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Fuzzy Answer Set Programming: from Theory
to Practice

Mushthofa Mushthofa1,3, Steven Schockaert2, and Martine De Cock1,4

1.1 Introduction

Fuzzy Answer Set Programming (FASP) is a declarative programming framework
aimed at solving combinatorial search/optimization problems in continuous do-
mains [32, 6]. It extends Answer Set Programming (ASP [4, 26]), a well known
declarative language that allows users to specify combinatorial search and optimiza-
tion problems in an intuitive way. ASP stands out among other logic-based program-
ming frameworks by being more purely declarative (compared to, e.g., Prolog), al-
lowing for a more concise and intuitive encoding, while at the same time being
highly expressive. The availability of efficient solvers, which are able to solve hard
real-world problems, has also significantly contributed to the popularity of this mod-
eling language. In the wake of ASP’s extensive development over the last decades
[1], FASP has recently been gaining more attention as well, including the develop-
ment of FASP solvers that enable the use of FASP for real-world problem solving
beyond toy examples. In [2], the authors developed a prototype FASP solver using
the method of fuzzy set approximations. They improved the solver further by using
a translation to Satisfiability Modulo Theory (SMT) [3], which increased the perfor-
mance of their solver significantly on many test instances. We have also developed
our own FASP solver, based on the idea of a translation to ASP, and making use of
currently available ASP solvers [27, 28].

In general, the workflows used for problem solving with FASP or ASP are quite
similar, and can be summarized as follows (Figure 1.1): (1) first we encode the prob-
lem as a (fuzzy) logic program, containing all the required facts, rules and/or con-
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Fig. 1.1 Work flow for solving problems using (F)ASP

straints required to define the conditions of the problem; (2) we then call a (F)ASP
solver, which will generate (any/all) answer sets from the specified program; and
(3) finally we decode the answer sets to obtain the solutions.

In this chapter, we give an introduction to FASP, as well as a description of a
state-of-the-art FASP solver and its use in practice. The remainder of this chapter is
structured as follows. In the next section, we provide a high-level explanation of how
ASP is typically used for solving problems, and the role that an extension to FASP
can play in applications. In Section 1.3, we present the syntax and semantics of
FASP, and explain how FASP programs can be used to encode problems. Section 1.4
subsequently explains how our solver finds the answer sets of a FASP program.
Finally, in Section 1.5, we illustrate the whole workflow using an application of
FASP to model gene regulatory networks.

1.2 Modeling problems as logic programs

Declarative programming allows one to solve problems by encoding/expressing
them, usually in a rule-based logical language, allowing the programmer to spec-
ify the problem in an intuitive manner, without having to explicitly say “how” to
solve the problem. It is then the task of the “solver” (which is an algorithm, or its
implementation) to find the solutions in accordance with the problem specification.
For example, the well-known Graph 3-coloring problem can be tackled in ASP us-
ing the following encoding:

col(X, red) ∨ col(X, green) ∨ col(X, blue)← node(X) (1.1)
← col(X, c), col(Y, c), edge(X,Y )

(1.2)

As is common in logic programming, rules are written in the form α ← β with
β the antecedent (body) of the rule and α the consequent (head). When the con-
sequent of a rule is false, it is left empty, as in the second rule above, enforcing
that the antecedent of the rule must be false for the overall rule to be satisfied.
Rule (1.1) intuitively expresses that we wish to find all possible 3-colorings of the
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Fig. 1.2 Example graph

nodes in a graph; the predicates node/1 and col/2 are used to encode the nodes
available in the graph and the colors assigned to them, respectively. The second
rule, which is a “logical constraint”, eliminates all the coloring schemes in which
two nodes X and Y sharing an edge receive the same color c. Given the above
program and a set of inputs representing all the nodes and edges of the graph,
an ASP solver, such as clasp [18] or DLV [25] then searches the answer sets
of the program, representing the possible solutions to the problem. For example,
given a graph in Figure 1.2, we can encode the input to the program using the set
of facts {node(a), . . . , node(d), edge(a, b), edge(a, c), edge(a, d), edge(b, c)}. An
ASP solver will then compute the answer sets, each of which corresponds to a solu-
tion. For example, one answer set will contain the atoms col(a, red), col(b, blue),
col(c, green) and col(d, blue), which indeed corresponds to a valid coloring of the
given graph.

