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Fuzzy Versus Quantitative Association Rules:
A Fair Data-Driven Comparison

Hannes Verlinde, Martine De Cock, and Raymond Boute

Abstract—As opposed to quantitative association rule mining, fuzzy
association rule mining is said to prevent the overestimation of boundary
cases, as can be shown by small examples. Rule mining, however, becomes
interesting in large databases, where the problem of boundary cases is less
apparent and can be further suppressed by using sensible partitioning
methods. A data-driven approach is used to investigate if there is a
significant difference between quantitative and fuzzy association rules in
large databases. The influence of the choice of a particular triangular norm
in this respect is also examined.

Index Terms—Data mining, fuzzy association rules, quantitative associ-
ation rules, triangular norms.

I. INTRODUCTION

The discovery of knowledge in databases, also called data mining,
is a most promising and important research area. In data mining,
association rules are often used to represent and identify dependencies
between attributes in a database. The original idea dates back to
the late 1970s [1], while its application for market basket analysis
gained popularity at the beginning of the 1990s [2]. In the original
context of association rule mining, data are represented by a table
with binary values. The rows correspond to objects or transactions,
while the columns correspond to attributes or items. The binary values
denote whether a transaction contains a specific attribute. The purpose
of association rule mining is to detect rules of the form A — B,
indicating that a transaction containing attribute A is likely to contain
attribute B as well.

In most real-life applications, databases contain many other values
besides 0 and 1. Very common, for instance, are quantitative attributes
such as age or income, taking values from an ordered numerical
scale, often a subset of the real numbers. One way of dealing with
a quantitative attribute is to replace it by a few other attributes that
form a crisp partition of the range of the original one. For instance,
in a particular application, we might decide to replace age by the
attributes young, middle-aged, and old corresponding to intervals
[0,35[, [35,65[, and [65,100], respectively, while income can be
replaced by low, medium, and high corresponding to the inter-
vals [0,1000[, [1000,2000[, and [2000,10 000], respectively. The new
attributes can be considered as binary ones (e.g., the value of young
is 1 if the corresponding value of age belongs to [0,35[; otherwise it
is 0), which reduces the problem to traditional association rule mining
with binary values. The generated rules are now called quantitative
association rules [3].

The starting point for fuzzy set theory [4] is that it is against
intuition to model vague concepts such as young and high by crisp
intervals. For why would a person be considered as young while he is
younger than 35, and on his 35th birthday suddenly lose this status? In
reality, the transition between being young and not being young is not
abrupt but gradual. This is a very good argument for modeling vague
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concepts by fuzzy sets instead of crisp sets. Many researchers have
already used this argument for the introduction of fuzzy association
rules (see, e.g., [S]-[11]). In this process, a database containing
quantitative attributes is replaced by one with values from [0,1] in a
similar way as one does for quantitative association rules. It is said
that, compared to quantitative association rules, fuzzy association rules
correspond better to intuition and prevent overestimation of boundary
cases (see, e.g., [7], [8], and [11]). The so-called sharp boundary
problem states that binary algorithms either ignore or overemphasize
the elements near the boundary of the intervals in the mining process.
It is easy to construct toy examples to illustrate this point.

Association rule mining is, however, not developed to play around
with small toy examples but to deal with large databases. Unfor-
tunately, comparisons for large data sets of results obtained with
a quantitative versus a fuzzy association rule mining algorithm are
extremely hard to find in the literature. An additional problem is
the partitioning of the range of attribute values in intervals (for
quantitative association rule mining) and the construction of member-
ship functions (for fuzzy association rule mining). The two extreme
solutions to this problem are the expert-driven approach (an expert
manually sets the interval boundaries and/or defines the membership
functions) and the data-driven approach (they are generated auto-
matically from the data table, see, e.g., [3] and [12]). In [11], results
obtained with quantitative and fuzzy association rule mining are com-
pared for two artificially created data sets. For the quantitative case,
the attribute partitioning method proposed by Srikant and Agrawal [3]
is applied. For the fuzzy case, however, the membership functions
are constructed manually (but not given in the paper). This is an
unfair footing for comparison because additional expert knowledge
is injected into the fuzzy approach while the quantitative approach
is fully automatical (data driven). It is clear that a fair comparison
can only be done using either the same expert-driven approach or the
same data-driven approach for both mining processes. In this paper,
we experimentally investigate the latter.

II. ASSOCIATION RULE MINING

Recall that a fuzzy set A on a universe X is characterized by
X — [0, 1] mapping, also called the membership function of A. For
2z in X, A(z) denotes the membership degree of x in the fuzzy
set A. If the membership function only takes values in {0,1}, it
coincides with the traditional set concept, which, in this context, is
also called “crisp set.”

