
Character Level based Detection of
DGA Domain Names

Bin Yu
CTO Office

Infoblox
Santa Clara, USA
biny@infoblox.com

Jie Pan
Institute of Technology

Univ. of Washington
Tacoma, USA
jiep@uw.edu

Jiaming Hu
Institute of Technology

Univ. of Washington
Tacoma, USA
huj22@uw.edu

Anderson Nascimento
Institute of Technology

Univ. of Washington
Tacoma, USA

andclay@uw.edu

Martine De Cock
Institute of Technology

Univ. of Washington
Tacoma, USA

mdecock@uw.edu

Abstract—Recently several different deep learning architec-
tures have been proposed that take a string of characters as
the raw input signal and automatically derive features for text
classification. Few studies are available that compare the effec-
tiveness of these approaches for character based text classification
with each other. In this paper we perform such an empirical
comparison for the important cybersecurity problem of DGA
detection: classifying domain names as either benign vs. produced
by malware (i.e., by a Domain Generation Algorithm). Training
and evaluating on a dataset with 2M domain names shows that
there is surprisingly little difference between various convo-
lutional neural network (CNN) and recurrent neural network
(RNN) based architectures in terms of accuracy, prompting a
preference for the simpler architectures, since they are faster to
train and to score, and less prone to overfitting.

Index Terms—deep learning, text classification, domain gener-
ation algorithm, malware, cybersecurity

I. INTRODUCTION

Malware is software that infects computers to perform
unauthorized malicious activities. In order to successfully
achieve its goals, the malware needs to be able to connect to
a command and control (C&C) center. To this end, both the
controller behind the C&C center (hereafter called botmaster)
and the malware on the infected machines can run a Domain
Generation Algorithm (DGA) that generates hundreds or even
thousands of domains periodically. The malware then attempts
at resolving each one of these domains with its local DNS
server. The botmaster will have registered one or a few of
these automatically generated domains. For these domains that
have been actually registered, the malware will obtain a valid
IP address and will be able to communicate with the C&C
center.

The binary text classification task that we address in this pa-
per is: given a domain name string as input, classify it as either
malicious, i.e. generated by a DGA, or as benign. Deep neural
networks have recently appeared in the literature on DGA
detection [1]–[3]. The defining characteristic that sets deep
learning apart from other machine learning approaches, is that
deep learning includes learning representations (features) from
the data automatically, instead of relying on human defined
features. The deep learning approaches for DGA detection
significantly outperform traditional machine learning methods

Martine De Cock is a guest professor at Ghent University, Belgium

in accuracy, at the price of increasing the complexity of
training the model and requiring larger datasets. Independent
of the work on deep networks for DGA detection, other
deep learning approaches for character based text classification
have recently been proposed, including deep neural network
architectures designed for processing and classification of
tweets [4], [5] as well as general natural language text [6].
No systematic study is available that compares the predictive
accuracy of all these different character based deep learning
architectures, leaving one to wonder which one works best for
DGA detection.

To answer this open question, in this paper we compare
the performance of five different deep learning architectures
for character based text classification (see Table I) for the
problem of detecting DGAs. They all rely on character-level
embeddings, and they all use a deep learning architecture
based on convolutional neural network (CNN) layers, recurrent
neural network (RNN) layers, or a combination of both. Our
most important finding is that for DGA detection, which
can be thought of as classification of short character strings,
despite of vast differences in the deep network architectures,
there is remarkably little difference among the methods in
terms of accuracy and false positive rates, while they all
comfortably outperform a random forest trained on human
engineered features. This finding is of practical value for the
design of deep neural network based classifiers for short text
classification in industry and academia: it provides evidence
that one can select an architecture that is faster to train, without
loss of accuracy. In the context of DGA detection, optimizing
the training and scoring time is of particular importance, as the
models need to be retrained on a regular basis to stay current
with respect to new, emerging malware, and deployed to score
against a large volume of traffic.

