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ABSTRACT

A large percentage of emergency department (ED) visits
originates from a small percentage of patients who keep re-
turning to the ED. Being able to flag these frequent users
in advance can help clinicians to take appropriate interven-
tions to reduce the number of ED visits, thereby reducing
cost and improving quality of care. In this paper we present
machine learning models that can predict future ED utiliza-
tion of individual patients, using only information from the
present and the past. We train decision trees (DT), boosted
decision trees (AdaBoost) and logistic regression (LR) mod-
els on discharge records from California-licensed hospitals
from the years 2009 and 2010, and evaluate their predictive
accuracy for the years 2011-2013. We also study the impact
of including different groups of demographic, frequency of
ED visits, distance to emergency department, and clinical
features on the accuracy of our predictive models. Over-
all there are three key findings of this study. First, all three
techniques (LR, DT and AdaBoost) have a strong predictive
ability to discriminate frequent ED users (number of visits >
5). Second, our models show consistent outcomes across all
three test years in our dataset, which is a desired property
when a predictive tool that is stable and consistent year over
year is required. Third, least and most frequent ED users
are comparatively easier to predict when compared to mod-
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erate ED users (with higher sensitivity and AUC scores).

1. INTRODUCTION

According to a recent National Health Statistics Report,
every year around 20% of adults in the U.S. seek healthcare
at an emergency department (ED) [7]. A significant fraction
of the frequent ED user population is comprised of patients
with complex unmet needs for interventions, including men-
tal health, substance abuse, transportation and housing, and
chronic disease management services [1]. Being able to iden-
tify these frequent ED visitors in advance is valuable as it
can enable targeted interventions that can keep the frequent
ED visitors out of the ED, thereby increasing quality of care
and, given the high costs of ED care relative to office-based
care, potentially reducing cost [10, 18].

A variety of studies have been done to analyze reasons
for emergency room use. These are typically retrospective
studies where logistic regression models are fit on historic
patient data [1, 12, 16]. In a recent study, Wu et al. trained
logistic regression models that classify patients as frequent
or non-frequent ED visitors in 2009-2010 given their registra-
tion data from 2008 [20]. Their approach assumes that the
number of ED visits in 2009-2010 is already known for some
of the patients, so that it can be used to train classifiers that
infer the number of ED visits in 2009-2010 for the other pa-
tients. Inspired by this work, in this paper we train and test
machine learning models that make predictions about future
ED utilization, using only information from the present and
the past. To this end we use a California Office of Statewide
Health Planning and Development (OSHPD) dataset with
discharge records from California-licensed hospitals for the
years 2009-2013. We use the data from 2009-2010 to train
our models, and we evaluate their predictive accuracy for the
years 2011-2013. Unlike in the study by [20], no data from
the years for which we make predictions is used in training
the models that make the predictions.

We train and test predictive models that, for a given pa-
tient, predict whether the patient will be a low frequency
user (< 1 ED visit), a medium frequency user (2-4 ED vis-
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its), or a high frequency user (> 5 ED visits) in the coming
year, hence treating the problem as a 3-class classification
task. We consider four groups of features: (1) number of hos-
pital admissions and ED visits of the patient in the previous
year; (2) age, gender and race of the patient; (3) distance
between the patients’ home and the EDs visited in the pre-
vious year; and (4) comorbidities of the patient and severity
of the diagnoses. Gradually expanding our feature set with
these groups of features allows us to investigate their impact
on the accuracy of the predictive models.

This paper is structured as follows: after presenting re-
lated work in Section 2, in Section 3 we describe the datasets
that we created for our study. This includes a description
of the cohort of patients with ED visits that we selected
from the original OSHPD data, as well as a description of
the features we constructed. In Section 4 we describe our
predictive models (decision trees, boosted decision trees, lo-
gistic regression), while in Section 5 we present an extensive
evaluation of their predictive accuracy and an analysis of
the impact of different feature groups. For completeness, we
also include a comparative analysis with a series of logistic
regression models trained as in [20] for the binary classifi-
cation task of inferring whether the number of ED visits of
a patient will be below or above a varying threshold. We
conclude in Section 6 with interesting directions for future
work.

