
Selection of Web Services with Imprecise QoS Constraints

Martine De Cock

Dept. of Applied Mathematics

and Computer Science

Ghent University

Krijgslaan 281 (S9), 9000 Gent, Belgium

Martine.DeCock@UGent.be

Sam Chung, Omar Hafeez

Institute of Technology

University of Washington Tacoma

1900 Commerce Street, Tacoma,

Washington 98402-3100, USA

{chungsa,mohafeez}@u.washington.edu

Abstract

When several functionally equivalent web services are

available to perform the same task, their Quality of Service

(QoS) characteristics such as performance and reliability

become important in the selection process. Consumers that

specify their QoS requirements too strictly however, risk not

finding any web services meeting their demands. Therefore,

in this paper we allow QoS constraints to be described im-

precisely as fuzzy sets. We compare the effectiveness of an

intelligent web service selection algorithm that takes these

imprecise QoS constraints into account with a baseline al-

gorithm acting on precise QoS values.

1. Introduction

Web services are loosely coupled software components

that can be invoked across the web, providing a mecha-

nism for integrating various applications [13]. For exam-

ple, a system for booking airline tickets may rely on differ-

ent web services for ticket browsing, price comparison, cur-

rency rate conversion, credit card validation, and payment.

In a service oriented architecture, a provider publishes a de-

scription of the service that it offers to a broker. A consumer

then looks for a suitable service by querying the broker. If

no suitable service is available, a further search might lead

to a composed service, i.e. a chain of web services that can

be invoked successively to obtain the desired result. Web

service selection and composition are currently among the

most addressed issues in service oriented computing. The

expectation that the number of available web services will

grow significantly in the years to come, motivates a growing

interest in automated mechanisms to perform these tasks.

This research topic has recently been studied from dif-

ferent perspectives. Web services can be described by terms

that are syntactically different but still carry a similar mean-

ing. Many efforts therefore focus on semantic matchmaking

and composition. This research effort is supported by the

development of languages such as WSDL-S and OWL-S

that allow to annotate web services with semantic concepts

from ontologies, and encouraged through contests such as

the Web Services Challenge1 and the SWS Challenge2.

In this paper we assume that semantic matchmaking has

taken place to identify functionally equivalent web services.

When several of these services are available to perform the

same task, their quality aspects become important in the se-

lection process. The QoS requirements for web services

may include performance, reliability, scalability, capacity,

robustness, exception handling, accuracy, integrity, acces-

sibility, availability, interoperability, security, and network-

related QoS requirements [6]. The consumer might specify

constraints, e.g. that the execution time should be below 20

ms, as well as preferences, e.g. that a higher reliability is

more important than a lower execution time. Taking into ac-

count these constraints and preferences, the service broker

then has the task of selecting the services that maximize the

overall QoS. This optimization problem becomes especially

difficult in dynamic web service composition. A consider-

able amount of effort has already been spent on intelligent

algorithms for web service composition, including AI plan-

ning, genetic algorithms, and linear integer programming

(see e.g. [1, 4, 14]).

The focus in this paper is on the selection among func-

tionally equivalent web services based on specifications

of non-functional characteristics which relate to the QoS.

From the side of the web service consumer, these are com-

monly expressed as hard constraints involving precise num-

bers, e.g. the execution time should be at most 20 ms and

the availability, i.e. the percentage of time that a service is

operating, should be at least 90%. If no such service with

the required functionality is available, one can imagine that

a service doing the job in 21 ms with an availability of 96%

1http://ws-challenge.org/
2http://sws-challenge.org/
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Figure 1. Constraint “at most around 20 ms”

is also still acceptable — in fact, it might even be preferable

— but a conventional selection mechanism based on precise

constraints will overlook it. As a result, the burden to relax

the QoS constraints and query the broker again, is on the

consumer.

To refine the automated web service selection process,

in this paper we allow QoS constraints to be expressed by

means of fuzzy sets [15]. In general, a fuzzy set A in a uni-

verse X is characterized by an X → [0, 1] mapping, called

the membership function of A, that associates with every

x in X the degree A(x) to which x belongs to the fuzzy

set A. Figure 1 depicts for example a membership function

for the imprecise QoS constraint “at most around 20 ms” in

the universe of execution times. All execution times smaller

than or equal to 20 ms are considered to satisfy this soft con-

straint to degree 1, all execution times greater than or equal

to 24 ms satisfy the soft constraint to degree 0 (i.e. they

do not satisfy it), and in between there is a gradual tran-

sition. As we discuss further on, using such fuzzy sets gives

the service consumer more flexibility in expressing his re-

quests. The aim of this paper is to investigate whether this

expressive power can lead to a greater overall satisfaction in

an automated QoS-aware service selection process.

