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Abstract 

Surgical Site Infections (SSIs) are estimated to represent 17% of all hospital-acquired infections. Their impact on 

morbidity, mortality, and cost of care calls for techniques to risk stratify patients ahead of surgery. In this paper we 

train and evaluate machine learning models (logistic regression, decision trees, and boosted decision trees) that can 

flag – ahead of surgery – those patients who are likely to develop a SSI. In addition to the gender and the age of the 

patient at the time of surgery, our models rely only on available results from blood tests done prior to the surgery. 

We obtain the best results with boosted decision trees (AdaBoost), i.e. an AUC-score of 86% on a benchmark patient 

dataset of the University Hospital of North Norway. The outcomes of Glukose and CRP tests stand out in particular 

as indicative features for predicting a future SSI.   

Introduction 

Surgical Site Infections (SSIs) represent a substantial fraction of all hospital-acquired infections, resulting in 

prolonged hospital stays and a healthcare cost increase, up to 34,670 USD/per patient1. Being able to flag at-risk 

patients in advance can help clinicians to take appropriate interventions to reduce the number of SSIs,  thereby 

reducing cost and improving quality of care. The existence of a significant number of blood tests and their 

corresponding results, which are captured in electronic medical records, enables the use of knowledge discovery 

techniques to train predictive models on historical patient data. In this paper we build and test machine learning 

(ML) models, namely logistic regression, decision trees, and boosted decision trees, to risk stratify patients ahead of 

surgery. We treat the problem as a binary classification task: given demographic features, i.e. gender and age at 

surgery, as well as clinical features, i.e. frequency and results of blood tests done prior to surgery, predict whether 

the patient will develop an infection (class label 1) or not (class label 0). We evaluate our approach on a benchmark 

patient dataset of the University Hospital of North Norway, provided in the context of the AMIA KDDM 2016 

competition2. We obtain the best results (AUC = 86%) with a boosted decision trees model in which the values for 

Glukose, CRP, Albumin and Leukocytter play an important role, next to age and gender. Standalone decision trees 

can achieve comparable performance but are less stable, i.e. their performance depends more on the split between 

train and test data in the k-fold cross-validation set-up. Below we describe the dataset, our data extraction steps, as 

well as the feature construction and engineering details. Next we present detailed results as well as insights derived 

from the trained models. We conclude with interesting directions for future research. 

Dataset and Features 

We obtained data from the AMIA KDDM 2016 competition2. The dataset contains data of 909 patients who have 

undergone gastrointestinal surgery. There are a total of 504,675 blood test results for 811 different blood test type 

names. Not every patient has taken every test, and many patients have taken the same test multiple times. The data 

contains results from blood tests done before as well as after surgery. As explained below, we only use results from 

blood tests done prior to surgery to closely mimic a setting in which a clinician has to decide ahead of surgery 

whether a particular patient is at risk of developing a SSI, and if appropriate interventions are required.  

183 of the 909 patients in the dataset have developed a SSI (Cases) while 726 have not (Controls). Out of the 909 

patients, only 879 have at least one blood test done prior to their surgery date, 181 of which have developed a SSI, 

and 698 have not. In other words, only 2 out of 30 patients with no blood tests prior to surgery have developed an 

infection. In the remainder of this study we use the cohort of 879 patients who have at least one blood test prior to 

surgery. All our models are trained and tested on this cohort. Our hypothesis is that if a patient does not have any 

blood tests prior to surgery, then there is too little information to make a meaningful prediction, other than expecting 

that the patient is at no particular risk and will not develop an infection.   

The frequency at which blood tests are taken varies widely with the blood test type. We narrowed down the original 

list of 811 different blood test types to 76 kinds of blood tests that are clinically relevant according to a domain 



  

expert and that are taken by at least two patients prior to surgery (see Table 1). For each patient, we counted how 

many times the patient took each of these 76 tests prior to surgery, resulting in 76 numerical features per patient, 

called the “Blood test frequencies”. If a patient did not take a particular blood test before surgery, then the value for 

that blood test frequency indicator would be zero.  

Table 1. Non-infected, infected and total number of patients who have taken the blood test type at least once before 

surgery, and an indication of whether the blood test type frequency is important in the AdaBoost model. Features 

that are important in the decision tree model are shown in Figure 1. 

 

 

In addition, for the 4 tests that were taken by at least 500 patients (Leukocytter, CRP, Albumin, and Glukose), for 

each patient, we recorded the minimum, maximum, mean and standard deviation value of the patient’s results for 

these blood tests, resulting in 16 numerical features per patient. If a patient had taken the test only once, then we 

assigned 0 as the standard deviation. We replaced missing values with the average of all non-missing values of that 

particular test type from the patients of the same infection class, i.e. if a patient had an infection and he did not take 

a particular blood test (missing value) then we assigned the average of all the mean values of other infected patients 

who had taken that particular blood test as a value for the mean, the minimum and the maximum for the patient with 

the missing blood test (and standard deviation 0). Similarly, if a patient did not have an infection and did not take a 

particular blood test, then we used the average of all the mean values of other non-infected patients who had taken 

that test. Table 2 contains an overview of all features used by our ML models. Note that the 4 “Blood test values” 

features for a particular blood test type are presented to the ML algorithms as 4 independent variables, i.e. the ML 

models do not know that e.g. CRP_mean, CRP_min, CRP_max, and CRP_SD originate from the same test.    