Table I presents what could happen if we replace the quantitative
attributes in a small database by either binary or fuzzy attributes.

Let X be the set of all transactions (in our example |X| = 6).
We study rules of the form A — B, where A and B are different
attributes.! We use A(z) to denote the value of attribute A for
transaction x. In this way, A becomes either a crisp subset of X
[A(z) = 0 corresponds to = ¢ A while A(z) =1 means x € A] or
a fuzzy set in X [A(z) denotes the membership degree of x in A].
The support and confidence of a (candidate) association rule A — B
are defined as

|AN B|

supp(A — B) = ————
( X

|AN B|

conf(A - B) = ————.
( ) ]

IFor reasons explained in Section ITI-C, we only consider rules with one
attribute in antecedent and consequent.
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TABLE 1
DATABASE TOY EXAMPLE. (a) QUANTITATIVE ATTRIBUTES.
(b) BINARY ATTRIBUTES. (¢) FUZZY ATTRIBUTES

(a)
Age Income

x| 35 900

xo | 36 980

x3 | 35 950

x4 | 40 1500

x5 | 52 1700

xe | 04 3000

(®)
young middle—aged old | low medium high
1 0 1 0 1 0 0
T2 0 1 0 1 0 0
T3 0 1 0 1 0 0
T4 0 1 0 0 1 0
T5 0 1 0 0 1 0
Z6 0 1 0 0 0 1
(©)
young middle—aged old | low medium high

1 0.5 0.5 0 0.8 0.2 0
To 0.4 0.6 0 0.7 0.3 0
T3 0.5 0.5 0 0.7 0.3 0
T4 0 1 0 0 1 0
x5 0.1 0.7 0.2 0 0.9 0.1
Z6 0 0.5 0.5 0 0 1

The support assesses the statistical significance of the association
rule while the confidence measures its strength. We use the defini-
tions of (Zadeh) intersection and cardinality of fuzzy sets A and B
in X,ie.,

(AN B)(z) = min (A(z), B(z)), for z in X

Al =" A).

zeX

Other common definitions of intersection of fuzzy sets will be investi-
gated in Section III-E.

TABLE 1I
SUPPORT AND CONFIDENCE
CANDIDATE RULE BINARY FUZZY
supp | conf supp | conf
middle—aged— low 0.50 | 0.50 0.27 | 0.42
middle—aged—medium | 0.33 | 0.33 0.42 | 0.66
middle—aged—high 0.17 | 0.17 0.1 0.16

Table II illustrates that mining association rules starting from binary
or fuzzy attributes can make a big difference. For instance, in the
“fuzzy version,” middle-aged — medium clearly surfaces as a rule
with high confidence, while in the “binary version” it is considered
to be less confident than middle-aged — low, and it might not even
meet the threshold. The difference is mainly caused by the presence of
boundary cases in Table I(a) (ages like 35 and 64 that are very close to
the extremes of the interval for middle-aged).

This toy example is, however, not representative for the kind of
applications where association rule mining is typically used. In real-
life applications, real-life data are being used and the influence of
boundary cases is less apparent in large databases. Furthermore,
in practice, the unwanted effect of boundary cases can be further
suppressed by using appropriate partitioning methods that look for
intervals with densely populated centers. Hence, the arguments typi-
cally made in favor of fuzzy association rule mining do not seem to
hold for real-life applications, and we do not expect fuzzy association
rule mining to be all that different from plain quantitative association
rule mining. We will test this conjecture empirically by doing the
job for some large databases that are typically used in association
rule mining.

III. EXPERIMENTAL APPROACH

A. Data Sets

In the first series of experiments, we use the database FAM9S,
containing the results of the March 1995 U.S. Current Population
Survey, conducted by the Bureau of Census for the Bureau of
Labor Statistics.? The database consists of 63 756 family records with
23 attributes from which we extract the following six quantitative
attributes: number of persons in the family, number of children,
family income, age of head of the family, educational level of head,
and head’s personal income.

Another data set used in the experiments (which we will call
HEMAT) contains the results of 42915 hematological analyses from
459 patients of hepatitis B and C, who were admitted to Chiba
University Hospital in Japan. Again we extract six quantitative
attributes: white blood cells count, hemoglobin count, hematocrit
count, mean corpuscular volume, mean corpuscular hemoglobin, and
mean corpuscular hemoglobin concentration.

In addition to these large databases, we also use the data set
STULONG, concerning a study of the risk factors of atherosclerosis

2This data set was obtained from the UCLA Statistics Data Sets Archive
website http://www.stat.ucla.edu/data/fpp.