2. RELATED WORK

Medical facilities like EDs are designed to provide episodic
care to patients suffering from serious injuries and illnesses.
These facilities also cater to patients who are experiencing
a sudden increase of underlying chronic medical conditions
which require immediate attention [12]. Emergency care
constitutes a significant and growing proportion of the prac-
tice of emergency medicine. ED overcrowding represents an
emerging threat to patient safety and could have a signifi-
cant impact on the critically ill [4]. For instance, ambulance
diversion is a frequent reaction to ED crowding, which may
carry consequences including delayed patient transport and
lost hospital revenue [9]. In addition, the overall percentage
of the population that has an ED visit is decreasing due to
the occurrence of frequent and repeated use by a portion of
the population [1]. The ED overcrowding problem results in
calls for ways to identify avoidable ED visits [8, 9].

A variety of research efforts have focused on understand-
ing the utilization and factors leading to ED crowding by
frequent users (see e.g. [17]). The majority of these efforts
were either retrospective cohort studies [1, 16], or regres-
sion estimations [12]. Recently attention has turned towards
the use of machine learning techniques to predict ED usage.
For instance, [11] used optimization techniques for feature
selection, and combined them with an optimization-based
discriminant analysis model (DAMIP) to identify a classi-
fication rule with relatively small subsets of discriminatory
factors to predict return of patients within 72 hours to an
ED. Logistic regression is a prominent and preferred method
in the literature on predicting frequent ED users, including
[13, 19, 20]. [19] used logistic regression to predict the need
for immediate hospital admission that is likely to follow an
episode of ED care. The utility of early prediction of hospital
admission among ED patients is that it may help identify pa-
tients deserving of early admission planning and resource al-
location and thus potentially reduce ED overcrowding. [20]

focused on identifying frequent ED users in the subsequent
two years, and [13] predicted frequent ED use among rural
older adults. Lastly, [2] made efforts on predicting the num-
ber of ED admissions (for those patients that require a bed
and thus represent a demand on bed management), on any
given day of the year, taking into account peak periods such
as public holidays.

Our research differs from existing work in that we predict
the frequency with which patients will visit the ED in the
coming 12 months, using only information from the previous
12 months. While existing work focuses on the use of logistic
regression for the binary classification task of distinguishing
frequent from non-frequent users, we study the 3-class clas-
sification problem of “bucketing” patients into low, medium
and high frequency users. In addition to logistic regression,
we use non-linear methods, namely decision trees and Ad-
aBoost to this end.

3. COHORT

We requested non public data for the years 2009-2013
from the California Office of Statewide Health Planning and
Development (OSHPD)'. The data consists of hospital dis-
charge records that include patient demographic informa-
tion, such as age, gender, and race/ethnicity, and clinical
and administrative information, such as diagnosis and the
route by which the patient was admitted (e.g. the admitting
hospital’s Emergency Room).

3.1 Data Pre-processing and Cohort Selection

The original 2009-2013 OSHPD dataset is a collection of
patient admission records in tabular format. Each row cor-
responds to one discharge record of one patient. There are
a total of 15,140,658 records and 7,355,726 unique patients,
with discharge dates from 2009 to 2013. 18,634 patients
have an inconsistent or missing gender value in at least one
of their records. Similarly, 372,852 patients have an incon-
sistent or missing value for their race group in at least one of
their records. We cleaned inconsistencies in gender and race
across different records for the same patient by assigning
the most frequently occurring gender and/or race for that
patient to all his records. We filled in missing gender and
race values in a similar way. This affected 22,260 rows for
gender, and 526,972 rows for race group.

