
Secure Multi-Party Computation for

Personalized Human Activity Recognition

David Melanson1*, Ricardo Maia2, Hee-Seok Kim1, Anderson
Nascimento1 and Martine De Cock1,3

1School of Engineering and Technology, University of Washington,
1900 Commerce Street, Tacoma, 98402-3100, WA, United States.

2Dept. of Computer Science, Institute of Exact Sciences,
University of Braśılia, Federal District, Braśılia, 70910-900, Brazil.
3Dept. of Applied Mathematics, Computer Science and Statistics,

Ghent University, Krijgslaan 281 (S9), 9000, Gent, Belgium.

*Corresponding author(s). E-mail(s): mence40@uw.edu;
Contributing authors: ricardo.jmm@gmail.com; heeskim@uw.edu;

andclay@uw.edu; mdecock@uw.edu;

Abstract

Calibrating Human Activity Recognition (HAR) models to end-users
with Transfer Learning (TL) often yields significant accuracy improve-
ments. Such TL is by design done based on very personal data collected
by sensors worn close to the human body. To protect the users’ privacy,
we therefore introduce Secure Multi-Party Computation (MPC) proto-
cols for personalization of HAR models, and for secure activity recogni-
tion with the personalized models. Our MPC protocols do not require the
end-users to reveal their sensitive data in an unencrypted manner, nor
do they require the application developer to disclose their trained model
parameters or any other sensitive or proprietary information with any-
one in plaintext. Through experiments on HAR benchmark datasets, we
demonstrate that our privacy-preserving solution yields the same accu-
racy gains as TL in-the-clear, i.e. when no measures to protect privacy
are in place, and that our approach is fast enough for use in practice.

Keywords: Transfer Learning, Human Activity Recognition, Convolutional
Neural Network, Secure Multi-Party Computation, Cryptography, Privacy

1

2 Secure Multi-Party Computation for Personalized HAR

1 Introduction

Machine Learning (ML) is a powerful tool for application developers to exploit
information found in data. As a general principle, the more data one has
available, the more accurate ML models can be made. This is especially true
for state-of-the-art deep learning models, which are notoriously data hungry.
However, in many application domains, the data is scarce. Transfer Learning
(TL) aims to overcome this data scarcity issue by using data from different,
but related domains [1–3].

An important use-case of TL is in Human Activity Recognition (HAR),
with at least 170 papers published in the last decade regarding the topic [4].
Recognition of human activity – such as standing, walking, or running – from
sensors in wearable devices like wristbands and smartphones is fueling a grow-
ing variety of applications, including early detection of diseases, strokes or
seizures, mental health assessment, fall detection, and sports monitoring [5, 6].
As physical characteristics and activity patterns differ from one user to the
next, the problem of data heterogeneity is well known in applications that
rely on bio-signal data, and various methods have been proposed to address
end-user calibration challenges (see e.g. [4, 7–9] and references therein).

Algorithms to create well-calibrated, personalized models for HAR take
as input information from the source domain (such as a model trained on
data from source users) and from the target domain (calibration data from
the end-user). Sensors worn on the human body however collect very personal
data. Giving an application developer (model owner) free access to the cali-
bration data from the target end-user opens the door to potential data misuse.
Allowing the target user free access to the pre-trained parameter values of a
proprietary model on the other hand would also be problematic, even more so
because trained models leak information about the training data [10], in other
words about the bio-signal data of the source users. Despite the acknowledge-
ment of the need for privacy-preserving aggregation of information from the
source and the target domain (see e.g. [7]), there is a wide gap in the literature
on technologies to this end.

In this paper we propose cryptographic protocols that enable the same kind
of model personalization and calibration as in-the-clear (i.e. when no encryp-
tion is used), without requiring the model owner and the target user to disclose
their model parameters or calibration data to anyone in an unencrypted man-
ner. Consider the following use-case to motivate the benefit of our secure1

personalization method, and to describe how it works at a high level. As illus-
trated in Figure 1, an application developer nick-named Alice has trained a
model M for HAR on source dataset Da. A new end-user Bob is interested
to use M to monitor his physical condition via sensor data gathered from his
watch [11]; however, M may not be very accurate on Bob’s data because of
a domain shift between the data Da that M was trained on, and Bob’s data
Db [7]. To remedy this situation, Alice and Bob could use a transfer learning

1Throughout this paper, we use the terms “secure” and “privacy-preserving” as synonyms.

Secure Multi-Party Computation for Personalized HAR 3

Fig. 1 Diagram illustrating privacy-preserving TL between Alice (representing the source
domain) and Bob (representing the target domain). Alice and Bob send encrypted shares
of Da, M , and Db to computing parties S1, S2, and S3. These parties subsequently execute
MPC protocol πpers to construct a personalized model M∗.

technique to personalize M to Bob’s data. This creates a potential issue for
both Bob and Alice as it would require either Bob to reveal Db to Alice, or
Alice to reveal Da and/or M to Bob. From Alice’s perspective, the latter is a
problem since Da contains bio-signal data of source users (depicted on the left
in Figure 1), so it would be unethical, and perhaps illegal, to leak this data.
In addition, Alice wants to keep the parameters of the proprietary model M
hidden, as it gives her an edge over her competitors. Furthermore, Bob does
not want to reveal his data Db to Alice either for his own privacy concerns.

To resolve this situation, we use Secure Multi-Party Computation (MPC)
techniques [12] to enable the construction of a personalized model M∗ from
Da,M, and Db, without requiring Alice to disclose Da and the trained model
parameters of M to anyone in an unencrypted manner, and without requiring
Bob to show his calibration data Db to anyone in plaintext. To this end, Alice
and Bob each send encrypted shares of their respective inputs Da, M , and
Db to untrusted servers S1, S2, . . . (see Figure 1). These servers or computing
parties subsequently perform computations over the encrypted shares – as
defined in MPC protocols proposed in this paper – to arrive at encrypted
shares of the personalized model M∗. These computations are performed in
a way so that no single server learns anything about Da, Db,M and M∗. If
so desired, the final trained model M∗ can be reconstructed by a designated
party, or it can be evaluated in an oblivious (encrypted) way by the servers.
The price to be paid for the protection of privacy is an increase in runtime.

4 Secure Multi-Party Computation for Personalized HAR

The primary contributions of this paper are the design, implementation,
and evaluation of the first privacy-preserving MPC protocols for personal-
ization of Convolutional Neural Networks (CNNs) for HAR through TL.
Algorithms to improve accuracy in HAR through TL already exist in-the-
clear, i.e. without any encryption or regards for privacy. Our aim is to develop
cryptographic protocols that enable the same kind of TL accuracy gains for
an end-user through personalization, without leaking any sensitive information
from the end-user (target domain) to the model owner (source domain) and
without leaking the source domain information in the clear to the end-user.
Our main contributions are:

• An MPC protocol πpers for privacy-preserving personalization of a CNN
for HAR (Section 4).

• An MPC protocol πinfer for secure activity recognition with the personal-
ized model (Section 4).

• A detailed evaluation of the MPC protocols in terms of accuracy and
runtime in various security settings on HAR benchmark datasets, demon-
strating that our privacy-preserving solution yields the same accuracy
gains as in-the-clear, i.e. when no measures to protect privacy are in place,
and that our approach is fast enough for use in practice (Section 5).

Our MPC protocols constitute the first approach to offer end-to-end privacy
for both the client Bob and the model owner Alice (Section 2), ensuring that all
the data remains secure, including the parameters of Alice’s pre-trained model.
Moreover, the security of our constructions follows from rigorous cryptographic
models and definitions (Section 3).

2 Related Work

Over recent years, there has been great development in the literature
for Privacy-Preserving Machine Learning (PPML). State-of-the-art PPML
approaches rely on a variety of privacy-enhancing technologies, most promi-
nently Federated Learning (FL), Differential Privacy (DP), cryptographic
techniques such as Secure Multiparty Computation (MPC) and Homomorphic
Encryption (HE), and combinations of all these approaches. Research on the
application of PPML for human activity recognition from wearable sensors, as
we do in this paper, has been fairly limited so far. Below we discuss the most
relevant related work.

In Federated Learning (FL), clients (users) collaborate in solving a
machine learning problem under the coordination of a central server, without
the need for the clients to transfer or exchange their raw data [13]. Typically,
each client trains a model locally on their own data and sends the trained
model parameters to the central server. The central server commonly averages
the parameter values across all clients and pushes the result back to the clients
who subsequently use them to update their models and continue training in
an iterative fashion. In this process the original raw data never leaves the
clients, as only model parameter values are exchanged. The weaknesses of FL

Secure Multi-Party Computation for Personalized HAR 5

compared to the method we propose in this paper, is that a model trained
in a federated manner is typically less accurate than a model trained in the
centralized paradigm, and that the model parameters themselves still leak
information about the training data, i.e. FL is not fully privacy preserving.
Furthermore, standard FL in itself does not result in personalized models for
the end-users.

Exploration of FL for personalized human activity recognition from wear-
able sensor data is relatively new, with existing approaches addressing the
above mentioned issues to some extent. Presotto et al. [14] have proposed
FedCLAR, a hierarchical clustering method that clusters model parameters of
Artificial Neural Networks (ANNs), that are locally trained by end-users on
their own data, into similar groups, creating a global model. To personalize a
model for a particular user, the user receives the aggregated parameters from
the cluster they belong to, and retrains the last few layers of their ANN. While
addressing the need for personalization, FedCLAR makes no attempt to hide
the trained model parameters, thereby leaking information about the users to
each other. In contrast, as we explain below, Chen et al. [15], Hu et al. [16],
and Liu et al. [17] make an effort to obfuscate the users’ parameter values,
making their overall approaches more privacy-preserving.