This paper is structured as follows. In Section 2, we dis-

cuss related work on the use of fuzzy logic for web ser-

vice selection. Several researchers have already proposed

the use of fuzzy sets for expressing soft QoS constraints.

However, to the best of our knowledge, the effect of this

design choice on the number of selected web services and

the resulting overall satisfaction has not yet been studied,

which is a main contribution of the current paper. In Section

3 we contrast a baseline algorithm for QoS-aware selection

of web services with an intelligent selection algorithm us-

ing fuzzy logic. We discuss the advantages that fuzzy logic

offers over the baseline. In Section 4 we report on exper-

imental results comparing the average number of selected

web services and the average overall satisfaction with the

selections made by the baseline algorithm and the intelli-

gent algorithm. Conclusions are presented in Section 5.

2. Related work

The use of fuzzy logic for QoS based web service se-

lection has been studied by several authors. In [4] the use

of fuzzy sets to represent imprecise QoS is proposed, both

in soft constraints on the side of the consumer, as in spec-

ifications on the side of the broker. The latter is justified

by the fact that service providers can not always express

the QoS descriptions precisely at publishing time, as these

might change dynamically. The focus in [4] is on match-

ing these two sides to obtain a fitness function for a genetic

algorithm based web service composition approach. To the

best of our knowledge, no evaluation of such a QoS based

matching mechanism for web services has been carried out

yet, which is a main contribution of the current paper.

[10] applies a fuzzy multi–attribute decision making al-

gorithm to rank web services based on the values of their

QoS attributes. In contrast to our work, no flexible con-

straints from users are taken into account. The fuzzy con-

straint satisfaction approaches to web service composition

in [7] and [8] do allow soft user constraints. The experi-

ments however focus on the time needed to find an accept-

able execution plan for a composed web service.

[11] proposes the use of a fuzzy rule base to infer the

matching degree between the QoS of a web service and

a user’s demand; in a fuzzy web service search interface

the user can specify a vague query like “high reliability

and slow response time”. This is different from our work

since we assume that the user in any case wants the best

QoS, i.e. the highest reliability and the fastest response time,

within some additional constraints, e.g. the response time

can be at most about 5 ms.

Unlike ours, some work also explicitly concerns ranking

of web services based on QoS ratings by users who have

previously used the service. In [12] users express their rat-

ings as fuzzy numbers and a group decision method is ap-

plied to get an overall ranking. In [3] a fuzzy collabora-

tive filtering approach is used to rank web services based on

QoS ratings by users with similar expectations.

Finally, the work in [2, 5] concerns the discovery of web

services based on their semantics. The service consumer

specifies the desired kind of service by means of a vague

query, e.g. a hotel booking service that offers cheap rooms;

the service provider describes what he is offering in a sim-

ilar way. Since different people tend to understand vague

terms such as cheap differently, the attention in [5] is mainly

focussed on establishing general consensus on the fuzzy

sets that should be used to represent terms such as cheap.

3. QoS-aware web service selection

Baseline algorithm As already mentioned in the intro-

duction, many aspects determine the QoS of a web service.



Without affecting the generality of our results, throughout

this section we will illustrate the approach with two QoS

parameters, namely execution time and availability. The

execution time is a measure of the performance of a web

service; it is the time taken by the service to process its

sequence of activities [6]. In the most commonly used ap-

proach, the service broker has in its knowledge base a pre-

cise value for the execution time of each web service. This

can be the execution time advertised by the service provider,

or the average of the execution times observed by the ser-

vice broker over the previous invocations. Availability is

the probability that the system is up [6]; it is commonly

expressed as the percentage of time that the service is oper-

ating.

The consumer can impose constraints on the allowed

QoS values by specifying upper bounds for QoS parame-

ters that need to be minimized (such as execution time), and

lower bounds for QoS aspects that need to be maximized

(such as availability). He can for example specify that the

service should take no longer than 20 ms and that it should

have an availability of at least 90%. In general, the broker

will select a web service with execution time t and avail-

ability a iff

(t ≤ β1) ∧ (a ≥ β2) (1)

where β1 and β2 define the consumer’s QoS constraints; in

the example above they equal 20 ms and 90% respectively.