II. BACKGROUND

Malware controllers, or botmasters, use malware for all
kinds of unauthorized malicious activities. These activities
range from stealing information, to exploiting the victims’
computing resources to mine bitcoin. They can also include
launching a distributed denial of service attack from the
victims’s computers or encrypting the victims hard drive (ran-
somware). In order to successfully achieve its goals, it is vital



that the malware be able to connect to a command and control
(C&C) center. This communication can serve many purposes.
The malware can use it to send stolen information (such as
passwords or access credentials) to the malware beneficiary
behind the C&C center, it can use this communication channel
to receive instructions or even to update itself to a newer
version.

Initially, botmasters established such a communication
channel to the C&C center by hard-coding an IP address
inside the malware. This approach has obvious shortcomings
from the botmasters’ perspective: once the malware is reversed
engineered, the IP address is discovered and shut down. Over
time, malware designers came up with a much more effective
strategy: Domain Generation Algorithms (DGAs). Domain
Generation Algorithms work by having the malware accessing
some available source of randomness and inputting it into
an algorithm that generates hundreds or even thousands of
domains automatically. The malware then attempts at resolving
each one of these domains with its local DNS server (a DNS
server runs a protocol that translates domain names into IP
addresses; it is a vital piece of the Internet). The botmaster
will have registered one or a few of these automatically
generated domains. For these domains that have been actually
registered, the malware will obtain a valid IP address and
will be able to communicate with the C&C center. For all
the other domains that were automatically generated but not
registered, the malware obtains a message stating that these
domains could not have been resolved and ignores them.

DGAs make blacklisting of domains extremely difficult,
since by changing the initial randomness (while keeping the
same algorithm) the malware can potentially generate com-
pletely different domains. This technique has been used by
high-profile malware such as Conficker, Stuxnet (the malware
designed to attack Iran nuclear facilities) and Flame. Catching
domain names generated by malware has become a central
topic in information security, leading to a recent interest in
detecting DGA domains using machine learning techniques.
Models that classify domain names as benign or malicious
based solely on the domain name string are of particular
interest for their generality, as context information beyond
the domain name string might be unavailable or expensive to
acquire. Traditional machine learning methods for DGA de-
tection based on the domain name string rely on extraction of
predefined, human engineered lexical features, see e.g. [7], [8].
Whenever human engineered features are used, it is obvious
that this opens the door for an adversary to carefully craft its
DGA to avoid detection by using the aforementioned features.
This makes maintaining such machine learning systems labor
intensive. Recently proposed deep learning techniques for
detecting DGAs learn features automatically, thereby offering
the potential to bypass the human effort of feature engi-
neering [1]–[3]. In addition these deep learning approaches
outperform the traditional machine learning techniques with
human engineered features in terms of accuracy and false
positive rates. The choice of deep network architecture in
these recent works appears fairly arbitrary, and it is unclear

TABLE I: High level overview of recent deep learning ap-
proaches for character based text classification

Name Architecture Reference
Endgame single LSTM layer [1]
Invincea parallel CNN layers [2]
CMU forward LSTM layer + backward LSTM layer [4]
MIT stacked CNN layers + single LSTM layer [5]
NYU stacked CNN layers [6]

whether they would perform better or worse than other deep
neural networks approaches for text classification that have
been introduced recently, in particular character-level methods
for processing and classification of tweets [4], [5] and for
general natural language text [6]. In this paper, we provide the
first comparative study of all these different methods, showing
that, despite of vast differences in the architectures, they can
be easily tuned to result in the same predictive accuracy.

The problem of adversarial examples, i.e. instances that
have intentionally been designed to cause the model to make
a mistake, are a well known problem in machine learning.
The scenario sketched above — in which a malware designer
exploits knowledge about the lexical features used by a
random forest to craft his DGA to avoid detection — is a
prime example of this. Deep neural networks are famously
not immune to adversarial examples either, and generative
adversarial networks (GANs) can be trained to generate them
automatically (see e.g. [9], [10]). Specifically in the context of
DGA detection, Anderson et al. have used a character-based
generative adversarial network (GAN) to augment training
sets in order to harden other machine learning models (like
a random forest) against yet-to-be-observed DGAs [11]. It is
highly unlikely for attackers to use GANs themselves, because
DGA algorithms must be light enough to be embedded inside
malware code. Furthermore, generating domain names that
look like a benign domain is not enough for an effective DGA.
Ideally, every domain produced by a DGA must not have been
registered yet or must have a low likelihood of being registered
already – if a domain produced by a DGA has already been
taken, it is useless for the botmaster. Combining all these
requirements is essential for a serious study of adversarial
generated domains and outside the scope of this paper.