FedHealth [15], which is specifically designed for HAR systems leveraging
TL for users with wearable sensors in the health sector, assumes that the server
owner Alice has access to a public dataset, on which she trains an initial Deep
Neural Network (DNN), such as a CNN. Alice then distributes this model to
the individual end-users, who each push their data through the DNN, calculate
the error, and then update the model parameters to minimize said error on
their end. At this point, the models that the end-users update are encrypted via
Homomorphic Encryption (HE), and then sent to the server. The server
owner then takes the average of the individual user models, yielding a new
global model, which is subsequently decrypted and revealed to both the server
owner and the clients. This is how the FL portion of FedHealth operates. To
perform TL, the individual users take the global model and push their data
through to calculate the loss again, at which point only the last few dense layers
of the DNN are updated to minimize the loss. As in FedCLAR, the idea is that
the first layers of the DNN learned high level representations of the sensor data
that should be true of all users, and that the last few layers learn more intimate
features of the data and thus should be personalized to the end-user. FedHealth
protects the individual user’s exact values of data, but with the global model
being public, it is still possible to uncover potentially sensitive information
regarding the users’ data. In our work, we offer end-to-end encryption of all
data, including the model parameters at every step.

An entirely different way of enhancing the privacy protection of FL algo-
rithms is through Differential Privacy (DP) mechanisms [18]. Solutions
for training HAR models that are based on DP (see e.g. [16, 17]) introduce
noise in the model parameters, the gradients, or the objective function during
training, to limit the amount of information leaked from the trained model.

6 Secure Multi-Party Computation for Personalized HAR

While MPC (the approach we use in this paper) and DP both provide formal
privacy guarantees that can be mathematically proven, they are of a very dif-
ferent nature. DP provides output privacy in the sense that one should not
be able to conclude from the output (the trained model) whether a particu-
lar instance was used in the training dataset or not. MPC on the other hand
protects input privacy in the sense that the model owner Alice and the target
user Bob do not have to disclose their model and training samples to anyone.
While the computational overhead of DP is much lighter than that of MPC,
a substantial disadvantage of DP is that the use of noise causes a decrease
in utility (accuracy), which is proportional to the privacy protection, i.e. the
more one wants to protect privacy, the more noise is injected, and the more
the accuracy drops. The use of MPC on the other hand does not cause a loss
in accuracy, as we demonstrate empirically in Section 5. Moreover, we provide
end-to-end privacy for all entities involved, revealing no sensitive information
during intermediate stages.

Very different from the above, a Privacy-Preserving Support Vector
Machine (PPSVM) for HAR approach [19, 20] has been proposed that is
applicable in a scenario like the one in Figure 1 in which there is an entity Alice
with source data and a baseline model trained on said data, and an entity Bob
with target data. The PPSVM approach works by obfuscating client Bob’s data
by performing matrix multiplication between Bob’s data and a random matrix
and making these random projections publicly known. The random projections
can be used to train a support vector machine model. There are some issues
with the results presented in [19, 20]. First, while preventing an exact recon-
struction of Bob’s inputs, the protocol does leak collective information about
these entries through the random projections (that is the reason one is able
to train the classifier in the first place). Second, the protocol leaks the labels:
they are publicly announced and are necessary for training the final model. As
mentioned before, the approach we propose in this paper offers end-to-end pri-
vacy for both the client Bob and the model owner Alice, ensuring that all the
data remains secure, including the parameters of Alice’s pre-trained model.
Moreover, the security of our constructions follows from rigorous cryptographic
models and definitions.

3 Preliminaries on MPC

In this section, we review the MPC and cryptography background necessary
to understand how we maintain privacy in our pipeline.

3.1 Introduction

Secure Multi-Party Computation (MPC) – an umbrella term for cryptographic
approaches that allow two or more parties to jointly compute a specified out-
put from their private information in a distributed fashion, without actually
revealing the private information to each other – has theoretical guarantees
for correctness of the function the parties are computing [21]. The benefits

Secure Multi-Party Computation for Personalized HAR 7

introduced by MPC protocols, namely mathematically provable privacy pro-
tection without loss of accuracy, are typically met with the cost of more
time-consuming computation. Specifically, MPC requires frequent communi-
cation between all of the parties involved in the computation, which adds a
significant communication overhead to MPC protocols. The privacy guaran-
tees provided by MPC have made it an attractive field of research in PPML. It
has prompted development in secure inference with pre-trained models [22–30],
as well as in the privacy-preserving training of machine learning models, such
as linear regression models [31–33], decision tree models [34–37], and neural
network architectures [38–42].

In Section 3.2, we describe the main idea of MPC and the adversarial
models considered in this paper. After discussing in Section 3.3 how data and
model owners should represent their data for consumption by MPC protocols,
in Section 3.4 we recall details about the prominent secret-shared based MPC
schemes in which we have implemented and evaluated our work. We refer to
[21] for a self-contained introduction to MPC.

3.2 MPC Idea and Adversarial Models

MPC Idea. MPC provides a way for several mutually distrustful parties
to jointly compute a function (which depends on secret inputs) such that:
(i) the function output is correctly computed; and (ii) no information about
the secret inputs is ever leaked (beyond possibly the result of the function
itself). Out of several different approaches for implementing MPC, we work
with secret-sharing based MPC. In secret-sharing based MPC, data owners
encrypt information by distributing so-called shares of the data across multiple
computing parties. Such shares are constructed in a way that no information
about the secret inputs can be inferred from a secret share. However, when a
sufficient number of shares is put together, they allow the recovery of the secret
inputs. The main idea of secret-sharing MPC is that computations happen
on the secret shares, rather than on the inputs themselves. In the end, the
computing parties have shares of the desired function output and can jointly
recover such result by combining all the shares.

MPC-as-a-Service. It is possible for the computing parties and the data
holders to be the same. If this is the case, these computing parties first secret
share their inputs among themselves and then proceed by executing MPC
protocols on top of these shares. It is also possible for the data holders to
outsource or delegate these computations to computing servers – an MPC-as-
a-service scenario. In that case, the data holders first secret share their inputs
with the computing servers. The servers then proceed to compute the desired
function by executing MPC protocols on these shares. Our proposed protocols
are general in the sense they can be adapted to these two-scenarios. However,
for the sake of simplicity, we will present our results and analyses for the MPC-
as-a-service case, as illustrated in Figure 1. In the remainder of this paper, by
“data” we mean the datasets Da and Db from respectively Alice and Bob, as
well as the trained parameters of Alice’s model M , i.e. both Alice and Bob

8 Secure Multi-Party Computation for Personalized HAR

are considered “data owners”, and model parameters are broadly referred to
as “data” as well.

Adversarial Models. MPC is concerned with the protocol execution
coming under attack by an adversary A which may corrupt the computing
parties to learn private information or cause the result of the computation to
be incorrect. MPC protocols are designed to prevent such attacks being suc-
cessful. A party corrupted by a semi-honest adversary (sometimes known as
an “honest-but-curious” adversary) still follows the protocol instructions as
agreed upon by all parties, but will try to capture additional information dur-
ing the execution of protocols [21]. A party corrupted by a malicious adversary
may arbitrarily deviate from the protocol instructions, for example by sending
forged values to the other parties to ensure the output of the function is incor-
rect. The MPC protocols πpers and πinfer presented in Section 4 are sufficiently
generic to protect against semi-honest as well as malicious adversaries. This
is achieved by changing the underlying MPC scheme to align with the desired
security setting. Some of the most efficient MPC schemes have been developed
for 3 parties, out of which at most one is corrupted. In Section 5, we evaluate
the runtime of our protocols in this honest-majority 3PC setting with semi-
honest adversaries (see Section 3.4.2), which is growing in popularity in the
PPML literature, e.g. [22, 26, 29, 42], as well as in a dishonest-majority 2PC
setting (see Section 3.4.1).

3.3 Fixed Point Representation in a Ring

Mathematical operations in MPC protocols are done over a finite, discrete
structure, such as a finite ring or a finite field. In our work, during the execution
of any protocol, operations are performed on integers (shares) in the ring Zq,
with q = 2λ, for some λ ∈ Z+. The model parameters in Alice’s classifier
M are natively real numbers represented in a floating point format, as are
the sensor measurements in Alice and Bob’s datasets Da and Db. Before the
data owners send any sort of shares to the computing parties, they must map
any continuous value x from their data into the ring. To do so, they use the
function Q : R → Z2λ , defined as [39]:

Q(x) =

{
2λ − ⌊2a · |x|⌋ if x < 0

⌊2a · x⌋ if x ≥ 0
(1)

For finite λ, Q defines a bijection between the reals represented by fixed point
notation with λ bits in total and a bits of decimal precision, and the integers
in Zq, making it simple to go from one representation to the other.

3.4 Secret-Sharing based MPC

There exist several MPC schemes with different security guarantees, accom-
modating various amounts of computing parties. MPC protocols that accom-
modate computation between n parties are referred to as nPC. In the context

Secure Multi-Party Computation for Personalized HAR 9

of our work, we have two data owners, Alice and Bob, but may have a different
number of computing parties.

To secret-share a value x, we first require that the data owners map their
data into Zq by Equation (1). They then split the data into secret shares on
their end (cfr. Section 3.4.1 and 3.4.2) and send the shares to the computing
parties. Depending on the specifics of the secret-sharing scheme, a party can
own up to n − 1 shares of z, but will never own all n shares unless we are
revealing the true value of z to that party, or if the party was the original
owner of z. When denoting a secret shared value z, we write it as [[z]]q, where
[[z]]q = (z1, z2, ..., zn). All computations in our work are assumed to be done in
the ring Zq, and so for the remainder of this paper, we will write [[z]]q as [[z]]
for convenience.