3This data set was obtained from the ECML/PKDD 2004 Discovery Chal-
lenge website http:/lisp.vse.cz/challenge/ecmlpkdd2004.
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in a population of 1417 middle-aged men.* Here, we extract five
quantitative attributes out of a total of 64. The selected attributes are
height, weight, systolic blood pressure, diastolic blood pressure, and
cholesterol level.

B. Data-Driven Partitioning

In order to compare quantitative and fuzzy association rule mining,
we need comparable techniques for both a crisp and a fuzzy parti-
tioning of the range of each quantitative attribute. To this end, we use
clustering techniques as suggested in [3].

The classical k-means algorithm [13] is an exclusive or crisp clus-
tering algorithm that starts with an initial estimation of the cluster
centers and minimizes the sum of squared distances from the data
points to their respective cluster centers. Depending on the initial
estimation of the cluster centers, the resulting partitioning may be
suboptimal, but the centers of the partitions will be densely populated
nevertheless.

The fuzzy c-means algorithm [14] is a fuzzy extension of the
k-means algorithm, which results in a fuzzy partitioning of the data
set, where every data point belongs to every cluster to a certain
degree (i.e., a value in [0,1]). Furthermore, the fuzzy sets generated
by the fuzzy c-means algorithm are normalized in the sense that for
each data point the sum of the membership degrees for the different
clusters equals 1. The algorithm aims at minimizing the objective
function

N C
SO unlw - o
i=1 j=1

where N is the number of data points, z; is the ith data point, C is
the number of clusters, c; is the center of cluster j, and u;; is the
degree of membership of x; in the cluster j. The fuzziness parameter
m is an arbitrary real number greater than 1. For m = 1, the algorithm
coincides with crisp k-means clustering. The higher the value of m,
the “fuzzier” the resulting partitioning will be.

Fig. 1 shows intervals obtained by crisp 3-means clustering and
membership functions obtained by fuzzy 3-means clustering for the
attribute cholesterol level of the STULONG data set. Note that for
m = 2, the partitioning is not very fuzzy, with many data points being
assigned exclusively to a single cluster. In our experiments, a fuzzy
partitioning with fuzziness m = 3 is being used.

For each attribute range, applying the k-means and the fuzzy c-
means algorithm yields a crisp and a fuzzy partitioning, respectively. In
general, however, the cluster centers will be different. This difference
can be kept to a minimum by using the result of the k-means algorithm
as the initial estimation for the fuzzy c-means algorithm. To eliminate
the problem entirely, we can simply assign every data point to the
nearest fuzzy cluster center in order to obtain a new crisp partitioning,
which will differ only slightly from the partitioning originally obtained
from the k-means algorithm.

It is our opinion that the data-driven approach to partitioning
through clustering offers a good starting point for a fair comparison

4The study (STULONG) was realized at the 2nd Department of Medicine,
Ist Faculty of Medicine of Charles University and Charles University Hospital,
U nemocnice 2, Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC), un-
der the supervision of Prof. F. Boudik, MD, ScD, with collaboration of
M. Tomeckovd, M.D., Ph.D., and Ass. Prof. J. Bultas, M.D., Ph.D. The
data were transferred to electronic form by the European Centre of Medical
Informatics, Statistics and Epidemiology of Charles University and Academy
of Sciences (head. Prof. RNDr. J. Zvarova, DrSc). The data resource is on the
web page http://euromise.vse.cz/challenge2004. At present, the data analysis is
supported by the grant of the Ministry of Education CR Nr LN 00B 107.
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Fig. 1. Partitioning for cholesterol level. (a) Crisp (m = 1). (b) Fuzzy
(m = 2). (¢) Fuzzy (m = 3).

of quantitative versus fuzzy rule mining. In our experiments, each of
the selected quantitative attributes is replaced by three either binary
or fuzzy attributes, resulting in discrete and fuzzy databases with
6 x 3 =18 attributes for FAM95 and HEMAT and 5 x 3 =15
attributes for STULONG.

C. Comparing Association Rules

A typical association rule mining algorithm sets a threshold for
support and confidence and then selects the rules that meet both
of the thresholds. The same algorithm can be used for both quan-
titative and fuzzy rule mining without any adaptation, because the
“fuzzy definitions” of intersection, cardinality, support, and confidence
coincide with the classical definitions in the binary case. In other
words, whether the association rule mining algorithm is quantitative or
fuzzy depends on whether the input tables constitute a crisp or a
fuzzy partition of the data rather than on the algorithm itself. This
should be kept in mind whenever we talk about discrete versus fuzzy
algorithms.