In general, a consumer’s demand is expressed as a conjunc-

tion of constraints ci (i = 1, . . . , m) on the different QoS

parameters qi. On a side note, we mention that the con-

sumer does not have to specify a constraint for each QoS

parameter. A “no constraint” can be easily implemented by

choosing the highest or the lowest possible QoS value, de-

pending on whether the QoS parameter is to be minimized

or maximized. For example, the constraint a ≥ 0 for avail-

ability corresponds in reality to no constraint at all.

Each constraint ci induces a set Ci of QoS values that

satisfy the constraint. The characteristic functions for the

sets C1 and C2, corresponding to the conjuncts in Formula

(1), i.e. t ≤ β1 (constraint c1) ad a ≥ β2 (constraint c2) are

given by

C1(x; β1) =

{

1 if x ≤ β1

0 else
(2)

C2(x; β2) =

{

0 if x < β2

1 else
(3)

As an example, characteristic function C1(·; 20) is depicted

in Figure 2. Note that for ease of reference, we sometimes

include the threshold value β1 for the constraint in the nota-

tion, i.e. writing C1(·; β1) instead of C1. In the same way as

each constraint ci corresponds to a set Ci, the conjunction

of all constraints corresponds to the cartesian product of the

Ci’s, which we denote by C. An alternative for Formula (1)
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Figure 2. Constraint “at most 20 ms”

is therefore that the broker selects a web service with QoS

(t, a) iff

(t, a) ∈ C1(·; β1) × C2(·; β2) (4)

In the remainder of this paper, we use Ai to denote the set

of available web services whose value for QoS parameter qi

belongs to Ci. In other words, Ai is the set of web services

that satisfy constraint ci. Furthermore, we use A to denote

the set of available web services whose QoS values are all

in the cartesian product C, hence

A =

m
⋂

i=1

Ai

As A is the set of web services that the broker selects, we

refer to it as the result set. Before moving on to the intelli-

gent selection algorithm, we first recall some preliminaries

from fuzzy set theory and fuzzy logic.

Fuzzy logic preliminaries As a generalization of binary

logic, fuzzy logic considers the interval [0, 1] of truth val-

ues on which it redefines the classical logical operators. Of

particular interest for this paper is the fuzzy logical con-

junction, which will serve to generalize Formula (1). In

fuzzy logic, conjunction is represented by a triangular norm

(t-norm for short), i.e. an increasing, commutative and asso-

ciative [0, 1]2 → [0, 1] mapping T satisfying the boundary

condition T (1, x) = x, for all x in [0, 1]. One can verify

that this definition coincides with the classical conjunction

when restricting the allowed truth values to 0 and 1. Among

the most used t-norms are the minimum TM, the product

TP, and the Łukasiewicz t-norm TL, respectively defined

as TM(x, y) = min(x, y), TP(x, y) = x · y, and TL(x, y)
= max(x + y − 1, 0) for all x and y in [0, 1]. In fuzzy

set theory, t-norms are used to define the cartesian product

and the intersection of fuzzy sets. Let A1 and A2 be fuzzy

sets in X , then their T –intersection is a fuzzy set in X , de-

fined as (A1 ∩T A2)(x) = T (A1(x), A2(x)) for all x in

X . Furthermore, the T -cartesian product of a fuzzy set C1

in X and a fuzzy set C2 in Y is a fuzzy set in X × Y , de-

noted by C1 ×T C2 and defined as (C1 ×T C2)(x, y) =



T (C1(x), C2(y)) for all (x, y) in X × Y . The intelligent

selection algorithm presented next considers fuzzy sets of

web services, i.e. services can belong to a certain degree to

the result set. To count the number of web services in the

result set, we consider both the cardinality of the support of

the result set, as well as the sum of the individual member-

ship degrees. Recall that the support of a fuzzy set A in X
is the set of elements that have a membership degree greater

than 0, i.e. supp(A) = {x|x ∈ X ∧ A(x) > 0}. Finally,

the cardinality of a fuzzy set A is defined as

|A| =
∑

x∈X

A(x)

More information on fuzzy logic can be found in a wide

range of available textbooks (see e.g. [9]).