We implement our work in two different secret-sharing schemes, namely
Additive Secret-Sharing and Replicated Secret-Sharing. We apply these tech-
niques to a 2PC and a 3PC setting, respectively. We discuss them in greater
detail in Section 3.4.1 and 3.4.2.

3.4.1 Additive Secret-Sharing for 2PC

To additively secret share a value z ∈ Zq between two computing parties S1

and S2, the data owner splits z into two shares z1, z2 ∈ Zq chosen uniformly
at random bound to the constraint z = z1 + z2 mod q. The data owner then
distributes these shares to the computing parties (servers), i.e. z1 to S1 and
z2 to S2. Now that we know how the data is distributed as shares between the
computing parties, we must know how to perform operations on said shares.

There are several common operations that can be performed on secret
shares without requiring communication among the parties. Let [[x]] = (x1, x2)
and [[y]] = (y1, y2), where Si owns xi, yi, and let c be a constant in Zq, then
the following operations can be performed locally:

• Addition (z = x+y): x+y = (x1+x2)+(y1+y2) = (x1+y1)+(x2+y2),
thus the parties can simply sum up their respective shares of x, y. This
operation is denoted as [[z]] = [[x]] + [[y]].

• Multiplication by a constant (z = c·x): c·x = c·x1+c·x2, thus each party
simply multiplies their share of x by c. This operation is denoted as c[[x]].

• Addition of a constant (z = x + c): x + c = x1 + x2 + c, thus without
loss of generality, S1 adds c to their share. This operation is denoted as
[[z]] = [[x]] + c.

A non-trivial operation to perform is secure multiplication. Suppose that
the computing parties own additive shares of x, y, and would like to compute
the product x · y. To perform this operation, we make use of Beaver triples
[43]. There are multiple ways to generate Beaver triples, but in our work we
use oblivious transfer (OT) [44], which is a two-party protocol that is known
to imply any secure two-party computations. The process of performing OT is
not free, and requires communication to be performed between the parties and
computation that is equivalent to the ones used in public key cryptography.

10 Secure Multi-Party Computation for Personalized HAR

For continued discussion on OT, we refer the reader to [21, 44]. Beaver triples
consist of three additively secret-shared values, a, b and c. Values a and b are
chosen at random, while c = a · b. To perform multiplication, the parties S0

and S1 locally compute d = [[x]] − [[a]] and e = [[y]] − [[b]] with their respective
shares. By doing this, S0 and S1 have masked the true values of their sensitive
information with their shares of a, b. As such, they can open d and e, making
these values public, without revealing anything about their shares of x or y.
Now, consider the following: x ·y = ((x−a)+a)((y− b)+ b) = (d+a)(e+ b) =
de+db+ae+ab = de+db+ae+c. This identity allows the parties to compute
shares of the product x · y. Specifically, one party computes d[[b]] + e[[a]] + [[c]],
and another computes de+d[[b]]+e[[a]]+[[c]]. We denote this protocol for secure
multiplication as πmul, i.e. to obtain [[x · y]] from [[x]] and [[y]], the parties run
πmul([[x]], [[y]]).

With only two computing parties and two data owners (Alice and Bob),
it is very natural for Alice to represent one computing party, and Bob to
represent the other, but this does not always have to be the case. Alice and
Bob could offload their computations to two representatives (servers) that can
act as their computing parties.

3.4.2 Replicated Secret-Sharing for 3PC

The other secret-sharing scheme we use is a 3PC paradigm based on Replicated
Secret-Sharing (RSS) [45], which works by splitting data into replicated secret
shares. It is an honest-majority paradigm that guarantees protection of the
data owner’s inputs provided that no more than one out of the three computing
parties is corrupted. Similar to Section 3.4.1, the use of this technique requires
Alice and Bob to map each data value x into the ring via Equation (1), creating
z. Then, to secret-share z, the data owners split z into z1, z2, z3 ∈ Z uniformly
at random bound to the constraint z = z1 + z2 + z3 mod q. At this junction,
two of the three shares of z must be sent to the computing parties S1, S2, and
S3. Specifically, we have (z1, z2) go to S1, (z2, z3) to S2, and (z3, z1) to S3, i.e.,
party Si owns (zi, z(i mod 3)+1).

Similar to Section 3.4.1, there are several common operations that
can be performed locally without communication between the parties. Let
[[x]] = (x1, x2, x3) and [[y]] = (y1, y2, y3), where Si owns xi, x(i mod 3)+1 and
yi, y(i mod 3)+1, and let c be a constant in Zq, then, we have the following
operations that can be performed locally:

• Addition (z = x + y): Party Si computes (xi + yi, x(i mod 3)+1 +
y(i mod 3)+1), yielding proper shares of z. This operation is denoted as
[[z]] = [[x]] + [[y]].

• Multiplication by a constant (z = c · x): Party Si computes (c · xi, c ·
x(i mod 3)+1), yielding proper shares of z. This operation is denoted as
[[z]] = c · [[x]].

• Addition of a constant (z = x + c): Parties S1, S3 add c to x1. Despite
S2 not performing any operations, each party now holds a proper share
of z. This operation is denoted as [[z]] = [[x]] + c.

Secure Multi-Party Computation for Personalized HAR 11

Multiplication is a more involved operation, requiring communication
between the computing parties. To demonstrate this, suppose that the com-
puting parties own shares of two values, v, w, and wish to compute the product
v · w. Then with the equality v · w = (v1 + v2 + v3) · (w1 + w2 + w3) in mind,
consider the following:

S1 computes v1 · w1 + v1 · w2 + v2 · w1,

S2 computes v2 · w2 + v2 · w3 + v3 · w2,

S3 computes v3 · w3 + v3 · w1 + v1 · w3

(2)

Performing (2) gives the computing parties additive secret shares of v · w.
Now the parties need to transform their shares so that they are valid in a
RSS setting. This operation requires that each party Si sends a single value
to party S(i mod 3)+1, making this operation relatively cheap when compared
to the approach in Section 3.4.1. For more information on the specifics of how
this conversion takes place, we point the reader to [45].

This method of secret sharing is typically faster than common 2PC
approaches because the multiplication protocol is relatively lightweight, only
requiring the parties to send each other a single value, completely skipping OT
which was required in the additive sharing scheme. This is possible because of
the assumption that an honest majority of parties exist. This increase in speed
makes RSS an attractive scheme to use in MPC operations where runtime is
important and where the honest-majority assumption applies.

At first sight, this setting may seem less natural than what we saw in
Section 3.4.1 since we have two data owners and three computing parties.
However, our use-case can be extended to accommodate three computing par-
ties. For example, it could be the case that Alice acts as one party, Bob as
another, and there could be a third party, Charlie, perhaps a company who
provides their services to accommodate such protocols. It is also possible for
Alice and Bob to outsource the secure computations to three servers. Alice
and Bob secret-share their inputs with the servers, these servers run the 3PC
protocol based on RSS, and the shares of the results are sent to Alice, or Bob,
who can recover the final result.

In the case where a third party is undesirable, or not possible, our protocols
will work in a 2PC setting, potentially at the cost of efficiency. We remark that
if more efficient protocols are proposed to compute Beaver triples, they can
immediately be applied to our solutions, resulting in improved runtimes for
the 2PC setting. In Section 5.4, we compare the runtimes of both approaches.

3.4.3 Cryptographic Building Blocks

In Section 3.4.1 and 3.4.2, we described how to securely perform some of the
most primitive operations, including addition and multiplication. With these
operations, one can construct much more complicated protocols in a secure
manner. Below are all of the cryptographic building blocks we use to create our
novel protocols, πpers and πinfer, as seen in Section 4.2. Each of the protocols

12 Secure Multi-Party Computation for Personalized HAR

listed below require each of the computing parties to communicate with each
other. At the end of each protocol, the parties will all have secret shares of
the output of the protocol. For additional details regarding these protocols,
we refer the reader to [46].

• πeq: This protocol takes as input two secret shared values, [[a]], [[b]], and
returns [[1]] if a = b, and [[0]] otherwise.

• πscalar mul: This scalar multiplication protocol takes a secret shared scalar
[[a]], and a secret shared vector [[x]] = ⟨[[x1]], ..., [[xn]]⟩ as input, and
outputs ⟨[[a · x1]], ..., [[a · xn]]⟩. This protocol is a trivial extension of the
multiplication protocol πmul [21].

• πdiv: Given two secret shared values [[x]], [[y]], the computing parties exe-
cute πdiv, giving each of them a proper share of the quotient between x, y,
i.e., each party has the following share [[x/y]]. At a lower level, this pro-
tocol uses many operations to estimate the quotient, including Newton’s
method.

• πdot: Given two vectors [[x]] = ⟨[[x1]], ..., [[xn]]⟩ , [[y]] = ⟨[[y1]], ..., [[yn]]⟩, the
computing parties securely compute the element-wise product of each [[xi]]
and [[yi]], and then locally take the sum of said products.

• πL2: Given a vector [[x]] = ⟨[[x1]], ..., [[xn]]⟩, the parties calculate a secret
sharing of the Euclidean distance from the origin (L2 norm), i.e.,
[[
√

x2
1 + ...+ x2

n]]. To calculate πL2, the computing parties use πdot between
[[x]]and a copy of itself. They also execute the secure square root protocol,
which among other things also utilizes Newton’s method.

• πargmax: Given a vector [[x]] = ⟨[[x1]], ..., [[xn]]⟩, the parties perform secure
comparisons between the elements of [[x]] to find the largest value in the
vector, which we will call xi. After xi is found, the parties each receive a
secret share of i.

With these basic building blocks, we have everything we need to construct
the MPC protocols πpers and πinfer for privacy-preserving model personalizaton
and inference in Section 4.

