
UNCORRECTED P
ROOF

Intuitionistic fuzzy
rough sets: at the cross-
roads of imperfect
knowledge

Chris Cornelis, Martine De Cock
and Etienne E. Kerre

Department of Applied Mathematics and Computer
Science, Ghent University, Fuzziness and Uncertainty
Modelling Research Unit, Krijgslaan 281 (S9), B-9000
Ghent, Belgium
E-mail: {chris.cornelis, martine.decock,
etienne.kerre}@rug.ac.be

Abstract: Just like rough set theory, fuzzy set theory addresses

the topic of dealing with imperfect knowledge. Recent investiga-

tions have shown how both theories can be combined into a more

flexible, more expressive framework for modelling and processing

incomplete information in information systems. At the same time,

intuitionistic fuzzy sets have been proposed as an attractive

extension of fuzzy sets, enriching the latter with extra features to

represent uncertainty (on top of vagueness). Unfortunately, the

various tentative definitions of the concept of an ‘intuitionistic

fuzzy rough set’ that were raised in their wake are a far cry from

the original objectives of rough set theory. We intend to fill an

obvious gap by introducing a new definition of intuitionistic fuzzy

rough sets, as the most natural generalization of Pawlak’s original

concept of rough sets.
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1. Introduction

As a new trend in the attempts to combine the best of

several worlds, very recently all kinds of suggestions for

approaches merging rough set theory and intuitionistic

fuzzy set theory have started to appear. The present

evolution vividly reminds us of the origin of fuzzy rough set

theory, as the (so far) happy marriage of fuzzy set theory

and rough set theory. A remarkable difference, however, is

that in the latter case a long engagement periodwith intense

discussions concerning the relation between fuzzy set

theory and rough set theory preceded the marriage, (and

in a way is still going on, simultaneously with the research

on the new hybrid theory). So far, this comparison stage

seems very limited for the combination of intuitionistic

fuzzy set theory and (fuzzy) rough set theory. As far as we

know, only Çoker (1998) went into the matter by claiming

that fuzzy rough sets are intuitionistic fuzzy sets (Chakra-

barty et al., 1998; Samanta&Mondal, 2001; Jena&Ghosh,

2002; Rizvi et al., 2002), which appears to be shattering the

dream of a new hybrid theory.

On the other hand, there exist many views on the

notion ‘rough set’ which can be grouped into two main

streams. Several suggested options for fuzzification

have led to an even greater number of views on the notion

‘fuzzy rough set’. Typically, under the same formal

umbrella, they can be further generalized to the notion

‘L-fuzzy rough set’ where the membership degrees are

taken from some suitable lattice L which is not necessarily

the unit interval. On top of this, there exist semantically

different interpretations of intuitionistic fuzzy set theory

(which is a special kind of L-fuzzy set theory). Needless

to say, when trying to compare and/or to combine

rough set theory, fuzzy set theory and intuitionistic fuzzy

set theory, one finds oneself at a complicated crossroads

with an abundance of possible ways to proceed. The aim

of this paper is to provide the reader with a road map.

We do this by mapping out research results obtained

so far in the literature, as well as by exploring by our-

selves a very important road which was virgin territory

until now.

However, before we can prepare a hybrid theory, it is

absolutely necessary to check the origin of all ingredients,

for they can have an important influence on the flavour of

the resulting product! For this reason we start the paper

with a short overview of all set theoretical models involved

(Section 2). Making such a study forces us into thinking

about relationships between them. Staying within the scope

of the paper, we will only focus on intuitionistic fuzzy set

theory versus fuzzy rough set theory (Section 3). After a

critical examination of the added value of a hybrid

intuitionistic fuzzy rough set theory, in Section 4 we

present an overview of existing approaches (all originated

independently from the others). Finally we fill an obvious

gap by a very natural generalization of Pawlak’s original

concept of a rough set.
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2. Short overview of some set theoretical models

2.1. Rough set theory

Rough sets, remarkably enough, are not a uniquely defined

notion. A very accurate classification of various ap-

proaches to definitions was given by Yao (1996). For our

purposes, it is sufficient to distinguish between two main

streams in the literature, denoted ‘Pawlak rough sets’ and

‘Iwinski rough sets’, respectively; both come with their own

particular perception of the notion ‘rough set’.

Pawlak rough sets The first stream was initiated by

Pawlak (1982) who launched rough set theory as a

framework for the construction of approximations of

concepts when only incomplete information is available.

The available information consists of a setA of examples (a

subset of a universe X, X being a non-empty set of objects

we want to say something about) of a concept C, and a

relation R in X. R models ‘indiscernibility’ or

‘indistinguishability’ and therefore generally is a tolerance

relation (i.e. a reflexive and symmetrical relation) and in

most cases even an equivalence relation (i.e. a transitive

tolerance relation). In this paper we will use R-foresets to

denote equivalence classes. TheR-foreset of an element y of

X is the set Ry¼ {x|(x, y)AR}. The couple (X, R) is called

an approximation space. Rough set analysis makes

statements about the membership of some element x of X

to the concept C of which A is a set of examples, based on

the indistinguishability between x and the elements of A.