Invalid zip codes were found in patients and hospitals.
Out of the 465 hospitals, 2 have invalid zip codes. We
retrieved the correct zip codes by looking up the hospital
names by the hospital ids from OSHPD’s website?, and then
looking up the correct zip codes on the hospitals’ websites.
There are 67,887 patients with invalid zip codes in at least
one of their admissions. We replaced an invalid patient zip
code in a given record with the patient zip code from the
previous record of the same patient if it exists and is valid.
If there is no previous record or the zip code of the pre-
vious record is invalid, then we consulted the next record
instead. However, there are 24,886 patients having no valid
zip code in all of their records. The records for these pa-
tients were fixed by replacing the zip code with the most
frequently occurring hospital zip codes across all admissions

"http:/ /www.oshpd.ca.gov/HID/Data_Request_Center
/documents/DataDictionary_Nonpublic_.PDD.pdf/
2www.oshpd.ca.gov/hid/data_request_center /documents/
app_d_facility-status.xlsx
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Figure 1: (a) Number of admissions per year; (b) Histogram of number of ED admissions per patient in 2009

of the patient.

Some records for the same patient have overlapping ad-
mission periods. Some of these are “same day readmissions”,
i.e. the next admission date is on the same day as the cur-
rent discharge date. Others can be described as “readmission
before discharge”; i.e. the next admission date is before the
current discharge date. Both same day readmissions and
readmissions before discharge are indicative of a patient be-
ing transferred to a different care facility within the same
hospital or to a different hospital. We consider two records
with overlapping admission periods part of the same hospi-
talization, and merged them into a single record. This brings
the total number of discharge records down to 14,406,870.
Our assumption that all same day admissions are planned
transfers may lead to under counting of the true rate of ED
utilization. The effect is minimal though since less than 4%
of the records are affected.

Figure 1 (a) shows the breakdown of the hospitalizations
according to admission year, as well as how many of them
were ED visits. 40,895 records had an admission date in
2008 and are not included in the further study.

We selected four cohorts, corresponding to the patients
with at least one ED admission in 2009, 2010, 2011, and 2012
respectively. Table 1 shows the number of patients in each
cohort, as well as the percentage of male/female patients,
and the percentage of patients in each age group (see Section
3.2). Figure 1(b) shows a histogram of the number of ED
visits per patient in 2009. There were 869,157 patients with
exactly 1 ED admission in 2009 (not displayed in the figure),
and 265,344 patients with more than 1 ED admission. The
histograms for the other years are similar.

3.2 Feature Construction

For each cohort (year) we created a dataset with one row
per patient. Besides the patient id or “record linkage num-
ber” (RLN) we also included ED_ADMIT: the total number
of ED visits of the patient in that year; ALL_ADMIT: the
total number of hospital admissions of the patient in that
year; GENDER: male, female; AGE: age at the first ED
visit of the year, discretized into six subgroups 0-4, 5-14,
15-24, 25-44, 45-64, 65+; and RACE-GRP: White, Black,
Hispanic, Asian/Pacific Islander, Native American/Eskimo-
/Aleut, Other, Unknown/Invalid/Blank.

In addition, as in [20], we constructed features to capture
the proximity of an ED. The original OSHPD dataset con-
tains the patient zipcode (patzip) and the hospital zipcode

(hspzip). To compute the distance between the patient’s
home and the hospital, we converted all zipcodes into lati-
tudes and longitudes®. For each patient we include DIST1:
the percentage of ED visits within a distance of 5 miles
(dist < 5), DIST2: the percentage of ED visits in a distance
between 5 and 20 miles (5 < dist < 20), and DIST3: the
percentage of ED visits at a distance greater than 20 miles
(dist > 20). To train our models (see Section 4) we only use
DIST1 and DIST3 as DIST2 = 100 — DIST1 — DIST3.

The original OSHPD data contains an MS-DRG (Medi-
care Severity Diagnosis Related Groups) based feature that
for each hospital admission indicates the presence/absence
of a complication/comorbidity (CC) or a major complica-
tion/comorbidity (MCC). Similar as above, for each patient
we include the following three features in our dataset: SEVO:
the percentage of ED visits with no presence of CC or MCC;
SEV1: the percentage of ED visits with presence of CC; and
SEV2: the percentage of ED visits with presence of MCC.