4 Methodology

4.1 Personalization without Privacy

Lin and Marculescu [7] proposed a lightweight TL algorithm that can leverage
the knowledge gained from a Convolutional Neural Network (CNN) trained
on source domain data, and personalize that model to work better with spe-
cific people, representing the target domain in this case. The authors note in
their paper that a limitation of their work is that their personalization method
requires the aggregation of source domain and target domain data, which could
be problematic since the source domain may need to be kept private. In this
section, we propose protocol πpers (see Protocol 1) which extends the person-
alization method from [7] in a way that not only hides the values of the source
data Da, but also the end-user’s target data Db, and the parameters of the
model M itself.

Secure Multi-Party Computation for Personalized HAR 13

Algorithm 1 : Personalization Method In-The-Clear

Input ϕ, a feature extractor; D∗
a, source data; Db, target data; d,

unlabeled instance of data; Y , label space
Output y, class label inferred for d

1: C = D∗
a ∪Db

2: for j in Y do ▷ for each label j in Y
3: Xj = {x|(x, j) ∈ C} ▷ all data with label j
4: w̃j = mean{ϕ(x) | x ∈ Xj} ▷ element-wise average of projections of Xj

5: wj = w̃j/∥w̃j∥2 ▷ normalize vector
6: end for
7: y = argmaxj∈Y {wj · ϕ(d)}
8: return y

Pseudocode for the personalization method in-the-clear is shown in Algo-
rithm 1. The algorithm makes use of a feature extractor ϕ, which is Alice’s
pre-trained neural network M without the output layer, i.e. ϕ consists of all
the layers of M up to and including the last hidden layer. To use ϕ, we feed
data x into M as one would normally do, but instead of taking the output from
the output layer, we take the output from the last hidden layer of M . Assum-
ing M is an accurate model, ϕ(x) should give valuable information about the
raw data x. When we feed x through ϕ, we say that we are projecting x into
the feature space learned by the model. The input x is actually a matrix of
data, consisting of several sensor readings gathered over some period of time.
In contrast, ϕ(x) is a single vector of dimension n, where n is the number of
nodes in the last hidden layer in M .

In addition to ϕ, Algorithm 1 consumes a subset D∗
a of the source dataset

Da – which was presumably used by Alice to train the model M that the
feature extractor ϕ stems from – and a target dataset Db. Da and Db have the
same data schema, having ordered pairs (x, y) where x is sensor data indicating
a user’s movements, and y is an activity label denoting what those movements
correspond to. The set of all possible labels occurring in Da and Db is called
the label space, denoted as Y . Bob’s data Db consists of a few labeled instances
of Bob’s own data that serve as calibration data to assist the personalization
method.

The personalized model is created with a k-shot learning approach. In the
context of our work, k-shot means that D∗

a and Db each contain k data sam-
ples of each activity label. So for example, if there are 3 labels, e.g. walking,
jogging, and standing, then in a 5-shot setting, we collect 5 samples of data
corresponding to the walking, jogging, and standing activity each from both
data owner’s data, yielding 30 samples in total to train the personalized model.
For the purposes of Algorithm 1, Alice creates a random subset of her data
Da called D∗

a such that it is the same size as Db, both of which should have
k samples of each label. The small subset D∗

a of labeled source domain data
and the small set Db of labeled calibration data from the target domain are
combined into dataset C on line 1 in Algorithm 1. Subsequently all instances

14 Secure Multi-Party Computation for Personalized HAR

in C are grouped according to class label on line 3. For each class label j, the
projections of all instances with label j are averaged out on line 4 to yield a
weight vector w̃j which is prototypical for the training instances from class j,
absorbing information about such instances from both the source domain and
the target domain. On line 5, this weight vector is is normalized by dividing
by its L2 norm, resulting in the weight vector wj . All weight vectors together
form the weight matrix, W .

To infer the label for a new instance d, it is projected into the feature space
as well, and the index of the vector w̃j that has the highest cosine similarity
to ϕ(d) is returned as the inferred class label on line 7-8. Indeed, sim(w̃j , ϕ(d))
≥ sim(w̃j′ , ϕ(d)) iff

w̃j · ϕ(d)
∥w̃j∥2 ∥ϕ(d)∥2

≥
w̃j′ · ϕ(d)

∥w̃j′∥2 ∥ϕ(d)∥2
(3)

in other words if wj · ϕ(d) ≥ wj′ · ϕ(d).

4.2 MPC Protocols for Private Transfer Learning

Algorithm 1 is an in-the-clear algorithm that operates on plaintext, without
any regards for privacy. In this section, we present MPC protocols that enable
the same functionality as Algorithm 1 but in a privacy-preserving manner,
i.e. without disclosing any of Alice’s or Bob’s data. To this end, in Section
4.2.1 we present an MPC protocol πpers for model personalization that is the
privacy-preserving counterpart of line 1–6 in Algorithm 1, while in Section
4.2.2 we present an MPC protocol πinfer to perform the equivalent of line 7–
8 in Algorithm 1 in a private manner. Table 1 tracks who owns what in our
MPC protocols:

• Similarly as in Section 4.1, the model owner (application developer) Alice
owns Da and also D∗

a, which is a subset of Da. She also owns the feature
extractor ϕ, which can be used to project data into the feature space.
Target user Bob contributes a small calibration dataset Db. He also has
an unlabeled instance d that needs to be classified.

• Unlike in Section 4.1, Alice and Bob do not need to disclose their data
Da, D

∗
a, ϕ, Db, and even d to anyone in an unencrypted manner. Instead,

they send secret shares of their information to the computing parties (see
below). After the execution of Protocol 1 (called πpers), the computing
parties have shares of the weight matrix W , which constitutes the person-
alized model for Bob. With this matrix along with Bob’s unlabeled data
instance d, the computing parties can execute Protocol 2 (called πinfer) to
make an inference on what the label for d should be.

The label space Y and the hyperparameter k are considered public information,
i.e. all entities know the values of Y and k.

Secure Multi-Party Computation for Personalized HAR 15

Table 1 Ownership table

Owner Data Description

Alice
Da – Original source data
D∗

a – A randomly selected subset of the source data. This subset
should contain k instances of each label.

ϕ – Feature extractor derived from Alice’s pre-trained model
M that was originally trained on the source data.

Bob
Db – Labeled target data which will be used for calibration
d – unlabeled instance of data to be classified by πinfer

Secret-shared
among
computing
parties

W – Weight matrix that is computed by the computing par-
ties during the execution of πpers. This weight matrix is
the model personalized for Bob. No single party owns W ,
instead, they own shares of W . To classify new data with
W , the parties jointly execute πinfer.

Public Y – The label set with all possible labels.
k – Hyperparameter for k-shot learning. A number agreed

upon by the data owners before execution. Both data own-
ers (Alice and Bob) are expected to contribute at least k
instances of labeled data for each label in Y .

4.2.1 Privacy-Preserving Personalization Protocol

Pseudocode for πpers is given in Protocol 1. πpers requires two inputs to be
secret shared with the computing parties before the execution of the protocol,
namely ϕ, and Db. D

∗
a on the other hand does not need to be secret shared:

since Alice owns both the feature extractor ϕ and the source data D∗
a, she can

directly project all instances of D∗
a into the feature space (line 2-3) and use

these projections to initialize a weight vector w̃j for each label j. Together
these initialized weight vectors, containing sums of projected values for Alice’s
data, constitute the initialized weight matrix W̃ . To encrypt this matrix, Alice
converts it into secret shares, which she sends to the computing parties (cfr. line
7).

Line 1–6 correspond to an “offline phase” during which Alice performs oper-
ations by herself, using only her own data. After Alice has secret-shared the
result of these computations with the computing parties on line 7, an online
phase starts during which the computing parties perform operations over the
encrypted (secret-shared) [[W̃]] (i.e. [[w̃j]] for all labels j in Y), as well as the
secret-shared [[ϕ]] and [[Db]] that are given as an input to the protocol. Through-
out the remainder of Protocol 1 as well as in Protocol 2, all sub-protocols
that require communication between the parties are for clarity denoted with
a name starting with π. For example, the MPC sub-protocol that the parties
execute to securely compute the dot product of two vectors is denoted as πdot

(see Section 3.4.3). Operations that do not require communication between
parties, such as addition, are not be denoted by π.

On line 10-17, the computing parties process each instance in Bob’s cal-
ibration data Db by performing computations of the secret shared ([[x]], [[i]]).

16 Secure Multi-Party Computation for Personalized HAR

To this end, on line 11, the parties jointly and securely project each calibra-
tion instance into the feature space, which is done with πϕ. A suitable MPC
protocol πϕ can be easily adapted from existing MPC protocols for privacy-
preserving inference with neural networks. A variety of such MPC protocols
have been proposed in the literature for secure inference with a CNN (often
applied to image classification) [22, 25, 26, 38, 46, 47]. The main difference
here is that image classification is based on 2-dimensional (2D) CNNs, while
for our experiments in Section 5 we use a lightweight 1-dimensional (1D) CNN.
The aforementioned MPC based protocols for inference with 2D CNNs can be
straightforwardly adjusted to 1D CNNs (see e.g. [48]).

