Malicious DNS Tunneling Detection in Real-Traffic DNS Data

Danielle Lambion*, Michael Josten*, Femi Olumofint, Martine De Cock*
* School of Engineering and Technology, University of Washington, Tacoma, USA
Email: {dlambion, mjosten, mdecock} @uw.edu
f Infoblox, Santa Clara, USA, Email: folumofin@infoblox.com

Abstract—While originally not intended for data transfer,
the Domain Name System (DNS) is currently used to this end
anyway, in a process called DNS tunneling (DNST). Malicious
users exploit DNST for data exfiltration from infected ma-
chines, posing a critical security threat. We train and evaluate
state-of-the-art convolutional neural network, random forest,
and ensemble classifiers to detect tunneling in DNS traffic.
Finally, we assess the classifiers’ performance and robustness
by exposing them to one day of real-traffic data.

Keywords-DNS tunneling, random forest, CNN

I. INTRODUCTION

DNS servers resolve domain names to IP addresses to
route connections on the internet. Since the DNS protocol
is not meant for data transfer, it is often overlooked by
security administrators when hunting for illegitimate data
transfers. Malicious users exploit such knowledge to extract
confidential data from compromised computers by encoding
the data to be tunneled within a DNS query name, while
avoiding firewalls and other network security monitoring
mechanisms. So-called DNS tunneling (DNST) is used for
benign purposes as well, such as a computer sending a
document to a wireless printer or an antivirus software
sending updates to a computer. This mixed use of DNST
for legitimate and illegitimate purposes makes detecting
malicious DNST in real traffic very challenging.

We developed state-of-the-art machine learning (ML)
classifiers for the detection of DNST attacks, using a com-
bination of random forest (RF) and convolutional neural
network (CNN) models. The CNN is trained on the query
names themselves as input, while for the RF we leverage
domain expertise from the literature on informative features
to extract from DNS queries, and the grouping of DNS
queries in batches for more accurate classification [1], [2].
While previous work has mostly been applied to synthetic
data that is generated with known tunneling software, we
train and evaluate our classifiers on real traffic data.

II. METHODS

Dataset. We created a dataset from a real-time stream
of passive DNS data, collected from subscribers including
Internet Service Providers, schools, and businesses. For each
instance, the dataset contains the query name, query type,
IP address, and query time and date. A fictitious example of

M. De Cock is a Guest Professor at Ghent University

978-1-7281-6251-5/20/$31.00 ©2020 IEEE

257b700cx.360t1ls.com 257b700c
26lelccax.360tls.com | 26lelcca
26580alax.360tls.com | 26580ala

Figure 1. Query names before (left) and after (right) removal of the
common suffix x.360t1s.com.

a DNS query name is ata000g10289.badsite.com,
where . com is the top-level domain (TLD), badsite.com
is the second-level domain (SLD), and ata000g10289 is
the prefix. In DNST, the exfiltrated information (payload) is
contained in such prefixes.

Each instance in the dataset has one of three labels,
shown in the left column of Table 1. “Non-tunneling traffic”
refers to instances flagged as DNST traffic by a deployed
DNST detector, and deemed to be false positives by security
analysts. Our goal is to train a classifier that can distin-
guish malicious traffic, i.e. (3), from benign traffic, i.e. (1)-
(2). Since only a limited amount of data can be tunneled
within each query name, data exfiltration is typically done
over multiple queries combined. To detect DNST behavior
more reliably, we therefore grouped queries with the same
SLD, day, and IP address. Similar grouping methods have
been proposed before [1], [2], [3]. In addition to grouping,
we removed instances not considered to be beneficial for
training and testing a DNST detector, as explained in the
curation steps below:

1) From the raw dataset, we removed all query names that
have .arpa as TLD. This TLD is exclusively used for
internet infrastructure and can never be a tunnel.

2) We grouped query names by the defined grouping crite-
ria: SLD, day, and IP address.

3) We removed any groups of size one. These are assumed
to be non-tunnels as a single query is insufficient to
tunnel information.

4) We retrieved the prefix portion by removing the common
suffix from the query names within a group. For DNST
traffic, this portion would be the payload. The suffix for
some groups surpasses the SLD, as illustrated in Fig. 1.
In the remainder of this paper, by “prefix” we mean the
string that is left after removal of the common suffix.

5) We removed query names with an empty prefix after
common suffix removal. These are assumed to be non-
tunnels as information cannot be passed without a prefix.
Any groups with only 0 or 1 query name left are dropped.

Table T
TRAIN AND TEST DATASET STATISTICS

Train Test
instances | # groups | # instances | # groups
negative (1) Normal Resolved 20,779 3,363 21,073 8,455
(2) Non-Tunnel 484,472 3,363 471,001 4,524
positive (3) DNS Tunnel (DNST) 58,743 6,726 2,820 587

Repeated Characters Ratio

—— (1) Normal Resolved
10 (2) Non-Tunnel
""" (3) DNS Tunnel

Density

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 2. Feature analysis for feature 6 in Table II.