The declarative nature of the syntax of ASP and the efficiency of its solvers
makes ASP a popular approach for solving combinatorial search problems. ASP has
found applications in a wide range of areas, including cryptography [11], hardware
design [15], data mining[20], the space shuttle decision system [20], bioinformatics
[19, 29, 13] and many others [26, 14].

FASP extends the expressiveness of ASP by allowing the use of fuzzy logic in
place of Boolean logic. The use of fuzzy logic in FASP means that predicates can
have a continuum of possible truth degrees (usually taken from [0, 1]), rather than
the discrete choices false and true. This enables the use of an ASP-like declarative
specification of problems involving continuous variables. As a simple toy example,
consider the problem of deciding whether to give a generous tip in a restaurant,
depending on the quality of the food and service, as follows:

good food← not bland (1.3)
generous← good food⊗ good service (1.4)

Here, it can be more natural to express criteria such as bland and good service as
gradual properties. The truth degree of e.g. bland then expresses to what extent the
property is satisfied. These truth degrees can them be combined using fuzzy logic
operators.
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1.3 Syntax and Semantics of FASP

Several different variants of FASP have been considered by different authors. Here
we will focus on the variant studied in [8], whose semantics is based on Łukasiewicz
logic. Similar to ASP, FASP assumes the availability of a set of propositional atom
symbols, BP . Alternatively, we can also consider a first-order syntax with predicate
symbols, in which case, BP is the set of ground atoms obtained from the available
predicate and constant symbols. Grounding is essentially the process of replacing
the variables occurring in any predicate symbols with the available constant sym-
bols. A (classical) literal is either a constant symbol c where c ∈ [0, 1]∩Q, an atom
a or a classical negation literal ¬a. An extended literal is a classical literal l or a
negation-as-failure (NAF) literal not l. Intuitively, classical negation differs from
NAF in that the former expresses our knowledge about something being not true,
whereas the latter expresses our inability to prove that something is true.

A head/body expression is a formula defined recursively as follows:

• any classical literal is a head expression;
• any extended literal is a body expression;
• if α and β are head (resp. body) expressions, then α⊗ β, α⊕ β, αY β and αZ β

are also head (resp. body) expressions.

A FASP program is a finite set of rules of the form:

α← β

where α is a head expression (called the head of the rule) and β is a body expression
(called the body of the rule). As in classical ASP, we write H(r) and B(r) to denote
the head and body of a rule r, respectively. A FASP rule of the form a ← c for a
classical literal a and a constant c is called a fact.

A FASP rule of the form c ← β, with c ∈ [0, 1] ∩ Q is called a constraint. A
rule which does not contain any application of the operator not is called a positive
rule. A rule which has at most one literal in the head is called a normal rule. A
FASP program is called [positive, normal] iff it only contains [positive, normal]
rules, respectively. Conversely, a [rule/program] which is not normal is called a
disjunctive [rule/program]. A positive normal program which has no constraints is
called a simple program.

The semantics of FASP is usually defined in relation to a chosen truth lattice
L = 〈L,≤L〉 [7]. We consider two types of truth lattices: the infinitely valued lattice
L∞ = 〈[0, 1],≤〉 and the finitely valued latticesLk = 〈Qk,≤〉, for an integer k ≥ 1,
where Qk = { 0k ,