Protocol 1 πpers: Secure Personalization Method

Input [[ϕ]], secret-shared feature extractor; D∗
a, source data;

[[Db]], secret-shared target data; Y , label space and
k, number of examples for k-shot learning (publicly known)

Output [[W]], secret-shared weight matrix

1: start offline: Alice
2: for (x, j) ∈ D∗

a do
3: xϕ = ϕ (x)
4: w̃j + = xϕ

5: end for
6: end offline
7: Alice secret-shares W̃ with all computing parties
8:

9: start online: All computing parties
10: for ([[x]], [[i]]) in [[Db]] do
11: [[xϕ]] = πϕ ([[x]]) ▷ Compute secret shares of projection
12: for j in Y do
13: [[b]] = πeq ([[i]], j) ▷ Compare the i′th label to j
14: [[n]] = πscalar mul ([[b]], [[xϕ]]) ▷ “zeros” out xϕ if needed
15: [[w̃j]] + = [[n]]
16: end for
17: end for
18: for j in Y do
19: [[l]] = πL2 ([[w̃j]])
20: [[wj]] = πdiv ([[w̃j]], [[l]])
21: end for
22: end online
23: return [[W]] ▷ Collection of all weight vectors wj

After the projection into the feature space, the computing parties need
to add the secret-shared [[xϕ]] to the correct secret-shared weight vector w̃j .
However, since the label [[i]] is secret-shared between the computing parties,
none of the parties know which class the current calibration instance x belongs

Secure Multi-Party Computation for Personalized HAR 17

to. On line 12–13, the parties therefore perform a secure comparison between
the secret-shared label [[i]] and j, for each j in Y . The secure comparison
protocol, πeq, returns a secret sharing of 1, i.e. [[1]], if i is equal to j, and [[0]]
otherwise. Thus [[b]] on line 13 acts as a secret-shared Boolean value indicating
whether the currently considered instance from Bob’s data has the jth class
label or not. If it does not, then line 14 “zeros” out the projected data xϕ

with scalar multiplication so that it cannot contribute to the corresponding
weight vector, w̃j , on line 15. If equality is achieved, then the value of xϕ is
maintained, affecting w̃j .

After line 17, w̃j contains the sum of all feature representations of all
instances in C = D∗

a∪Db with the jth class label. What remains to be done is
to take the average by dividing with the total number of instances with label
j (namely 2 · k), and to L2 normalize the resulting vector. Since

1
2k w̃j

∥ 1
2k w̃j∥2

=
1
2k w̃j

1
2k∥w̃j∥2

=
w̃j

∥w̃j∥2
(4)

it suffices for the computing parties to obtain a secret-sharing of the L2 norm
of the vector w̃j by running protocol πL2 on line 19, and to run the secure
division protocol πdiv on line 20 to obtain the normalized vector. Finishing up
the for-loop that started on line 18 yields all vectors for the weight matrix W ,
concluding πpers.

4.2.2 Privacy-Preserving Personalized Inference Protocol

Protocol 1 allows to personalize a pre-trained model to a specific user using
some of their labeled data as calibration data. After its execution, all comput-
ing parties are left with shares of the weight matrix W , which, combined with
Alice’s feature extractor ϕ, is Bob’s personalized model, M∗. As described
in Section 4.1, this model is essentially a nearest neighbor classifier based on
cosine similarity.

Protocol 2 πinfer: Secure Inference Method

Input [[ϕ]], secret-shared feature extractor;
[[W]], secret-shared weight matrix;
[[d]], unlabeled instance of data

Output [[y]], secret-shared class label inferred for [[d]]

1: [[dϕ]] = πϕ([[d]])
2: for j in Y do
3: [[y∗]][j] = πdot ([[wj]], [[dϕ]])
4: end for
5: [[y]] = πargmax([[y

∗]])
6: return [[y]]

18 Secure Multi-Party Computation for Personalized HAR

To infer a label for Bob’s new instance d, the computing parties execute
Protocol 2. The protocol starts by having the computing parties jointly execute
protocol πϕ to project d into the feature space, yielding the vector dϕ. Then
on line 3, for each class label, the parties take the secure dot product between
[[wj]] and [[dϕ]], calculating their similarity. The parties then find the largest of
these dot products on line 5. This yields the inferred class label of d, being y.
The parties terminate πinfer with shares of y. All computing parties will then
send their shares of y to Bob, giving him the class label for his data instance d.

5 Results

We implemented our MPC protocols in MP-SPDZ [46], a benchmarking library
that supports a variety of MPC schemes. We ran our tests using an addi-
tive secret-sharing scheme with 2 parties (the semi2k-party.x protocol in the
MP-SPDZ ecosystem), and a replicated secret-sharing scheme using 3 parties
(replicated-ring-party.x protocol). All tests were performed with Standard F48s
v2 on Azure cloud computing servers. These machines have 48 vCPUs, 96 Gib
of RAM and Gib Ethernet. It should be noted that despite high amounts of
vCPUs and RAM, they are not often utilized. Our Protocol uses roughly 20
Gib of RAM at most, and is mostly single threaded. The primary benefit of
larger machines is that it gives us more regular access to high network through-
put, which is important in the context of MPC. All of our protocols run over
a ring of 64 bits, and we use extended daBits, as proposed by Escudero et. al.
[49]. These settings work for both the 3PC and 2PC approach we use.

5.1 Datasets

We performed our tests on the Sports and Daily Activity dataset (SDA) [50],
and the Sensors Activity dataset (SAC) [6].

The SDA dataset gathered sensor data from 8 participants. Measurements
from these participants were taken with three different sensors, namely an
accelerometer, a gyroscope, and a magnetometer, each with an x, y, z coordi-
nate, resulting in 9 measurement values. The original data was collected with
smartphones over 5 different body parts, so the dataset totals with 45 columns,
plus a class label that denotes the activity. Each participant performed 19 dif-
ferent activities such as sitting, walking, rowing, and jumping. Sensor data was
collected from each participant 25 times a second for 5 minutes, resulting in
7500 samples corresponding to each class label.

The other dataset, SAC, used three of the same sensors as SDA, but intro-
duced an additional sensor, a linear acceleration sensor. Just as before, each
sensor produced 3 coordinates, resulting in 12 measurement values. Addition-
ally the sensors were placed on five different body parts, resulting in 60 total
columns, plus a class label. Each participants performed 8 different activi-
ties such as sitting, walking, and running. Sensor data was collected from
each participant 50 times a second for 3 minutes, resulting in 9000 samples
corresponding to each class label.

Secure Multi-Party Computation for Personalized HAR 19

To mimic a realistic use case with measurements collected through smart
wristbands or watches, we only use sensor data from a single position. For the
SDA dataset, we use the data gathered while the phone was on the partici-
pant’s right arm (exact position not specified). For the SAC dataset, we used
sensor data gathered from the participant’s right wrist. We used these loca-
tions because they most closely resemble the position of a smart watch, which
is a fairly non-invasive device.

5.2 Data Preprocessing

We normalized the data column-wise by subtracting each value in the column
by the mean of the column, and then dividing by the standard deviation of
the column. Since all computations in our solution need to be carried out in a
privacy-preserving way, it can be advantageous to normalize the source data
Da and the target (i.e., test) data Db according to their own distribution, as
opposed to letting the target data be normalized according to the mean and
variance of the source data. The latter requires secure division, which can be
an expensive operation in the context of MPC. We show runtime results for
both normalization methods.

Each dataset that we performed tests on contains sensor data gathered
several times a second. In a preprocessing step, we broke the data into 1 second
windows, i.e., each data point contains all the sensor data gathered in a second,
making our datapoints matrices of sensor data. All the sensor data that was
put into each datapoint contained the same activity, and thus the class label
we associate with each data point is simply the activity all the sensor data
corresponded to. In doing this, each participant of the SDA dataset is left
with 5,700 datapoints (300 of each activity), each of which have 25 rows and
9 columns. Each participant in the SAC dataset is left with 1,260 datapoints
(180 of each activity), each of which have 50 rows, and 12 columns.

5.3 CNN Architecture

To infer activity labels from the sensor measurements, we use a one-
dimensional convolutional neural network (1D CNN), with an architecture
similar to the one proposed in [7]. The input to the CNN is a 2D matrix, where
each column corresponds to either an x, y, or z coordinate from a particular
sensor, and each row is the accumulation of this sensor data. The output is a
probability distribution over the activity labels.

We use a lean 1D CNN architecture that is efficient (even when used in
combination with the MPC protocols) for both datasets. The 1D CNN we use
for the SAC and the SDA datasets have the same layers, only differing in the
number of parameters. Table 2 displays the architectures of our CNNs, and
how the shape of the data changes from one layer to the next as a response to
our hyperparameter choices.

The layers in the CNN are standard (see e.g. [51] for details). We use a con-
volutional layer followed by a maxpool layer. We then follow up with another

20 Secure Multi-Party Computation for Personalized HAR

Table 2 CNN architecture details. The left table is the CNN we trained on the SDA
dataset, while the right table is the CNN we trained on the SAC dataset.

Layer (type)
Output
Shape

Param#

Conv1D (24, 8) 152
MaxPooling1D (12, 8) 0
Dropout (25%) (12, 8) 0
Conv1D (8, 128) 5248
MaxPooling1D (1, 128) 0
Dropout (25%) (1, 128) 0
Flatten (128) 0
Dense (50) 6450
Dense (19) 969

Total Params: 12,819

Layer (type)
Output
Shape

Param#

Conv1D (49, 16) 400
MaxPooling1D (24, 16) 0
Dropout (25%) (24, 16) 0
Conv1D (17, 128) 16512
MaxPooling1D (2, 128) 0
Dropout (25%) (2, 128) 0
Flatten (256) 0
Dense (50) 12850
Dense (7) 357

Total Params: 30,119

convolutional and maxpool layer. After the use of each individual convolution-
al/maxpool layer pair, we use a dropout of 25%. Both of the convolutional
layers use a hard sigmoid as the activation function. After we perform the last
maxpool layer, we flatten it and put it through a dense layer with ReLu as
the activation. Finally, we make an output layer using softmax. For the SDA
dataset, the first convolutional/maxpool layer pair had 8 filters with kernel
size 2, and a pool size of 2. The second convolutional/maxpool layer pair had
128 filters with kernel size 5, and a pool size of 8. For the SAC dataset, the
first pair of layers had 16 filters of kernel size 2, and a pool size of 2. For the
second pair, it used 128 filters with kernel size 8, and pool size 8.