The curated dataset contains 7,313 groups of DNST
traffic. We randomly selected 90% of the SLDs occurring
in this DNS Tunnel traffic and assigned the corresponding
6,726 groups to the train data, while reserving the remaining
587 groups as test data. These are examples of the positive
class for our binary classifiers. For the negative examples in
the training data, we selected 3,363 groups of categories (1)
and (2) each, to balance out the 6,726 groups of category
(3). In initial experiments, we found such a balanced train
set to yield better results. As evident from the last column
in Table I, the distribution of the categories in the test data
is not balanced at all, to more closely reflect a real traffic
situation. As described in Sec. III, after training and testing
our classifiers on the data from Table I, we applied them
to one day of real-traffic data to assess their usefulness for
practical deployment in a DNST detection system.

Convolutional Neural Network (CNN) Classifier. We
trained a CNN to classify individual DNS query names,
and subsequently use majority voting to label groups of
DNS queries. We used the multichannel CNN architecture
proposed by Saxe and Berlin [6] that has been applied
successfully before for the related problem of detection of
domain generation algorithms [7]. In this architecture, an
embedding layer is followed by four parallel convolutional
layers with incrementing kernel sizes of 2, 3, 4, and 5, each
with 256 filters. Each convolutional layer learns to detect the
soft presence of soft character n-grams (with n = 2, 3,4, 5).
This is reminiscent of the use of bigrams to detect DNS
tunneling domains by Qi et al. [8]. The outputs of the parallel
convolutional layers are fed into two hidden layers, each
with 1024 nodes. The results of the hidden layers reach a
single node output layer with a sigmoid activation function.
Similar to [9], we use integer encoding with padding on the
prefix as input to the CNN model.

Random Forest (RF) Classifier. In addition to the CNN,
we trained a RF using 100 trees, and entropy as the criterion

Random Forest Feature Importances

!

Figure 3. Feature importance ranking for the RF+CNN model trained with
the training data in Table I using the features in Table II.

Importance
=] = o
= ES @

=
¥}

=
=)

+++*++++
6 8 11 2 9 3 o 4
Feature Number

1

to select features for the tree nodes. Unlike the CNN, the RF
is trained directly to classify entire groups of DNS queries.
To create a feature set, we studied the existing literature
on ML approaches to domain name classification and DNS
threat detection [1], [2], [3], [4]. After extensive feature
analysis on the data from Table I, for the RF we retained the
12 features in Table II. In the right column in Table II we cite
references where similar features were used. As illustrated
in Fig. 2, many of the features allow to distinguish normal
resolved instances quite well from the two other categories
in Table I, while non-tunnel and DNS tunnel instances are
much closer in terms of feature values.

Many of the features in the literature are defined for
individual query names of prefixes; to convert them into
group features, we aggregate the feature values of the
prefixes in a group by taking the average over the group
(cfr. feature 0-8 in Table II). Feature 9 differs from feature
8 in that for feature 9, we concatenate all the prefixes from
the group into one string and compute entropy over that
entire string. The inclusion of feature 7, namely the CNN
probability, enables a straightforward mechanism to leverage
both the CNN and RF approaches simultaneously. In Sec. III,
we use the notation “RF+CNN” to refer to the RF model
trained on all 12 features from Table II, and “RF” for the
corresponding model trained on all features except feature
7. Fig. 3 shows a ranking of the features according to their
importance in the RF+CNN model. As we might expect, the
probabilistic likelihoods from the CNN classifier is the most
important feature. Features 0, 5, and 6 follow in importance
ranking order. These are likely due to tunneling behaviors
having longer prefixes to contain an attacker’s payload, with
a character distribution that deviates from natural language.

Table II

GROUP FEATURES USED IN RANDOM FOREST TRAINING AND CLASSIFICATION

[No. [Feature Description | Reference
0 Avg. Length The average character length of the prefixes in the group [1], [2], [4]
1 Avg. Unique Characters Count The average count of unique characters in the prefixes in the group [4]

2 Avg. Label Count The average count of labels in the query names in the group [11, [3], [5]

3 Avg. Gini Index The average Gini value of the characters in the prefixes in the group [1], [4]

4 Avg. Classification Error The average classification error of characters in the prefixes in the group [11, [4]

5 Avg. Digit Count The average count of digits in the prefixes in the group [4]

6 Avg. Ratio of Repeated Characters | The average ratio of characters repeated in the prefix to the number of unique [4]
characters in the prefixes in the group

7 Avg. CNN Probability The average probability likelihood of the prefixes in the group being a DNS Tunnel | our work
according to the CNN classifier