We are interested in comparing the actual association rules obtained
by quantitative and fuzzy rule mining. To keep things clear and
simple, we restrict ourselves to rules with a single attribute in both
the antecedent and the consequent. Such rules can be efficiently mined
and are easy to understand. In a more general definition, both the
antecedent and the consequent of an association rule are sets of
attributes. Mining algorithms, however, tend to generate too many
rules to be digested by users, and using the more general definition
leads to the so-called rules explosion problem. Furthermore, there
is a trend to focus on simple association rules, i.e., those containing
only one attribute in the consequent, and use them as building blocks
to construct more general rules if required [5], [15]. Focusing on the
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simplest possible association rules alleviates the need to use compli-
cated algorithms and allows us to sort all possible rules by a certain
quality measure instead of setting inherently arbitrary thresholds. The
approach of ranking rules, which highly facilitates the systematic
comparison of the rules, would be intractable if we allowed the
inclusion of more complex rules. We get a total of 18 x 15 = 270
(simple) association rules for the FAM95 and the HEMAT data set
(there are 6 x 3 = 18 attributes and each of them can be combined
with each of the 5 x 3 = 15 attributes that refer to different underlying
quantitative attributes). For the STULONG data set, we get a total
of 15 x 12 = 180 possible rules.

We compare the rankings obtained by the quantitative and the
fuzzy algorithm using the Spearman rank correlation coefficient [16]
defined by

where N is the number of ranked association rules and d; is the
difference in rank for each rule. It can be shown that —1 < r, < 1 with
values of r; close to one indicating strong concordance between the
two rankings and values closer to zero indicating weak concordance
or independence. Negative values for r, indicate discordance between
the rankings.

D. Quantitative Versus Fuzzy Association Rules

In the first experiment, we sort 270 candidate association rules’
by support and by confidence and compare the rankings obtained by
the discrete (m = 1) and the fuzzy (m = 3) algorithms. We obtain a
Spearman rank correlation coefficient of 0.97 for both the support and
the confidence rankings, indicating a very strong agreement between
the rankings.

In practical applications, only the 10 or 20 strongest rules are likely
to be of interest to the user. If we compare the sets with the 20 most
confident rules, the cardinality of the set difference yields 4. If we
select the 20 best supported association rules, we obtain identical
sets of rules, regardless of whether we use the fuzzy or the discrete
algorithm!

In order to get a better feel for the actual differences, Table III
lists the 20 strongest rules obtained from the discrete (m = 1) and
the fuzzy algorithm (m = 3) along with their confidence and support
values. In order to save space, we use (obvious) abbreviations for
the attributes, and for clarity we also use mnemonic terms rather than
the actual linguistic terms derived from cluster centers. For instance,
young, middle-aged, and old actually stand for about 29, about 48,
and about 73, respectively.

The rules that appear only in the left or only in the right column
are in italic. We challenge the reader to compare the rankings and
let him/her be the judge of which set of rules is better. In our
opinion, the difference is too small to be of any real interest to the
user. If we repeat these experiments for the data sets HEMAT and
STULONG, we get similar results. For the support rankings, we obtain
Spearman coefficients of 0.97 and 0.99, respectively. The Spearman
coefficients for the confidence rankings are 0.95 and 0.98, respectively.
If we only consider the 20 strongest rules, we never get more than
four different rules for the fuzzy versus the quantitative approach,
regardless of whether we sort rules by support or confidence.

SUnless explicitly stated otherwise, all experiments are based on the FAM95
data set.

E. Influence of T-Norm Operator

So far, we have assumed the use of the Zadeh intersection of
fuzzy sets in the definitions of support and confidence. The under-
lying minimum operator is easy from a computational point of view
but leaves no room for compensation. Indeed, for all z and y in
[0,1], min(z,y) = x as long as y > x, regardless of the precise value
of y. The work of Schweizer and Sklar [17] in probabilistic metric
spaces gave a big impulse for the generalization to triangular norms
that do not necessarily have this behavior.

A triangular norm (t-norm) 7 is a [0, 1] — [0,1] mapping that
is symmetric, associative, and nondecreasing in each argument, with
T(z,1) =z for all = in [0,1]. All t-norms coincide with the clas-
sical definition of conjunction in case both arguments are binary
values, but may yield very different results otherwise. The t-norms
most commonly used in fuzzy applications are the minimum t-norm,
the product t-norm, and the Lukasiewicz t-norm, which, respec-
tively, lead to the following definitions of intersection of fuzzy sets
Aand B, i.e.,

(AN B)(z) = min (A(z), B(x))

for z in X

(AN B)(z) = A(s) - Ba),

(AN B)(z) = max (0, A(z) + B(z) — 1).