III. METHODS

We compare five different deep learning methods for short
string classification, when applied to the problem of DGA
detection specifically. For each of the methods, we start from
the original proposals as can be found in the references in
Table I and only make modifications when they improve the
predictive accuracy for the classification of domain names.
Below we give an overview of the methods and the adaptations
made. A Keras1 code snippet for each method is included in
Appendix A.

The strings that we give as input to all classifiers consist of
a second level domain (SLD) and a top level domain (TLD),

1https://github.com/fchollet/keras, Accessed: 2017-05-28



separated by a dot, as in e.g. wikipedia.org. Following [1], we
set the maximum length at 75 characters, padded with zeros
on the left for domains whose length is less than 75.2 We
convert each domain name string to lower case, since domain
names are case insensitive, and encode it as an ASCII code
sequence of length 128, effectively representing each domain
name string as a 75 by 128 matrix in which each character
corresponds to a column.

A. RNN based Architectures

Endgame Model. Long short-term memory networks
(LSTMs), a special kind of recurrent neural networks (RNNs)
have recently attracted a lot of attention because of their
successful application to problems that involve processing of
sequences [12]. Since domain names can be thought of as
sequences of characters, LSTMs are a natural kind of classi-
fiers to apply. The LSTM network proposed by Woodbridge
et al. [1] was designed specifically for DGA detection, so
we stay very close to the original model. The network is
comprised of an embedding layer, an LSTM layer (128 LSTM
cells with default Tanh activation), and a single node output
layer with sigmoid activation. Instead of using RMSProp as
the optimization algorithm, as was done in [1], we switched to
Adam [13] because it resulted in better loss convergence re-
sults (see Section IV). The Endgame model includes dropout, a
technique to improve model performance and overcome over-
fitting by randomly excluding nodes during training, which
serves to break up complex co-adaptations in the network [14].
This is confined to the training phase; all nodes are active
during testing and deployment.

The role of the embedding layer is to learn to represent
each character that can occur in a domain name by a 128-
dimensional numerical vector. This vector is different from
the original 128-dimensional ASCII encoding. The embedding
maps semantically similar characters to similar vectors, where
the notion of similarity is implicitly derived (learned) based
on the classification task at hand. As will become clear in
the remainder of this section, all five deep neural network
architectures under study start with such an embedding layer.
To allow for a fair comparison, we have made the parameter
choices for the embedding layer, such as the dimensionality of
the embedding space, identical for all five models. In addition,
for comparison purposes, in Section IV we also present the
results of a “baseline neural network model” consisting only
of an embedding layer as its hidden layer.

CMU Model. Bidirectional RNNs extend regular RNNs
by processing the input string in two ways. In a forward
layer, the input sequence is processed from the left to the
right, as in a traditional RNN, while in a backward layer,
the processing happens from the right to the left. The output
from the forward and the backward layer is then combined
and passed on to further layers. Bidirectional LSTMs for

2The maximum allowed length for SLDs and TLDs is 63 characters each.
In practice they are typically shorter. The longest domain name string we
encountered in our experiments is 73 characters. This string includes the SLD,
the TLD, and the dot that separates them.

character level text processing have been proposed in [15],
and, following up on that, very similar bidirectional GRUs
(gated recurrent units) have been applied in a “Tweet2Vec”
model for tweet classification (predicting hashtags of tweets)
by Dhingra et al. [4]. We use an adaptation of the latter;
see Listing 2 in Appendix A. Including dropout or replacing
LSTM by GRU did not cause a significant change in predictive
accuracy, although the latter did result in a decrease of training
runtime.

B. CNN based Architectures

NYU Model. Convolutional neural networks (CNNs) are
known for their ability to process input data with a grid
like topology, such as images consisting of a grid of pixels.
To the best of our knowledge, Zhang et al. were the first
to apply 1-dimensional or “temporal” CNNs successfully to
text classification at character level [6]. Their proposed deep
network architecture, which is intended to process full-blown
natural language text such as news articles or reviews, includes
6 stacked CNN layers, with each subsequent layer consuming
the output from the previous layer. In contrast to natural
language text, domain names are very short and they do not
have an internal grammatical structure, naturally resulting the
original architectures from [6] to overfit on our data. We
therefore reduced the number of stacked CNN layers to two,
and decreased the size and the number of filters on the CNN
layers (see Listing 3).