To arrive at such statements, A is approximated in two

ways. The lower and upper approximations of A in (X, R)

are respectively the following subsets of X:

A ¼ fyjy 2 X and Ry � Ag
�AA ¼ fyjy 2 X andRy \ Ag

The underlying meaning is that �AA is the set of elements

possibly belonging to the concept C (weak membership),

while A is the set of elements necessarily belonging to C

(strong membership); for y belongs toA if all elements ofX

indistinguishable from y belong to A (hence there is no

doubt that y also belongs to A), while y belongs to �AA as

soon as an element of A is indistinguishable from y. If y

belongs to the boundary region �AA=A, then there is doubt,

because in this case y is at the same time indistinguishable

from at least one element ofA and at least one element ofX

that is not in A.

A set A is called definable if A ¼ �AA (Radzikowska &

Kerre, 2002). The existing variety in terminology on this

concept of definability might indicate the high importance

individual researchers attach to it. Thiele for instance uses

the term ‘R-exact’ as a synonym for ‘definable’ (see Thiele,

1998). Pawlak (1982) defines a ‘composed set’ as a finite

union of equivalence classes. In 1985 he generalizes this

definition to any union of equivalence classes; it can be

verified that this notion of composed set coincides with that

of definable set. Still other terms to denote the same notion

are mentioned in Iwinski (1987).

A similar phenomenon occurs concerning the definition

of the concept ‘rough set’: some authors say that a set A in

X is a ‘rough set’ ifA 6¼ �AA (see for example Komorowski et

al., 1999). Hence they call a set ‘rough’ if the boundary

region is not empty, i.e. if there is at least one object which

cannot be classified with certainty as a member of the

concept, nor as a member of its complement. Pawlak

(1982), on the other hand, originally defined a rough set

(A1, A2) as the class of all sets that have A1 and A2

respectively as lower and upper approximations. This

convention is also adopted by Thiele (2001). Still others call

(A1, A2) a rough set (in (X, R)) as soon as there is a set A in

X such that A¼A1 and �AA ¼ A2 (see for example

Radzikowska & Kerre, 2002); (A1, A2) is then also called

the rough set of A. Without loss of generality of the

discussion, we follow the latter approach.

Rough set theory is strongly related to Gentilhomme’s

(1968) flou set theory. A flou set in a universe X is a couple

(A1, A2) satisfying A1DA2DX. The first coordinate A1 is

called the certain area, the second coordinateA2 the area of

maximal extension and A2}A1 the flou zone (or vague

zone). The idea of dividing the universe into three areas is a

very strong linkage between flou sets and rough sets. One

could say that with the introduction of rough set theory an

important next step forward was made, providing a

semantically justifiable and computationally feasible way

to construct the three areas involved, by approximating a

set A by its lower and upper approximations. One can

verify that for a reflexive relation R

A � A

which justifies the statement that all rough sets are flou sets.

Interestingly enough, given a flou set (A1, A2) in X, it is not

always possible to find an approximation space (X,R) such

that (A1, A2) is a rough set in (X, R). To illustrate this, we

rely on the fact that if the relation R is symmetrical then

Að Þ � A � ðAÞ

Example 1 Suppose that A2 contains one more element

than A1, i.e. A2¼A1,{x0}, x0 in X \A1. If (A1, A2) is the

rough set of A then

A1 ¼ A � A � A ¼ A2

Hence either A1¼ACA2 or A1CA¼A2. In the first case

A1¼A implies A¼A. Hence ðAÞ ¼ �AA and, because of the

symmetry of R, �AADA, which contradicts AC �AA¼A2. In

the second case a similar line of reasoning leads to the

contradiction ADA.

Iwinski rough sets The second stream in the literature was

initiated by Iwinski (1987), who did not use an equivalence
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relation as an initial building block to define the rough set

concept. Instead he departed from a complete subalgebra

B of the Boolean algebraP(X) of subsets of X and defined

a rough set as a pair of sets (A, B) with A inB, B inB and

ADB. At the mathematical level this approach coincides

with the one outlined by Pawlak (B being the class of

definable sets) (Iwinski, 1987). At the semantic level there is

a significant difference: although Iwinski’s formulation

provides an elegant mathematical model (Yao, 1996), the

absence of the equivalence relation and the set of examples

to be approximated makes it hard to interpret.

Despite its short history, rough set theory has already

been applied successfully in many knowledge-based

systems. We refer to (Komorowski et al., (1999) for an

extensive overview of achievements in the field.

2.2. L-fuzzy set theory

From fuzzy setsy Fuzzy set theory was introduced by

Zadeh (1945) as a framework for modelling the vagueness

present in everyday life (and in particular, in natural

language). A fuzzy set A in a universe X is characterized by

anX-[0, 1] mapping, usually denoted byA or by mA, called
the membership function. For all x in X, A(x)corresponds

to the degree to which x belongs to A. While fundamental

research on the theory is still very topical, the application of

the fuzzy set theoretical representation of vague concepts

also has many working applications nowadays. The rapid

growth of the series Studies in Fuzziness and Soft

Computing (Kacprzyk, 1992–2002), consisting of both

monographs and edited volumes, is a striking illustration

of the continuous evolution and the high number of

achievements in this field.

y to L-fuzzy sets The mapping of elements of the

universe to the interval [0, 1], however, implies a crisp,

linear ordering of these elements, making [0, 1]-valued

fuzzy set theory inadequate to deal with incomparable

information. From the beginning therefore some attention

has been paid to other partially ordered sets as well. In 1967

Goguen formally introduced the notion of an L-fuzzy set

with a membership function taking values in a lattice L. In

this paper we assume that (L,rL) is a complete lattice with

smallest element 0L and greatest element 1L.