1
k , . . . ,

k
k}. Such a choice is usually determined by the nature or the

goal of the application. If each proposition can only take a finite number of different
truth levels, then using the Lk would be more appropriate. In this case, FASP is
used for modeling discrete problems, and thus remains very close to classical ASP.
For modeling continuous problems, or if we do not want to fix the number of truth
degrees in advance, we need to use the semantics based on L∞.
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For any choice of lattice L (among the considered possibilities L∞ or Lk), an in-
terpretation of a FASP program P is a function I : BP 7→ L which can be extended
to expressions and rules as follows:

• I(c) = c, for a constant c ∈ L
• I(α⊗ β) = max(I(α) + I(β)− 1, 0)
• I(α⊕ β) = min(I(α) + I(β), 1)
• I(α Y β) = max(I(α), I(β))
• I(α Z β) = min(I(α), I(β))
• I(not α) = 1− I(α)
• I(α← β) = min(1− I(β) + I(α), 1)

for appropriate expressions α and β. Here, the operators not, ⊗,⊕,Y,Z and ←
denote the Łukasiewicz negation, t-norm, t-conorm, maximum, minimum and im-
plication, respectively.

An interpretation I is consistent iff I(l) + I(¬l) ≤ 1 for each l ∈ BP . We
say that a consistent interpretation I of P satisfies a FASP rule r iff I(r) = 1.
This condition is equivalent to I(H(r)) ≥ I(B(r)). An interpretation is a model
of a program P iff it satisfies every rule of P . For interpretations I1, I2, we write
I1 ≤ I2 iff I1(l) ≤ I2(l) for each l ∈ BP , and I1 < I2 iff I1 ≤ I2 and I1 6= I2.
We call a model I of P a minimal model if there is no other model J of P such that
J < I .

For a positive FASP program P , a model I of P is called a fuzzy answer set of P
iff it is a minimal model of P . For non-positive programs, a common way to define
the answer set semantics, in the case of classical ASP is to the so-called Gelfond-
Lifschitz (GL) reduct to transform the program into a positive one, given a guess of
which atoms are true. For a non-positive FASP program P , a generalization of the
GL reduct was defined in [10, 23] as follows: the reduct of a rule r w.r.t. an inter-
pretation I is the positive rule rI obtained by replacing each occurrence of not a
by the constant I(not a). The reduct of a FASP program P w.r.t. an interpretation
I is then defined as the positive program PI = {rI | r ∈ P}. A model I of P is
called a fuzzy answer set of P iff I is a fuzzy answer set of PI . The set of all the
fuzzy answer sets of a FASP program P is denoted by ANS(P). A simple FASP
program has exactly one fuzzy answer set. A positive FASP program may have no,
one or several fuzzy answer sets. In particular, disjunctive rules can generate many
fuzzy answer sets, in general. A FASP program is called consistent iff it has at least
one fuzzy answer set, and inconsistent otherwise.

Example 1 Consider the FASP program P1 which has the following rules:

{a← not c, b← not c, c← a⊕ b}

It can be seen that under both the truth-lattice L3 and L∞, the interpretation I1 =
{(a, 13 ), (b,

1
3 ), (c,

2
3 )} is a minimal model of PI1

1 , and hence it is an answer set of
P1. However, the program admits no answer sets under anyLk, where k is a positive
integer not divisible by 3.
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Fig. 1.3 Overall structure of the proposed solver.

Once a problem has been specified, or encoded, as a FASP program, the next
main steps are (1) to automatically determine the answer sets of the FASP program,
and (2) to map them back to solutions of the original problem. These steps are
explained in the following sections.

1.4 Solving FASP programs

In this section, we describe the method we proposed in [27, 28] for finding the
answers sets of a FASP program. Given that there are already several quite mature
ASP solvers, such as clasp [18] and DLV [25], a natural strategy is to reduce the
problem of evaluating a FASP program (i.e., finding its answer sets) to the problem
of evaluating one or more classical ASP programs. The overall structure of our
method is summarized in Figure 1.3.