Invincea Model. Saxe et al. [2] proposed a CNN based
classifier that takes generic short character strings as its input
and learns to detect whether they are indicators of malicious
behavior. The short character strings can be e.g. URLs, file
paths, or registry keys. The fundamental difference between
the Invincea model versus the NYU model described above, is
that in the Invincea model the CNN layers are parallel instead
of stacked, and that pooling always happens over the entire
domain name instead of within a small pooling window. That
means that the Invincea model is only detecting the presence or
absence of patterns in the domain names, and does not retain
any information on where exactly in the domain name string
these patterns occur. In the Invincea model, the embedding
layer is followed by a convolutional layer with 1024 filters,
namely 256 filters for each of the convolution kernel sizes 2, 3,
4, and 5. Each of these filters learns to detect the soft presence
of an interesting soft n-gram (with n = 2, 3, 4, 5). The output
of the convolutional layer is consumed by two dense hidden
layers, each with 1024 nodes, before reaching a single node
output layer with sigmoid activation. Out of all the models that
we compared, this one has the most extensive architecture.

C. Hybrid CNN/RNN based Architecture

MIT Model. The MIT model proposed by Vosoughi et
al. [5] is an extension of the NYU model, where the stacked
CNN layers are followed by an LSTM layer. Similarly as
with the NYU model, the use of multiple stacked CNN layers
(which worked well for tweets in [5]) resulted in the models
to overfit on our data. For this reason, we reduced the MIT



model architecture to the minimum that preserves its spirit:
one CNN layer followed by one LSTM layer.

IV. RESULTS AND LEARNED REPRESENTATIONS

We trained and evaluated the models on a dataset with 1 mil-
lion DGA domain names from Bambenek3 (positive examples)
and the top 1 million domain names from Alexa4 (negative
examples). Alexa ranks websites based on their popularity in
terms of number of page views and number of unique visitors.
It only retains the websites’ SLD and TLD, aggregating across
any subdomains. For example, according to Alexa, the five
highest ranked domain names in terms of popularity on 2017-
10-26 are google.com, youtube.com, facebook.com baidu.com,
and wikipedia.org. For our experiments, we assume that the
top 1 million domain names in this ranking are benign domain
names, although it is possible that the bottom of the ranking
may contain some noise.

In addition to these benign domain names, we collected 1
million DGA domain names from the Bambenek Consulting
feeds for 3 different days, namely Jun 24, Jul 22, Jul 23, 2017.
These feeds contain DGA domain names from specific mal-
ware families that were observed in real traffic on those days.
Such domain names can be collected by reverse engineering a
known malware family, generating lists of domain names with
the reverse engineered malware, and checking which of these
domain names also occur in real traffic. Note that our goal in
this paper is the development of a neural network classifier
that can detect DGAs without the need to reverse engineer
malware families. An important advantage of such a classifier
is that it can also be used against new and previously unknown
malware families.

We randomly split the data into 80% for training, 10% for
validation, and 10% for testing. Figure 1 shows the training
and validation loss curves for each of the models described in
Section III. The displayed epochs indicate where we stopped
the training to obtain the models used to produce the final
results in Table II and V. The training loss is higher than
the validation loss in the pictures in Figure 1 because the loss
against the training data is computed in an average way across
batches (the batch size is 100) while dropout is being applied,
whereas performance on the validation set is determined at the
end of each epoch with dropout disabled. Figure 1(f) displays
the loss curves for training a simple neural network consisting
of only an embedding layer. We include the performance of
this network in our results as a baseline.