Intelligent selection algorithm In the example men-

tioned in the beginning of this section, the consumer asked

for a service that does not take longer than 20 ms and is

at least 90% of the time available. If no such service is

available, one can imagine that a service doing the task in

21 ms with an availability of 96% is also acceptable. Soft

constraints such as that the desired service should take no

longer than around 20 ms and that it should have a reliabil-

ity of at least around 90%, can be expressed using fuzzy

sets C1 and C2 defined as

C1(x; α1, γ1) =







1 if x ≤ α1
x−γ1

α1−γ1

if α1 < x < γ1

0 else

(5)

C2(x; α2, γ2) =







0 if x < γ2
x−γ2

α2−γ2

if γ2 ≤ x < α2

1 else

(6)

These membership functions are generalizations of the

characteristic functions used in the baseline approach.

When α1 equals γ1, formula (5) coincides with formula (2).

In general however, formula (5) has more expressive power.

All execution times up unto α1 are considered to be fully

acceptable, i.e. acceptable to degree 1. Execution times

greater than γ1 are not acceptable, i.e. acceptable to degree

0. In between, there is a gradual transition from being ac-

ceptable to not being acceptable, which allows to express

that some execution times are still acceptable to a certain

degree. The natural language constraint “at most around

20 ms” can for example be expressed as C1(·; 20, 24) as de-

picted in Figure 1, while the requirement for the availability

to be “at least around 90%” can be expressed with the mem-

bership function C2(·; 90, 85). The degree to which a web

service with QoS (t, a) belongs to the result set is then com-

puted as its membership degree in the T -cartesian product

of C1 and C2, i.e.

(C1 ×T C2)(t, a) = T (C1(t; α1, γ1), C2(a; α2, γ2)) (7)

with T a t-norm (more details on the choice of a suitable

t-norm are given below). We refer to the degree computed

by Formula (7) as the overall satisfaction value of the con-

sumer with the service; note that it can vary between 0 and

1. While formula (4) separates the set of web services in

those that are acceptable to the consumer and those that are

not, formula (7) defines a fuzzy set of web services that

are acceptable to the consumer to a certain degree, ranging

from 0 (not acceptable) to 1 (fully acceptable). Similarly,

by themselves formula (5) and (6) induce the fuzzy sets of

web services A1 and A2 that are acceptable according to ex-

ecution time and according to availability respectively. The

T -intersection of A1 and A2 is the fuzzy result set A.

A first observation is that Formula 7 allows to rank the

web services in increasing order of their violation of the

constraints. Secondly, the intelligent selection algorithm is

less sensitive to changes in the thresholds, as the following

example illustrates.

Example 1 (Robustness) Two consumers are looking for a

web service with the same functionality. The first consumer

wants the execution time to be no more than 20 ms and the

availability at least 90%. The second consumer also wants

an availability of at least 90% and an execution time of at

most 21 ms. Their hard constraints can be modelled by the

characteristic functions C
(1)
1 (·; 20) and C

(1)
2 (·; 90) for con-

sumer 1, and C
(2)
1 (·; 21) and C

(2)
2 (·; 90) for consumer 2.

Corresponding fuzzy membership functions are for exam-

ple C
(1)
1 (·; 20, 24) and C

(1)
2 (·; 90, 85) for consumer 1, and

C
(2)
1 (·; 21, 25) and C

(2)
2 (·; 90, 85) for consumer 2. Assume

that there is only one web service with the desired func-

tionality, and that this web service has an execution time of

21 ms and an availability of 96%. The baseline algorithm

will be able to pick this web service for consumer 2 (whose

constraints are satisfied to degree 1) but has nothing to of-

fer to consumer 1 (whose constraints are satisfied to degree

0). A minor difference in the constraints they expressed,

i.e. 21 ms versus 20 ms, had a big impact on the outcome,

illustrating that the baseline algorithm is very sensitive to

a good choice of the thresholds. The intelligent selection

algorithm on the other hand will find that the web service

is satisfactory to consumer 2 to degree 1, and to consumer

1 to degree 0.75. The difference in the outcome is still no-

ticeable but not as drastic as with the baseline algorithm.