The first step is to rewrite the FASP program into a more standardized form,
which simplifies the subsequent steps. The strategy then depends on whether the
program is disjunctive or not. Non-disjunctive programs are generally easier and
more efficient to evaluate. In this case, we simply perform the translation to ASP
and then utilize an ASP solver to find answer sets of the translated program, which
in turn correspond to the fuzzy answer sets of the original program. In the case of
disjunctive programs, two different cases are considered, as we explain below. In-
terested readers are invited to read [27, 28] for more details about the proposed
FASP solver. The proposed approach has been implemented and is available at
https://github.com/mushthofa/ffasp.
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1.4.1 Non-disjunctive programs

We start by simplifying the syntax of a FASP program into a simpler form where
there is at most one application of a connective ∗ from {⊗,⊕,Y,Z} in any rule.
Intuitively, this can be done by substituting a compound expression in the rule with
a fresh atom symbol, and then defining a rule for the new atom symbol accordingly.
For example, the rule

a← b⊕ (c⊗ not d)

can be substituted by the following set of rules

a← b⊕ p
p← c⊗ r
r ← not d

It can be shown [27] that we can always transform a FASP program P into the
required form, and that the size of the rewritten program is O(n ·m), where n is the
number of rules in P and m is the maximum number of atom occurrences per rule
in P .

As mentioned previously, the main idea we proposed for evaluating FASP pro-
grams is to reduce the problem of finding the answer set of of FASP programs into
that of finding the answer sets of ASP programs, which in turn can be performed
efficiently using currently available solvers. For finding the answer sets of FASP
programs in a truth lattice Lk, for a given k, we have proposed a method to translate
any non-disjunctive FASP program (that has been rewritten into the simple form de-
scribed above) into an ASP program such that the answer sets of the ASP program
correspond to the answer sets of the FASP program in Lk. For the finding answer
sets of FASP programs in L∞, we employ the following strategy: perform the trans-
lation and evaluation using ASP by considering different values of k until an answer
set is found, or until a certain stopping criteria is met. In this case, we need only to
consider the values of k which are compatible with the constants found in the pro-
gram (e.g., if a constant 1

3 appears in the program, then it would be reasonable to
choose only the values of k which are divisible by 3).

The translation procedure from FASP to ASP for a given k can be explained as
follows (interested readers can obtain more information in [27]). First, for every
atom a in the FASP program, we create up to k atom symbols ai, 1 ≤ i ≤ k in
the ASP program to denote the fact that atom a has a truth value of at least i

k .
Then, given a FASP rule, we create a (set of) ASP rule(s) that “simulate” the rule at
different truth values 1, ..., k. For example, a simple FASP rule of the form

a← c

with c ∈ (0, 1] can be translated into a single rule
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aj ←

where j = k ∗ c. A FASP rule of the form

a← b⊕ c

can be translated into the set of ASP rules

{ai ← bj ∧ ck−j+i | 1 ≤ i ≤ k, i ≤ j ≤ k}

which can be intuitively understood as enforcing that the truth value of a should be
at least as large as the sum of the truth values of b and c. The full translation scheme
is given in [27]. To complete the translation, we must add the set of rules

{ai ← ai+1 | 1 ≤ i ≤ k − 1}

for every atom a in the original FASP program to ensure that the atoms ai are con-
sistent with the interpretation that the truth value of a is at least i

k . We can show that
the resulting ASP program produces answer sets which correspond to the answer
sets of the original non-disjunctive FASP program [27].

1.4.2 Disjunctive programs

The approach proposed above to evaluate FASP works well for non-disjunctive pro-
grams, i.e., programs without any applications of the operator ⊕ in the head of the
rules. For disjunctive FASP programs, the approach can still be applied to find all
answer sets with rational truth values (i.e., it is complete). However, this method
may result in more than just the answer sets (i.e., it is not sound), as shown in the
example below.

Example 2 Consider the following program, {a ⊕ b ← 1, a ← b, b ← a}. The
finite-valued answer set obtained by applying the translation method to this program
using k = 1 is A1 = {(a, 1), (b, 1)}. In this case, it is true that A1 is an answer set
of the program under L1. However, A1 is not an answer set of this program under
L∞. In fact, the only answer set of the program in L∞ is A2 = {(a, 0.5), (b, 0.5)},
which can be obtained using k = 2.