An L-fuzzy set A in a universe X is a mapping from X to

L, again called themembership function. TheL-fuzzy setA

is said to be included in the L-fuzzy set B, usually denoted

by ADB, ifA(x)rL B(x) for all x in X. An L-fuzzy setR in

X�X is called a binary fuzzy relation onX. For all x and y

in X, R(x, y) expresses the degree to which x and y are

related through R. For every y inX, the R-foreset of y is an

L-fuzzy set in X, denoted as Ry and defined by Ry(x)¼
R(x, y) for all x in X.

Logical operators L-fuzzy set theoretical operations such

as complement, intersection and union can be defined by

means of suitable generalizations of the well-known

connectives from Boolean logic. Negation, conjunction,

disjunction and implication can be generalized respectively

to negator, triangular norm, triangular conorm and

implicator, all mappings taking values in L. More

specifically, a negator in L is any decreasing L-L

mapping N satisfying N(0L)¼ 1L. It is called involutive

if N(N(x))¼ x for all x in L. A triangular norm (t-norm

for short) T in L is any increasing, commutative and

associative L2-L mapping satisfying T(1L, x)¼ x, for all

x in L. A triangular conorm (t-conorm for short)S in L is

any increasing, commutative and associative L2-L

mapping satisfying S(0L, x)¼ x, for all x in L. The N-

complement of an L-fuzzy set A in X as well as the T-

intersection and the S-union of L-fuzzy sets A and B

in X are the L-fuzzy sets coN(A), A-T B and A,S B

defined by

coNðAÞðxÞ ¼ NðAðxÞÞ
A \T BðxÞ ¼ TðAðxÞ;BðxÞÞ
A [S BðxÞ ¼ SðAðxÞ;BðxÞÞ

for all x inX. The dual of a t-conormS inLwith respect to

a negator N in L is a t-norm T in L defined as T(x, y)

¼N(S(N(x), N(y))). An implicator in L is any L2-L

mappingI satisfyingI(0L, 0L)¼ 1L,I(1L, x)¼x for all x

in L. Moreover we require I to be decreasing in its first,

and increasing in its second, component. If S and N are

respectively a t-conorm and a negator in L, then it is well

known that the mapping IS,N defined by

IS;Nðx; yÞ ¼ SðNðxÞ; yÞ
is an implicator in L, usually called S-implicator (induced

byS andN). Likewise, ifT is a t-norm in L, the mapping

IT defined by

ITðx; yÞ ¼ supfljl 2 L andTðx; lÞ �L yg
is an implicator in L, usually called the residual implicator

(of T). The partial mappings of a t-norm T in L are sup-

morphisms if

T sup
i2I

xi; y

� �
¼ sup

i2I
Tðxi; yÞ

for every family I of indexes.

Examples It is easy to verify that the meet and the join

operation on L are respectively a t-norm and a t-conorm

on L. We denote them by TM and SM respectively. Also

A-B is a shorter notation for A-TMB, while A,B

corresponds to A,SMB. The [0, 1]-[0, 1] mapping Ns

defined as Ns(x)¼ 1� x, for all x in [0, 1], is a negator on

[0, 1], often called the standard negator. For a [0, 1]-fuzzy

set A, coNs
ðAÞ is commonly denoted by co(A). Table 1

depicts the values of well-known t-norms and t-conorms on

[0, 1], for all x and y in [0, 1]. The first column of Table 2

Q1

Q2
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shows the values of the S-implicators on [0, 1] induced by

the t-conorms of Table 1 and the standard negator Ns,

while the second column lists the values of the

corresponding residual implicators.

Finally we mention that an L-fuzzy relation R on X is

called an L-fuzzy T-equivalence relation if it is reflexive

(R(x, x)¼ 1L, for all x inX), symmetrical (R(x, y)¼R(y, x),

for all x and y in X) and T-transitive (T(R(x, y), R(y,

z))rR(x, z), for all x, y and z in X).

When L¼ {0, 1}, L-fuzzy set theory coincides with

traditional set theory, in this context also called crisp set

theory. {0, 1}-fuzzy sets, {0, 1}-fuzzy relations,y are

usually also called crisp sets, crisp relations,y. When

L¼ [0, 1], fuzzy set theory in the sense of Zadeh is

recovered. [0, 1]-fuzzy sets, [0, 1]-fuzzy relations,y are

commonly called fuzzy sets, fuzzy relations,y.

Furthermore it is customary to omit the indication ‘in [0,

1]’ when describing the logical operators, and hence to talk

about negators, triangular norms etc. Yet another

interesting choice for L gives rise to intuitionistic fuzzy

set theory, as described below.

2.3. Intuitionistic fuzzy set theory

A particularly interesting lattice of membership degrees

leads to intuitionistic fuzzy set (IFS) theory (Atanassov,

1999). This theory basically defies the claim that, from the

fact that an element x ‘belongs’ to a given degree (say mA(x))
to a fuzzy set A, it naturally follows that x should ‘not

belong’ toA to the extent 1�mA(x), an assertion implicit in

the concept of a fuzzy set. On the contrary, IFSs assign to

each element x of the universe both a degree ofmembership

mA(x) and one of non-membership nA(x) such that

mA(x)þ nA(x)r1, thus relaxing the enforced duality

nA(x)¼ 1�mA(x) from fuzzy set theory. Obviously, when

mA(x)þ nA(x)¼ 1 for all elements of the universe, the

traditional fuzzy set concept is recovered.

