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Abstract. We present an entirely new approach for the representation of inten-
sifying and weakening linguistic hedges in fuzzy set theory, which is primarily
based on a crisp ordering relation associated with the term that is modified, as
well as on a fuzzy quantifier. With this technique we can generate membership
functions for both atomic and modified linguistic terms. We prove that our
model respects semantic entailment and we show that it surpasses traditional
approaches, such as powering and shifting modifiers, on the intuitive level and
on the level of applicability.

1 Introduction

The success of fuzzy expert systems is greatly due to their ability to represent and handle
vague information expressed by means of linguistic terms in facts and (IF-THEN) rules.
Indeed, this tends to make such systems very compact and tolerant for the imprecision
and incompleteness that often afflicts our knowledge of the real world. Furthermore,
their input, output and inference mechanism can be more easily understood by humans,
who’s most popular daily means of communication and reasoning is, after all, natural
language. In fuzzy systems, each linguistic term is represented by a fuzzy set on a
suitable universe X [14]. A fuzzy set A on X is a X − [0, 1] mapping, also called the
membership function of A, such that for all x in X, A(x) is the membership degree of
x in A. In this paper we will use the same notation to denote a fuzzy set A and the
term A represented by it.
One of the most crucial and often difficult tasks in developing a fuzzy expert sys-

tem is the construction of the membership functions for the linguistic terms involved.
Fortunately these terms have a specific structure [15] which allows to partially auto-
mate this task by computing the membership functions of composed linguistic terms
from those of atomic ones. In this context, an atomic linguistic term is an adjective
(e.g. expensive). Composed terms are generated by applying either a linguistic modifier
to a term (e.g. very expensive), negating a term (e.g. not very expensive) or by combining
terms by means of a connective (e.g. not very expensive or sophisticated, nice and easy).
If A and B are fuzzy sets on X, the terms A and B, A or B and not A can respectively
be modelled by the Zadeh-intersection, the Zadeh-union and the complement, defined
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as follows
A ∩ B(x) = min(A(x), B(x))
A ∪ B(x) = max(A(x), B(x))
co A(x) = 1− A(x)

for all x inX. It is even more common to model them by T -intersection, S-union andN -
complement based on a triangular norm T , a triangular conorm S and a negator N ; the
above mentioned operations are just special cases of this more general approach. In this
paper however we will focus on linguistic modifiers (also called linguistic hedges). Since
the origin of fuzzy set theory, many researchers have paid attention to the representation
of these adverbs, probably because they allow for the generation of many modified terms
from existing ones. The first serious attempt was sketched by Zadeh, as early as 1972
[15]. For the representation of very A and more or less A, he defined the concentration
and dilation operator (also called powering modifiers) based on a simple involution, i.e.
very A(x) = A(x)2 and more or less A(x) = A(x)0.5, for all x in X. One can easily verify
that in this representation

very A(x) � A(x) � more or less A(x)

for all x in X. The satisfaction of this so-called semantical entailment [11] (very A is
a subset of A, which in turn is a subset of more or less A) can be considered as a pre-
requisite for any representation, since very is an intensifying modifier, while more or less
has a weakening effect. The best known shortcomings of Zadeh’s approach, pointed out
in e.g. [8, 9, 11], are that they keep the kernel and the support, which are defined as

ker A = {x|x ∈ X ∧ A(x) = 1}
supp A = {x|x ∈ X ∧ A(x) > 0}

As a consequence, this representation cannot distinguish between being A to degree 1
and being very A to degree 1. One might feel however that a person of 80 years is old
to degree 1 but very old only to a lower degree (e.g. 0.7), but this cannot be modelled
by means of powering modifiers. The shifting modifiers, informally suggested by Lakoff
[11] and more formally developed later on [3, 8, 9], do not have this shortcoming, but
it is a serious drawback that they cannot be applied straightforwardly to all kinds of
membership functions in the same way, and hence sometimes require artificial tricks.
Many representations developed in the same period are afflicted with very similar dis-
advantages as the powering and shifting modifiers (we refer to [10] for an overview). We
believe these kinds of shortcomings on the level of intuition and the level of applica-
bility are due to the fact that these modifiers are only technical tools, lacking inherent
meaning.
In fact it was not until the second half of the 1990’s that new models with a clear