We trained these CNN models in Keras [52]. Everything from each model,
except for the final softmax layer, is used as a feature extractor ϕ in protocols
πpers and πinfer.

5.4 Accuracy and Runtime Results

5.4.1 Accuracy

Choice of train and test data. We perform a leave-one-user-out analysis,
in which the data of 1 participant is held out as the target data (Bob), while
the data of the remaining participants is combined to form the source data Da

(Alice). For a benchmark dataset with n participants, we repeat this process
n times (n folds), letting each participant take a turn being the target user.
In each fold:

• For the source domain, we train a CNN on the source data Da. To col-
lect the subset of the source domain data that we use for training the
personalizer, D∗

a, we randomly select from Da, without replacement, k
datapoints that correspond to each activity.

• For the target domain, we create a dataset B by randomly sampling 20%
of the available instances for the target user. From B we subsequently
sample, without replacement, k datapoints corresponding to each activity.
We call the set of these k calibration datapoints Db, and test the person-
alized model on the remaining set T . B = Db∪T and ∅ = Db∩T , in other

Secure Multi-Party Computation for Personalized HAR 21

words the calibration dataset is distinct from the test dataset. We repeat
this process 5 times in each fold, and take the average over all results.

Table 3 shows the accuracy results when we normalize all the data accord-
ing to the distribution of the source data. Each result shows the model accuracy
for each target user. So for example, looking at the first row in the table, the
CNN column indicates the accuracy we obtained by training a CNN on users
2-8, and testing it on user 1. The CNN column does not involve any personal-
ization and was done in a non-privacy preserving manner. In each row, we also
show the k-shot accuracy, for k = 1, 5, 10, both using the original in-the-clear
personalizer [7] (“No Privacy”), and our MPC protocols πpers and πinfer (“Full
Privacy”).

Looking at the average results across all datasets, we see that the per-
sonalization method improves accuracy, and that larger calibration datasets
(10-shot vs. 1-shot learning) yield larger accuracy improvements. For the SDA
dataset, we obtained roughly a 7.5% increase in accuracy, and on the SAC
dataset, we see a smaller, yet still significant increase in accuracy of about
1%, demonstrating that personalization can benefit multiple datasets. For the
SDA dataset, as k increases, the variance across the different users lowers.
This, with the general increase in accuracy, suggests that most users benefited
from higher values of k. In contrast, the variance in the SAC dataset actually
increases with k. This, along with the general increase in accuracy, suggests
that while many users benefit from an increase in k, it can potentially have
no positive effect on accuracy for others. This can be seen from participant 1,
where k = 1 yielded the highest accuracy. This indicates that the personaliza-
tion method as we use it may in fact be sub-optimal for some users, suggesting
room for improvement in future research.

The second, and most important take-away regarding the method intro-
duced in this paper, is that HAR models can be personalized while protecting
the privacy of the users, without sacrificing accuracy. Indeed, the accuracy
results in the “Full Privacy” columns in Table 3 are at par with those in the
“No Privacy” columns. The small differences in accuracy between the algo-
rithm in-the-clear vs. the MPC protocols are to be expected. In MPC all the
computations have to be decomposed in additions and multiplications. Thus,
it is common to work with approximations of functions which can have some
affect on the output of our model. Despite this, the accuracy between the
in-the-clear models and ours is very minimal, and within the range of ±0.67%

Table 4 is similar to the previous table, but here we show the accuracies
we obtain when we normalize the target and source domain data according
to their own distribution, which was done in order to avoid secure division.
Similar to the previous table, we see that both datasets can benefit from the
personalization method. Using our secure method, the SDA dataset received an
increase in accuracy of about 14%, and the SAC dataset obtained an increase
of about 0.8%. Unfortunately, the overall accuracy of the SDA dataset in Table
4 fell by about 4%, and thus clearly suffered from our decision to normalize the
data domains by their own distribution. In contrast, the SAC dataset seemed

22 Secure Multi-Party Computation for Personalized HAR

Table 3 Accuracy results (including average and variance) for the SDA and SAC dataset
where each individual participant had a turn to represent the target domain. The results in
this table were obtained by normalizing all data by the distribution of data in the source
domain.

No Privacy (as in [7]) Full Privacy (MPC)
Target Personalized Models Personalized Models

Data User CNN 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot
SDA 1 73.09 69.85 78.62 80.33 72.03 78.75 79.72

2 78.46 76.84 80.47 81.29 77.25 80.56 80.59
3 78.26 73.15 83.12 81.87 72.69 81.85 80.42
4 84.57 82.25 86.12 88.22 81.32 86.95 87.18
5 81.35 87.73 93.96 93.78 87.15 92.89 92.98
6 67.01 73.74 83.65 84.10 73.70 83.27 84.08
7 82.20 80.23 89.35 88.99 79.98 89.33 88.73
8 69.56 75.79 79.38 82.59 75.41 80.31 82.14

avg 76.81 77.45 84.33 85.15 77.44 84.24 84.48
var 34.64 28.70 24.38 19.40 23.22 21.70 19.69

SAC 1 86.50 88.27 87.48 87.45 87.96 87.23 87.45
2 93.55 91.43 91.18 92.99 92.00 91.68 92.81
3 95.71 94.37 96.39 96.10 95.35 96.47 96.02
4 97.96 94.69 96.89 98.18 95.27 97.23 98.27
5 92.64 91.76 94.62 94.20 92.57 95.71 94.63
6 94.28 91.59 93.70 93.33 91.92 94.12 93.42
7 96.69 94.04 97.31 97.75 94.20 97.73 97.92
8 95.44 95.59 95.80 96.45 96.33 96.39 96.97
9 94.25 94.69 95.29 95.76 95.10 94.71 96.28

10 91.83 91.10 93.03 94.89 91.76 93.45 94.81
avg 93.89 92.75 94.17 94.71 93.25 94.47 94.86
var 9.09 4.67 8.15 8.52 5.63 8.89 9.00

mostly unphased by this decision, possibly making it ideal to normalize the
datasets according to their distribution in the context of the SAC dataset.

Given the results of both Tables 3, 4 we see that typically speaking the more
labeled data from the target and source domain we have, the more accurate we
can make the personalized model. Thus, higher values of k should be perused if
at all possible. Additionally, given the differences of Tables 3, 4 we see that it is
typically far safer to normalize data according to the distribution of the source
domain. Thus, if we can incur the additional time spent on secure training
and inference, we should normalize according to the source domain in order to
more reliably obtain high accuracy.

5.4.2 Runtime

Tables 5 and 6 describe the runtime, in seconds, it takes to train our per-
sonalized k-shot classifier for k = 1, 5, 10 using the 2PC scheme and the 3PC
scheme, respectively. It also shows how long it takes, on average, to classify a
new, unseen instance of data, both sequentially, and batching the classification
into groups of 15. To perform sequential classifications, we used MP-SPDZ’s
@for range(length of test data) to loop over the test data, and to per-
form batched classifications, we used MP-SPDZ’s @for range parallel(15,

Secure Multi-Party Computation for Personalized HAR 23

Table 4 Accuracy results (including average and variance) for the SDA and SAC dataset
where each individual participant had a turn to represent the target domain. The results in
this table were obtained by normalizing all data by the datasets’ own distribution.

No Privacy (as in [7]) Full Privacy (MPC)
Target Personalized Models Personalized Models

Data User CNN 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot
SDA 1 67.36 70.54 79.87 82.05 70.76 79.75 81.87

2 64.57 67.92 74.45 76.81 67.69 74.10 76.69
3 58.77 73.79 78.58 79.76 73.54 78.02 79.52
4 79.17 74.27 78.75 79.91 75.02 79.51 79.67
5 63.84 79.79 93.97 92.58 79.59 92.65 91.38
6 61.94 68.12 71.98 74.52 68.15 71.98 74.68
7 70.08 73.65 79.07 82.99 73.47 79.64 83.05
8 66.34 75.61 77.50 77.40 75.47 78.09 77.86

avg 66.51 72.96 79.27 80.75 72.96 79.22 80.59
var 33.18 13.90 37.09 26.74 13.86 32.78 22.96

SAC 1 88.60 86.26 88.24 89.18 87.14 87.90 88.92
2 92.05 90.53 91.43 92.47 91.43 91.60 92.38
3 96.90 94.69 96.64 98.18 95.27 96.81 98.44
4 97.50 93.39 96.97 96.36 92.90 96.97 96.54
5 92.27 90.12 90.84 92.73 90.86 91.34 93.25
6 94.36 90.86 93.95 93.94 90.94 94.62 93.85
7 96.25 96.82 97.65 97.75 96.98 97.73 97.84
8 95.01 92.98 95.80 96.19 92.73 95.29 96.02
9 93.41 95.10 94.03 93.77 94.20 94.45 95.41

10 90.52 92.00 92.10 91.52 91.51 92.69 92.38
avg 93.69 92.28 93.77 94.21 92.40 93.94 94.50
var 7.43 8.22 8.52 7.49 6.67 8.46 7.61

length of test data). The “# Params” column tells us how large the fea-
ture extractor is in terms of parameters. Recall that the feature extractor
is Alice’s model M without the last dense layer, which is why the number
of parameters in these tables are slightly less than what is show in Table 2.
Lastly, we have the “Normalized” column. In this column, we have the field
“Source” which tells us that all data was normalized by the source domain
distribution, thus requiring secure division. The field “Self” tells us that data
from the source and target domain was normalized each according to its own
distribution in-the-clear, avoiding secure division.

