
Dictionary Extraction and Detection of

Algorithmically Generated Domain Names in

Passive DNS Traffic

Mayana Pereira1, Shaun Coleman2, Bin Yu1, Martine DeCock2, and Anderson
Nascimento2

1 Infoblox Inc.
Santa Clara, California

email: mpereira@infoblox.com,biny@infoblox.com
2 Institute of Technology, University of Washington Tacoma

Tacoma, Washington
e-mail: spcole@uw.edu, mdecock@uw.edu, andclay@uw.edu

Abstract. Automatic detection of algorithmically generated domains
(AGDs) is a crucial element for fighting Botnets. Modern AGD detec-
tion systems have benefited from the combination of powerful advanced
machine learning algorithms and linguistic distinctions between legiti-
mate domains and malicious AGDs. However, a more evolved class of
AGDs misleads the aforementioned detection systems by generating do-
mains based on wordlists (also called dictionaries). The resulting do-
mains, Dictionary-AGDs, are seemingly benign to both human analysis
and most of AGD detection methods that receive as input solely the
domain itself. In this paper, we design and implement a method called
WordGraph for extracting dictionaries used by the Domain Generation
Algorithms (DGAs) based solely on DNS traffic. Our result immediately
gives us an efficient mechanism for detecting this elusive, new type of
DGA, without any need for reverse engineering to extract dictionaries.
Our experimental results on data from known Dictionary-AGDs show
that our method can extract dictionary information that is embedded
in the malware code even when the number of DGA domains is much
smaller than that of legitimate domains, or when multiple dictionaries
are present in the data. This allows our approach to detect Dictionary-
AGDs in real traffic more accurately than state-of-the-art methods based
on human defined features or featureless deep learning approaches.

Keywords: malicious domain name, Domain Generation Algorithm, Dictionary-
AGD, malware detection, machine learning

1 Introduction

Whenever a client needs to connect to a server over the internet by using web ad-
dresses (domains), these are first translated into IP addresses. The Domain Name
System (DNS) is responsible for doing this translation. Requests containing web

mpereira@infoblox.com
biny@infoblox.com
spcole@uw.edu
mdecock@uw.edu
andclay@uw.edu

addresses arrive at DNS servers that reply with corresponding IP addresses, or
with an error message in case the domain is not registered – an NX Domain. Ma-
licious software (malware) also uses this mechanism to communicate with their
command and control (C&C) center. However, instead of using a single hard-
coded domain to communicate with the C&C (which could be easily blocked),
several malware families use a more sophisticated mechanism known as Domain
Generation Algorithms (DGAs) [15]. DGAs provide a method for controllers of
botnets to dynamically produce a large number of random domain names and
select a small subset for actual command and control use. This approach makes
blacklisting ineffective. Being able to detect algorithmically generated domains
automatically becomes, thus, a vital problem.

Traditional DGA algorithms usually start from random seeds and produce
domains that are distinctly different from common benign domains. They appear
more “random looking”, such as, for example, the domain sgxyfixkhuark.co.uk
generated by the malware Cryptolocker. Traditional DGAs are detected with
techniques that leverage the distribution of characters in the domain, either
through human engineered lexical features [3, 11, 17] or through training deep
neural networks [10,16,19,20,22,23].

Lately, a newer generation of DGA algorithms has been observed. This new
kind of DGA makes detection by the techniques mentioned above much harder,
namely by producing domains that are similar to the ones created by a hu-
man. Dictionary-based DGAs generate domains by concatenating words from a
dictionary. For example, the malware Suppobox [7], a known Dictionary-based
DGA, produces domains such as: heavenshake.net, heavenshare.net and leader-
share.net [15].

Due to the challenging nature of the problem of detecting Dictionary-AGDs
based solely on the domain name string itself, one often resorts to other in-
formation such as the IP address of the source [8], or information about the
time when the domain was sent to the DNS server [1]. This kind of informa-
tion can be expensive to acquire, or due to privacy concerns, it might just not
be available. Moreover, detecting an AGD based solely on the domain allows
for inline, real-time blocking of such domain at the DNS server level – a highly
desirable feature. Another existing approach to detect Dictionary-AGDs is to
reverse engineer the malware [4], extracting the list of words in the dictionary
and using this list to identify domains that are generated by the malware. This
process is labor-intensive and time-consuming, making it unsuitable to detect
new Dictionary-based DGA malware as soon as it emerges.

Little or no attention has been given in the literature to the problem that
we address in this paper: detecting Dictionary-based DGAs purely based on the
domain name string, and without reverse engineering the malware. A notable
recent exception is the work by Lison and Mavroeidis [10] who constructed a
deep learning-based DGA detection model that can detect Dictionary-AGDs
generated from a “familiar” dictionary. Familiar in this context means that a large
number of Dictionary-AGDs stemming from the same dictionary are assumed
to be available as examples to train the model. Once trained, the model can

detect previously unseen Dictionary-AGDs provided that they originate from
a dictionary that has already been seen during training time. In practice, it is
natural for hackers to change the dictionary in a Dictionary-based DGA, leaving
the problem of detecting Dictionary-AGDs largely unresolved.

Contributions. In this paper, we study the problem of detecting Dictionary-
based DGAs. We show that a state-of-the-art DGA classifier based on human
engineered lexical features that does well for traditional DGAs performs very
poorly when confronted with Dictionary-based DGAs. We also show that deep
neural networks, while better at detecting Dictionary-AGDs, struggle to main-
tain a consistent good performance in face of changes in the dictionary.

We propose the first effective method for detecting and extracting the dictio-
nary from Dictionary-based DGAs purely by observing domain name strings in
DNS traffic. The intuition behind our approach is that, for known Dictionary-
based DGAs, the words from the dictionary are used repeatedly by the DGA in
different combinations to generate domains. We leverage these repetitions and
combinations within a graph-based approach to isolate Dictionary-based DGA
domains in traffic.