semantics started to surface. In the horizon approach [12] the semantics is derived from
the concepts of horizon and visibility [5]. It is one of the few techniques in which the
representation for both atomic and modified terms is generated from within the model
(which can be a constraint if one prefers to modify membership functions for atomic
terms obtained elsewhere). In the fuzzy relational based model [6], the semantics is
retrieved from the context. A characteristic of the traditional approaches is that they
do not really look at the context: to determine the degree to which x is very A, the
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concentration operator for instance only looks at the degree to which x is A and ig-
nores the objects in the context of x. By bringing a fuzzy relation into action however,
the membership degrees of the elements related to x can also be taken into account to
some extent. Depending on the nature of the fuzzy relation, different kind of linguistic
modifiers can be modelled within the same framework: an ordering relation gives rise to
ordering-based modifiers such as at most and at least [2], while a resemblance relation
can be used to represent both weakening (such as roughly and more or less) and inten-
sifying hedges (such as very and extremely) [4]. Informal starting points for the latter
two are observations such as “a person is more or less old if he resembles an old person”
and “a person is very old if everybody he resembles is old”. Translating all components
of these observations into their fuzzy set theoretical counterparts, results on the for-
mal level in the use of the direct image (related to the compositional rule of inference)
and superdirect image of the fuzzy sets being modified under the fuzzy relations that
describe the context.
In this paper we will once again attempt the technique of transforming natural lan-

guage statements, describing the meaning of (modified) terms, into their mathematical
counterparts. This time however the starting point will not be our intuition, but an anal-
ysis made by Wheeler in 1972 [13]. Putting all pieces of the puzzle together in the right
way gives rise to a stunningly elegant, computationally efficient and semantically very
comprehensable representation of both (!) atomic terms and modified terms. The key
notion is that of a quantifier, which is not surprising since Wheeler’s goal was to reveal
that English is a first-order language at some level of analysis. Besides this, relations
are once again brought into action to model the context. Most remarkable (compared
to the fuzzy relational based approach) is however that crisp ordering relations prove
to be very useful to model intensifying and weakening hedges. Since Wheeler describes
the meaning of rather and very, we will study the representation of precisely these two
hedges. However before presenting the model for modified terms (Section 4), we go into
the representation of atomic terms (Section 3) after the necessary preliminaries (Section
2).

2 Preliminaries

Throughout this paper, let X denote a finite universe of discourse (i.e. a non-empty
set containing a finite number of objects we want to say something about). In the
following, the class of all fuzzy sets on X will be denoted by F(X). A fuzzy set A takes
membership values in the real unit interval [0, 1]. If all membership values of A belong
to {0, 1}, A is called a crisp set. In this case, the notation A(x) = 1 corresponds to
x ∈ A, while A(x) = 0 is the same as x /∈ A. A fuzzy relation R on X is a fuzzy set on
X × X. If the relation R is crisp, we denote (x, y) ∈ R also by xRy. A useful concept
concerning fuzzy relations is that of foreset.

Definition 1 (Foreset). [1] Let R be a fuzzy relation on X and y in X. The R-foreset of
y is the fuzzy set Ry defined by Ry(x) = R(x, y), for all x in X.

In other words the R-foreset of y is the fuzzy set of objects related to y. Furthermore
we need the concept of inclusion of fuzzy set, as a means to express the mathematical
couterpart of semantic entailment.
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Figure 1: Fuzzy quantifier Q1
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Figure 2: Fuzzy quantifier Q1

Definition 2 (Inclusion). ForA and B in F(X) one says that A is included in B, denoted
A ⊆ B, if and only if A(x) � B(x), for all x in X.

As already mentioned in the introduction a quantifier will play a crucial role in our
model. Intuitively, quantifiers relate to the concept of cardinality of sets. One can eas-
ily verify that the power of a fuzzy set is a generalization of the classical concept of
cardinality of a crisp set.

Definition 3 (Power). [7] The power of a fuzzy set A on X is defined as

|A| =
∑

x∈X
A(x)

More specifically we need a kind of relative cardinality, called proportion.