Finally, we mapped the ICD9 diagnosis codes from the
ED discharge records into 30 categories corresponding to
the Elixhauser comorbidities [5]: CHF (Congestive heart fail-
ure), VALVE (Valvular disease), PULMCIRC (Pulmonary cir-
culation disorder), PERIVASC (Peripheral vascular disorder),
HIN (Hypertension, uncomplicated), HINCX (Hypertension,
complicated), PARA (Paralysis), NEURO (Other Neurological),
CHRNLUNG (Chronic pulmonary disease); DM (Diabetes w/o
chronic complications), DMCX (Diabetes w/ chronic compli-
cations), Hypothy (Hypothyrodism), RENFAIL (Renal Fail-
ure), LIVER (Liver disease), ULCER (Chronic peptic ulcer dis-
ease’), AIDS (HIV and AIDS), LYMPH (Lymphoma), METS
(Metastatic cancer), TUMOR (Solid tumor without metasta-
sis), ARTH (Rheumatoid arthritis®), COAG (Coagulation de-
ficiency), OBESE (Obesity), WGHTLOSS (Weight loss), LYTES
(Fluid and electrolyte disorders), BLDLOSS (Blood loss ane-
mia), ANEMDEF (Deficiency anemia), ALCOHOL (Alcohol Abuse),
DRUG (Drug abuse), PSYCH (Psychoses), DEPRESS (Depres-
sion), and an additional category UNCLASS for ICD9 codes
that don’t correspond to any comorbidity. Next, for each
comorbidity, we computed the percentage of ED visits of
the patient in which an ICD9 code for that comorbidity was
observed, and included it as a feature. Note that the sum of

3using postal code data from GeoNames geographical

database. http://www.geonames.org/
4includes bleeding only if obstruction is also present
Sincludes also collagen vascular diseases
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COHORT GENDER AGE

#patients | %male | %female | %0-4 | %5-14 | %15-24 | %25-44 | %45-64 | %65+
ED2009 1,134,501 46.99 53.01 1.31 1.52 4.08 13.95 27.72 51.38
ED2010 1,156,901 47.07 52.93 1.31 1.45 4.11 13.99 27.97 51.19
ED2011 1,159,662 47.31 52.69 1.15 1.31 4.16 13.92 28.23 51.20
ED2012 1,153,188 47.57 52.43 0.92 1.27 4.25 14.32 28.58 50.63

Table 1: Statistics about the four selected cohorts. The cohort for a given year corresponds to the patients

who had at least one ED visit during that year.

name |  description | features

patient id RLN
FREQ frequency ED_ADMIT, ALL_ADMIT
DEM demographics GENDER, AGE, RACE-GRP
DIST distance DIST1, DIST3
MED medical SEV0, SEV1, SEV2,

31 Elixhauser
comorbidity features
ED_ADMIT_NEXT

response variable

Table 2: Overview of the feature groups

these percentages for the same patient across all comorbidi-
ties is not necessarily 100.

Table 2 contains an overview of all the features described
in this section, split across four feature groups: “FREQ”
refers to the number of hospital admissions and ED visits
of the patient in the previous year, “DEM” refers to the
patient’s demographic characteristics, “DIST” refers to the
distance between the patient’s home and the EDs visited in
the previous year, and “MED” refers to the comorbidities of
the patient and severity of the diagnoses.

4. METHODS

We trained supervised machine learning models using the
FREQ, DEM, DST, and MED features (as shown in Table
2) constructed from the discharge records from 2009 as in-
put features, and the corresponding number of ED visits in
2010, i.e. ED_ADMIT_NEXT, as the response variable to be
predicted. We studied two versions of the prediction task:
(1) a 8-class classification task, where the goal is to classify
patients as low frequency (< 1 visit), medium frequency (2-4
visits) and high frequency (> 5 visits) ED users, (2) a binary
classification task, with the aim to distinguish between low
frequency (< p visits) and high frequency (> p visits) ED
users as in [20]. We varied the threshold p between 2 and 9
and trained corresponding models for each threshold.