By complementing the membership degree with a non-

membership degree that expresses to what extent the

element does not belong to the IFS, such that the sumof the

degrees does not exceed 1, a whole spectrum of knowledge

not accessible to fuzzy sets can be accessed. The applica-

tions of this simple idea are manyfold indeed: it may be

used to express positive as well as negative preferences; in a

logical context, with a proposition a degree of truth and

one of falsity may be associated; within databases, it can

serve to evaluate the satisfaction as well as the violation of

relational constraints. More generally, IFSs address the

fundamental two-sidedness of knowledge, of positive

versus negative information, and by not treating the two

sides as exactly complementary (like fuzzy sets do), a

margin of hesitation is created. This hesitation is quantified

for each x in X by the number pA(x)¼ 1� mA(x)� nA(x).
IFSs can be considered as special instances of L-fuzzy

sets (Deschrijver et al., 2002). Let (L*,rL*) be the

complete, bounded lattice defined by

L� ¼ fðx1; x2Þ 2 ½0; 1�2jx1 þ x2 � 1g
ðx1; x2Þ �L� ðy1; y2Þ , x1 � y1 and x2 � y2

The units of this lattice are denoted 0L*¼ (0, 1) and

1L*¼ (1, 0). For each element xAL*, by x1 and x2 we denote

its first and second components, respectively. An IFSA in a

universe X is a mapping from X to L*. For every xAX, the

value mA(x)¼ (A(x))1 is called the membership degree of x

to A; the value nA(x)¼ (A(x))2 is called the non-member-

ship degree of x to A; and the value pA(x) is called the

hesitation degree of x to A. Just as L*-fuzzy sets are called

IFSs, L*-fuzzy relations are called IF relations.

Logical operators The terms IF negator, IF t-norm, IF t-

conorm and IF implicator are used to denote respectively a

negator in L*, a t-norm in L*, a t-conorm in L* and an

implicator in L*. A t-normT on L* (respectively t-conorm

S) is called t-representable (Deschrijver et al., 2002) if there

exists a t-norm T and a t-conorm S on [0, 1] (respectively a

t-conormS0 and a t-normT0 on [0, 1]) such that, for x¼ (x1,

x2), y¼ (y1, y2)AL*,

Tðx; yÞ ¼ ðTðx1; y1Þ;Sðx2; y2ÞÞ
Sðx; yÞ ¼ ðS0ðx1; y1Þ;T 0ðx2; y2ÞÞ

T and S (respectively S0 and T0) are called the representants

of T (respectively S).

Finally, denoting the first projectionmapping onL* by pr1,

we recall from Deschrijver et al., (2002) that the [0, 1]-[0, 1]

mappingN defined byN(a)¼pr1N(a, 1� a) for all a in [0, 1]

is an involutive negator on [0, 1], ifN is an involutive negator

on L*. N is called the negator induced by N. Furthermore

N(x1, x2)¼ (N(1� x2),1�N(x1)), for all x in L*.

Examples The standard IF negator is defined by

Ns(x)¼ (x2, x1), for all x in L*. The meet and the join

Table 1: Triangular norms and conorms on [0, 1]

t-norm t-conorm

TM(x, y)¼min(x, y) SM(x, y)¼max(x, y)
TP(x, y)¼ x,y SP(x, y)¼ xþ y� x,y
TW(x, y)¼max(xþ y� 1, 0) SW(x, y)¼min(xþ y, 1)

Table 2: S-implicators and residual implicators on [0, 1]

S-implicator Residual implicator

ISM;Ns
ðx; yÞ ¼ maxð1� x; yÞ ITM

ðx; yÞ ¼ 1 if x � y
y else

�

ISP ;Ns
ðx; yÞ ¼ 1� xþ x; y ITP

ðx; yÞ ¼ 1 if x � y
y
x
else

�
ISW;Ns

ðx; yÞ ¼ minð1� xþ y; 1Þ ITW
ðx; yÞ ¼ minð1� xþ y; 1Þ
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operators onL* are respectively the IF t-normTM and the

IF t-conorm SM defined by

TMðx; yÞ ¼ ðminðx1; y1Þ;maxðx2; y2ÞÞ
SMðx; yÞ ¼ ðmaxðx1; y1Þ;minðx2; y2ÞÞ

Combining TW and SW of Table 1 gives rise to the t-

representable IF t-normTW and IF t-conormSW defined

by

TWðx; yÞ ¼ ðmaxð0; x1 þ y1 � 1Þ;minð1; x2 þ y2ÞÞ
SWðx; yÞ ¼ ðminð1; x1 þ y1Þ;maxð0; x2 þ y2 � 1ÞÞ

However, TL and SL are also possible extensions of TW

and SW to IF theory:

TLðx; yÞ ¼ ðmaxð0; x1 þ y1 � 1Þ;
minð1; x2 þ 1� y1; y2 þ 1� x1ÞÞ

SLðx; yÞ ¼ ðminð1; x1 þ 1� y2; y1 þ 1� x2Þ;
maxð0; x2 þ y2 � 1ÞÞ

They are not, however, t-representable. All of these IF t-

conorms induce IF S-implicators

ISM;Ns
ðx; yÞ ¼ðmaxðx2; y1Þ;minðx1; y2ÞÞ

ISW;Ns
ðx; yÞ ¼ðminð1; x2 þ y1Þ;

maxð0; x1 þ y2 � 1ÞÞ
ISL;Nsðx; yÞ ¼ðminð1; y1 þ 1� x1; x2 þ 1� y2Þ;

maxð0; y2 þ x1 � 1ÞÞ
while the IF t-norms have residual IF implicators:

ITM
ðx; yÞ ¼

1L� if x1 � y1 and x2 � y2
ð1� y2; y2Þ if x1 � y1 and x2oy2
ðy1; 0Þ if x14y1 and x2 � y2
ðy1; y2Þ if x14y1 and x2oy2

8>><
>>:

ITW
ðx; yÞ ¼ ðminð1; 1þ y1 � x1; 1þ x2 � y2Þ;maxð0; y2

� x2ÞÞ
ITL equals TsL;Ns

.