Definition 4 (Proportion). [17] For A and B fuzzy sets on X, the (size of the) relative
proportion of A in B is given by

|A ∩ B|
|A|

Definition 5 (Fuzzy quantifier). [17] A fuzzy quantifier Q is a [0, 1]− [0, 1] mapping. Q
is called regular increasing if it is increasing (i.e. x � y ⇒ Q(x) � Q(y) for all x and y
in [0, 1]) and if it satisfies the boundary conditions Q(0) = 0 and Q(1) = 1.

Figures 1 and 2 depict two regular increasing fuzzy quantifiers. Finally we recall
that Zadeh [18] suggested to calculate the truth value of

Q A′s are B′s (1)

as
Q
( |A ∩ B|

|A|

)
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3 Representation of atomic terms

Wheeler [13] suggests to view adjectives as relations between an individual and a class
of individuals. A possibility is to analyze “John is a tall man”, which means “John is
tall for a man”, as “John is taller than most men”. In this way the meaning of the vague
linguistic term tall is distributed over a crisp ordering relation (is taller than) and a
quantifier (most) that helps to preserve the vagueness of the original expression. To
obtain something of the form (1) we suggest to further analyze this as “most men are
shorter than John”.
More formally, to compute the membership degrees for a term A, we suggest to

associate with it a crisp ordering relation R (i.e. a reflexive, anti-symmetrical and tran-
sitive relation) on the universe X which ranks all elements of X in descending order of
satisfying A. From now on we will refer to this relation as “the relation associated with
the term”. E.g. when representing the term young we will use the relation “is older than
or equal to”, for expensive we can use “is cheaper than or equal to” etc. For y in X, the
foreset Ry then denotes the set of objects related to y, e.g. the set of ages older than
y, the set of prices cheaper than y etc. The membership degree of y in A can now be
computed as the degree to which most elements of the universe are related to y, i.e. the
truth degree of “most X’s are Ry”, which leads us to the following representational
scheme:

Scheme 1. Let Q be a regular increasing quantifier representing most. If R is the or-
dering relation associated with a term, this term can be represented by the fuzzy set A
defined as

A(y) = Q
( |Ry|
|X |

)

for all y in X.

Proposition 1. If A is constructed as described in Scheme 1, then A is increasing
w.r.t. the ordering R, i.e.

xRy ⇒ A(x) � A(y)
for all x and y in X.

Proof. For all u in X it holds: if u ∈ Rx then uRx. Because of the transitivity of R
and the assumption xRy also uRy or u ∈ Ry. Hence Rx ⊆ Ry and |Rx| � |Ry|. The
proposition now follows from Scheme 1 and the increasing nature of Q.

Example 1. The membership functions for the atomic terms old, young andmiddle− aged
in the universe of ages X = {0, 1, ..., 120} as depicted in Figures 3, 4 and 5 were gen-
erated using the fuzzy quantifier Q2 of Figure 2. Furthermore we respectively used the
ordering relations R1, R2 and R3 defined by

(x, y) ∈ R1 if and only if x � y
(x, y) ∈ R2 if and only if y � x
(x, y) ∈ R3 if and only if |y − 60| � |x− 60|

for all x and y in X, with � being the usual ordering on natural numbers.
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Figure 3: Old and modified terms
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Figure 4: Young and modified terms

4 Representation of modified terms

Wheeler[13] analyzes “John is a very tall man” as “John is tall for a tall man”. Fur-
thermore he suggests that “a rather tall man is a man who bears the “tall” relation to
men who are not tall but who may or may not be one of the men who are not tall”. In
other words we could informally say that “John is very tall” if “most tall men are shorter
than John” and that “John is rather tall” if “most not tall men are shorter than John”,
leading to the following representational scheme:

Scheme 2. Let Q be a regular increasing quantifier representing most. If A is the rep-
resentation of a term and R is the ordering relation associated with this term, the
modified terms can be represented by

very A(y) = Q
( |A ∩ Ry|

|A|

)

rather A(y) = Q
( |co A ∩ Ry|

|co A|

)

for all y in X.

The following proposition reveals that these representations are surprisingly efficient
from the computational point of view .