The training data is highly imbalanced: 1,020,325 (i.e.
89.93%) of patients from the 2009 cohort have < 1 ED visit
in 2010, 97,219 (i.e. 8.56%) have 2-4 ED visits, and only
16,957 (i.e. 1.49%) have > 5 visits. We therefore under-
sampled the 2009 cohort by randomly selecting 15,000 pa-
tients from each group. The advantage of undersampling
highly imbalanced medical data was previously observed in
[15]. All 3-class classification models are trained on a sample
of 15,000:15,000:15,000 patients from ED2009. The binary
classification models are trained on undersampled data as
well. For each binary model, we balanced our datasets in

p | <pvisits > p visits sample size

2 | 1,020,325 114,176 ~ 100,000:100,000
3 | 1,078,624 55,877 50,000:50,000
41 1,104,660 29,841 25,000:25,000
5| 1,117,544 16,957 15,000:15,000
6 | 1,124,413 10,088 10,000:10,000
71 1,128,173 6,328 6,000:6,000

8 | 1,130,278 4,223 4,000:4,000

9| 1,131,591 2,910 2,900:2,900

Table 3: Number of patients from the 2009 cohort
with < p visits and with > p visits in 2010, and sam-
ple size of the training data for the binary classi-
fication tasks. All 3-class classification models are
trained on a sample of 15,000:15,000:15,000 patients
from ED2009.

order to have an equal number of positive and negative class
labels patients (see Table 3). We observed that the choice
of sample did not significantly influence the results, so we
sampled once for each p (for the binary case) and once for
the 3 class case, using the same sample for all models.

We trained three kinds of models for the binary as well as
the 3-class classification tasks, namely decision trees (DT),
boosted decision trees (AdaBoost) and logistic regression
(LR).

Decision trees are known to be robust and expressive mod-
els. The top-down algorithms for growing decision trees can
naturally handle binary as well as multi-class classification
problems. The leaf nodes can refer to either of the K classes
concerned. For this study, we used an implementation of the
classification and regression tree algorithm (CART) in R [3].
We built our classification trees using as complexity param-
eter ¢cp=0.001. The complexity parameter defines how the
splits are made in the decision tree; a split is only made if
it decreases the overall lack of fit by at least a factor of cp.

Boosted decision trees are ensembles of trees. They are
trained using a boosting process in which each subsequent
tree is built with weighted instances which were misclassified
by the previous tree [6]. Like stand-alone decision trees,
these ensembles of trees can naturally handle binary as well
as multi-class classification problems. Classification of a new
instance with a trained ensemble of trees is based on a simple
majority vote of the individual trees. For this study, we used
the adabag® implementation of boosted decision trees in R
with 50 rounds of boosting.

Logistic regression is a discriminative classifier that mod-
els the posterior probability P(Y|X) of the class Y given the
input features X by fitting a logistic curve to the relation-
ship between X and Y. As such, logistic regression model

Shttps://cran.r-project.org/web/packages/adabag/adabag.pdf



outputs can be interpreted as probabilities of the occurrence
of a class [14]. The class decision for the given probability
is then made based on a threshold value. The threshold is
often set to 0.5, i.e. if P(Y = ¢|X) > 0.5, then we predict
that the instance belongs to the positive class, and other-
wise we predict the instance belongs to the negative class.
For the binary classification tasks, we used R’s standard
glm function. For the 3-class classifications tasks we trained
multinomial log-linear models using neural networks with
the nnet” package in R.

Next, we present and discuss the results obtained using
these methods for the 3-class classification and binary clas-
sification tasks.

5. RESULTS

Three levels of result analysis are described in this sec-
tion: (1) the impact of various feature groups on model
performance; (2) a comparison of decision trees, boosted
decision trees and multinomial log-linear models for the 3-
class classification task; (3) a comparative analysis of the
effect of varying the threshold for the binary classification
tasks. The results are presented in terms of precision, sensi-
tivity (recall) and AUC. For the binary classification tasks,
we report the AUC score for the minority class. For the
3-class classification tasks, AUC scores are obtained treat-
ing one class as the positive class, and the other two classes
combined as the negative class.