The example shows that, given a FASP program P , the translation method can po-
tentially produce an answer set of P in Lk, for a certain k, which is not necessarily
an answer set of P n L∞. The problem, as illustrated by the example, is that the
translation method may return “answer sets” which are not minimal under L∞. We
can see that A2 < A1 in Example 2, and at the same time, A2 is a model of the
reduct of the program w.r.t. A1, and thus A1 is not minimal. In [28], it was shown
that it is sufficient to add an extra step to check for the minimality of any answer
sets obtained from the translation method.
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Since this extra check of minimality may be costly, we try to avoid it as best as
possible by identifying cases where we can transform a disjunctive program into a
non-disjunctive one. In ASP there is an operation called “shifting”, which can be
used to transform certain disjunctive programs into equivalent non-disjunctive pro-
grams [5, 12]. In [28], we describe a similar transformation for FASP programs,
which works for a class of programs called Self-Reinforcing Cyclic-Free (SRCF)
programs. Essentially, SRCF means that we can stratify the “support” in each de-
rived atoms, and that there is no cycle of support for these atoms. For such programs,
we can then perform the “shifting” operations, as illustrated in the following exam-
ple.

Example 3 Consider program P2 = {a ⊕ b ←, a ← b, b ← a}. It can be checked
that P2 is equivalent with the program shift(P2) as follows:

a← not b
b← not a
a← b

b← a

and both have the answer set {(a, 0.5), (b, 0.5)}. However, the program P2 ∪ {a←
a ⊕ a} is not equivalent to shift(P2) ∪ {a ← a ⊕ a}, because the former has the
answer set {(a, 1), (b, 1)}, while the latter does not have any answer sets.

1.5 An Application of FASP in Biological Network modeling

In this section, we illustrate an application of FASP in the domain of computational
biology, specifically in modeling the behavior of Boolean and multi-valued gene
regulatory networks and computing their attractors. In biological systems, many
phenotypic traits are coordinated by a set of genes interacting with each other. For
simplicity, we can regard each gene as a switch that can be either turned on or
turned off, representing the condition that the genes can be either expressed or not
expressed. Furthermore, each gene may regulate the states of some other genes,
forming a so-called Gene Regulatory Network (GRN). To understand the underlying
mechanism of a certain phenomenon of a biological system, one often needs to
model the GRN(s) that may contribute to it.

One of the formal tools used to model the behavior of such GRNs is called
Boolean network. Informally, a Boolean network is a set of nodes, representing the
genes, and a set of edges between the nodes, representing the interactions between
the genes. Each node is a Boolean variable, while the interactions between the genes
are usually described as a Boolean function over a set of nodes, usually called the
activation function. The activation function of a node determines what value a node
should take, given the values of all the nodes that regulate it.
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Table 1.1 Regulatory relationship in the P. aeruginosa mucus development network

.

No. x(t) y(t) x(t+1) y(t+1)

1 0 0 1
2

0
2 0 1 0 0
3 1

2
0 1

2
1

4 1
2

1 0 1
5 1 0 1 1
6 1 1 1 1

The state of the network is the set of values that each node takes. Given a Boolean
network with n nodes, obviously there are exactly 2n possible states. If the Boolean
network is currently on state Si, then by applying all the activation functions in
the network, we get a new state for the network, say Sj . Such a process is called
a state transition of the network. We usually consider two modes of transition: a
synchronous transition, where all nodes are updated simultaneously, and an asyn-
chronous transition, where nodes are update sequentially. A graph that shows all the
possible states of a network and all the transitions between these states is called a
State Transition Graph (STG). Since the number of states are finite, after a finite
number of transitions (e.g., k), the network returns to the initial state, i.e., the trajec-
tory of the network is always of the following form: S1 → S2 → . . . → Sk where
Sk = S1. An attractor is a set of states 〈S1, S2, . . . , Sk〉 such that there is a series
of transitions of the form S1 → S2 → . . . → Sk where Sk = S1 and such that
Sk = S1. The number of k − 1 is called the size of the attractor. An attractor of
size 1 is also called a steady state. We refer to [24, 30, 22, 31] for a more thorough
discussion regarding Boolean networks.