As a baseline, we also performed runtime tests on the personalization
method without any security. The times were nearly instantaneous, and for
that reason, we only report results for k = 10 on both datasets, where all test
data was classified sequentially. Training a personalized model took 0.11 sec-
onds on the the SDA dataset while an average of 0.0018 seconds was needed
for classifying instances. For the SAC dataset, we obtained 0.07 seconds for
training runtime, and an average of 0.0019 seconds for classifying an instance.
Our lightweight classifier hardly takes any time at all to train or classify when
no MPC is in play. Below we discuss Table 5 and 6 which show how long our
approach takes when we apply MPC techniques to it.

Table 5 shows our runtimes using the additive sharing 2PC approach. Times
for πpers are fairly efficient, scaling linearly with k. Note that the data required

24 Secure Multi-Party Computation for Personalized HAR

to train on the SDA dataset is far more than the data required to train on the
SAC dataset. This is because SDA has 19 activities, while SAC has 7, hence
for k = 10, we use 10 · 19 · 2 = 380 samples to train πpers on SDA, and only
10 · 7 · 2 = 140 samples to train πpers on SAC. Despite this, the runtimes for
πpers are similar between the two datasets. This is because the feature extractor
for SAC is more than twice as large than that of SDA, evening out the total
runtimes. We note that as long as πpers does not take an egregious amount
of time to execute, its runtimes are not that important. This is because a
personalized model only needs to be trained once (or once in a while), and
training could be performed when the target user is asleep, for example, not
affecting their daily routine at all.

Table 5 Runtimes for the 2PC additive secret sharing scheme from Section 3.4.1.
#Params tell us how large the feature extractor was. Column πpers shows how long
it takes to train a classifier in a 1,5, and 10-shot setting. Column πinfer shows how
long, on average, it takes to infer data sequentially and in batches of 15.

Runtime Results for Additive Secret-Sharing Approach (2PC)
Data # Params Normalized πpers πinfer

1-shot 5-shot 10-shot sequential batched (15)
SDA 11,850 Source 18.77s 87.84s 177.86s 0.98s 0.88s

Self 16.64s 78.44s 156.75s 0.93s 0.77s

1-shot 5-shot 10-shot sequential batched (15)
SAC 29,762 Source 16.98s 84.15s 163.72s 2.69s 2.61s

Self 15.66s 75.01s 149.44s 2.51s 2.40s

Table 6 Runtimes for the 3PC replicated secret sharing scheme from section 3.4.2
#Params tell us how large the feature extractor was. Column πpers shows how long
it takes to train a classifier in a 1,5, and 10-shot setting. Column πinfer shows how
long, on average, it takes to infer data sequentially and in batches of 15.

Runtime Results for Replicated Secret-Sharing Approach (3PC)
Data # Params Normalized πpers πinfer

1-shot 5-shot 10-shot sequential batched (15)
SDA 11,850 Source 8.39s 39.55s 77.57s 0.42s 0.41s

Self 8.27s 38.10s 78.00s 0.41s 0.42s

1-shot 5-shot 10-shot sequential batched (15)
SAC 29,762 Source 4.44s 20.88s 42.02s 0.67s 0.65s

Self 4.30s 20.95s 41.25s 0.67s 0.66s

What’s more pressing are the runtimes for πinfer. Recall that data was
collected in 1 second windows, so in order for our work to be performed in
real time, πinfer must take less than a second on average. For the SDA dataset,
we accomplish this by a thin margin. Performing classifications sequentially
has our protocol take just under a second at 0.98 seconds when normalizing
according to the source distribution, and 0.93 seconds when normalizing data
according to its own distribution. Batching performs a little better, giving
us some more breathing room, taking an average of 0.88 seconds with the
“Source” field, which means it took a total of 15 · 0.88 = 13.2 seconds total to

Secure Multi-Party Computation for Personalized HAR 25

classify all 15 samples, and 0.77 seconds (11.55 total seconds) with the “Self”
field. In contrast, our results for the SAC dataset take more than twice as
long. Again, this is likely because the feature extractor is more than twice as
large as the one for the SDA data in terms of the number of parameters. When
normalizing data by the distribution of the source domain data, we see a slight
increase in runtime when compared to runtimes when we normalize the data
in-the-clear by its own distribution. Although saving ourselves some time can
be valuable, given how small the margin is, the potential decrease in accuracy
may not be worth it.

Table 6 shows our runtimes using the replicated sharing (RSS) 3PC
approach. As we can see, these runtimes are significantly better than those of
Table 5, because of the difference in security setting: the 3PC approach pro-
vides security in a setting with 3 computing parties, out of which at most one
is corrupted (honest majority) while for the 2PC approach only 2 computing
parties are needed, one of which can be corrupted (dishonest majority). Run-
times for πpers in Table 6 are very low, taking under 80 seconds for SDA in
the 10-shot scenario, and are nearly half of that for the SAC dataset. In fact,
πpers on the SAC dataset was consistently about half the runtime of SDA. The
performance on the datasets differs from what we saw in Table 5, whose run-
times for πpers were all roughly the same time. This could be for a multitude of
reasons. One possibility is that since multiplication in the context of the 3PC
setting takes significantly less time than that of the 2PC setting, the overhead
introduced by the other operations, such as secure comparisons in the max
pooling layer, might have become more prevalent, resulting in wider runtime
gaps.

Possibly even more interesting is that our protocols seem completely
unphased by the division introduced by normalizing data according to the
source domain, and batching samples of data in the classification phase. The
former is likely because division in the context of the 3PC setting is also rela-
tively fast, and we did not have to perform enough of it to see a serious impact
in runtimes. In terms of batching operations, the main benefit is that we can
batch communication rounds more efficiently. Given how little communication
the RSS scheme needs in order to perform several primitive operations, it could
be that the protocol does not really benefit from batching only 15 samples of
data.

5.4.3 Security

The security of our protocols follows immediately from the fact we only
compute on secret-shared values and from the security and composability
of the protocols for addition and multiplication presented in the MP-SPDZ
framework [46].

26 Secure Multi-Party Computation for Personalized HAR

6 Conclusion

We presented, to the best of our knowledge, the first Secure Multi-Party
Computation (MPC) solution for privacy-preserving personalization of Human
Activity Recognition (HAR) models from wearable sensor data. While algo-
rithms to improve accuracy in HAR through transfer learning have been
proposed before, existing methods assumed that the target user discloses their
calibration data to the HAR application developer. Our MPC protocols on
the other hand enable model calibration and inference without leaking any
sensitive information from the end-user (target domain) to the model owner
(source domain), without leaking the source domain information in the clear
to the end-user, and without sacrificing accuracy.

The price paid to obtain privacy while preserving accuracy is a substantial
increase in runtime compared to when computations are performed in plain-
text, i.e. without encryption. Reducing the computational and communication
cost incurred by the computing parties who execute the cryptographic pro-
tocols is an important challenge that can be tackled from two main research
directions: through optimizations of a cryptographic nature and through delib-
erate choice of MPC-friendly machine learning techniques. In this paper we
have focused on the latter with a lightweight personalization technique that
lended itself well to develop very efficient MPC protocols. We have imple-
mented our MPC protocols for model personalization and inference in an
off-the-shelf MPC framework (MP-SPDZ). We have demonstrated on bench-
mark datasets how our implementation can be used to personalize 1D CNNs for
HAR and for real time classification, without sacrificing privacy nor accuracy.

The MPC protocols that we presented are general: they only assume the
availability of some data from the source domain in which the model was
trained, some calibration data from the target domain, and a feature vector
(i.e. representation) extractor trained in the source domain. This means that
our MPC protocols can also be used for 2D CNNs, LSTMs, RNNs, or any
other neural network architecture. Indeed, plugging in a different kind of neural
network architecture in our MPC solution only requires replacing the MPC
sub-protocol πϕ used on line 11 in protocol πpers and on line 1 in protocol
πinfer. As confirmed by our experiments, the runtime of the MPC protocols
is influenced by the size of the feature extractors (i.e. the number of model
parameters), which means that designing small and accurate neural networks
for privacy-preserving HAR – as we have done for 1D CNN – is a relevant
challenge in itself.

Another direction for future work that will almost certainly yield accuracy
improvements in privacy-preserving HAR is the incorporation of data prepro-
cessing and transformation techniques, including the design of MPC protocols
as needed to preserve privacy during the preprocessing stage. As we noted,
a simple MPC protocol (secure division) for normalization based on the data
distributions from both source and target domain resulted in an accuracy
improvement in our experiments. Similarly, one could design MPC protocols
for outlier detection and removal or for extraction of statistical features (such

Secure Multi-Party Computation for Personalized HAR 27

as mean and variance of each input data channel) to augment the features
extracted by the neural network. We hope that our work provides a bench-
mark for privacy in model calibration for HAR, and inspires improvements in
accuracy and efficiency in future work.

Acknowledgments. The authors would like to thank Microsoft for the gen-
erous donation of cloud computing credits through the UW Azure Cloud
Computing Credits for Research program.