�

A possible approach for the intelligent broker is to show

to the consumer all web services that have a strictly pos-

itive satisfaction degree, i.e. all those that belong to the

support of the fuzzy result set. A valid question is how

this approach really differs from simply relaxing the hard

constraints, e.g. going from “at most 20 ms” (with support

[0, 24)) as depicted in Figure 2 to “less than 24 ms” as de-

picted in Figure 3. The answer is that in the presence of
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Figure 3. Constraint “less than 24 ms”

t ≤ 20 t < 24 t ∈ C1(·; 20, 24)
t a a ≥ 90 a > 85 a ∈ C2(·; 90, 85)

s1 18 92 1 1 1.00
s2 21 87 0 1 0.15
s3 23 87 0 1 0.00

Table 1. Selection of web services

only one constraint, the baseline algorithm and the intel-

ligent selection algorithm select the same web services to

show to the consumer. For two or more constraints, the

difference between the two selection approaches is closely

related to the choice of the t-norm. Using the t-norms TM

and TP to model fuzzy logical conjunction, the algorithm

with soft constraints selects the same web services as a se-

lection algorithm with relaxed hard constraints. As a bonus

however, the intelligent algorithm also outputs degrees of

satisfaction that reflect the extent to which the constraints

are violated and is, as we have illustrated with the previous

example, less sensitive to the particular choices of thresh-

olds. Another advantage of fuzzy logic becomes apparent

when using TL, as this t-norm allows to model that a web

service can be selected if violation of one QoS-constraint is

sufficiently compensated by satisfaction of another, as the

following example illustrates.

Example 2 (Number of selected web services) Consider

a population of three functionally equivalent web services

with execution and availability as depicted in Table 1.

Using the initial hard constraints t ≤ 20 ∧ a ≥ 90, only

web service s1 is selected. Relaxing the hard constraints

to t < 24 ∧ a > 85 results in the selection of all three

web services, as they all satisfy these relaxed constraints.

The last column considers the soft constraints “at most

around 20” and “at least around 90” expressed as before by

the fuzzy sets C1(·; 20, 24) and C2(·; 90, 85) respectively.

Their cartesian product is computed by means of the

t-norm TL, i.e. the values in the last column are obtained as

TL(1, 1) = 1, TL(0.75, 0.40) = 0.15, and TL(0.25, 0.40)

= 0. The intelligent algorithm will therefore select s1 and

s2 because they have a strictly positive satisfaction degree.

As such, it behaves differently from the baseline algorithm

with the initial hard constraints that selected only s1, but

also differently from the baseline approach with the relaxed

hard constraints that selected all three services. �

No relaxation of the constraint So far we have only con-

sidered relaxation of the constraints, e.g. going from the

hard constraint “at most 20 ms” (depicted in Figure 2) to

the soft constraint “at most around 20 ms” (depicted in Fig-

ure 1). Such a relaxation means that the consumer low-

ers his demands. An interesting question is whether fuzzy

logic can also improve the search process when the transi-

tion from hard to soft constraints does not correspond to a

relaxation. This can be compared to looking for an apart-

ment to rent: your budget may allow you to spend up to

900 USD a month (that is your hard constraint). When you

are asked how much you intend to spend, you might say

something like “up to around 850 USD” (that is your soft

constraint) and when you find the apartment of your dreams

for 920 USD you will probably also make it work. Note that

the amount you specify with the soft constraint (850 USD)

is lower than the amount you specify with the hard con-

straint (900 USD). Hence expressing a soft constraint does

not necessarily imply that the consumer is more easily sat-

isfied; it just gives him more flexibility to express his con-

straints.

Note that the area under the curve of a membership func-

tion is a measure of the ease with which a consumer is satis-

fied. For example, the larger the value for β1 in formula (2),

the weaker the constraint imposed by the consumer is, and

the larger the area under the curve of C1(·; β1) will be. To

transition from a hard to a soft constraint without relaxation,

we should therefore ensure that the area under the curve of

C1(·; β1) matches the area under the curve for C1(·; α1, γ1),
and likewise for C2(·; β2) and C2(·; α2, γ2). This can be

achieved by choosing

α1 = β1 − δ1 and γ1 = β1 + δ1 (8)

α2 = β2 + δ2 and γ2 = β2 − δ2 (9)

for positive values δ1 and δ2. These δ-values characterize

the size of the fuzzy margins within which web services are

still considered acceptable by the consumer to a certain de-

gree. Figure 4 depicts the soft constraint “at most around

18 ms” which originates from, but is no relaxation of, the

hard constraint “at most 20 ms” as depicted in Figure 2. In

the following section we show that this transition for hard

to soft constraints, even without being a relaxation, can still

improve the search process, especially when more QoS pa-

rameters are taken into account.
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4. Experimental results

In our experiment we assume that the service broker has

a population of 20 functionally equivalent web services in

his knowledge base. Each web service is characterized by

values for up to 5 different QoS attributes. For our experi-

mental purposes, in each iteration we randomly generate the

QoS values for each of the 20 web services. For a fixed pop-

ulation, we then run 100 random consumer requests. The

presented results are averaged out over 100 such iterations.