5.1 Performance across feature groups

We first tested the impact of including different feature
groups from Table 2 on the overall performance of the mod-
els for classifying patients as low frequency (< 1 visit), me-
dium frequency (2-4 visits) and high frequency (> 5 vis-
its) ED users. To this end, we trained four decision trees,
four boosted decision tree models, and four multinomial log-
linear models using information from discharge records from
2009, and the number of ED visits in 2010 as the response
variable value, i.e. training was done over 2009 — 2010 data
only (see Section 4). For each technique, we trained a basic
model that takes only the frequency features into account
(FREQ), a model that takes the frequency features and the
demographic information into account (FREQ + DEM), a
model that takes the frequency features, the demographic
information and the distance features into account (FREQ
-+ DEM + DIST), and finally a model that takes all previous
features as well as the medical features into account (ALL
FEATURES).

Figure 2 presents the AUC scores of these models treating
respectively the low frequency (< 1 visit), medium frequency
(2-4 visits) and high frequency (> 5 visits) group of patients
as the positive class. In other words, each of Figure 2 (a),
(b) and (c) contains results about the exact same 12 models.
The difference results from which class is being treated as
the positive class for the AUC score computation. All AUC
scores in these figures are averaged across the three test
years (2010 — 2011, 2011 — 2012 and 2012 — 2013). More
detailed results per year are presented in Section 5.2.

It is interesting to note that (1) the frequency of past
ED usage is indicative of the frequency of future ED us-
age; (2) the addition of demographic information and the
severity and comorbidity features is very beneficial; while (3)

"https:/ /cran.r-project.org/web/packages /nnet /nnet.pdf
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Figure 2: AUC results for different combinations
of feature groups from Table 2, treating patients
with: (a) < 1 visit as the positive class; (b) 2-4 vis-
its as the positive class; (c¢) > 5 visits as the positive
class. FREQ= Frequency, DEM = Demographic,
and DIST = Distance. The AUC scores are aver-
aged across the three test years.

the distance features are only moderately helpful. This can
also be seen in the example trained decision tree shown in
Figure 3: the decision tree learning algorithm selected only
demographic, frequency and medical features as the split at-
tributes at different levels in the tree in order to make the
final class decision.

In general, it can been seen from Figure 2 (a), (b) and
(c) that adding more information (more features) improves
the overall performance of the models. The highest AUC
scores are observed when all features were used. This was
observed for all three classes, indicating that the combina-
tion of frequency of ED visits, demographic, distance and
medical information helps in improving the performance of
the models. Therefore, we use all features in the experiments
in the remainder of this section.

5.2 3-class classification
Here we describe more detailed results of our models for
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Figure 3: A pruned trained decision tree example for the 3-class classification task. It can be seen how different
features related to demographic information (age, race); medical information (comborbidity features), and
frequency of past ED visits are used in making the predictions for future ED usage.

Positive Model 2010 — | 2011 — | 2012 —
Class 2011 2012 2013
Multinomial || 0.75 0.75 0.74
< 1 visit DT 0.73 0.73 0.73
AdaBoost 0.75 0.75 0.75
Multinomial || 0.65 0.64 0.63
2-4 visits DT 0.60 0.59 0.59
AdaBoost 0.62 0.61 0.61
Multinomial || 0.85 0.85 0.85
> 5 visits DT 0.83 0.83 0.83
AdaBoost 0.84 0.85 0.84

Table 4: AUC results for the 3-class classification
problem, using all features. All models were trained
over 2009 — 2010 data only, and subsequently applied
to make predictions for 2010 — 2011, 2011 — 2012, and
2012 — 2013.

performing the 3-class classification task, where the goal is
to classify patients as low frequency (< 1 visit), medium fre-
quency (2-4 visits) and high frequency (> 5 visits) ED users.
All models discussed here and in Section 5.3 are trained us-
ing all features combined. Table 4 contains an overview of
the AUC scores for the 3-class classification problem with
all the different models using all feature groups (FRQ-DEM-
DST-MED). As is the case throughout Section 5, all training
was done over 2009 — 2010 data only. The results in Ta-
ble 4 show how accurate these 2009 — 2010 trained models
are at predicting future ED visits for each of the remaining
years for which we have ground truth data available in our
dataset.