2.4. Fuzzy rough set theory

The two main streams in the perception of the notion

‘rough set’ both invoke generalizations to a ‘fuzzy rough

set’ notion, intended to approximate a fuzzy set in a fuzzy

approximation space, i.e. defined by a fuzzy relation.1

Many people worked on the fuzzification of upper and

lower approximations in the spirit of Pawlak (e.g.

Nakamura, 1988; Dubois & Prade, 1990; Yao, 1997,

1998; Thiele, 1998; Radzikowska & Kerre, 2002). In doing

so, the central focus moved from elements’ indistinguish-

ability (with respect to their attribute values in an

information system) to their similarity, again with respect

to those attribute values: objects are categorized into

classes with ‘soft’ boundaries based on their similarity to

one another. A concrete advantage of such a scheme is that

abrupt transitions between classes are replaced by gradual

ones, allowing an element to belong (to varying degrees) to

more than one class. An example at hand is an attribute in

an information table that records ages: in order to restrict

the number of equivalence classes, the classical rough set

theory advises to discretize age values by a crisp partition of

the universe, e.g. using intervals [0, 10], [10, 20],y. This

does not always reflect our intuition, however: by imposing

such harsh boundaries, a person who has just turned 11will

not be taken into account in the [0, 10] class, evenwhen he is

only at aminimal remove from fullmembership in that class.

A general definition of fuzzy rough set, absorbing earlier

suggestions in the same direction, was given by Radzi-

kowska and Kerre (2002). Paraphrasing the following

relations which hold in the crisp case

y 2 A , ð8x 2 XÞððx; yÞ 2 R ) x 2 AÞ
y 2 �AA , ð9x 2 XÞððx; yÞ 2 R and x 2 AÞ

they define the lower and upper approximations of a fuzzy

set A in X as the fuzzy sets A and �AA in X, constructed by

means of an implicator I, a t–norm T and a fuzzy T-

equivalence relation R in X:

AðyÞ ¼ inf
x2X

IðRðx; yÞ;AðxÞÞ

AðyÞ ¼ sup
x2X

TðRðx; yÞ;AðxÞÞ

for all y inX. For an element y in X, its membership degree

in the lower approximation of A is determined by looking

at the elements resembling y (the foreset Ry) and by

computing to what extent Ry is contained in A. Its

membership degree in the upper approximation on the

other hand is determined by the overlap betweenRy andA.

Technically, these operations amount to taking the super-

direct image and the direct image respectively of A under

the fuzzy relation R, (De Cock, 2002). A couple of fuzzy

sets (A1,A2) is called a rough set in the approximation space

(X, R, T, I) if there exists a fuzzy set A such that A¼A1

and �AA¼A2.

A suggestion for fuzzification of the second stream view

was launched by Nanda and Majumdar (1992). Bearing in

mind Iwinski’s original view one would expect a fuzzy

rough set to be a couple (A, B) of fuzzy sets A and B, both

coming from some kind of algebra and such that ADB.

However, Nanda and Majumdar chose to construct

something that might be called ‘the fuzzy rough set of a

rough set’. Starting from an Iwinski rough set, i.e. a couple

(P, Q) of sets P and Q in X, a fuzzy rough set is a couple of

fuzzy sets (A, B). A is a fuzzy set in P, while B is a fuzzy set

in Q. Furthermore the first should be included in the

second. When trying to express such a requirement one

1 Yao (1997) used ‘fuzzy rough set’ to denote the approximation of a
crisp set in a fuzzy approximation space, whereas in his view a ‘rough
fuzzy set’ gives an approximation of a fuzzy set in a crisp approximation
space. Most authors, like us, use ‘fuzzy rough sets’ as a general term to
cover ‘fuzzified rough set theory’.
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already notices that it is not very convenient that both fuzzy

sets are defined on different universes. This is why authors

introduce their own ‘tricks’ for extending the universe (e.g.

extending the universes ofA andB toX (Chakrabarty et al.,

1998; Çoker, 1998), extending the smaller universe (that of

A) to the bigger one (that of B) (Samanta & Mondal,

2001)). In the literature we did not find any semantic

motivation behind this kind of fuzzy rough sets, or any

applications using them. Still for many authors this notion

of fuzzy rough set seems to be an attractive starting point

for the introduction of intuitionistic fuzzy rough sets

(Chakrabarty et al., 1998; Samanta & Mondal, 2001; Jena

& Ghosh, 2002). Before we go into that topic, however, we

will focus on the links between fuzzy rough set theory and

IFS theory.