To generate the results presented in Figure 5 and Table

2, each request is characterized by a randomly generated

value for β1 used in the characteristic function of formula

(2). The values for α1 and γ1 used in the fuzzy membership

functions of formula (5) are computed by means of formula

(8) which means that the transition from hard to soft con-

straints does not correspond to a relaxation. The δ-value

is dynamically computed as δ1 = (p · β1)/100 for a per-

centage p. The underlying idea is to link the size of the

fuzzy margin to the absolute value expressed in the hard

constraint. E.g. if a user is looking for an execution time

of at most around 65 ms, then 70 ms might still be accept-

able to an extent. However, when he is looking for 5 ms,

then 10 ms is probably not going to be acceptable to any ex-

tent. Because of space restrictions we only present results

for p = 20. Note however that higher p-values typically

allow for a larger difference between the baseline and the

fuzzy approach, while for p = 0 both approaches coincide.

Figure 5 displays the average cardinalities of the sup-

ports of the (fuzzy) result sets obtained with the baseline, as

well as those with the intelligent algorithm for the t-norms

TM and TL. As more QoS parameters are taken into ac-

count, less web services are selected by all approaches, but

the intelligent algorithms always select more than the base-

line. The fuzzy approach with TM selects those web ser-

vices that satisfy all constraints to a strictly positive degree,

even though this might be very small. The approach with

TL is more selective as a significant violation of one con-

straint will only be tolerated when compensated by suffi-

ciently high satisfaction of the other constraints. This ex-
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Figure 5. Average number of selected web

services (for p = 20)

m hard soft with TM soft with TL

2 3.50 3.55 3.45
3 1.63 1.68 1.57
4 0.64 0.69 0.60
5 0.25 0.29 0.23

Table 2. Average overall satisfaction on a
scale from 0 to 20 (for p = 20)

plains why the curve for TL lies under the curve for TM.

While all web services selected by the baseline satisfy

the hard constraints, some of the services selected by the

intelligent algorithm satisfy the constraints only to a certain

degree (and hence also violate them to a certain extent). Ta-

ble 2 displays the average sum of the satisfaction degrees for

the web services in the (fuzzy) result set. The first column

indicates the number m of QoS parameters taken into ac-

count in the user request. Since with the baseline algorithm

all the selected services have a satisfaction degree equal to

1, the second column of Table 2 corresponds to the baseline

values plotted in Figure 5. The last two columns differ from

Figure 5, which indicates that the fuzzy result sets contain

services that satisfy the constraints only to a degree. We

stress once more that the transition from hard to soft con-

straints does not correspond to a relaxation in this experi-

ment, as the area under the curves of the characteristic and

the membership functions remains the same. This means

for example that a QoS value of β1 satisfies the soft con-

straint used by the intelligent algorithm only to degree 0.5,

while satisfying the hard constraint to degree 1. Still, as the

results in Table 2 show, the intelligent algorithm with TM

consistently outperforms the baseline slightly.

5. Conclusion

Allowing service consumers to express their QoS re-

quirements as soft constraints, and subsequently using



fuzzy logic in the web service selection process, offers

several extras over the traditional approach with hard con-

straints. First, we have studied the effect on the overall sat-

isfaction caused by a transition from hard to soft constraints,

however without relaxation of the constraints (i.e. the use of

fuzzy logic does not mean that the consumer is a more eas-

ily satisfied person). In this case, we found that the use of

fuzzy logic offers small improvements in the average over-

all satisfaction level. These improvements become more

apparent when taking into account more QoS–constraints,

because then it becomes harder and harder for the conven-

tional approach to find any web services at all. Secondly,

we have compared the number of web services with strictly

positive satisfaction degrees found by the conventional and

the fuzzy logic selection process. Using the t-norms TM and

TP to model fuzzy logical conjunction, the algorithm with

soft constraints produces the same results as a selection al-

gorithm with relaxed hard constraints. However, the advan-

tage of fuzzy logic becomes apparent when using TL, as this

t-norm allows to model that a web service can be selected if

violation of one QoS-constraint is sufficiently compensated

by satisfaction of another. A third important observation is

that the use of soft constraints allows to rank selected web

services on the screen in a decreasing order of satisfaction,

thereby assisting the consumer in making the final choice.

Finally, the intelligent selection algorithm is less sensitive

to changes in the thresholds for the QoS constraints.
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