The fact that our method is completely agnostic to the dictionary used as
generator by the DGA, and in fact learns this dictionary by itself (Section 4),
makes it very robust: if in the future the malware starts generating domains with
new dictionaries we still detect them, as we show in our experiments (Section 6).
Even in a highly imbalanced scenario, where the domain names generated by a
specific Dictionary-based DGA algorithm make up only a very small fraction of
the traffic, our WordGraph method is successful at isolating these domain names
and learning the underlying dictionary.

The remainder of this paper is structured as follows: after presenting an
overview of related work in Section 2 and recalling necessary preliminaries in
Section 3, we describe our WordGraph method for detection and extraction of
DGA dictionaries in Section 4. Next, in Section 5 we provide our experimental
methodology. This section contains details about the ground truth and real life
traffic data used in our experiments, as well as a more detailed description of the
state-of-the-art methods that we compare our WordGraph method with, namely
a random forest classifier based on lexical features, and a convolutional neural
network based deep learning approach. In Section 6 we present the results of the
various methods on ground truth data as well as on real traffic data, showing
that, unlike the other approaches, the WordGraph approach has a consistently
high true positive rate vs. an extremely low false positive rate. Furthermore,
after deploying our solution in a real network, we detected variations of known
dictionaries that have never been reported previously in the literature.

2 Related Work

Blacklists were one of the first actions taken by the security community to ad-
dress the problem of malicious domains. These continuously updated lists serve
as databases for known malicious entities. One of the main advantages of black-

lists is that they provide the benefit of lookup efficiency and precision. However,
after the deployment of DGAs by recent malware, domain blacklisting became an
ineffective technique for disrupting communications between infected machines
and C&C centers.

As a consequence, alternative methods for detecting DGA domains have been
proposed. In [21], Yadav et al. analyzed the distribution of alphanumeric char-
acters as well as bigrams in domains that map to the same set of IP-addresses.
This work is an extension of the analysis made by McGrath and Gupta [13] for
differentiating phishing/non-phishing URLs. The approach focuses on classifying
groups of URLs as algorithmically-generated or not, solely by making use of the
set of alphanumeric characters used. The authors used statistical measures such
as Kullback-Leibler divergence, Jaccard index, and Levenshtein edit distance to
measure the distance of the probability distributions of the n-grams, in order to
make a binary classification (DGA vs. Non-DGA).

In [3], Antonakakis et al. developed a bot detection system called Pleiades
which uses a combination of lexical features and host-based features to cluster
domains. The main novelty of their work is the use of Non-Existing Domains
(NXDomain) queries to detect bots and as training data. Their insight is that
most domain queries made from a bot result in non-existent domains. Given
this observation they cluster NXDomains that have similar lexical characteristics
and are queried by overlapping sets of hosts. In a second stage, the clusters are
classified in order to identify their corresponding DGA family.

In order to achieve an overall solution, Schiavoni et al. [17] proposed Phoenix,
a mechanism that makes two different classifications: a binary classification that
identifies DGA- and non-DGA-generated domains, using a combination of string
and IP-based features; and a multi-class classification that characterizes the DGA
family, and finds groups of DGA-generated domains that are representative of
the respective botnets.

With the intention of building a simple DGA classifier based on domain
names only, Mowbray and Hagen [14] proposed a DGA detection classifier based
solely on URL length distributions. The approach allows the detection of a DGA
at the end of the first time slot during which the first infected machine is used
for malicious queries. However, their approach is effective for only a limited set
of DGA families.

All methods described above rely on the extraction of predefined, human
engineered lexical features from the domain name string. Recently, several works
have proposed DGA detection models based on deep learning techniques that
learn features automatically, thereby offering the potential to bypass the human
effort of feature engineering [10,16,20,22,23]. Deep learning approaches for DGA
detection based on convolutional neural networks (CNNs) and long short term
memory networks (LSTM) achieve a predictive performance that is at par with
or better than the methods based on human defined lexical features, provided
that enough training data is available.

The DGA detection methods that we have described so far in this section
all use the domain name string itself, sometimes combined with some side in-

formation like IP-based features. All these methods have been proposed and
studied in the context of traditional DGA detection. Traditional DGAs produce
domain names that appear more random looking than usual benign domain
names, even to human observers. This substantial difference between the do-
main name strings created by traditional DGAs vs. those created by humans is
the underlying reason for the success of the DGA detection methods described
above. A newer generation of DGA algorithms, the so-called Dictionary-based
DGAs, attempt to evade the traditional DGA detection methods by producing
domain names that look more similar to the ones created by humans. To this
end, they concatenate words from a dictionary.

Since catching Dictionary-AGDs based on the domain name string itself is
challenging, it is natural to look at side information instead. An interesting ap-
proach in this regard is the work of Krishnan et al. [8] who followed the insight
of Antonakakis et al. [3] that infected machines tend to generate DNS queries
that result in non-existent (NX) responses. Krishnan et al. applied sequential
hypothesis tests and focused on NX traffic patterns of individual hosts to iden-
tify infected machines. More recently, Abbink and Doerr [1] proposed to detect
DGAs based on sudden rises and declines of popularity of domain names in large
networks. Neither of these approaches uses information about the domain name
string itself, which sets it apart from the work in this paper.

Regarding the development of a classifier that can label a given domain name
in real time as benign or malicious, solely based on the domain name string itself,
there has been some initial success with deep learning approaches for catching
Dictionary-AGDs [10]. As explained in Section 1, and as we also observe in
Section 6, this appears to work well for previously seen dictionaries, but doesn’t
offer any guarantees for consistent predictive performance when the dictionary in
the malware is changed, which can be considered as an adversarial attack on the
machine learning model. We provide evidence in Section 6 that the WordGraph
method proposed in this paper is resilient to such kind of attack, thereby making
it the first of its kind.