Proposition 2. If the representations for very A and very B are constructed according
to Scheme 2 then

very A(y) = Q




∑
x∈Ry

A(x)
∑
x∈X

A(x)




rather A(y) = Q




∑
x∈Ry

(1− A(x))
∑
x∈X
(1− A(x))



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Proof. The first equality is an immediate result of

|A ∩ Ry|
|A| =

∑
x∈X

min(A(x), Ry(x))
∑
x∈X

A(x) =

∑
x∈Ry

A(x)
∑
x∈X

A(x) (2)

The second equality can be proven analogously.

Note that the denominators in both expressions do not depend on y and therefore have
to be computed only once. Furthermore if the membership degrees are computed in the
ordering implied by R, the numerator in the expression for an element y can be obtained
simply by adding one term to the numerator of the expression for the preceding element.
This new term is based on the membership degree of y in A (in the case of very it is
precisely A(y), in the case of rather it is 1−A(y)), which illustrates very nicely how the
context is expanded gradually with every new element taken into account.
In the next theorem we show that the representations of Scheme 1 and 2 satisfy

semantic entailment. For better understanding of the proof, note that for all strictly
positive real numbers a, b, c and d such that a � d and b � c, one can easily verify that

a+ b
a+ c �

d+ b
d+ c

I.e. if the denominator of a fraction is dominating, replacement of identical terms in
numerator and denominator by larger ones, gives rise to an enlargement of the fraction
as a whole.
Theorem 1 (Inclusiveness). If R is a total ordering then

very A ⊆ A ⊆ rather A
Proof. Replacing A(x) by its definition in (2) we obtain

|A ∩ Ry|
|A| =

∑
x∈Ry

Q( |Rx||X| )
∑
x∈X

Q( |Rx||X| )
=

∑
x∈Ry

Q( |Rx||X| )
∑
x∈Ry

Q( |Rx||X| ) +
∑
x/∈Ry

Q( |Rx||X| )

If x ∈ Ry, the transitivity of R implies Rx ⊆ Ry. (Indeed, for every u ∈ Rx it holds
that R(u, x) = 1. Furthermore because of the assumption that x ∈ Ry also R(x, y) = 1
holds and hence by the transitivity of R we obtain R(u, y) = 1, in other words u ∈ Ry.)
Therefore, if x ∈ Ry, |Rx| � |Ry| holds. Since Q is increasing we obtain

|A ∩ Ry|
|A| �

|Ry| · Q( |Ry||X| )
|Ry| · Q( |Ry||X| ) +

∑
x/∈Ry

Q( |Rx||X| )

If x /∈ Ry by a similar reasoning as above (assuming that R is a total ordering) we
obtain |Ry| � |Rx| and hence

|A ∩ Ry|
|A| �

|Ry| · Q( |Ry||X| )
|Ry| · Q( |Ry||X| ) + (|X | − |Ry|)Q(

|Ry|
|X| )

= |Ry|
|X |

The first inclusion now follows immediately from Scheme 1 and 2 and the fact that Q
is increasing. The second inclusion can be proven analogously.
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Figure 5: Middle-aged and modified terms
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Example 2. Figures 3, 4 and 5 show membership functions for modified terms gener-
ated using the same fuzzy quantifier and the same ordering relations as in Example
1. In Figure 6 the same exercise was done using fuzzy quantifier Q1 of Figure 1. It is
clear from all these figures that the proposed representational schemes respect semantic
entailment as shown in Theorem 1, and that the kernel and the support are changed
in the modification process. Furthermore the figures illustrate that the same technique
can be straightforwardly applied for increasing, decreasing and partially increasing and
decreasing membership functions.

5 Conclusion

We have presented a new approach for the fuzzy set theoretical representation of both
atomic terms and terms modified by the intensifying hedge very and the weakening
hedge rather. Our model is based on a crisp ordering relation that is closely related
to the meaning of the term being represented, and that helps to take the context into
account. The vagueness of the term is preserved by the use of a fuzzy quantifier. The
model turns out to be efficient from the computational point of view, and it respects
semantic entailment (very A ⊆ A ⊆ rather A). Finally it clearly surpasses traditional
approaches, such as powering and shifting modifiers, on the intuitive level and the level
of applicability, which is probably due to its clear inherent semantics.
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