The accuracy of each of the trained models when applied
to the test data is recorded in Table II. In addition to accuracy,
this table includes the true positive rate (TPR) and false
positive rate (FPR) for each of the models. Recall that TPR
= TP/(TP+FN) and FPR = FP/(FP+TN) where TP, FP, TN,
and FN are the number of true positives, false positives, true
negatives, and false negatives respectively. A low false positive
rate is very important in deployed DGA detection systems,

3http://osint.bambenekconsulting.com/feeds/, Accessed 2017-07-23
4https://www.alexa.com, Accessed 2017-05-28

because blocking legitimate traffic is highly undesirable. All
classifiers in Table II output a probability that a given instance
belongs to the positive class, so we can tune a threshold
probability at which to consider a prediction positive. For each
model, we choose this threshold such that the model trained
over the training data has a 0.001 FPR over the validation
data. Then we report the accuracy, TPR and FPR obtained
with this classification threshold over the test data. Finally,
we also report AUC@1%FPR, which is the integral of the
ROC curve from FPR = 0 to FPR = 0.01 on the test data.

For comparison purposes, Table II also contains results for
a Random Forest (RF) and a Multilayer Perceptron (MLP)
trained on the following 11 features, extracted from each
domain name string (see [16], [17]): ent (normalized entropy
of characters); nl2 (median of 2-gram); nl3 (median of 3-
gram); naz (symbol character ratio); hex (hex character ratio);
vwl (vowel character ratio); len (domain label length); gni (gini
index of characters); cer (classification error of characters);
tld (normalized hash of top level domain); dgt (first character
digit). The Random Forest consists of 100 trees. The MLP
has a single hidden layer with 128 nodes; see Listing 7 in
Appendix A. Like the deep networks in this paper, this MLP
was trained with batch size 100. The values of the 11 features
are normalized so that they are all on the same scale before
presenting them to the MLP.

As expected, the FPR of all classifiers is around 0.001.
There is a clear variation in the TPR that the classifiers achieve
against that small FPR. While the Random Forest is only able
to “catch” 83% of the malicious domain names, all the deep
neural network architectures achieve a TPR of 97-98%. The
baseline neural network consisting of only an embedding layer
as its hidden layer clearly performs the worst with a TPR of
less than 69%, highlighting that it is advantageous to extend
the network architecture with one or more LSTM or CNN
layers. Interestingly, there is little to no variation among the
five deep neural network architectures in terms of TPR.

Table III contains examples of domain names that were
randomly selected among those misclassified by either the
Random Forest or by all five deep neural networks. Inspecting
the column of the benign domain names, i.e. the Alexa domain
names, it is interesting to note that most of those misclassified
by the deep neural networks (bottom left in the table) come
across as gibberish that a human annotator would likely also
classify as malicious. As also evident from the top right of
Table III, the deep neural networks have become very good
at considering such gibberish-looking domain names to be
malicious, even though they were never explicitly told to do
so (unlike the Random Forest, which explicitly includes a
normalized entropy of characters feature). The fact that the
malicious domain names at the bottom right of Table III
were missed by the deep neural networks might be due to
our deliberate choice to tune the classification threshold to
achieve a very low FPR. This makes all the classifiers hold
back from labeling a domain name as malicious if they are
not almost completely certain. As explained above, a low
FPR is very important in deployed DGA detection systems, as



(a) LSTM (Endgame) (b) Bidirectional LSTM (CMU)

(c) Stacked CNN (NYU) (d) Parallel CNN (Invincea)

(e) Stacked CNN+LSTM (MIT) (f) Embedding only (Baseline Model)

Fig. 1: Training and validation loss curves. The vertical axis in Figure (f) has a different scale than the other figures, related
to the fact that the “Embedding only” baseline model has a much higher loss than the other models.

blocking legitimate traffic is highly undesirable. Note that if
a deployed DGA detection system would rely on the Random
Forest classifier, it would block all domain names from the first
row in Table III, whereas, if it would rely on any of the deep
neural network classifiers, it would block all domain names
from the second row in Table III. The domain names from
the first column would have been unjustly blocked. For those
negatively affected by this, it would be easier to “understand”
(and perhaps forgive) the decisions made by the deep neural
network classifiers, as they are more in line with decisions
that a human would make when confronted with these domain
name strings.