Finally, we stress that all the existing methods described above are aimed at
developing classifiers to distinguish between benign and malicious domain names.
The method proposed in this paper goes beyond, by learning the underlying
word patterns present in DNS traffic, and extracting the DGA-related words
from traffic. This results in the first DGA detection method that automatically
extracts malware information from traffic in the form of malware dictionaries.
Once these dictionaries are known, it becomes straightforward to construct a
domain name classifier based on them, as explained in Section 4.

3 Preliminaries

In this section we present definitions that are used throughout our method de-
scription in Section 4. We refer the reader to [6, 9, 12] for more detailed expla-
nations of these concepts. Throughout this paper, a graph G(V,E) (or G for
brevity) is defined as a set V of vertices and a set E of edges. In an undirected

graph, an edge is an unordered pair of vertices. If vertex v is one of edge e’s
endpoints, v is called incident to e. The degree of a vertex is the number of
edges incident to it.

Definition 1. Path. Let G = (V,E) be a graph. A walk w = (v1, e1, v2, e2, . . . ,
vn, en, vn+1) in G is an alternating sequence of vertices and edges in V and E
respectively so that for all i = 1, . . . , n: {vi, vi+1} = ei. A path in G is a walk
with no vertex and no edge repeated.

Definition 2. Cycle. A closed walk or cycle w′ = (v1, e1, v2, e2, . . . , vn, en, vn+1,
en+1, v1) on a graph G(V,E) is an alternating sequence of vertices and edges in
V and E such that w = (v1, e1, v2, e2, . . . , vn, en, vn+1) is a walk, and the edge
en+1 between vn+1 and v1 does not occur in w.

Definition 3. Cycle Basis. A closed walk on a graph G(V,E) is an Eulerian
subgraph if it traverses each edge in E exactly once. A cycle space of an undirected
graph is the set of its Eulerian subgraphs. A cycle basis is a minimal set of cycles
that allows every Eulerian subgraph to be expressed as a symmetric difference of
basis cycles.

Definition 4. The average shortest-path length (APSL). Let F be the set of all
pairs of nodes of a graph G in between which there is a path, then

ASPL(G) =
1

|F |

∑

(vi,vj)∈F

dist(vi, vj) (1)

where dist(vi, vj) is the number of edges on a shortest path between vi and vj.

Definition 5. A connected component G′ of a graph G is a subgraph in which
any two vertices are connected to each other by paths, and which is connected to
no additional vertices in G.

4 WordGraph Method

Let C be a set containing q domain name strings {c1, . . . , cq}. Each domain
name string consists of higher level domains (second-level domain, SLD) and
a top-level domain (TLD), separated by a dot. For example, in wikipedia.org,
the SLD is wikipedia and the TLD is org. Within C we have domains that are
benign and domains that are generated by a Dictionary-based DGA. Our goal
is to detect all the Dictionary-AGDs in C and to extract the dictionaries used
to produce these domains.

Extracting Words from Domains The word extraction method learns words from
the set of domain name strings itself. Since Dictionary-based DGAs are known
to use words repeatedly, we define a word as a sequence of at least m characters
that appears in two or more SLDs within the set C. In the experimental results
section, we use m = 3. We produce a set D of words as follows:

1. Set D = ∅
2. For every ci and cj in C, i, j ∈ {1, . . . , q}, i 6= j:

Denote by li,j the largest common substring in ci and cj .
If |li,j | ≥ m, add li,j to the set D.

It is important to point out that the above word extraction algorithm is
applied to the entire set C, including both Dictionary-AGDs and legitimate do-
main names. The resulting set D will therefore have many elements that are not
words from a Dictionary-based DGA. We will eliminate these words in a subse-
quent phase. To illustrate the word extraction algorithm, consider the following
domains:

facetype.com, facetime.com, bedtime.com,

faceboard.com, bedboard.com, bedding.com

The resulting set of common substrings is D = {face, time, bed, board, facet}.

(a) Suppobox Malware domains (b) Alexa domains

Fig. 1: Differences in structure of (a) Word graph of Suppobox malware domains
[7], and (b) Word graph of Alexa (benign) domains [2]. In (a) each dark region
consists of words from a different malicious dictionary.

Word Graph Construction We split the set of domains C into partitions C1, . . . , Cr

such that all the domains within each Ci, i ∈ {1, . . . , r} have the same top-level
domain (TLD). For each Ci we define a graph Gi as follows. The nodes of Gi

are the words from the set D that occur in at least one domain name in Ci.
Two nodes (words) of Gi are connected if they co-occur in the same domain in
Ci, i.e. if there exists at least one domain cj ∈ Ci so that these words are both
substrings of cj . The division by TLD is motivated by the fact building separate
graphs per TLD prevents noise and limit the graph size. Additionally, based
on our observations, Dictionary-based DGAs use a limited number of different
TLDs. We can therefore expect the Dictionary-AGDs to be concentrated in a
small number of partititions.

In order to detect malware related words in each of the graphs Gi, we ex-
ploit the fact that subgraphs with words from malicious dictionaries present a
different structure from subgraphs with words from benign domains. To illus-
trate this, in Figure 1 we visualize the word graph Gd of a set Cd of known
Dictionary-AGDs and the word graph Gb of a set Cb of known benign domain
names respectively. For more details on how these domain names were obtained,
we refer to Section 5.1. The three dark regions in Figure 1(a) each correspond
to a different dictionary used by the DGA algorithm. Note that in reality the
partitions Ci, i ∈ {1, . . . , r} contain a mixture of Dictionary-AGDs and benign
domain names, meaning that the distinction is not as clear-cut as in Figure 1.
Still there are important observations to be made from Figure 1 that explain the
rationale of our approach for detecting malware dictionaries in the word graphs
Gi.