3. Fuzzy rough set theory versus IFS theory

Along with the lower and upper approximations, rough set

theory provides two kinds of membership: if an element

belongs to the lower (respectively upper) approximation of

A, we are dealing with strong (respectively weak) member-

ship of A (Pawlak, 1982). It is very natural to extend this

idea to fuzzy rough set theory: the strong membership

function of A is the membership function of the lower

approximation of A, while the weak membership function

of A is the membership function of the upper approxima-

tion of A. In IFS theory we are also dealing with two kinds

of functions, namely a membership function m and a non-

membership function n such that

m � coðnÞ ð1Þ
Note that the strong membership function of the fuzzy

rough set can be considered as the membership function m
of an IFS, while the complement of the weak membership

function of the fuzzy rough set can be used as the non-

membership function n.
This remark (Çoker, 1998) immediately reveals the

strong link between rough set theory and IFS theory.

One might even argue that IFS theory could really draw

profit from fuzzy rough set theory, because the latter brings

ameans to construct themembership and non-membership

functions of an IFS from a fuzzy set of examples and a

fuzzy information relation (a fuzzy relation modelling

similarity).

It is a far greater challenge, however, to imagine what we

could do if the input fed to a knowledge-based system

carries information not only about the positive side but also

about the negative side. How can we additionally benefit if

the set of examples is IF, if the information relation is IF?

To answer this question, in the next section we lift the

study yet one level higher, by exploring different ways of

introducing the concept ‘intuitionistic fuzzy rough set’.

Keeping in mind what we learned in this section, we expect

it to be ‘a couple of couples of functions’ (be it (strong or

weak) membership functions, or non-membership func-

tions).

4. Intuitionistic fuzzy rough sets

A very natural way to extend concepts from fuzzy set

theory to their generalizations in IFS theory is the

replacement of [0, 1] by L* as the evaluation set for the

membership degrees.

� Doing so in Nanda and Majumdar’s view on fuzzy

rough sets leads to Chakrabarty et al.’s (1998),

approach to intuitionistic fuzzy rough sets; they

construct an IF rough set (A, B) of a rough set (P, Q).

A and B are both IFSs in X such that

A � B; i:e: mA � mB and nA 	 nB
From this point of view the lower approximationA and

the upper approximation B are both IFSs. In other

words, the strong membership is itself characterized by

a membership function mA and a non-membership

function nA, while the membership function mB and the

non-membership function nB together constitute the

weak membership. In this way we can reflect hesitation

on the strong and the weak membership. Jena and

Ghosh (2002) reintroduce the same notion.

� Samanta and Mondal (2001) also introduce this notion

but they call it a rough IF set. Furthermore they also

define their concept of IF rough set, looking at it from a

different angle: in their approach an IF rough set is a

couple (A, B) such that A and B are both fuzzy rough

sets (in the sense of Nanda and Majumdar) and A is

included in the complement of B, i.e.

A � coðBÞ ð2Þ
Even though we omit the details of the definition of

complement and inclusion of fuzzy rough sets here (cf.

(Samanta and Mondal (2001) for the full story), the

reader can still compare (2) to (1) to see that A refers to

membership of the IF rough set, whileB corresponds to

non-membership.

� Obviously to Samanta and Mondal an intuitionistic

fuzzy rough set (A, B) is a generalization of an IFS in

which membership and non-membership functions are

no longer fuzzy sets but fuzzy rough sets A and B. Note

that for Chakrabarty et al. on the other hand an

intuitionistic fuzzy rough set (A, B) is a generalization

of a fuzzy rough set, in which upper and lower

approximations are no longer fuzzy sets but IFSs A

and B.

� In contrast to the proposals above, the approach of

Rizvi et al. (2002) is along the lines of Pawlak’s rough

sets, explicitly indicating how lower and upper approx-

imations of an IFS should be derived in an approxima-

tion space. Rizvi et al. describe their proposal as ‘rough

intuitionistic fuzzy set’, and in comparison with the
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approaches above one could say that it is again about

having a hesitation margin on the weak and strong

memberships, i.e. on the upper and lower approxima-

tions. The hesitation margin on the lower and upper

approximations can be seen as a consequence of the

hesitation margin of the original IFS to be approxi-

mated. Remarkably enough, the lower and upper

approximations themselves are not IFSs in X but IFSs

in the class of equivalence classes of R!

The question remains unanswered why the definition of

Radzikowska and Kerre (2002) — which has existed

already in a more specific form for more than a decade —

did not undergo the natural transformation process

towards intuitionistic fuzzy rough set theory until now.

In the remainder of this paper it becomes clear that it in fact

leads to a mathematically elegant and semantically

interpretable concept whereas the above-mentioned pro-

posals all suffer from various drawbacks making them less

eligible for applications. Until now we have been using the

notations A and �AA to denote the lower and the upper

approximation of A (whatever Amay be), tacitly assuming

that the (fuzzy) relation as well as the t-norm and the

implicator are used. This was done not only for ease of

notation, but also to keep a uniform notation throughout

all the different models. However, to maintain clearness in

the remainder, we switch to a slightly different notation.

Furthermore from now on we assume that T is an IF

triangular norm, I an IF implicator and R an IF T-

equivalence relation in X. Together they constitute the

approximation space (X, R, T, I). We use A and B to

denote IFSs in X. As usual we start by defining concepts of

lower and upper approximation.

Definition 1 The lower and upper approximations of A are

respectively the IFSs RkIA and RmTA in X defined by

R #I AðyÞ ¼ inf
x2X

IðRðx; yÞ;AðxÞÞ

R "T AðyÞ ¼ sup
x2X

TðRðx; yÞ;AðxÞÞ

for all y in X.