The results in Table II are for DGA domain names that
appeared at the same time in real traffic as the training data
used to construct the classifiers, namely July 2017. To evaluate
how well the trained models hold up against DGA domain
names that appear at a later point, we collected an additional
100K DGA domain names from the Bambenek Consulting
feeds for Dec 6, Dec 9, and Dec 10, 2017. Table IV contains
results for this “prospective” dataset. The only difference
between the experimental setup for Table II and Table IV are

the 100K DGA domain names used in the test set. The training
dataset, the validation dataset, and the 100K Alexa domain
names used in the test set are kept the same. As can be seen
when comparing the results in Table II and Table IV, the to
be expected drop in TPR is minor.

As Table V shows there is a substantial distinction among
the different models in terms of complexity (number of pa-
rameters that have to be learned during the training process)
and required training time per epoch. The platform used for
training is an AWS virtual machine with access to multiple
GPUs. Both the number of epochs needed to train a network,
and the number of seconds required per epoch, are contributing
factors to the overall training runtime. The NYU model took
less than 8 minutes to train, while the CMU model took as
much as 10 hours. The last column in Table V shows the
time needed to classify 200K domain names with an already
trained model. The ranking of the deep networks in terms
of this “scoring time” coincides with the ranking in terms of
training time. Given that all deep networks achieve a similar
accuracy (TPR), the NYU model with it short training and
scoring time comes out as the winner.



TABLE II: Results on test data from July 2017. Accuracy, TPR, FPR are w.r.t. a threshold that gives a FPR of 0.001 on the
validation data.

Model Architecture Acc TPR FPR AUC@1%
RF Lexical features 91.51% 83.15% 0.00128 84.77%
MLP Lexical features 73.74% 47.61% 0.00091 58.81%
Embedding 84.29% 68.69% 0.00108 80.88%

LSTM CNN
Endgame x 98.72% 97.55% 0.00102 98.03%
Invincea x 98.95% 98.01% 0.00109 97.47%
CMU x 98.54% 97.18% 0.00108 98.25%
MIT x x 98.70% 97.49% 0.00099 97.55%
NYU x 98.58% 97.27% 0.00116 97.93%

TABLE III: Examples of domain names that were either misclassified by the Random Forest or by the deep neural networks.
For the malicious domain names, the name of the malware family is shown between parentheses.

benign malicious
misclassified kosmetikosdnr.lt mowvcssclilpomqi.com (murofet)

by RF & jobrankingcommittee.com ntearasildeafeninguvuc.com (banjori)
correctly naturalandhealthytips.com raklloblmuppono.info (cryptolocker)
classified pokemonrubysapphire.com 5alo1ch3wvn5o1cc.org (chinad)
by all five turkcehdpornoizle.com ldjucxqhivnaperisusb.ga (necurs)

deep networks bollywoodparksdubai.com daeontibyxgask.cc (ranbyus)
misclassified rfembassy.kz doycsnramt.com (qakbot)

by all five 4553t5pugtt1qslvsnmpc0tpfz5fo.xyz gypjuytopleh.com (ramnit)
deep networks & 9odyefoccu1gririlemjijbab.top zamdazhocs.com (nymaim)

correctly a5rtngpo9840oyd.com mxdsbbnxmogo.online (tinba)
classified by RF mydwnldsghtfv.com pelkbazgro.info (pykspa)

TABLE IV: Results on test data from December 2017. Accuracy, TPR, FPR are w.r.t. a threshold that gives a FPR of 0.001
on the validation data.

Model Architecture Acc TPR FPR AUC@1%
RF Lexical features 91.57% 83.26% 0.00128 84.47%
MLP Lexical features 78.87% 57.86% 0.00091 67.23%
Embedding 86.75% 73.61% 0.00108 82.93%

LSTM CNN
Endgame x 98.22% 96.54% 0.00102 97.53%
Invincea x 98.44% 97.00% 0.00109 97.07%
CMU x 98.06% 96.23% 0.00108 97.46%
MIT x x 98.21% 96.52% 0.00099 97.52%
NYU x 98.12% 96.35% 0.00116 97.10%

TABLE V: Comparison of complexity and efficiency of classifiers for DGA detection. The complexity refers to the number of
parameters that have to be learned in the deep learning architectures. The training time is reported in terms of seconds needed
for an epoch times the number of epochs. The scoring time is the time in seconds needed to label 200K domain names by an
already trained model.