Our first observation is that dictionary words are less likely to have a low
degree. Each individual word from a malicious dictionary is used to form a num-
ber of different domains, by combining it with other dictionary words. Therefore,
from each Gi, we filter out all the nodes (words) with degree less than 3 (a value
experimentally determined). With a high probability, a low degree node (word)
is related to benign domains. We can also point out that word combinations
in Dictionary-AGDs are algorithmically defined. This results in a more uniform
graph structure. On the other hand, words from benign domains present less uni-
form patterns of connectivity in the word graph. To leverage this intuition we
extract the connected components of each graph Gi. We expect that dictionaries
from DGA algorithms will appear as such connected components.

Feature Vector Construction for Connected Components Let G
(1)
i , . . . , G

(n)
i be

the connected components of word graph Gi. For each connected component

G
(j)
i , j ∈ {1, . . . , n}, we measure the following structural features (see Figure 2):

1. Dmean: Average vertex degree of G
(j)
i ;

2. Dmax: Maximum vertex degree of G
(j)
i ;

3. C: Cardinality of cycle basis set of G
(j)
i ;

4. CV : C/|V |, where V is the set of vertices of G
(j)
i ;

5. ASPL: Average shortest-path length of G
(j)
i .

Note that all steps above are done in a fully unsupervised fashion, i.e. without
knowledge which domains in C are generated by a Dictionary-based DGA and
which ones are not. We apply these preprocessing steps to the training data as
well as to batches of new domain names observed during deployment.

Graph based Dictionary Finding Given a set of domains CTrain, we apply all
the previous steps to CTrain and obtain all the connected components of all the
graphs Gi derived from CTrain. We manually label every connected component
in every graph Gi as DGA/non-DGA (indicated as True/False in Figure 2).
Next we train a decision tree over the training dataset of labeled feature vectors.

Fig. 2: In order to classify word graph components as DGA/non-DGA, each
graph component is represented as a vector of structural features. Each descrip-
tion vector is part of a dataset that describes the overall word graph.

The decision tree model is later used for classifying new vectors (connected
components) without human intervention, even if these connected components
stem from word graphs that originate from a completely different dictionary.
Each connected component that is classified as DGA by the decision tree is
subsequently converted into a dictionary in a straightforward manner, i.e. by
treating each node of the connected component as a word in the dictionary. An
overview of the WordGraph dictionary finding phase is presented in Figure 3.

Classification of Domain Names From the previous steps, we obtain a set of
detected dictionaries, each one associated with a TLD. We flag a domain as
malicious if it has at least two words from a same discovered dictionary, and it
has the same TLD as the dictionary.

5 Experimental Methodology

We follow a similar approach as [10] and create an experimental setting with
labeled ground truth data obtained from the DGArchive [15], which is a web
database for DGA domains from various families, and from the Alexa top 1
million domains (a snapshot from 2016) [2]. The main goal of our experiments
with labeled data is to compare our methodology with state-of-the-art techniques
for DGA classification: classifiers based on human engineered lexical features,
and classifiers based on deep neural networks. Moreover, we want to observe
how robust these methods are to changes in the dictionary used for generating
malicious domains. This is a question that has not been explored in the literature,
to the best of our knowledge. Our method is based solely on structural features
representing how the words from the dictionary are put together but not on the
specific words themselves. Therefore, we expect our method to be robust against
changes in the dictionary.

Fig. 3: An overview of the proposed WordGraph method. In 1 a dataset contain-
ing malicious and benign domains is analyzed, and frequent words are learned
from the dataset. In 2 a word graph is built, and the structure of each graph
component is analyzed to detect the malware dictionary 3.

In more details, we analyze the performance of our WordGraph method and
compare with classification models based on Random Forests and Deep Learning
methods in three different settings:

– Training and testing datasets containing Dictionary-AGDs generated from
the same dictionary. This experimental setting has been used in previous
works [10,20,23].

– Testing datasets containing domains formed from dictionaries that are dis-
tinct from the dictionaries used to generate the domains in the training
dataset. We want to evaluate the robustness of all models in a scenario
where a botnet administrator wants to mislead a trained detection model
by updating the dictionary in the malware code. This question has not been
previously addressed in the literature.

– Small number of training samples. How well does each method perform when
only a very small number of training samples is available?

We also evaluate the performance of the proposed WordGraph method when
facing real traffic data. Many of the previous works are evaluated only in sce-
narios of synthetically created datasets. We show that the WordGraph model
achieves similar performance when used for detecting Dictionary-AGDs in real
DNS traffic, and moreover, it is able to detect new varieties of dictionaries and
malware seeds due to its nature of pattern discovery.

5.1 Datasets

The evaluation of the proposed approach is conducted on datasets with ground
truth labels and on real traffic unlabeled data.

Train Test-Familiar Test-Unfamiliar

Dataset Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3

Round 1 50K 20,768 20,768 0 30K 12K 12K 0 30K 0 0 32,768

Round 2 50K 0 20,768 20,768 30K 0 12K 12K 30K 32,768 0 0

Round 3 50K 20,768 0 20,768 30K 12K 0 12K 30K 0 32,768 0

Table 1: Description of the datasets used in two experiments: when the train and
test data are both composed of AGDs generated from the same dictionaries (Test-
Familiar), and when the train and test data are composed of AGDs generated
from different dictionaries (Test-Unfamiliar).

Ground Truth Data The ground truth data contains 80,000 benign domain
names randomly selected from the Alexa top 1M domains [2]. In our experi-
ments, we 50,000 out of the 80,000 Alexa domain names for training, while the
rest is reserved for testing. In addition, we use 3× 32, 768 AGDs obtained from
the Dictionary-based DGA Suppobox [15], corresponding to three different dic-
tionaries or wordlists, referred to as WL1, WL2, and WL3. How we split this
malware data into portions for training and testing varies with the experiment.