8 Avg. Entropy The average normalized entropy of characters in the prefixes in the group [11, [4], [5]

9 Concatenated Entropy The normalized entropy of characters in the concatenated prefixes of the group [11, [4], [5]

10 Unique Prefix Count The count of unique prefixes within the group [2]

11 Group Size The count of prefixes within the group our work

Table III
RESULTS ON TEST DATA
Model Acc AUC AUC@1%FPR | TPR@1%FPR
RF 96.04% | 99.84% 91.90% 100%
CNN 99.30% | 99.41% 83.62% 97.45%
RF+CNN | 96.65% | 99.84% 92.34% 99.49%

Acc=Accuracy, AUC=Area Under Curve, FPR=False Positive
Rate, TPR=True Positive Rate

III. RESULTS

A clear goal of the classifiers is to accurately detect DNS
tunnels from network traffic while also maintaining a suffi-
ciently small false positive rate (FPR). In network security
scenarios, a detection of a DNS tunnel will likely result in
an expensive network investigation, rendering false positives
very costly. Results of all classifiers are presented in Table
IIT; the results are for the classification of the groups of
DNS traffic in the test data from Table I. As the last column
indicates, all classifiers are able to detect (almost) all DNST
traffic at a small FPR of 1%. The difference in predictive
performance between the CNN model on one hand, and the
RF and RF-CNN models on the other hand, may be due
to the latter models’ ability to leverage meaningful group
features, while the CNN approach relies on a simple majority
voting aggregation strategy to label each group based on the
labels assigned to the prefixes within the group.

To assess the utility of the classifiers outside of the
development setting leading up to the results in Table
III, we applied them on an entire day of network traffic,
consisting of /= 50 million queries. On this data, we applied
the same grouping methodology as described in Sec. II,
omitting “day” as a grouping criterion since all DNS queries
originated in the same day. The one day of real-traffic
data contains DNS query type NULL records, which are
commonly used for DNS tunneling activity using the Iodine
DNS tunneling tool [2]. We leveraged this knowledge to tune
the classification threshold of the RF at 0.8. 35,088 (10.94%)
groups, accounting for 16,664,953 (34.32%) queries, passed

this threshold and were flagged as suspected DNST tunnels.
While only 30% (2,754 out of 9,039) SLDs in the
flagged traffic are known whitelist candidates, they account
for an overwhelming 92% of the total number of queries,
leaving the remaining 8% as suspected DNST traffic. Upon
further analysis of the suspected DNST queries, we found
evidence of malicious activity. For example, the domain
easywbdesign.com was flagged by our DNST classi-
fier and it belongs to the Glupteba malware family as a
command-and-control domain [10].
Acknowledgement. We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research.

REFERENCES

[1] B. Yu, L. Smith, M. Threefoot, and F. Olumofin, “Behavior
analysis based DNS tunneling detection and classification
with big data technologies,” in IoTBD, 2016, pp. 284-290.

[2] A. Nadler, A. Aminov, and A. Shabtai, “Detection of ma-
licious and low throughput data exfiltration over the DNS
protocol,” Computers & Security, vol. 80, pp. 36-53, 2019.

[3] Z. Yang, Y. Hongzhi, L. Lingzi, H. Cheng, and Z. Tao,
“Detecting DNS tunnels using session behavior and random
forest method,” in 2020 IEEE Fifth International Conference
on Data Science in Cyberspace (DSC), 2020, pp. 45-52.

[4] R. Sivaguru, J. Peck, F. Olumofin, A. Nascimento, and M. De
Cock, “Inline detection of DGA domains using side informa-
tion,” IEEE Access, vol. 8, pp. 141 910-141922, 2020.

[5] P. Yang, Y. Li, and Y. Zang, “Detecting DNS covert chan-
nels using stacking model,” China Communications, vol. 17,
no. 10, pp. 183-194, 2020.

[6] J. Saxe and K. Berlin, “eXpose: A character-level convo-
lutional neural network with embeddings for detecting ma-
licious URLs, file paths and registry keys,” arXiv preprint
arXiv:1702.08568, 2017.

[71 B. Yu, J. Pan, D. Gray, J. Hu, C. Choudhary, A. C. Nasci-
mento, and M. De Cock, “Weakly supervised deep learning
for the detection of domain generation algorithms,” IEEE
Access, vol. 7, pp. 51542-51556, 2019.

[8] C.Qi, X. Chen, C. Xu, J. Shi, and P. Liu, “A bigram based real
time DNS tunnel detection approach,” Procedia Computer
Science, vol. 17, pp. 852-860, 2013.

[9] J. Zhang, L. Yang, S. Yu, and J. Ma, “A DNS tunneling
detection method %ased on deep learning models to prevent
data exfiltration,” in International Conference on Network and
System Security, 2019, pp. 520-535.

[10] L. Nagy, “Glupteba: Hidden malware delivery in plain sight:
Inside a self-concealing malware distribution framework with
a security-resistant ecosystem,” SophosLabs, 2020.