Model Architecture Complexity Training Time Scoring time
RF Lexical features 100 trees 1,800s 5s
MLP Lexical features 1,665 par 10s × 40 = 400s 1s
Embedding 25,985 par 15s × 40 = 600s 3s

LSTM CNN
Endgame x 148,097 par 430s × 10 = 4,300s 13s
Invincea x 2,576,385 par 105s × 40 = 4,200s 7s
CMU x 115,329 par 1200s × 30 = 36,000s 26s
MIT x x 115,137 par 800s × 15 = 12,000s 10s
NYU x 254,337 par 45s × 10 = 450s 5s



V. CONCLUSION

DGA detection, i.e. the classification task of distinguishing
between benign domain names and those generated by mal-
ware (Domain Generation Algorithms), has become a central
topic in information security. In this paper we have compared
five different deep neural network architectures that perform
this classification task based purely on the domain name
string, given as a raw input signal at character level. All
five models, i.e. two RNN based architectures, two CNN
based architectures, and one hybrid RNN/CNN architecture
perform equally well, catching around 97-98% of malicious
domain names against a false positive rate of 0.001. This
roughly means that for every 970 malicious domain names that
the deep networks catch, they flag only one benign domain
name erroneously as malicious. A Random Forest based on
human defined linguistic features achieves a recall of only 83%
against the same 0.001 false positive rate when trained and
tested on the same data that was used for the deep networks.
The use of a deep neural network that automatically learns
features is attractive in a cybersecurity setting because it is a
lot harder to craft malware to avoid detection by a system
that relies on automatically learned features instead of on
human engineered features. An interesting direction for future
work is to test the trained deep networks more extensively
on domain names generated by new and previously unseen
malware families. A similar work can be done but training
and testing these models on massive real traffic data labeled
by heuristics [3].

REFERENCES

[1] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting
domain generation algorithms with long short-term memory networks,”
preprint arXiv:1611.00791, 2016.

[2] J. Saxe and K. Berlin, “eXpose: A character-level convolutional neural
network with embeddings for detecting malicious urls, file paths and
registry keys,” arXiv preprint arXiv:1702.08568, 2017.

[3] B. Yu, D. Gray, J. Pan, M. De Cock, and A. Nascimento, “Inline dga
detection with deep networks,” in Proceedings of Data Mining for Cyber
Security (DMCS2017), workshop at ICDM2017 (IEEE International
Conference on Data Mining), 2017.

[4] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. Cohen,
“Tweet2vec: Character-based distributed representations for social me-
dia,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, vol. 2, 2016, pp. 269–274.

[5] S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2vec: Learning tweet
embeddings using character-level cnn-lstm encoder-decoder,” in Pro-
ceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval, 2016, pp. 1041–1044.

[6] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, vol. 28, 2015, pp. 649–657.

[7] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou II, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the
rise of DGA-based malware,” in USENIX Security Symposium, vol. 12,
2012.

[8] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, “Phoenix: DGA-
based botnet tracking and intelligence,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
2014, pp. 192–211.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[11] H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga: Adversarially-
tuned domain generation and detection,” in Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, 2016, pp. 13–21.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
preprint arXiv:1412.6980, 2014.

[14] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[15] W. Ling, T. Luı́s, L. Marujo, R. F. Astudillo, S. Amir, C. Dyer, A. W.
Black, and I. Trancoso, “Finding function in form: Compositional char-
acter models for open vocabulary word representation,” arXiv preprint
arXiv:1508.02096, 2015.

[16] B. Yu, L. Smith, and M. Threefoot, “Semi-supervised time series
modeling for real-time flux domain detection on passive DNS traffic,”
in Proc. of the 10th International Conference on Machine Learning and
Data Mining, 2014, pp. 258–271.

[17] B. Yu, L. Smith, M. Threefoot, and F. Olumofin, “Behavior analysis
based DNS tunneling detection with big data technologies,” in Proc. of
the International Conference on Internet of Things and Big Data, 2016,
pp. 284–290.