References

[1] Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering 22(10), 1345–1359 (2009)

[2] Yang, Q., Zhang, Y., Dai, W., Pan, S.J.: Transfer Learning. Cambridge
University Press, United Kingdom (2020)

[3] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.:
A comprehensive survey on transfer learning. Proceedings of the IEEE
109(1), 43–76 (2021)

[4] Hernandez, N., Lundström, J., Favela, J., McChesney, I., Arnrich, B.: Lit-
erature review on transfer learning for human activity recognition using
mobile and wearable devices with environmental technology. Springer
Nature Computer Science 1(66) (2020)

[5] Mehrang, S., Pietila, J., Tolonen, J., Helander, E., Jimison, H., Pavel, M.,
Korhonen, I.: Human activity recognition using a single optical heart rate
monitoring wristband equipped with triaxial accelerometer. In: Joint Con-
ference of the European Medical and Biological Engineering Conference
(EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering
and Medical Physics (NBC), pp. 587–590 (2017)

[6] Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P.: Fusion of
smartphone motion sensors for physical activity recognition. Sensors 14,
10146–10176 (2014)

[7] Lin, C.-Y., Marculescu, R.: Model personalization for human activity
recognition. In: 2020 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops) (2020)

[8] Lin, Y.-P., Jung, T.-P.: Improving EEG-based emotion classification using
conditional transfer learning. Frontiers in Human Neuroscience 11, 334
(2017)

[9] Wu, D., Xu, Y., Lu, B.-L.: Transfer learning for EEG-based brain-
computer interfaces: A review of progress made since 2016. IEEE

28 Secure Multi-Party Computation for Personalized HAR

Transactions on Cognitive and Developmental Systems, 4–19 (2020)

[10] Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.: The secret sharer:
Evaluating and testing unintended memorization in neural networks. In:
28th USENIX Security Symposium, pp. 267–284 (2019)

[11] Balli, S., Sağbaş, E.A., Peker, M.: Human activity recognition from
smart watch sensor data using a hybrid of principal component analysis
and random forest algorithm. Measurement and Control 52(1-2), 37–45
(2019)

[12] Cramer, R., Damgard, I., Nielsen, J.: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press Print, New York (2015)

[13] Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji,
A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira,
R.G.L., Eichner, H., Rouayheb, S.E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P.B., Gruteser, M., Harchaoui, Z., He,
C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi,
G., Khodak, M., Konecný, J., Korolova, A., Koushanfar, F., Koyejo, S.,
Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D., Song, W.,
Stich, S.U., Sun, Z., Suresh, A.T., Tramèr, F., Vepakomma, P., Wang, J.,
Xiong, L., Xu, Z., Yang, Q., Yu, F.X., Yu, H., Zhao, S.: Advances and
open problems in federated learning. Foundations and Trends in Machine
Learning 14(1–2), 1–210 (2021)

[14] Presotto, R., Civitarese, G., Bettini, C.: FedCLAR: federated clustering
for personalized sensor-based human activity recognition. In: 2022 IEEE
International Conference on Pervasive Computing and Communications
(PerCom), pp. 227–236 (2022)

[15] Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: FedHealth: a federated
transfer learning framework for wearable healthcare. IEEE Intelligent
Systems 35(4), 83–93 (2020)

[16] Hu, R., Guo, Y., Li, H., Pei, Q., Gong, Y.: Personalized federated learning
with differential privacy. IEEE Internet of Things Journal 7(10), 9530–
9539 (2020)

[17] Liu, S., Wang, J., Zhang, W.: Federated personalized random forest for
human activity recognition. Mathematical Biosciences and Engineering
19, 953–971 (2021)

[18] Dwork, C., Roth, A.: The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science 9(3-4), 211–407
(2014)

Secure Multi-Party Computation for Personalized HAR 29

[19] Hashemian, M., Razzazi, F., Zarrabi, H., Moin, M.S.: A privacy-preserving
distributed transfer learning in activity recognition. Telecommunication
Systems: Modelling, Analysis, Design and Management 72(1), 69–79
(2019)

[20] Hashemian, M., Razzazi, F., Zarrabi, H., Moin, M.: Semi-supervised and
unsupervised privacy-preserving distributed transfer learning approach in
HAR systems. Wireless Personal Communications 117, 1–18 (2021)

[21] Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to
secure multi-party computation. Foundations and Trends in Privacy and
Security 2(2-3), 70–246 (2018)

[22] Dalskov, A., Escudero, D., Keller, M.: Secure evaluation of quantized neu-
ral networks. Proceedings on Privacy Enhancing Technologies 2020(4),
355–375 (2020)

[23] De Cock, M., Dowsley, R., Horst, C., Katti, R., Nascimento, A., Poon,
W.-S., Truex, S.: Efficient and private scoring of decision trees, support
vector machines and logistic regression models based on pre-computation.
IEEE Transactions on Dependable and Secure Computing 16(2), 217–230
(2019)

[24] Fritchman, K., Saminathan, K., Dowsley, R., Hughes, T., De Cock, M.,
Nascimento, A., Teredesai, A.: Privacy-preserving scoring of tree ensem-
bles: A novel framework for AI in healthcare. In: Proceedings of 2018
IEEE BigData, pp. 2412–2421 (2018)

[25] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low
latency framework for secure neural network inference. In: 27th USENIX
Security Symposium, pp. 1651–1669 (2018)

[26] Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma,
R.: CrypTFlow: Secure TensorFlow inference. In: 41st IEEE Symposium
on Security and Privacy, pp. 336–353 (2020)

[27] Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predic-
tions via MiniONN transformations. In: ACM SIGSAC Conference on
Computer and Communications Security, pp. 619–631 (2017)

[28] Reich, D., Todoki, A., Dowsley, R., De Cock, M., Nascimento, A.: Privacy-
preserving classification of personal text messages with secure multi-party
computation. In: Advances in Neural Information Processing Systems
(NeurIPS), vol. 32, pp. 3752–3764 (2019)

[29] Riazi, S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T.,
Koushanfar, F.: Chameleon: A hybrid secure computation framework for

30 Secure Multi-Party Computation for Personalized HAR

machine learning applications. In: Asia Conference on Computer and
Communications Security, pp. 707–721 (2018). ACM

[30] Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: Scalable
provably-secure deep learning. In: 55th Annual Design Automation Con-
ference (DAC) (2018)

[31] Agarwal, A., Dowsley, R., McKinney, N.D., Wu, D., Lin, C.-T., De Cock,
M., Nascimento, A.: Protecting privacy of users in brain-computer
interface applications. IEEE Transactions on Neural Systems and Reha-
bilitation Engineering 27(8), 1546–1555 (2019)

[32] De Cock, M., Dowsley, R., Nascimento, A.C.A., Newman, S.C.: Fast,
privacy preserving linear regression over distributed datasets based on pre-
distributed data. In: Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, pp. 3–14 (2015)

[33] Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft,
N.: Privacy-preserving ridge regression on hundreds of millions of records.
In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 334–348
(2013)

[34] Abspoel, M., Escudero, D., Volgushev, N.: Secure training of decision
trees with continuous attributes. Proceedings on Privacy Enhancing
Technologies 2021(1), 167–187 (2021)

[35] de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical
secure decision tree learning in a teletreatment application. In: Inter-
national Conference on Financial Cryptography and Data Security, pp.
179–194 (2014)

[36] Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Annual
International Cryptology Conference, pp. 36–54 (2000)

[37] Adams, S., Choudhary, C., De Cock, M., Dowsley, R., Melanson, D.,
Nascimento, A.C., Railsback, D., Shen, J.: Privacy-preserving training of
tree ensembles over continuous data. Proceedings on Privacy Enhancing
Technologies (2), 205–226 (2022)

[38] Agrawal, N., Shahin Shamsabadi, A., Kusner, M.J., Gascón, A.: QUO-
TIENT: two-party secure neural network training and prediction. In:
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1231–1247 (2019)

[39] De Cock, M., Dowsley, R., Nascimento, A.C.A., Railsback, D., Shen, J.,
Todoki, A.: High performance logistic regression for privacy-preserving
genome analysis. BMC Medical Genomics 14(1), 23 (2021)

Secure Multi-Party Computation for Personalized HAR 31

[40] Guo, C., Hannun, A., Knott, B., van der Maaten, L., Tygert, M., Zhu, R.:
Secure multiparty computations in floating-point arithmetic. Information
and Inference: A Journal of the IMA 11(1), 103–135 (2021)

[41] Mohassel, P., Zhang, Y.: SecureML: A system for scalable privacy-
preserving machine learning. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 19–38 (2017)

[42] Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure compu-
tation for neural network training. Proceedings on Privacy Enhancing
Technologies 2019(3), 26–49 (2019)

[43] Beaver, D.: Commodity-based cryptography (extended abstract). In: Pro-
ceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing. STOC ’97, pp. 446–455 (1997)

[44] Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR
Cryptol. ePrint Arch. 2005(187) (2005)

[45] Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In:
ACM SIGSAC Conference on Computer and Communications Security,
pp. 805–817 (2016)

[46] Keller, M.: MP-SPDZ: A versatile framework for multi-party computa-
tion. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1575–1590 (2020)

[47] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi:
A cryptographic inference service for neural networks. In: 29th USENIX
Security Symposium, pp. 2505–2522 (2020)

[48] Adams, S., Melanson, D., De Cock, M.: Private text classification with
convolutional neural networks. In: Proceedings of the Third Workshop on
Privacy in Natural Language Processing (NAACL Workshops), pp. 53–58
(2021)

[49] Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved
primitives for MPC over mixed arithmetic-binary circuits. In: Annual
International Cryptology Conference, pp. 823–852 (2020)

[50] Barshan, B., Yüksek, M.C.: Recognizing daily and sports activities in two
open source machine learning environments using body-worn sensor units.
The Computer Journal 57(11), 1649–1667 (2014)

[51] Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive Into Deep Learning,
(2022). https://d2l.ai

https://d2l.ai

32 Secure Multi-Party Computation for Personalized HAR

[52] Chollet, F., et al.: Keras. https://github.com/fchollet/keras

https://github.com/fchollet/keras

	Introduction
	Related Work
	Preliminaries on MPC
	Introduction
	MPC Idea and Adversarial Models
	Fixed Point Representation in a Ring
	Secret-Sharing based MPC
	Additive Secret-Sharing for 2PC
	Replicated Secret-Sharing for 3PC
	Cryptographic Building Blocks

	Methodology
	Personalization without Privacy
	MPC Protocols for Private Transfer Learning
	Privacy-Preserving Personalization Protocol
	Privacy-Preserving Personalized Inference Protocol

	Results
	Datasets
	Data Preprocessing
	CNN Architecture
	Accuracy and Runtime Results
	Accuracy
	Runtime
	Security

	Conclusion
	Acknowledgments