In some cases, representing the state of a gene with Boolean values is not enough
to fully capture the important behavior of a biological system [21, 16]. A multi-
valued network is a natural extension of Boolean networks where we allow the nodes
to have a range of possible values, intuitively capturing the levels of expression of
each gene. Consider the following example.

Example 4 We describe the multi-valued network regulating the production of mu-
cus in Pseudomonas aeruginosa as mentioned in [21]. The network has two nodes,
namely x and y, with x having three possible values: 0, 1 or 2, and y having only
two values: 0 or 1. The node x is negatively-regulated by node y and positively by it-
self, while y is positively-regulated by x. The input-output relationships between the
two nodes, as given in [21], are shown in Table 1.1. Based on the regulatory rela-
tionships between the nodes, the state transition graph of this network is as shown in
Figure 1.4. From the state transition graph, we see that the network has one steady
state , namely 〈1, 1〉, and one cyclic attractor of size 4.

Similar as for Boolean networks, for multi-valued networks, we are mainly in-
terested in the steady states and the attractors of the network. In [29], ASP was used
to encode the problem of finding the steady states and attractors of Boolean net-
works. Naturally, FASP can be used to encode the problem of finding the steady
states and attractors of multi-valued networks. We first tackle the easy case of find-
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Fig. 1.4 State transition graph for the network of P. aeruginosa using the synchronous update

ing the steady states of a multi-valued network. As it turns out, the steady states of
a Boolean/multi-valued network under synchronous and asynchronous update are
exactly the same [17, 9], and hence, the following approach works for both cases.
First, for every node in the network, we consider two fuzzy propositional atoms px
and p′x. The former represents a possible “guess” on a the activation level of node
x, while the latter represents the inferred activation level after taking into account
the regulatory interaction between the nodes. Intuitively, if both values are equal for
all the nodes, then the guessed state is a steady state. First, we write the following
rules:

px ⊕ nx ←
0← px ⊗ nx

Intuitively, these rules generate the guess for all the possible states in the network,
by generating all possible guesses of the truth values of px. The proposition nx is
just used to generate all the possible values as the complement of px.

We then encode the interaction between nodes by creating a rule for every node
x, where the head of the rule is the propositional atom p′x associated with the node,
while the body corresponds to the direct translation of the fuzzy logic function
for the update rule of x, replacing the occurrences of the negation symbol ¬ with
FASP’s default negation not . The following example illustrates the method.

Example 5 Consider the network of P. aeruginosa given in Example 4. Since the
network consists of two nodes, x and y, the initial guessing rules for the nodes’
values can be written as

x⊕ nx← 1

0← x⊗ nx
x⊕ ny ← 1

0← y ⊗ ny

Since we need y to be Boolean, we add the following rule:

y ← y ⊕ y

The regulatory relationships between the nodes x and y in the network (as given
by Table 1.1) can be captured by the following update functions expressed in
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Łukasiewicz formulas:

f1(x, y) = (max(x, 12 )⊗ ¬y)⊕ z
z = (x⊗ 1

2 )⊕ (x⊗ 1
2 )

f2(x, y) = x⊕ x

where z is an auxiliary variable.1 We thus construct the following FASP rules to
represent the update on each node.

x′ ← (max(x, 12 )⊗ not y)⊕ z
z ← (x⊗ 1

2 )⊕ (x⊗ 1
2 )

y′ ← x⊕ x

Finally, we add the following constraints to find only steady-states:

0← x′ ⊗ not x
0← x⊗ not x′

0← y′ ⊗ not y
0← y ⊗ not y′

It can be verified that the resulting program has exactly one answer set which con-
tains {(x, 1), (y, 1)}, corresponding to the only steady state 〈1, 1〉 of the network.