APPENDIX

Listing 1: Endgame model with single LSTM layer, adapted
from [1]
main_input = Input(shape=(75, ), dtype=’int32’, name

=’main_input’)
embedding = Embedding(input_dim=128, output_dim=128,

input_length=75)(main_input)
lstm = LSTM(128, return_sequences=False)(embedding)
drop = Dropout(0.5)(lstm)
output = Dense(1, activation=’sigmoid’)(drop)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 2: CMU model with bidirectional LSTM, adapted from
[4]
main_input = Input(shape=(75, ), dtype=’int32’, name

=’main_input’)
embedding = Embedding(input_dim=128, output_dim=128,

input_length=75)(main_input)
bi_lstm = Bidirectional(layer=LSTM(64,

return_sequences=False),
merge_mode=’concat’)(

embedding)
output = Dense(1, activation=’sigmoid’)(bi_lstm)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 3: NYU model with stacked CNN layers, adapted from
[6]
main_input = Input(shape=(75, ), dtype=’int32’, name

=’main_input’)
embedding = Embedding(input_dim=128, output_dim=128,

input_length=75)(main_input)
conv1 = Conv1D(filters=128, kernel_size=3, padding=’

same’, strides=1)(embedding)
thresh1 = ThresholdedReLU(1e-6)(conv1)
max_pool1 = MaxPooling1D(pool_size=2, padding=’same

’)(thresh1)
conv2 = Conv1D(filters=128, kernel_size=2, padding=’

same’, strides=1)(max_pool1)
thresh2 = ThresholdedReLU(1e-6)(conv2)
max_pool2 = MaxPooling1D(pool_size=2, padding=’same

’)(thresh2)
flatten = Flatten()(max_pool2)
fc = Dense(64)(flatten)
thresh_fc = ThresholdedReLU(1e-6)(fc)
drop = Dropout(0.5)(thresh_fc)
output = Dense(1, activation=’sigmoid’)(drop)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 4: Invincea CNN model with parallel CNN layers,
adapted from [2]
def getconvmodel(self, kernel_size, filters):

model = Sequential()
model.add(

Conv1D(filters=filters, input_shape=(128,
128), kernel_size=kernel_size,

padding=’same’,activation=’relu’,
strides=1))

model.add(Lambda(lambda x: K.sum(x, axis=1),
output_shape=(filters, )))

model.add(Dropout(0.5))
return model

main_input = Input(shape=(75, ), dtype=’int32’, name
=’main_input’)

embedding = Embedding(input_dim=128, output_dim=128,
input_length=75)(main_input)

conv1 = getconvmodel(2, 256)(embedding)
conv2 = getconvmodel(3, 256)(embedding)
conv3 = getconvmodel(4, 256)(embedding)
conv4 = getconvmodel(5, 256)(embedding)
merged = Concatenate()([conv1, conv2, conv3, conv4])
middle = Dense(1024, activation=’relu’)(merged)
middle = Dropout(0.5)(middle)
middle = Dense(1024, activation=’relu’)(middle)
middle = Dropout(0.5)(middle)
output = Dense(1, activation=’sigmoid’)(middle)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 5: MIT model with a stacked CNN and LSTM layer,
adapted from [5]
main_input = Input(shape=(75, ), dtype=’int32’, name

=’main_input’)
embedding = Embedding(input_dim=128, output_dim=128,

input_length=75)(main_input)
conv = Conv1D(filters=128, kernel_size=3, padding=’

same’, activation=’relu’, strides=1)(embedding)
max_pool = MaxPooling1D(pool_size=2, padding=’same’)

(conv)
encode = LSTM(64, return_sequences=False)(max_pool)
output = Dense(1, activation=’sigmoid’)(encode)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 6: Baseline Model with only Embedding Layer
main_input = Input(shape=(75, ), dtype=’int32’, name

=’main_input’)
embedding = Embedding(input_dim=128, output_dim=128,

input_length=75)(main_input)
flatten = Flatten()(embedding)
output = Dense(1, activation=’sigmoid’)(flatten)
model = Model(inputs=main_input, outputs=output)
print(model.summary())
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)

Listing 7: MLP Model with 128 Nodes Dense Layer
main_input = Input(shape=(11, ), name=’main_input’)
dense = Dense(128, activation=’relu’)(main_input)
output = Dense(1, activation=’sigmoid’)(dense)
model = Model(inputs=main_input, outputs=output)
print(model.summary())
model.compile(loss=’binary_crossentropy’, optimizer

=’adam’)