Three key observations can be made from the results in
Table 4. First, all three models (LR, DT and AdaBoost)
have strong predictive ability to discriminate high frequency
ED users (visit > 5), with AUC > 83%. Second, predicting

low and high frequency ED users (AUC > 83% and AUC
> 73% respectively), is easier when compared to moderate
ED users (AUC > 59%). Third, the performance of all the
three models remains the same across all three years for all
three classes. Such outcomes are important when consistent
performance across all years is desired.

Confusion matrices for each of the models are presented
for the year 2012 — 2013 in Table 5. We report results from
only one test year here because results for other test years
were very similar, hence no new insights could be drawn.
Similar to the already mentioned results for the 3-class clas-
sification task, the results in Table 5 also show a higher per-
centage of correctly classified instances for the low and high
frequency of ED visit classes. That is, instances from the
most frequent (visit > 5) and least frequent (visit < 1) class
are often correctly classified as their actual class (= 60%).
Additionally, the percentage of mis-classification of high fre-
quency users as low or medium frequency ED users is small
(< 25%). Such outcomes are important because they re-
duce the chance of missing out patients who are likely to
come back several times to ED.

Since our results (AUC, precision and sensitivity) are sim-
ilar across the three test years (2010 — 2011, 2011 — 2012
and 2012 — 2013), in the remainder of this section, we
present averages of the results across the three years. Ta-
ble 6 presents an overview of averaged precision, sensitivity
and AUC scores. The results highlight the following obser-
vations: the sensitivity of models for class < 1 and > 5 is
higher when compared to the class 2-4 visits, suggesting that
among least and most frequent ED users, a large proportion
(above 60%) of them can be identified correctly. Next, there
is a drastic drop in precision scores for moderate (~ 13%)
and frequent ED (= 9%) users when compared to the least
frequent users (= 95%) class, indicating risk of producing a
large number of false positives when making predictions for
these two types of ED users. However, the cost (in terms



Decision Trees Actual Class
<1 visit 2-4 visits > 5 visits Total
<1 visit | 635,607 (61.20%) | 29,409 (30.05%) | 2,261 (13.67%) | 667,277
Predicted Class | 2-4 visits | 304,405 (29.30%) | 39,416 (40.28%) | 4,194 (25.36%) | 348,015
> 5 visits | 98,774 (9.50%) 29,040 (29.67%) | 10,082 (60.97%) | 137,896
Total 1,038,786 97,865 16,537 N
AdaBoost Actual Class
<1 visit 2-4 visits > 5 visits Total
<1 visit | 631,723 (60.82%) | 28,571 (29.19%) | 2,204 (13.33%) | 662,498
Predicted Class | 2-4 visits | 293,079 (28.21%) | 38,461 (39.31%) | 4,215 (25.48%) | 335,755
> 5 visits | 113,984 (10.97%) | 30,833 (31.50%) | 10,118 (61.19%) | 154,935
Total 1,038,786 97,865 16,537 N
Multinomial model Actual Class
< 1 visit 2-4 visits > 5 visits Total
<1 wvisit | 711,255 (68.47%) | 35,381 (36.14%) | 2,874 (17.37%) | 749,510
Predicted Class | 2-4 visits | 248,874 (23.95%) | 36,954 (37.78%) | 4,014 (24.27%) | 289,842
> 5 visits 78,657 (7.58%) 25,530 (26.08%) | 9,649 (58.36%) | 113,836
Total 1,038,786 97,865 16,537 N

Table 5: Confusion matrices for 2012 — 2013, using all features.