An interesting question is whether the difference between quantitative
and fuzzy association rule mining will be bigger if we use the product
t-norm or the Lukasiewicz t-norm instead of the minimum t-norm
as the underlying operator for the definition of intersection. Again,
however, the results show a strong agreement between the discrete
and the fuzzy algorithm (Spearman coefficients of 0.98 for both the
support and the confidence rankings and for both t-norms). If we only
consider the strongest rules, all differences disappear, irrespective of
which t-norm is being used.

Instead of comparing the discrete and the fuzzy approach, we can
also compare two fuzzy approaches using different t-norms. Exper-
iments show that in that case the Spearman coefficients are even
higher (exceeding 0.99 in most cases).

IV. CONCLUSION

The typical argumentation or motivation for involving fuzzy set
theory in association rule mining is as follows:

1) thatitallows for the rules to be formulated using vague linguistic
expressions, hence easier to grasp by humans;

2) that it suppresses the unwanted effect that boundary cases might
cause.

The argument that rules generated by fuzzy association rule mining
are more understandable to a human is not convincing in this matter
because quantitative association rule mining also gives (the same
strong) rules formulated in the same way in natural language. Whether
these natural language expressions are represented by intervals or
fuzzy sets is purely an internal matter of the system which should be
of no further interest to the user.

The second argument does not consider the fact that association rule
mining is not developed for toy problems but for large databases. The
sharp boundary problem is already inherently suppressed and can be
further minimized by using sensible partitioning methods, as is already
being done in quantitative association rule mining.

Our experiments actually show that there is no significant difference
between fuzzy rule mining and quantitative rule mining in large
databases when using a suitable data-driven approach for attribute
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MoOST CONFIDENT RULES OBTAINED FROM THE DISCRETE A’IEAD]%FII_:I]?E FIIIJIZZY ALGORITHM. (a) DISCRETE (m = 1). (b) Fuzzy (m = 3)
(a) (b)
confidence | rule support confidence | rule support
990 | old age — few children 230 983 | old age — few children 234
929 | few persons — few children 578 967 | few persons — few children 520
.901 | low education — low hincome .145 .897 | low education — low hincome 143
.887 | low incomc — low hincome 509 .884 | low incomc — low hincome 500
.887 | old age — few persons 206 .850 | low education — low income 136
.870 | few children — few persons 578 .837 | low hincome — low income 500
.850 | low education — low income 137 .808 | low education — few children 129
.848 | many children — many persons .058 .801 | many children — many persons 060
.843 | low hincome — low income 509 798 | old age — low hincome 190
798 | high hincome — high income .045 790 | old agec — few persons 188
.794 | old age — low hincome 185 784 | low income — few children 444
755 | low education — few children 122 768 | low hincome — few children 459
755 | average children — average persons 202 766 | high hincome — high income .050
750 | low income — few persons 431 756 | old age — low income 180
748 | old age — low income 174 743 | average children — average persons 151
726 | low income — few children 417 728 | few persons — low income 391
V7 | high hincome — high education .041 724 | high education — few children 197
710 | medium hincome — medium income | .241 720 | few children — few persons 520
108 | medium income — medium hincome | .241 719 | medium hincome — medium income | .243
U108 | average persons — average children | .202 719 | medium education — few children 409

partitioning. In fact, in real applications, the net difference is very
likely to be too small to really justify the fuzzy approach. Even when
implementation issues are not taken into consideration, introducing
the theoretical framework of fuzzy sets into association rule min-
ing does not make sense unless the generated association rules
are significantly different from the rules obtained by discrete min-
ing. Our experiments show that this is certainly not generally
the case.

In the experiments, we have restricted ourselves to association
rules with one item in both the antecedent and the consequent. It
might be interesting to see what the effect would be if we allowed
more complicated rules. Also, we have only taken the two quality
measures into account that were proposed by Agrawal et al. [12],
namely, support and confidence. Association rules can be rated by a
number of other quality measures as well. For a recent overview, we
refer to [18]. Repeating our experiments using other quality measures
may yield different results.

As a final comment, the membership functions obtained from
clustering may not correspond with the most intuitive human per-
ception of concept. Hence, we may expect rules obtained using
a data-driven approach to be significantly different from the rules
obtained using an expert-driven approach. The comparison of fuzzy
and quantitative association rules using an expert-driven approach (for
large databases) is certainly an interesting topic for future research.
In this case, however, experts should also define the crisp intervals
that correspond best to human intuition! The common practice of
comparing data-driven crisp data mining with expert-driven fuzzy data
mining does not provide convincing arguments for the introduction of
fuzzy association rules.
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