We say that a couple of IFSs (A1, A2) is an intuitionistic

fuzzy rough set in the approximation space (X, R,T, I) if

there exists an IFS A such that RkIA¼A1 and

RmTA¼A2. The lower approximation of A is included in

A, while A is included in its upper approximation.

Proposition 1 (De Cock, 2002) RkIADADRmTA.

The following propositions describe how the lower and

upper approximations behave with respect to a refinement

of the IFS to be approximated, or a refinement of the IF

relation that defines the approximation space.

Proposition 2 (De Cock, 2002) If ADB then RkIAD
RkIB and RmTADRmTB.

Proposition 3 (De Cock, 2002) If R1 and R2 are IF T-

equivalence relations such that R1DR2 then

R1 #I A 	 R2 #I A

R1 "T A � R2 "T A

We now define a concept of definability, similar to the one

in rough set theory.

Definition 2 A is called definable if and only if

RkIA¼RmTA.

In classical rough set theory, a set is definable if and only if

it is a union of equivalence classes. This property no longer

holds in intuitionistic fuzzy rough set theory. However, if

we imply sufficient conditions on the IF t-normT and the

IF implicator I defining the approximation space, we can

still establish a weakened theorem. For the proof we rely on

the following two propositions.

Proposition 4 (De Cock, 2002) If the partial mappings of

T are sup-morphisms andI is the residual implicator ofT

then the following are equivalent

(1) A¼RkIA

(2) A¼RmTA

Proposition 5 (De Cock, 2002) If the partial mappings of

T are sup-morphisms andI is the residual implicator ofT

then

R "T ðR "T AÞ ¼ R "T A

R #I ðR #I AÞ ¼ R #I A

Corollary 1 If the partial mappings of T are sup-

morphisms and I is the residual implicator of T then

R "T ðR #I AÞ ¼ R #I A

R #I ðR "T AÞ ¼ R "T A

Theorem 1 If the partial mappings ofT are sup-morphisms

andI is the residual implicator ofT then any union of R-

foresets is definable, i.e.

ð9BÞ B � X and A ¼
[
z2B

Rz

 !
implies

R #I A ¼ R "T A

Proof Due to the symmetry and the T-transitivity of R

and the fact that the partial mappings of T are sup-

morphisms, we obtain

R "T AðyÞ ¼ sup
x2X

TðRðx; yÞ;AðxÞÞ

¼ sup
x2X

TðRðx; yÞ; sup
z2B

Rðz;xÞÞ

¼ sup
z2B

sup
x2X

TðRðx; yÞ;Rðz;xÞÞ

� sup
z2B

Rðz; yÞ

¼AðyÞ
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Proposition 1 now implies A¼RmTA. Combining this

result with Proposition 4 we obtain the definability of A.

The following example illustrates that the opposite of

Theorem 1 does not generally hold, i.e. not every definable

set corresponds to a union of R-foresets.

Example 2 Let X¼ {x0}, R(x0, x0)¼ (1, 0), A(x0)¼ (0.5,

0.5). Then

R "T Aðx0Þ ¼ TðRðx0; x0Þ;Aðx0ÞÞ ¼ ð0:5; 0:5Þ ¼ Aðx0Þ
That is, A is definable. Since the only R-foreset is Rx0 and

Rx0(x0)>L* A(x0) we cannot rewrite A as a union of R-

foresets.

Under the same conditions implied on T and I as in

Theorem 1, the SM-union and TM-intersection of two

definable IFSs is definable. This is a corollary of the next

proposition.

Proposition 6 (De Cock, 2002) If the partial mappings

ofT are sup-morphisms andI is the residual implicator of

T then

R "T ðA [ BÞ ¼ R "T A [ R "T B

R #I ðA \ BÞ ¼ R #I A \ R #I B

with AB and A-B defined as in Section 2.2, i.e.

A [ BðxÞ ¼ ðminðmAðxÞ; mBðxÞÞ;maxðnAðxÞ; nBðxÞÞÞ
A \ BðxÞ ¼ ðmaxðmAðxÞ;mBðxÞÞ;minðnAðxÞ; nBðxÞÞÞ

Proposition 7 Let T be a t-representable IF t-norm such

thatT¼ (T, S) and such that S(x, y)¼ 1�T(1�x, 1� y),

and let R1, R2 be two fuzzy T-equivalence relations such

thatR1(x, y)rR2(x, y), for all x and x inX. ThenR defined

by

Rðx; yÞ ¼ ðR1ðx; yÞ; 1� R2ðx; yÞÞ
for x and y in X, is an IF T-equivalence relation.

Proof Reflexivity and symmetry of R follow immediately

from the corresponding properties of R1 and R2. To prove

T-transitivity, let x, y and zAX.

TðRðx; yÞ;Rðy; zÞÞ ¼ðTðR1ðx; yÞ;R1ðy; zÞÞ;
Sð1� R2ðx; yÞ; 1� R2ðy; zÞÞÞ

¼ðTðR1ðx; yÞ;R1ðy; zÞÞ;
1� TðR2ðx; yÞ;R2ðy; zÞÞÞ

�L� ðR1ðx; zÞ; 1� R2ðx; zÞÞ
¼Rðx; zÞ

Example 3 Let X¼ [0, 100], and let the fuzzy TW-

equivalence relation Ec on X be defined by

Ecðx; yÞ ¼ max 1� jx� yj
c

; 0

� �
for all x and y in X, and with real parameter c>0.