For finding attractors of size ≥ 2, we need to explicitly “simulate” time steps
during the transitions. We can do this by turning the atoms px and nx considered
previously into predicate symbols with a variable parameter T , denoting the time
steps. Without going into much technical details, we can then search for attractors
up to certain size (say s) by simulating the transition from T = 0 up to T = s and
check for any repeated states. Consider the following example.

Example 6 For the network in Example 4, finding the cyclic attractors of size up to
4 can be performed as follows. First, generate a guess for the initial state.

x(0)⊕ nx(0)← 1

y(0)⊕ ny(0)← 1

0← x(0)⊗ nx(0)
0← y(0)⊗ ny(0)

Since we want node y to be Boolean, we add the following rule:

y(T )← y(T )⊕ y(T )

1 The variable z is an auxiliary variable only intended to allow us to present a more concise ex-
pression here.
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We then simulate the updating in each node using the following rules:

x(T + 1)← time(T )⊗ (max(x(T ), 12 )⊗ not y(T ))⊕ z(T ))
z(T )← (x(T )⊗ 1

2 )⊕ (x(T )⊗ 1
2 )

y(T + 1)← time(T )⊗ (x(T )⊕ x(T ))

We then add the following rules for all i = 1, . . . , 4:

ai ← x(0)⊗ not x(i)
ai ← x(i)⊗ not x(0)
ai ← y(0)⊗ not y(i)
ai ← y(i)⊗ not y(0)
0← min(a1, a2, a3, a4)

Intuitively, each ai becomes true if the state at time T = i is equal to the guessed
initial state, which means that we have found an attractor of size i.

One can check that the resulting program has exactly five answer sets. One of
these answer sets encodes the static transitions of the steady-state 〈1, 1〉, by having
the same values for x(0), . . . x(4) and y(0), . . . y(4). The other four answer sets
encode the cyclic attractor 〈0, 0〉 ↪→ 〈 12 , 0〉 ↪→ 〈

1
2 , 1〉 ↪→ 〈0, 1〉 ↪→ 〈0, 0〉, with each

answer set encoding the different initial conditions.

1.6 Conclusion

In this chapter, we have provided a brief introduction to recent developments in
Fuzzy Answer Set Programming (FASP), which is an extension of Answer Set Pro-
gramming (ASP), a well-known declarative programming paradigm for encoding
and solving combinatorial search and optimization problems. FASP extends ASP
by allowing fuzzy/many-valued predicates in its programs, making it more suitable
to encode problems in continuous domains. Despite the promising theoretical as-
pects of FASP, it is still lacking behind in terms of applicability, in comparison to
ASP. This is mainly because of the – until recently – limited availability of efficient
methods to evaluate FASP programs, whereas efficient solvers for ASP have been
around for quite some time.

Our recent work contributes to reducing the gap by proposing new methods to
efficiently evaluate FASP programs. We first described how non-disjunctive FASP
programs can be efficiently translated into ASP programs whose answer sets cor-
respond to answer sets of the original FASP programs. This opens up the possi-
bility of using current ASP solvers to evaluate FASP programs. We then showed
that disjunctive FASP programs can subsequently be evaluated by adding an extra
step of checking the minimality of candidate answer sets returned by the translation
method. We also showed how this minimality check can be performed by encod-
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ing the problem into a MIP problem that can be solved by off-the-shelf MIP solvers.
Finally, we described an application of FASP in the biological domain, namely mod-
eling and computing the trajectory of multi-valued networks to study the behavior
of gene regulatory networks. The availability of our solver paves the way for the use
of FASP to tackle other real life combinatorial search problems in continuous do-
mains, thereby taking the work on FASP from a study of its theoretical foundations
into the development of practical applications.
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