginals with Gaussian noise. The scale of the noise is, among other things,
controlled by a privacy budget parameter ε. The smaller the value of ε, the higher the formal privacy
guarantees.

Private-PGM requires categorical or discretized inputs. To make the pre-processed CAMDA dataset com-
patible with Private-PGM, we discretized the continuous gene expression values using quantile binning, trans-
forming each feature into 4 equidepth discrete bins. We then computed a set of 1-way and 2-way marginals: the
former captured univariate distributions for each gene, while the latter included gene-label pairwise marginals
to preserve relationships between features and class labels. Next, these marginals are made DP (by adding
calibrated noise to the marginals) and these DP marginals are used to construct a probabilistic graphical
model (PGM) as per the Private-PGM algorithm. The learned PGM is then used to sample synthetic data
samples. We used an ε value of ε = 10 for all single-cell experiments with Private-PGM.
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3 Analysis

Fidelity & Utility We compared these methods across several metrics included in the baseline CAMDA
code. The Spearman and Pearson correlation coefficients are computed between the means of each gene in real
and synthetic data, indicating the extent to which average expression levels are preserved in the synthetic data
generation process. The MaximumMean Discrepancy measures the distance of feature means from the real and
synthetic data in a high-dimensional space; real and synthetic data are first subjected to Principal Component
Analysis, and the MMD computed over their PCA representations using the Radial Basis Function (RBF)
as a kernel. The Adjusted Rand Index (ARI) measures how well two datasets cluster together, with higher
values (close to 1) indicating a greater degree of clustering, 0 values indicating randomness, and negative values
indicating worse-than-random clustering. A principal-component representation of the real and synthetic data,
with corresponding indices having identical cell types, are clustered using the Louvain method [3] and the ARI
computed over the corresponding clusters. The Local Inverse Simpson’s Index likewise indicates the degree to
which real and synthetic data cluster together. The integration LISI of an individual data point is the inverse
of the sum of squared proportions of each category (real vs synthetic) over the 10 closest cells, yielding a
value between 1 and C where C is the number of categories; the CAMDA code computes such a metric over
all datapoints, takes its mean, and normalizes this by 1

C , yielding a value between 0 and 1, with high values
suggesting high mixture between real and synthetic data.

Table 1 presents these metrics across the aforementioned methods. For each method, we trained a model
on the 1118 HVGs (or 5000 HVGs) identified according to the methodology above and evaluated against the
test set distributed by the CAMDA organizers over the same set of genes.

scDesign2
(1118 HVGs)

scDesign2
(5000 HVGs)

scDesign2 +
Poisson

cfDiffusion
(1118 HVGs)

Private PGM
(1118 HVGs)

Spearman CC 0.997 0.988 0.997 0.841 0.955
Pearson CC 0.997 0.985 0.960 0.713 0.667
MMD 0.0001 0.001 0.0002 0.001 0.0001
LISI 0.819 0.548 0 0 0
ARI Real vs Synthetic 0.512 0.374 0.676 0.15 −0.006
ARI GT vs Combined 0.567 0.312 0.439 0 0.236

Table 1: Quality metrics for different methods of synthetic data generation. Higher Spearman Correlation Coefficients, Pearson
Correlation Coefficients, Local Inverse Simpson’s Indices, and ARIs indicate higher-quality data, while lower MMDs indicate
better quality.

scDesign2
(1118 HVGs)

cfDiffusion
(1118 HVGs)

Private PGM
(1118 HVGs)

Accuracy 0.50 0.50 0.50
AUCROC 0.499 0.50 0.50
Average Precision 0.5005 0.50 0.50

Table 2: Accuracy of DOMIAS membership inference attack against various method.

Privacy Vulnerabilites We consider the vulnerability of each of the aforementioned data generation meth-
ods to Membership Inference Attacks (MIA). The baseline code for the CAMDA challenge implements a
GAN-leaks attack [4], a distance-based attack. Given samples Sk

G = {xi}ki=1 from some generative model
G and some test datapoint x∗ whose membership in the train set is unknown, the membership attack score
A(x∗;G), scaling negatively with the probability of membership, is assigned based on the distance to the
nearest point in the synthetic dataset.

A(x∗;G) = minxi∈Sk
G
||x ∗ −xi||2 (2)

In the baseline implementation, this the probability of membership is calculated as e−A(x∗;G). We ran this
attack across all synthetic data generation methods using a subset of the OneK1K dataset provided by the
organizers which contained 131,636 records of train (member) and test (non-member) data in equal quantities.
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Table 2 shows the accuracy and AUROC of the GAN-leaks attack in predicting membership. On all methods,
the DOMIAS attack scores almost exactly as one would expect from random guessing; this is because the
distance between the real and synthetic datasets is so great that it assigns each datapoint as a non-member,
corresponding to exactly 50% of the synthetic dataset. This can be interpreted either to indicate the poorness
of the attack or that of the synthetic data.

Discussion: Our results indicate that scDesign2 best preserves the clustering within the additional data,
as indicated by high ARI and LISI scores; cfDiffusion and Private-PGM perform very poorly along these
metrics, achieving ARIs and LISIs close to 0, the former indicating nearly random clustering and the latter
indicating almost no mixture between the neighborhoods of real and synthetic data. Figure 1, showing the
UMAP distribution of real vs synthetic data generated by scDesign2 over the 1118 HVGs, further demonstrates
the quality of scDesign2’s clusters, with synthetic data accurately preserving cell type clusters present in the
training data. The poor performance of cfDiffusion likely stems from an issue during diffusion model training,
where the diffusion model does not seem to be able to use latent representation meaningfully to generate
realistic looking data, leading to mode collapse, as can be seen in Figure 2, where the model stops learning
early. This may be due to significant class imbalance (from 228797 cells for cell type 0 to 1815 cells for cell type
9), leading to poorly separated latent representations, or due to limited size of the diffusion model. However,
our results also show successful generation of synthetic data which has high fidelity to original data and also
presents high utility. scDesign2 was our method of choice which showed the best performance due to its strong
reliance on highly variable genes to capture and recapitulate the strongest patterns in the original data. The
degradation of scDesign2’s performance as more genes are added is unsurprising; as the definition of HVG
becomes more permissive, the model will begin to fit increasingly noisy genes, leading to degradation in model
quality.
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