Tables 1 provides an overview of the setup of two experiments involving the
ground truth data.

– Test-Familiar: The test data consists of Dictionary-AGDs generated with the
same dictionaries as the AGDs in the training data;

– Test-Unfamiliar: The test data consists of Dictionary-AGDs that were gener-
ated with a dictionary that was not known or available during training time.
This experimental setting is intended to show that the model can be trained
on a specific family and detect a distinct family, unfamiliar to the model.

Both experiments each consist of three rounds, corresponding to which wordlist
is left out when training. For instance, as can be observed in Table 1, in round 1,
Dictionary-AGDs generated with wordlist 3 do not appear in the training data.

Train Test-Imbalanced

Dataset Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3

Round 1 50,000 169 169 0 10,000 0 0 169

Round 2 50,000 0 169 169 10,000 169 0 0

Round 3 50,000 169 0 169 10,000 0 169 0

Table 2: Description of imbalanced datasets used for testing and training. The
imbalance present in this data is very common in real traffic, where only a very
small fraction of the data corresponds to malicious activity.

In an additional experiment, we measure the performance of all DGA domain
detection methods in a scenario where very few samples of AGDs are available for
training (see Table 2). The 507 AGDs involved in this experiment were selected
from DGArchive; they were valid for one day only (Dec 1, 2016).

Real Traffic Data The data used in our real traffic experiments consists of a
real time stream of passive analysis of DNS traffic, as in [5]. The traffic stems
from approximately 10 billion DNS queries per day collected from multiple ISPs
(Internet Service Providers), schools and businesses distributed all over the world.
We collected 8 days of traffic from December 2016 to perform our experiments,
from Dec 8 to Dec 15 (see Table 3). From the data, we keep only A and AAAA
type DNS queries (i.e. IPv4 and IPv6 address records), and exclude all domains
that receive less than 5 queries in a day.

All Domains Known AGDs
(DGArchive)

Dataset Domains Resolved NX Resolved NX

Day 01 4,886,247 4,433,248 454,003 47 593
Day 02 4,922,618 4,532,932 390,735 67 673
Day 03 4,906,309 4,477,049 430,239 62 608

Day 04 4,350,224 3,981,514 369,673 87 662
Day 05 5,898,723 5,380,945 518,886 82 665
Day 06 5,425,651 4,963,786 463,584 73 680
Day 07 5,631,353 5,098,121 534,572 83 591
Day 08 5,254,954 4,747,867 508,319 95 635

Table 3: DNS traffic data description. We collected 8 days of real traffic data to
measure the performance of our proposed WordGraph model. Days 1, 2 and 3
are used for model training, and days 4 through 8 are used for model testing.

The data stream consists of legitimate domains and malicious domains. All
domains from this stream that are known to be Dictionary-based DGAs ac-
cording to DGArchive [15] are marked as such. Although the number of unique
Dictionary-based AGDs found in the real traffic data by cross-checking it against
DGArchive is small, the total number of queries for such domains is tens of thou-
sands per day. Furthermore, as will become clear in Section 6.2, the real traffic
data contains more AGDs than those known in DGArchive.

5.2 Classification Models: Random Forest and Deep Learning

As stated in Section 1, the existing state-of-the-art approaches for classifying
domain names as benign of malicious are either based on training a machine
learning model with human defined lexical features that can be extracted from
the domain name string, or on training a deep neural network that learns the
features by itself. To show that the method that we propose in this paper outper-
forms the state-of-the-art, we include an experimental comparison with each kind
of the existing approaches. For the approach based on human defined features,
we train random forests (RFs) based on lexical features, extracted from each
domain name string (see e.g. [24,25]). Within supervised learning, tree ensemble

methods – such as random forests – are among the most common algorithms of
choice for data scientists because of their general applicability and their state-of-
the-art performance. Regarding the deep learning approach, a recent study [23]
found no significant difference in predictive accuracy between recently proposed
convolutional [16] and recurrent neural networks [10, 20] for the task of DGA
detection, while the recurrent neural networks have a substantially higher train-
ing time. In our comparative overview we therefore use a convolutional neural
network (CNN) architecture as in [16].

Data Preprocessing The strings that we give as input to all classifiers consist of
a second level domain (SLD) and a top level domain (TLD), separated by a dot,
as in e.g. wikipedia.org. As input to the CNN approach, we set the maximum
length at 75 characters. The SLD label and the TLD label can in theory each be
up to 63 characters long each. In practice they are typically shorter. If needed,
we truncate domain names by removing characters from the end of the SLD
until the desired length of 75 characters is reached. For domains whose length
is less than 75, for the CNN approach, we pad with zeros on the left because
the implementation of the deep neural network expects a fixed length input. For
the RF and WordGraph approaches we do not do any padding. We convert each
domain name string to lower case, since domain names are case insensitive.

Random Forest (RF) In each experiment, we train a random forest (RF) on the
following 11 commonly used features, extracted from each domain name string:
ent (normalized entropy of characters); nl2 (median of 2-gram); nl3 (median
of 3-gram); naz (symbol character ratio); hex (hex character ratio); vwl (vowel
character ratio); len (domain label length); gni (gini index of characters); cer
(classification error of characters); tld (top level domain hash); dgt (first character
digit). Each trained random forest consists of 100 trees. We refer to [22] for a
detailed description of each of these features.