Positive Model Sensitivity | Precision | AUC
Class

Multinomial 0.69 0.95 0.75

< 1 visit DT 0.62 0.95 0.73
AdaBoost 0.61 0.95 0.75

Multinomial 0.38 0.13 0.64

2-4 visits DT 0.40 0.12 0.59
AdaBoost 0.39 0.12 0.61

Multinomial 0.58 0.09 0.85

> 5 visits DT 0.60 0.08 0.83
AdaBoost 0.61 0.07 0.84

Table 6: Average results are across the three test
years, using all features

of hospital resource utilization and patients’ well being) for
ED visits of false negatives is higher than for false posi-
tives. Therefore, higher sensitivity is more desirable in such
scenarios. Nonetheless, in our future research, we aim to
improve our existing models and explore some new models
to achieve higher precision scores as well. Unlike sensitivity
and precision, AUC is much more stable across the three
classes.

5.3 Binary Classification

Finally, in Figure 4 we present a comparative analysis of a
series of predictive models for the binary classification task
of inferring whether the number of future ED visits of a
patient will be below or above a varying threshold. The
results in Figure 4 show that the AUC scores improve as
the threshold for number of visits is increased, for all three
methods (LR, DT and AdaBoost). This echoes the find-
ings of our multiclass classification results (Tables 4 and 6),
where we already observed that the prediction of high fre-
quency ED users can be done very accurately using machine
learning methods. Furthermore, a similar improvement in
the performance of the models for the binary classification
task was also observed in [20] when the threshold for defining
high frequency usage was increased, i.e. the model predict-
ing frequent ED use as defined as 16 or more visits in the
subsequent two years showed better discrimination than the
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Figure 4: AUC scores of decision trees (DT), Ad-
aBoost, and logistic regression (LR) models for the
binary classification task of predicting frequent ED
usage. The AUC scores are averaged across the
three test years.

models predicting a smaller number of ED visits.

6. CONCLUSION

A large percentage of emergency department (ED) visits
originates from a small percentage of patients who keep re-
turning to the ED. Being able to flag these frequent users
in advance can help providers to take appropriate interven-
tions to reduce the number of ED visits, thereby reduc-
ing cost and improving quality of care. In this paper we
presented machine learning models that can predict future
ED utilization of individual patients, using only information
from the present and the past. We trained decision trees,
boosted decision trees and logistic regression models on dis-
charge records from California-licensed hospitals from the
years 2009 and 2010, and evaluate their predictive accuracy
for the years 2011-2013.

Overall there were three key findings of this study. First,
all three kinds of models (LR, DT and AdaBoost) have a
strong predictive ability to discriminate frequent ED users
(number of visits > 5). Second, all models show consistent
outcomes across the three test years in our dataset (2010 —
2011, 2011 — 2012 and 2012 — 2013), which is a desired
property when a predictive tool is required that is stable



and consistent year over year is required. Third, the low
and high frequency ED users are comparatively easier to sin-
gle out when compared to moderate ED users (with higher
sensitivity and AUC). For completeness, we also did a com-
parative analysis with a series of logistic regression models
trained as in [20] for the binary classification task of infer-
ring whether the number of ED visits of a patient will be
below or above a varying threshold. The results suggest that
using machine learning techniques, predicting frequent ED
users (who are also minority ED users) with high accuracy
is possible. Similar outcomes were observed when a single
3-class classification model was used instead of multiple sin-
gle class models. This is a useful outcome since one model
can be used to predict different types of ED users.

In our future research, we aim to investigate additional
state-of-the-art machine learning methods for accurately pre-
dicting frequent ED users. While the choice of casting the
problem as a classification problem in this paper was in-
spired by [20], approaching it as a regression problem is
equally meaningful. Additionally, we aim to find ways to
improve the precision so that the number of false positives
can be further reduced. In order to further increase the clini-
cal relevance of this problem (predicting frequent ED users),
in our future research, we aim to not only accurately pre-
dict frequent ED users, but also the unique care needs (for
instance, multiple chronic disease management, behavioral
health interventions, and palliative care) of the clinically dis-
tinct frequent user subpopulations. This will allow for more
efficient allocation and precise targeting of evidence-based
interventions to reduce ED utilization.
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