Methods 

Using the features described above, we trained 3 different ML models. Logistic regression3 models are 

discriminative classifiers that model the posterior of the class given the input features by fitting a logistic curve. As 

such, logistic regression model outputs can be interpreted as probabilities of the occurrence of a class. The class 

decision for the given probability is then made based on a threshold value, often set to 0.5. Decision trees are  

popular ML models4 (see Fig.1). They are constructed with a recursive algorithm that grows the tree in a top-down 



  

manner, iteratively selecting the best split feature for each node. At classification time, at each internal node in the 

tree, a test is applied to one of the inputs, and depending on the outcome, a sub-branch of the tree is then selected. In 

a decision tree, when a leaf node is reached, a prediction is made. Boosted decision trees are collections 

(“ensembles”) of trees. They are trained using a boosting process in which each subsequent tree is built with 

weighted instances which were misclassified by the previous tree5. When classifying new instances, the predictions 

made by the individual trees are combined with weighted voting. To reduce the risk for overfitting, in our 

experiments, we grew the standalone decision trees to a maximum depth of 5, and we limited the number of trees in 

the ensemble, i.e. the rounds of boosting, to 50. 

Table 2. Overview of features. 

 

 

Results 

Table 3 contains the results of our models, evaluated with the following measures: area under the curve (AUC), 

sensitivity (the percentage of correctly identified infected patients among all the real infected patients), and positive 

predictive value (PPV: the percentage of correctly identified infected patients among all the predicted infected 

patients). We used a 10-fold stratified cross validation set-up in which each partition contains approximately the 

same percentage of infected and non-infected patients as the complete set. The decision tree and the boosted 

decision trees model (AdaBoost) clearly outperform logistic regression. The important features in the final decision 

tree, trained on all 879 patients, can be seen in Figure 1. Gender and age at surgery do not play a role in this tree. 

The determining features in the AdaBoost model are Glukose_min, Glukose_mean, Glukose_SD, CRP_min, 

CRP_mean, CRP_SD, Albumin_max, Albumin_min, Albumin_mean, Albumin_SD, Leukocytter_max, 

Leukocytter_min, the 7 frequency features indicated in Table 1, age at surgery, and gender. 

Conclusion and Future Work 

In this paper we have presented ML models for predicting ahead of surgery which patients are at risk for developing 

a SSI. Our decision tree and Adaboost models outperform the logistic regression model, achieving AUC values of 

85% and higher. The set of features used for training the models is very modest: only gender, age, and results and 

frequencies of blood tests prior to surgery are taken into account. All predictions made by our models are done 

based on information that can be collected before surgery, and that is usually readily available in electronic medical 

records. This makes our models valuable tools that are easy to implement in health systems that are taking care of 

large populations of individuals, allowing to better identify patients who need additional interventions or care. 

 

Table 3. Results of machine learning models (in percentage), obtained using a 10-fold cross validation set-up 

 

 



  

 

 

 

 

 

Figure 1. Decision tree for prediction of SSI, trained on all 879 patients with at least one blood test prior to surgery. 

The first line in each node contains the predicate evaluated at that node. For instance, “Glukose_Min <= 5.9763” 

verifies whether the minimum value across all Glukose tests for the patient did not exceed 5.9763, while “Glukose 

<= 0.5” verifies whether the number of times the patient took the Glukose test was smaller than 0.5 (i.e., the patient 

never took the test).  The “samples=a” line in each node indicates the number of patients (i.e. a) from the training 

data who reached that node, while the “value=[b,c]” line indicates how many of these satisfy the predicate in the 

node and how many don’t, i.e. b patients will be processed further in the left branch, and c in the right branch. At the 

leaf level, b in “value=[b,c]”  is the number of non-infected patients while c is the number of infected patients.  

 

The data contains many missing values: for each patient usually only results for a select set of blood test types is 

available, which makes it more challenging to compare across patients. We circumvented this problem by only using 

blood test values (mean, min, max, SD) for the 4 test types taken by at least 500 patients before surgery. It is 

interesting to see that the decision tree and the the boosted decision trees model picked up all 4 of them (Glukose, 

CRP, Albumin, and Leukocytter). A valuable direction for future research would be to encorporate values from 

more blood test types as features, by mitigating the missing value problem through identifying duplicate blood test 

types. The documentation of the AMIA KDDM 2016 data mentions that there are 787 blood test types, while the 

data contains 811 unique strings in the test type column. The names suggest that some of these test types could be 

duplicates: as can be seen in Table 1, the data contains e.g. both test types “IgE total” and “IgE tota”, and both test 

types “Eosinofile gr” and “Eosinofile granulocytter”. If these indeed indicate the same test types, then collapsing 

them into one can further alleviate the missing value problem and increase accuracy of the predictive models.      
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