Obviously, if c1rc2 then Ec1ðx; yÞ � Ec2ðx; yÞ. By Proposi-
tion 7, ðEc1 ; coðEc2ÞÞ is an IF TW-equivalence relation.

Example 4 Figure 1 shows the membership function mA
and the non-membership function nA of the IFS A in the

universe X¼ [0, 100]. Using the non-t-representable IF t-

norm TL, its residual IF implicator ITL
and the IF

relation R defined by

Rðx; yÞ ¼ ðE40ðx; yÞ; 1� E40ðx; yÞÞ
for all x and y in [0, 100] we computed the lower

approximation ofA(¼A1) as well as the upper approxima-

tion of A(¼A2). They are both depicted in Figure 1.

An IFS A is characterized by means of a membership

function mA and a non-membership function nA. A natural

question which arises is whether the lower approximation

and the upper approximation of A could be defined in

terms of the lower and the upper approximation of mA and

nA (all within the proper approximation spaces of course).

Generally such a ‘divide and conquer’ approach is every-

thing but trivial in IFS theory, and sometimes even

impossible. However, some conditions implied on the

logical operators involved can allow for some results in this

direction. Particularly attractive are the t-representable t-

norms and t-conorms, and the S-implicators that can be

associated with them.

Lemma 1 For every family (ai, bi)iAI in L*

sup
i2I

ðai; biÞ ¼ sup
i2I

ai; inf
i2I

bi

� �

inf
i2I

ðai; biÞ ¼ inf
i2I

ai; sup
i2I

bi

� �

Proposition 8 Let T be t-representable such that T¼
(T, S), let N be an involutive negator on [0, 1], and let I

Figure 1: A (solid lines), and the upper (broken lines) and

lower (dotted lines) approximations of A.
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be the S-implicator on [0, 1] induced by S and N. Then

R "T A ¼ ðmR "T mA; ðcoNðnRÞÞ #I nAÞ

Proof For all y in X

R "T AðyÞ ¼ sup
x2X

TðRðx; yÞ;AðxÞÞ

¼ sup
x2X

ðTðmRðx; yÞ; mAðxÞÞ;SðnRðx; yÞ; nAðxÞÞÞ

¼ðsup
x2X

TðmRðx; yÞ; mAðxÞÞ;

inf
x2X

IðNðnRðx; yÞÞ; nAðxÞÞÞ

¼ððmR "T mAÞðyÞ; ðcoNðnRÞ #I nAÞðyÞÞ

Proposition 9 LetS be a t-representable IF t-conorm such

thatS¼ (S, T), letN be an involutive IF negator, letI be

the IF S-implicator induced by S and N, let N be the

negator on [0, 1] induced byN and let I be the S-implicator

induced by S and N. Then

R #I A ¼ ððconRÞ #I mA; coðcoNmRÞ "T nAÞ

Proof For all y in X

R #I AðyÞ ¼ inf
x2X

IðRðx; yÞ;AðxÞÞ

¼ inf
x2X

SðNðRðx; yÞÞ;AðxÞÞ

¼ inf
x2X

SððNð1� nRðx; yÞÞ; mAðxÞÞ;

supx2XTð1�NðmRðx; yÞÞ; nAðxÞÞÞ
¼ð inf

x2X
IðconRðx; yÞ; mAðxÞÞ;

sup
x2X

TðcoðcoNðmRÞÞðx; yÞÞ; nAðxÞÞÞ

¼ððconR #I mAÞðyÞ; ðcoðcoNðmRÞÞ "T nAÞðyÞÞ

Observe that in both propositions on the ‘fuzzy level’ the

approximations are taken under the membership function

mR, or something semantically very much related such as

the N-complement of the non-membership function nR or

once even the standard complement of the N-complement

of mR. Presented in this way, the resulting formulae look

quite complicated. For better understanding, assume for a

moment that the negator N is the standard negator, and

that the IF relation R is in reality a fuzzy relation, i.e.

mR¼ co(nR); then the formulae reduce to

R "T A ¼ ðmR "T mA; mR #I nAÞ
R #I A ¼ ðmR #I mA; mR "T nAÞ

Apparently in this case the membership function of the

upper approximation of A is the upper approximation of

the membership function of A, while the non-membership

function of the upper approximation of A is the lower

approximation of the non-membership function of A. For

the lower approximation of A the dual proposition holds.

Example 5 Figure 2 shows the same IFS A we used in

Example 4. However, to compute its lower approximation

A1 and its upper approximationA2, this time we used the t-

representable IF t-normTW, its residual IF implicator and

the IF relation R defined by

Rðx; yÞ ¼ ðE30ðx; yÞ;E50ðx; yÞÞ
for all x and y in [0,100].

5. Conclusion

Rough sets and IFSs both capture particular facets of the

same notion—imprecision. In this paper, it was shown how

they can be usefully combined into a single framework

encapsulating the best of (so far) largely separate worlds.

The link, on the syntactical level, between fuzzy rough sets

and IFSs, identified by Çoker, has not proven much of an

obstacle in this sense: indeed, by allowing each ingredient to

retain its own distinguishing semantics, it was possible to

create an end product which is both syntactically sound

and semantically meaningful. We feel especially justified in

our cause since we have exploited to the fullest a time-

honoured adage: namely, that to every object there is a

positive and a negative side which need to be addressed

individually in order to come up with a true representation

of that object. Future work will involve tailoring this

general framework to the specific needs of everyday

applications.
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