Deep Learning (CNN) In addition, in each experiment, following [16], we train
a convolutional neural network that takes the raw domain name string as input.
The neural network consists of an embedding layer, followed by a convolutional
layer, two dense hidden layers, and an output layer. The role of the embedding
layer is to learn to represent each character that can occur in a domain name by
a 128-dimensional numerical vector, different from the original ASCII encoding.
The embedding maps semantically similar characters to similar vectors, where
the notion of similarity is implicitly derived (learned) based on the classification
task at hand. The embedding layer is followed by a convolutional layer with 1024
filters, namely 256 filters for each of the sizes 2, 3, 4, and 5. During training of
the network, each filter automatically learns which pattern it should look for. In
this way, each of the filters learns to detect the soft presence of an interesting
soft n-gram (with n = 2, 3, 4, 5). For each filter, the outcome of the detection
phase is aggregated over the entire domain name string with the help of a pooling
step. That means that the trained network is detecting the presence or absence
of patterns in the domain names, without retaining any information on where

exactly in the domain name string these patterns occur. The output of the
convolutional layer is consumed by two dense hidden layers, each with 1024
nodes, before reaching a single node output layer with sigmoid activation. In all
experiments, we trained the deep neural networks for 20 epochs, with batch size
100 and learning rate 0.0001.

6 Results

We report the results of all methods in terms of precision (positive predictive
value, PPV), recall (true positive rate, TPR) and false positive rate (FPR). As
usual, PPV = TP/(TP+FP), TPR = TP/(TP+FN) and FPR = FP/(FP+TN)
where TP, FP, TN, and FN are the number of true positives, false positives, true
negatives, and false negatives respectively. Blocking legitimate traffic is highly
undesirable, therefore a low false positive rate is very important in deployed
DGA detection systems. For parameter tuning purposes, in each experiment, we
systematically split 10% of the training data off as validation data for the RF
and CNN methods.

6.1 Experimental Results: Ground Truth Data

Figure 4 presents an overview of the results achieved by all models in the three
different experimental settings with ground truth data described in Section 5.1. A
first important result is that, across the board, the WordGraph method achieves
a perfect TPR of 1, meaning that all Dictionary-AGDs are detected. To allow
for a fair comparison, we selected classification thresholds for which the RF and
CNN methods also achieve a TPR of 1. It is common for such a high TPR to be
accompanied by a rise in FPR and a drop in PPV. As can be seen in Figure 4,
this is most noticeable for the RF method, and, to a somewhat lesser extent for
the CNN method. The WordGraph method on the other hand is barely impacted
at all: it substantially outperforms the CNN and RF methods in all experiments.

Test-Familiar Experiment Detailed results for all methods in the “Test=Familiar”
experiment are presented in Table 4. In this experiment, the train and test data
contain AGDs generated from the same set of dictionaries. This experimental
setup gives an advantage to classification models such as CNNs and Random
Forests, since it allows the classification model to ‘learn’ characteristics of the
words from the dictionaries.

A first observation from Table 4 is that the RF method does not do well at
all. This is as expected: the lexical features extracted from the domain name
strings to train the RFs have been designed to detect traditional DGAs, and
Dictionary-based DGAs have been introduced with the exact purpose of evading
such detection mechanisms. This is also apparent from the density plots of the
features in Figure 5: the feature value distributions for the AGDs from WL1,
WL2, and WL3 are very similar to those of the Alexa domain names, which
explains the poor performance of the RF models that are based on these features.

(a) FPR Average (TPR=1) (b) PPV Average (TPR=1)

Fig. 4: Overview of FPR (lower is better) and PPV (higher is better) for all
methods across the experimental setups on the ground truth data, for a fixed
TPR=1. The WordGraph (WG) approach consistently achieves a very low FPR,
of the order of magnitude of 10−4, two order of magnitudes lower than the best
FPR achieved by the CNN model.

The WordGraph method on the other hand works extremely well. It detects
all AGDs in the test data in all rounds, while only misclassifying a very small
number of benign domain names as malicious (namely 8/30,000 in round 1;
4/30,000 in round 2; and 1/30,000 in round 3). Finally, it is worth to call out
that the CNN models have a very good performance as well. This is likely due
to the fact that, as explained in Section 5.2 the CNN neural networks learn to
detect the presence of interesting soft n-grams (with n = 2, 3, 4, 5), so, in a sense,
they can memorize the dictionaries. It is interesting to point out that the CNN
method performs consistently well throughout the rounds, i.e. given the fact that
the dictionary was seen before by the model, there is no dictionary that is easier
to ‘learn’.

Round 1 Round 2 Round 3

Method FPR PPV FPR PPV FPR PPV

WordGraph 2.67 · 10
−4 0.999 1.33 · 10

−4 0.999 3.33 · 10
−5 0.999

CNN 0.018 0.981 0.015 0.982 0.014 0.983
RF 1.0 0.444 1.0 0.444 1.0 0.444

Table 4: Results of random forest (RF), deep learning (CNN), and our proposed
WordGraph approach (WG) on balanced ground truth data, for a fixed TPR=1.
The AGDs in the training and test data are generated from the same dictionaries
(“Test-Familiar”).

Test-Unfamiliar Experiment In the “Test-Unfamiliar” experiment, the trained
models are tested on AGDs generated from dictionaries that were not seen dur-

Fig. 5: Kernel density plot of the features extracted for the RF experiments where
the x-axis represents the feature value and the area under the curve represents
the probability of having a feature in that range of x values.

ing training. As Table 5 shows, the WordGraph method has no problem at all
detecting these new AGDs across all rounds, while, as expected, the RF method
continues to struggle. Interestingly enough, unlike in the previous experimental
setting, the performance of the CNN model is no longer consistently good across
all rounds. In round 1, the CNN model performs significantly worse when com-
pared to rounds 2 and 3, having a FPR higher by one order of magnitude. In
round 1 the model is trained on WL1 and WL2 DGA domains, while the testing
data contains WL3 AGDs. A possible explanation for the poor performance of
the CNN method in round 1 is that, as observed in Figure 5 for the ‘len’ feature,
the AGDs in WL3 tend to be longer than those in WL1 and WL2, leading the
CNN to misclassify the AGDs from WL3 as malicious because it has never seen
such long malicious domain names during training.

Round 1 Round 2 Round 3

Method FPR PPV FPR PPV FPR PPV

WordGraph 0.0 1.0 6.67 · 10
−5 0.999 1.33 · 10

−4 0.999
CNN 0.589 0.650 0.084 0.928 0.050 0.956
RF 1.0 0.522 1.0 0.522 0.723 0.602

Table 5: Results of all methods on balanced ground truth data, for a fixed
TPR=1. The AGDs in the test data are generated from dictionaries that were
not available during training time (“Test-Unfamiliar”).

Results on Imbalanced Ground Truth Data The results for the models trained
and tested on the imbalanced ground truth data are presented in Table 6. The
trend we observed before persists: the WordGraph approach perfectly detects
all Dictionary-AGDs in all rounds without misclassifying even a single benign
domain name, the CNN method sometimes does well and sometimes not, and
the RF method does not do well at all.

Round 1 Round 2 Round 3

Method FPR PPV FPR PPV FPR PPV

WordGraph 0.0 1.0 0.0 1.0 0.0 1.0
CNN 0.718 0.230 0.127 0.117 0.039 0.300
RF 1.0 0.017 1.0 0.017 1.0 0.017

Table 6: Results of all methods on imbalanced ground truth data, for a
fixed TPR=1, the three rounds of experiment are listed in Table 2 (“Test-

Imbalanced”).

Overall, the WordGraph method clearly outperforms the CNN and RF meth-
ods. It is able to ‘find’ dictionaries in data through graph analysis, even when
only a small sample is available. The imbalanced experiment from Table 6 illus-
trates a scenario where only one infected machine is present in a network. After
one day of Dictionary-AGD DNS requests, the WordGraph approach is able to
extract the malicious dictionary from traffic. Out of 10,169 domains in each test
dataset, only 169 domains are malicious, and the WordGraph method is able
to identify 100% of the words from the malicious dictionary, with FPR=0.0 in
every round of this experiment.

6.2 Experimental Results: Real DNS traffic

To study the performance of the WordGraph method in a realistic scenario, we
evaluate it on the real traffic data from Table 3. To further reduce the dataset
size, we used solely NX Traffic since most of AGD queries result in Non-Existent
Domain (NXDomain) responses. This approach has been consistently used in
the literature [3, 8].

The first three days in the real traffic dataset were used for training the graph
component classifier as described in Section 4. The Dictionary-based AGDs in
the dataset were labeled using DGA archive [15] as a source of ground truth
labels. The number of Dictionary-based AGDs for each day is described in 3. We
then evaluated the results of our method on the remaining five days of traffic.

Overall, we identified 81 dictionaries in five days of traffic. Fifteen of these
discovered dictionaries are present in DGArchive. We manually verified the re-
maining dictionaries and confirmed they were all malicious. Since DGArchive
has the complete dictionary for the 15 cases (by reverse engineering the mal-
ware) we managed to verify that our method recovered the complete dictionary

in this situation. We identified several dictionaries related to malware download
hosts, such as apartonly.gq, oftenthere.ga and quitethough.cf. We also discovered
variations of the malware family Suppobox, where the generated domains in this
variation present TLD “.ru”.

Once we obtained the dictionaries, we also flagged the domains that were
generated by these words in the resolved DNS traffic, giving information on
active C&C (Command and Control) centers.

7 Discussion and Limitations

Computational Complexity The most expensive part of our algorithm is the
graph building with complexity O(n2), where n is the number of words extracted
from domains. We apply our algorithm only to NXDomains (since DGAs are
mostly non-resolved) on a daily basis. The datasets have about 5 millions do-
mains, where about 500,000 are NXdomains. The size of the graphs are about
60,000 nodes, which corresponds to the number of extracted words from traffic.
The entire algorithm runs in about 30 minutes, considering word extraction and
graph analysis phases. All experiments were run on a machine with an 2.3 GHz
Intel Core i5 processor and a maximum of 16GB of allowed memory consump-
tion.

Limitations (1) Our WordGraph method is very successful in extracting dictio-
naries from AGDs. This is the case for all variations of the Suppobox family,
and other unidentified families that we were able to identify in real traffic. The
method leverages the fact that such families uses limited dictionaries and the
reuse of dictionary words is frequent. We suggest as future work the investigation
of Dictionary-based AGDs that utilizes a very large dictionary and very low word
reuse rate. (2) Additionally, there are malware families, such as Matsnu, that
use a DGA as a secondary resource for C&C communication, with hardcoded
domains being the primary method. Such a malware family typically not only
generates a very small number of DGA domains daily [18], but those domains are
only queried in the case that all domains from the hardcoded list receive an NX
response. Matsnu malware for instance generates only four DGA domains per
day. In our real traffic dataset, we did not encounter any occurrences of Matsnu
AGDs. Preliminary results on ground truth data indicate that the WordGraph
method would need more than one month of observation to be able to recover
the dictionary. Using one month of Matsnu AGDs from DGAarchive, we were
able to extract from 590 domains a partial dictionary of 82 words, leading to the
detection of 273 domains. (3) Once the dictionaries are extracted, we detect ma-
licious domains by checking if they have two or more words from the extracted
dictionaries. False positive rates were at most 10−4 in all the performed exper-
iments (with real traffic and synthetic data). An adversary could, in principle,
try to increase the false positive rate by using dictionaries with words commonly
used in legitimate domains. However, this approach has a drawback for the ad-
versary since several of the generated domains will already be registered and
thus useless for the bot-master.

8 Conclusion

We proposed a novel WordGraph method for detection of Dictionary-based
DGAs in DNS traffic. The WordGraph method consists of two main phases:
(1) malicious dictionary extraction from traffic observations and (2) detection of
Dictionary-AGDs present in traffic. We evaluated WordGraph on ground truth
data consisting of Dictionary-AGDs from DGArchive and benign domains from
Alexa. Our experiments show that WordGraph consistently outperforms random
forests based on human defined lexical features as well as deep learning models
that take the raw domain name string as input and learn the features themselves.
In particular, unlike these existing state-of-the-art methods, WordGraph detects
(nearly) all Dictionary-AGDs even when the dictionary used to generate them
is changed. Furthermore, when we analyzed 5 days of real traffic from multiple
ISPs with WordGraph, we were able to detect the presence of Dictionary-AGDs
generated by known as well as by previously unknown malware, and we discov-
ered domains related to C&C proxies that received thousands of requests. Due
to its nature of discovering, through a graph perspective, malicious patterns of
words in traffic, the WordGraph method guarantees a very low false positive
rate, presenting itself as a DGA detection system with practical relevance.

References

1. Jasper Abbink and Christian Doerr. Popularity-based detection of domain gen-
eration algorithms. In Proc. of the 12th International Conference on Availability,
Reliability and Security, page 79. ACM, 2017.

2. ALEXA. Top sites on the web. http://alexa.com/topsites, 2017.
3. Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: De-
tecting the rise of DGA-based malware. In 21st USENIX Security Symposium,
pages 24–24, 2012.

4. Thomas Barabosch, Andre Wichmann, Felix Leder, and Elmar Gerhards-Padilla.
Automatic extraction of domain name generation algorithms from current malware.
In Proc. of NATO Symposium IST-111 on Information Assurance and Cyber De-
fense, 2012.

5. Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Exposure:
Finding malicious domains using passive DNS analysis. In Ndss, 2011.

6. Reinhard Diestel. Graph Theory, volume 137 of Graduate Texts in Mathematics.
Springer, 2005.

7. Jason Geffner. End-to-end analysis of a domain generating algorithm malware
family. Black Hat USA, 2013, 2013.

8. Srinivas Krishnan, Teryl Taylor, Fabian Monrose, and John McHugh. Crossing
the threshold: Detecting network malfeasance via sequential hypothesis testing.
In 43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 1–12, 2013.

9. Pedro G Lind, Marta C Gonzalez, and Hans J Herrmann. Cycles and clustering
in bipartite networks. Physical review E, 72(5):056127, 2005.

10. Pierre Lison and Vasileios Mavroeidis. Automatic detection of malware-generated
domains with recurrent neural models. arXiv:1709.07102, 2017.

http://alexa.com/topsites

11. Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Beyond
blacklists: Learning to detect malicious web sites from suspicious urls. In Proc. of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 1245–1254, 2009.

12. Guoyong Mao and Ning Zhang. Analysis of average shortest-
path length of scale-free network. Journal of Applied Mathematics,
http://dx.doi.org/10.1155/2013/865643, 2013.

13. D. Kevin McGrath and Minaxi Gupta. Behind phishing: An examination of phisher
modi operandi. LEET, 8:4, 2008.

14. Miranda Mowbray and Josiah Hagen. Finding domain-generation algorithms by
looking at length distribution. In 25th IEEE International Symposium on Software
Reliability Engineering Workshops, ISSRE Workshops, pages 395–400, 2014.

15. Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader, and Elmar
Gerhards-Padilla. A comprehensive measurement study of domain generating mal-
ware. In 25th USENIX Security Symposium, pages 263–278, 2016.

16. Joshua Saxe and Konstantin Berlin. eXpose: A character-level convolutional neural
network with embeddings for detecting malicious urls, file paths and registry keys.
arXiv:1702.08568, 2017.

17. Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and Stefano Zanero.
Phoenix: DGA-based botnet tracking and intelligence. In Proc. of DIMVA 2014,
International Conference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, pages 192–211, 2014.

18. Stanislav Skuratovich. Matsnu technical report.
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/,
2015.

19. Duc Tran, Hieu Mac, Van Tong, Hai Anh Tran, and Linh Giang Nguyen. A LSTM
based framework for handling multiclass imbalance in DGA botnet detection. Neu-
rocomputing, 275:2401–2413, 2018.

20. Jonathan Woodbridge, Hyrum S Anderson, Anjum Ahuja, and Daniel Grant. Pre-
dicting domain generation algorithms with long short-term memory networks.
arXiv:1611.00791, 2016.

21. Sandeep Yadav, Ashwath Kumar Krishna Reddy, A. L. Narasimha Reddy, and
Supranamaya Ranjan. Detecting algorithmically generated malicious domain
names. In Proc. of the 10th ACM SIGCOMM Conference on Internet Measurement,
pages 48–61, 2010.

22. Bin Yu, Daniel Gray, Jie Pan, Martine De Cock, and Anderson Nascimento. Inline
DGA detection with deep networks. In Data Mining for Cyber Security, Proc. of
International Conference on Data Mining (ICDM2017) Workshops, pages 683–692,
2017.

23. Bin Yu, Jie Pan, Jiaming Hu, Anderson Nascimento, and Martine De Cock. Charac-
ter level based detection of DGA domain names. In Proc. of IJCNN at WCCI2018
(2018 IEEE World Congress on Computational Intelligence), 2018.

24. Bin Yu, Les Smith, and Mark Threefoot. Semi-supervised time series modeling
for real-time flux domain detection on passive DNS traffic. In Proc. of the 10th
International Conference on Machine Learning and Data Mining, pages 258–271,
2014.

25. Bin Yu, Les Smith, Mark Threefoot, and Femi Olumofin. Behavior analysis based
DNS tunneling detection with big data technologies. In Proc. of the International
Conference on Internet of Things and Big Data, pages 284–290, 2016.

http://aiweb.techfak.uni-bielefeld.de/ content/bworld-robot-control-software/

	Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic

