Inline DGA Detection with Deep Networks

Bin Yuf, Daniel L. Gray*, Jie Pan*, Martine De Cock*!, and Anderson C. A. Nascimento*
*Institute of Technology, University of Washington Tacoma
Tacoma, Washington
Email: {dangray, jiep, mdecock, andclay}@uw.edu
TCTO Office, Infoblox
Santa Clara, California
Email: biny@infoblox.com

Abstract—Domain generation algorithms (DGAs) automati-
cally generate large numbers of domain names in DNS domain
fluxing for the purpose of command-and-control (C&C) com-
munication. DGAs are immune to static prevention methods
like blacklisting and sinkholing. Detection of DGAs in a live
stream of queries in a DNS server is referred to as inline
detection. Most of the previous approaches in the literature on
DGA detection either: (i) are based on small synthetic data
sets for training, rather than data collected from real traffic
or (ii) require contextual information and therefore cannot
be used for inline detection. In this work, we overcome these
limitations by proposing a novel way to label a large volume
of data collected from real traffic as DGA/non-DGA and by
using deep learning techniques. Our classifiers can be trained
with large amounts of real traffic, rather than small synthetic
data sets, and therefore have better performance.

1. Introduction

Domain generation algorithms (DGAs) generate large
numbers of domain names of which few get resolved for
command-and-control (C&C) communication. This method
of communication between bot and master evades standard
means for impeding botnet activity, which are largely based
on static lists of domain names. The challenge to catch
malicious domain names that are generated dynamically
has led to recent interest in detecting DGA domains using
machine learning algorithms. Models which predict based
solely on the domain name string are of particular interest
for their generality: context information beyond the domain
name string is generally unavailable or expensive to acquire.

Detecting DGAs retrospectively through means such as
clustering has been well explored, but has the disadvantage
of being reactionary. These approaches are based on analysis
of batches of traffic, which means DGA domains are likely
to establish communication before being detected. Ideally
we should detect DGA domains in real-time, predicting on
a per domain basis, to prevent any C&C communication.
Relatively little progress has been made on this challenge
so far. Predicting on a per example basis is a supervised

LGuest Professor at Ghent University

learning problem, and thus requires labeled data. Labeled
DGA domains can be obtained through reverse engineer-
ing malware. Domains coming from the Alexa list [1] are
usually used as examples of non-malicious domains. There
are a couple of problems with this approach: (i) reverse
engineering DGA malware is a tedious task, and models
trained in this manner will become outdated as new DGA
malware families emerge in real traffic quickly; (ii) there
is no guarantee that domains from Alexa form a good
representative set of non-malicious domains within a specific
network.

To overcome these problems, we propose a novel tech-
nique for obtaining labeled data towards training an inline
DGA detector. Our technique is based on real traffic and
does not require the reverse engineering of DGA malware to
obtain malicious domains. When a domain name is queried
for which no IP address exists, the client is returned a Non-
Existent Domain (NXDomain) response. Based on our ob-
servations of DGA behavior, we perform heuristic filtering
on billions of NXDomains with the intent of creating a
noise-not-free but practical data set of live DGA domains
collected from real traffic. Specifically, we collect negatives
(legitimate domains) from resolving traffic, and positives
(potential DGA domains) from non-resolving traffic. The
reasoning for using NXDomain traffic is as follows: (i) Only
a small subset of DGA domains are actually intended for
C&C communication and resolved. The vast majority of
DGA domains do not resolve. This behavior means that
DGA domains are largely isolated to NXDomain traffic.
By the same reasoning, resolving traffic is generally non-
DGA, and thus benign. (ii) Furthermore, looking solely at
the domain name strings, DGA domains that resolve should
be indistinguishable from those that do not (we expect that
DGA domains used for C&C communication are generated
in the same manner as non-resolving DGA domains).

To boost the signal of DGA domains, we filter based
on how we expect to observe DGAs in real traffic (for
instance, a DGA domain is disposable and will not be
reproduced outside a very short span of time, e.g. 7 days,
neither from the same host nor a different host). The binary
classification models that we train over this filtered data
set can be deployed at a DNS server to impede botnets by

preventing malicious responses to infected clients (see Fig.
1). Furthermore, domains which are predicted malicious, yet
do resolve, are likely resolving to a C&C IP address. Thus
our model is not only useful for passively blocking C&C
communication, but also for detecting C&C servers.

Our novel strategy allows us to obtain an enormous
amount of labeled data. This opens the door to use deep
neural networks for this classification task, which boast
many advantages over traditional methods. Deep learning
has achieved state-of-the-art results in terms of predictive
accuracy on a variety of complex tasks in recent years, while
also performing efficient classification, essential for an inline
detection scheme. In contrast to more traditional approaches,
deep neural nets can learn features automatically, bypassing
the human effort of feature engineering. This is useful for
DGA detection, as malware authors could use knowledge of
human engineered features to better blend with legitimate
traffic. Our self-labeling technique makes online learning
possible. Many traditional models must be fit from scratch
in order to update them with new data. The weights of neural
networks on the other hand can be tuned continuously. Thus
a neural net can be deployed and used for DGA detection
while simultaneously training on live traffic. This property
should allow our model to keep up with DGAs as they
change in the wild.

We train and evaluate two types of deep neural networks:
convolutional and recurrent neural networks (CNN and
LSTM respectively). Our networks operate at the character-
level, and are given only the domain name string without
other context. To create a baseline for our models, we also
evaluate traditional machine learning models using human
engineered features.

Low false positive rate (FPR) is a clear priority for an
inline detection scheme. We set the threshold for the models
at a FPR of 1 in 10,000 against our data, and report results
in terms of accuracy, AUC, and true positive rate (TPR). At
this restrictive threshold, our best deep learning model still
achieves 40.31% TPR against our validation set.

In order to establish ground truth and evaluate the
performance of our classifier, we turn to a repository of
known DGA domains, DGArchive [2], for concrete valida-
tion. Against this sample of DGA/non-DGA truth marked
data, our best deep learning model achieves 72.89% TPR
and 0.31% FPR.

We additionally deploy a CNN on a live stream of
traffic to observe what is flagged malicious. We analyze
IP addresses resolved by flagged domains in this stream,
namely by inspecting the list of domains which resolve
to them. In this way, we find many IPs that are, beyond
reasonable doubt, malicious.

The contributions of this work are as follows:

e We propose a novel criteria for creating a noise-not-
free DGA/non-DGA data set from real traffic that
bypasses the difficulty of explicit labeling. To the
best of our knowledge, all the previous approaches
for creating labeled data sets of DGAs were based
on synthetic data rather than real traffic. Thus, the

DNS Query

- DNS

[Client

' HOSt /| “nxresponse Host IP Address
AN A if not resolved Resolved

if predicted

Domains malicious

m Classifier

if predicted
benign

Figure 1. Diagram depicting the deployment of our classifier for inline
detection, showing a transaction with an infected client, or client host.
Domains which resolve at the DNS server are checked against the classifier
to predict if they are malicious. Benign and NXDomain responses can be
returned to the client as usual while potentially malicious responses are
blocked to impede communication with a C&C server. IP addresses asso-
ciated with potentially malicious domains may also be further investigated.

performance metrics (accuracy, false-positive, false-
negative rates) computed for synthetic data based
systems did not provide insight on their real world
performance.

e We train and evaluate character-level deep learning
techniques for DGA detection using this filtered
data. Our results are practical and can be used for
blocking/filtering the communication between bots
and the command-and-control center in real time.

2. Related work

DNS data is useful for detecting malicious activities in
a network, including fast-fluxing, tunneling and DGAs [3],
[4], [5], [6]. In the case of DGA detection, a large number
of previous works are based on a retrospective approach:
that is, data is collected over a time period and then a
classification algorithm is performed on the collected data
(51, [6].

In [7], clustering is used during an off-line phase where
domains are grouped based on domain-related features.
From each cluster of domains, linguistic features are ex-
tracted and used to build signatures for catching DGA
domains during an on-line phase.

A hybrid (off-line, on-line) approach is used by [8],
where potentially malicious domains are first clustered, and
then properties of these clusters are extracted and subse-
quently used for catching the command-and-control center
during an on-line phase.

All of these works exhibit the following characteristics:

e They are based on human engineered features.

o They are trained and evaluated on synthetic data sets
(e.g. Alexa and a list of domains obtained by reverse-
engineered malware).

Whenever human engineered features are used, it is ob-
vious that it opens the door for an adversary to carefully craft
its DGA to avoid detection by using the aforementioned
features. Moreover, synthetic data sets might be substantially
different from what is present in real traffic. Thus, validation

TABLE 1. OVERVIEW OF DATA SETS. THE POSITIVE EXAMPLES IN THE
GOLD DATA SET ARE REVERSE ENGINEERED DGA DOMAIN NAMES,
WHILE THE NEGATIVE EXAMPLES ARE FROM THE ALEXA TOP 1M LIST.
IN ALL OTHER DATA SETS, EXAMPLES ARE TAKEN FROM REAL
TRAFFIC. IN PARTICULAR, POSITIVE EXAMPLES ARE NXDOMAINS,
AND NEGATIVE EXAMPLES ARE DOMAINS THAT RESOLVED. THE
TRAIN, VALIDATION AND PROSPECTIVE DATA SETS ARE ALL DISTINCT:
EACH DOMAIN NAME OCCURS IN AT MOST ONE DATA SET.

Set Positives Negatives Observation Dates
Train | 9,121,642 (9.1M) | 8,767,638 (8.8M) | Sept. 2015 - Jan. 2017
Val 2,280,573 (2.3M) | 2,192,259 (2.2M) | Sept. 2015 - Jan. 2017
Prosl 1,982,843 (2M) 2,993,048 (3M) Feb. 2017
Pros2 | 2,621,980 (2.6M) | 1,466,152 (1.5M) Mar. 2017
Pros3 | 4,685,382 (4.7M) 23,633 (24K) Apr. 2017
| Gold | 4739563 (4.7M) | 489,030 (0.5M) N/A \

based solely on such data sets might not reflect how well
these classifiers would perform in a real world situation.

In [9], DGAs are detected by observing the number of
DNS requests by a client that obtain an NX answer and
applying hypothesis testing. Despite avoiding the use of
human engineered features, the approach proposed in [9]
needs to segregate DNS requests by IP addresses of the
clients. IP addresses can be seen as private information
and it is desirable to have methods that do not need such
information.

The most similar work in the literature to ours is the
exploration of character-level LSTM for DGA detection by
Woodbridge et al. [10]. The primary difference between this
work and ours is that they train with synthetically generated
DGA/non-DGA labeled data. For non-DGA examples, they
use Alexa Top IM domains. For DGA domains, they use
the OSINT DGA feed from Bambenek Consulting [11]. The
sample used contains varying numbers of examples from
thirty DGA families with a total of approximately 750,000
examples [10]. Our work is based on real traffic data.

To the best of our knowledge, our work is the first to
apply deep learning for real-time DGA detection (i) without
the use of human engineered features, and (ii) with the use
of real traffic, rather than synthetic data, for training.

3. Creation of the Data Set

Unlike most of the traditional approaches that use re-
verse engineered DGA algorithms to generate positive sam-
ples, we use real and live traffic data as samples to train a
classifier that can target active DGAs. The raw data used
in this work is a real time stream obtained from Farsight
Security [12]. It consists of roughly 10 billion DNS queries
per day collected from subscribers including ISPs, schools,
and businesses, from September 2015 through April 2017.
This data is private, and no sample is publicly provided.
Since it is impossible to have human annotators truth mark
this large amount of data, we propose a novel approach
based on the assumption that a DGA generated domain will
not be regenerated over a long period of time, to A and
AAAA type queries (these queries account for 78% of the

overall volume). We take as negative examples (legitimate
domains) those domain names which have been resolved at
least once, never resulted in an NXDomain response, and
span more than 30 days (we define span as the number of
days between the first and last query for a given domain).
We take as positive examples those which never resolved
and consistently resulted in NXDomain at least 10 times,
and have all occurrences within the span of 7 days with
standard deviation 3 days or less. The filtering parameters
are chosen based on statistical observation of DGA behavior
in real traffic. Furthermore, we assume that a DGA domain
is a primary domain that can be registered under a publicly
available top level domain (TLD). We take the second level
domain (SLD) as the domain name string, and exclude
all examples where the domain extends past the SLD (i.e.
has a third level domain). In order to further minimize
noise, only domains which have at least 10 characters are
selected. Filtering by length should also be applied when
the model is deployed, whereas the statistics based filters
become infeasible in a production scenario.

We further separate our data into retrospective and
prospective sets. The retrospective data is a balanced set of
12M positive and 12M negative examples from September
2015 through January 2017. Randomly, 80% is used for
training, and 20% is reserved for validation. The prospective
sets are reserved to evaluate the performance of our classifier
on future traffic, consisting of domains observed from a later
time period and not present in the training set. Specifically,
the prospective sets contain positive and negative examples
from February, March, and April 2017.

It is also important to note that the number of negatives
drops considerably across the prospective sets. This is due to
the time at which the sets were generated. Our filter for span
of days takes all observations into account across the entire
span of data (September 2015 through April 2017), and thus
unique domains observed in more recent months have less
opportunity to span over 30 days. The retrospective and
prospective sets corresponding to the results of this paper
were generated in May 2017.

For ground truth validation, we leverage DGArchive
[2] and Alexa Top 1M [1] to create a small truth marked
data set (we refer to this as the Gold set; see Table 1).
DGArchive is a small repository of known DGA domains.
These are collected using reverse engineered malware, fore-
casted seeds, and active dictionaries to match actual DGA
domains in real traffic. The Alexa Top IM web service
provides access to lists of web sites ordered by Alexa Traffic
Rank, which can be assumed legitimate. We filter this data,
limiting to domains which are not observed in the training
set, and have at least 10 characters in the SLD label. Before
any filtering, we have 6,598,492 DGArchive domains and
1,000,000 Alexa domains. First we remove domains which
overlap with the training set, leaving 5,893,625 positives and
986,886 negatives. Second, we enforce the filter by SLD
length to match the form of domains in the training data,
leaving 4,739,563 positives and 489,030 negatives to make
predictions on. When using this set for evaluation, we count
all domains removed in the second filtering step as negative

predictions.

4. Feature Based Approach

In addition to our deep learning approach, we investigate
how traditional, feature based machine learning algorithms
perform on the classification task at hand. These algorithms
do not present the advantages we are looking for in the deep
learning approach, such as online learning and automatic
feature learning, but can be used to provide a baseline
against which the deep learning approach can be compared.
We explored many approaches, including K-Nearest Neigh-
bor, SVM, and AdaBoost. We also experimented using var-
ious training sizes in the feature based approach, checking
performance when using 10K, 50K, 100K, 200K, 500K, 1M,
and 5M random samples of the training set to fit the models.
The most effective feature based method found is a random
forest trained with 100K examples, and we present this as
our baseline.

To fit a feature based model, we extract the follow-
ing 11 features from each domain name string (see below
for a more detailed description of each feature) [3], [4]:
ent (normalized entropy of characters); nl2 (median of 2-
gram); nl3 (median of 3-gram); naz (symbol character ratio);
hex (hex character ratio); vwl (vowel character ratio); len
(domain label length); gni (gini index of characters); cer
(classification error of characters); tld (top level domain
hash); dgt (first character digit).

In information theory, entropy quantifies the information
in message represented by a random variable [13]. Given
a character set {x} within a text string, we estimate the
normalized entropy of characters in terms of its estimated
distribution D(z) and its length len:

— zz: D(x)log D(x)

ent =
" loglen

The summation above is over all z in {z}.

The Gini index of characters is computed as:
gni =1-> D*(z)

The classification error of characters is a measure which
provides some indication of the diversity of characters in the
string. It is defined as: cer = 1 — max{D(x)}

The distribution of n-grams (sequences of n-characters)
is not uniform in natural language, and thus n-gram fre-
quency is a powerful feature for our classification task. From
Google’s Ngram Viewer [14], we created lookup tables for
the frequencies of 2-grams and 3-grams. Given a string, we
use these tables to look up the frequency of each 2-gram and
3-gram. We take nl2 as the median of 2-gram frequencies,
and nl3 as the median of 3-gram frequencies.

In addition, we compute several character ratio features
for a given text string as follows:

e naz (symbol character ratio): the number of charac-
ters that do not exist in the English alphabet divided
by the string length.

e hex (hex character ratio): the number of hexadecimal
characters (A-F) divided by the string length.

e vwl (vowel character ratio): the number of vowels
divided by the string length.

The remaining features are defined as follows:

o tld (TLD hash): a hash value is computed for each
potential TLD and normalized to the range O to 1.

o dgt (first character digit): a flag for whether the first
character is or is not a numerical digit.

o len: the length of the string taken as the domain
name.

Most of the features above are chosen based on their
discrimination power for distinguishing natural language
sequences, since many DGAs utilize sequences which are
clearly distinct from natural language. Exceptions are the
len, tld, and dgt features. Length can be used for grouping
DGA families. TLD information can help indicate malicious
domains, since DGAs tend to use certain TLDs to avoid
conflict with legitimate traffic. Whether the first character
is a number should be in and of itself a strong signal for
malicious domains. Fig. 2 shows the distributions of these
features in the retrospective data (observed Sept. 2015-—
Jan. 2017). The red curves represent the distributions on
positive domains; the green curves represent the distribu-
tions on negative domains.

5. Deep Learning Approach

We train two types of neural networks: convolutional
and recurrent neural networks. Both take raw data as input,
bypassing the need for manual feature extraction.

5.1. Convolutional Neural Networks

CNNs are known for state-of-the-art advances in image
processing, and apply to inputs of grid-like topology [15].
One-dimensional (“temporal”) CNNs are a natural fit when
the input is text, treated as a raw signal at the character level
[16]. CNNs automatically learn filters to detect patterns that
are important for prediction. The presence (or lack) of these
patterns is then used by the quintessential neural network
(multilayer perceptron, or MLP) to make predictions. These
filters, (also called kernels) are learned during backpropa-
gation. An intuitive example in image processing is a filter
which detects vertical edges, while in text processing the
filters detect sub-strings, or n-grams.

The underlying operation of CNNs is elementwise mul-
tiplication, performed between each filter and sub-sections
of the input. The resulting values indicate the degree to
which these sub-sections match the filters. In this manner,
the filters are convolved over the input to form an activation
map, which represents the locations of discovered features.

5.2. Long Short Term Memory Models

RNNSs are designed to learn dependencies across an input
sequence, featuring an information loop that takes as input

wwl

tid

dgt

Figure 2. The charts above show the distributions of all 11 features in the retrospective data with filtering. The red curves correspond to positive examples
(NXDomains). The green curves correspond to negative examples, which are likely legitimate.

both the current timestep of a sequence and the output from
the previous timestep. LSTMs [17] are a special type of so-
called gated RNNSs. Instead of ordinary neurons, LSTMs are
made up of LSTM cells that contain an internal recurrence
(a self-loop) and a system of gating units that controls the
flow of information. This makes LSTMs especially suitable
to learn long-term dependencies, resulting in state-of-the-art
advances in natural language processing (see e.g. [15] for
an overview).

5.3. Implementation Details

We trained our neural nets using Python2 and Tensorflow
[18]. Specifically, we use Keras [19], an API for rapid
prototyping with Tensorflow and Theano. The platform used
for training is an AWS virtual machine with access to
multiple GPUs.

5.4. Representation

Both models are trained given only the domain name
string as input. Each string is converted to lowercase, and
then represented as a sequence of ASCII values correspond-
ing to its characters. The maximum number of characters in
a domain name is 63, so we pad zeros to the end such that all
inputs have a fixed input width of 63. At this point, we then
embed the input characters using Keras’ built-in embedding
layer. Embedding techniques such as Word2Vec [20] that
map inputs to some vector space are now common practice
in natural language processing. Generally, the goal is to map
inputs which are similar for the given task closely together,
resulting in improved performance. The embeddings are
learned during training, separately for each model.

5.5. Deep Learning Models

Here we present the architecture of the best performing
CNN and LSTM networks that we trained in the deep
learning approach. Both operate at the character level and
start with an embedding layer. Both models are trained using
a batch size of 64. The LSTM is taken from the architecture
proposed in [10], but with a few modifications.

As mentioned above, both CNN and LSTM networks
include an embedding layer which learns to map 256 unique
ASCII characters, each to its own 128 dimensional vector
embedding. Note that there are only 37 allowed characters
in domain names, and thus we could reduce from 256 to 38
unique inputs (one extra input for the padding value). The
embedding layer expects inputs in the form of indexes (each
index maps to a unique embedding). In our experiments,
we reduced to 38 inputs and mapped the ASCII inputs
to integers in the range 0-37 inclusive, but observed no
difference in performance. Thus we left this parameter set
to 256 for simplicity and potential for new unique inputs.

Following the embedding layer, the LSTM architecture
is comprised of an LSTM layer (128 LSTM cells with
default Tanh activation), a fully connected layer (100 nodes
with default of linear activation), and finally a single node
output layer with sigmoid activation. We additionally make
use of the ‘unroll’ option, which accelerates training speed
at the cost of memory use. Each layer defaults to ‘glo-
rot_uniform’ weight initialization [21]. We obtained better
loss convergence results using Adam [22] as the optimiza-
tion algorithm, instead of RMSProp as proposed in [10].
Uniquely for the LSTM, we modified the Adam optimizer to
have 0.001 decay, as opposed to the default of no decay (the
rest of the parameters shown in the code below regarding
Adam are defaults, and used in the CNN).

The CNN is structured similarly. It features a 1-
Dimensional convolutional layer in place of the LSTM layer,
uses ‘glorot_normal’ weight initialization [21], and uses the
rectified linear unit (ReLU) as the activation function on all
but the output layer. The CNN has 1000 kernels, each of
size 2. We experimented with max-pooling, but did not see
performance gains with this technique.

We also employ dropout for both networks. Dropout is
a technique to improve model performance and overcome
over-fitting by randomly excluding nodes during training,
which serves to break up complex co-adaptations in the
network [23]. This is confined to the training phase; all
nodes are active during testing and deployment. We apply
50% dropout at the convolutional and LSTM layers.

Our models are defined in Keras as follows:

5.5.1. CNN.

model = Sequential (name=‘Seq’)
model.add(Embedding(256, 128, input_length=63))
model.add(Conv1D(1000, 2, padding=‘same’,
kernel_initializer =‘glorot_normal ’,
activation =‘relu ’))
model.add(Dropout(0.5))
model.add(Flatten ())
model.add(Dense(100, activation =‘relu ’,
kernel_initializer =°glorot_normal’))
model.add(Dense(1, activation =‘sigmoid’,
kernel_initializer =‘glorot_normal *))
model.compile(loss=* binary_crossentropy ’,
optimizer=*‘adam’, metrics =[‘accuracy ’])

5.5.2. LSTM.

model = Sequential (name=‘Seq’)

model.add(Embedding(256, 128, input_length=63))

model.add(LSTM (units=128, unroll=True))

model.add(Dropout(0.5))

model.add(Dense(100))

model.add(Dense(1))

model.add(Activation (‘sigmoid’))

adam = Adam(Ir=0.001, beta_1=0.9, beta_2=0.999,
epsilon=1e—08, decay=0.001)

model.compile(loss=* binary_crossentropy ’,
optimizer=adam, metrics=[‘accuracy ’])

6. Validation and Results

6.1. Validation

The metrics used to evaluate our models are true positive
rate (TPR), false positive rate (FPR), and AUC (area under
the ROC curve).

Low false positive rate is the most important quality for
our models. If they are to be deployed, blocking legitimate
traffic must be a rare occurrence. We choose to limit the
false positive rate to 0.01% and tune the neural nets ac-
cordingly. This strict threshold means our models must be
extremely confident before we flag a domain as malicious,
and comes at the cost of severely reduced TPR. To do this,
we simply choose a threshold probability which gives us
0.01% FPR on the validation set. We assume that negatives
are largely consistent over time, and thus this FPR is roughly
maintained on the prospective sets.

We obtain these metrics using the data sets detailed in
Section 3. The size of the training data set and the variety
of different test sets obviate the need for K-fold cross-
validation. Results against the retrospective and prospective
data sets (see Table 2) are taken at a high threshold for
0.01% FPR as described above. Results against truth marked
data (see Tables 4 and 5) are taken at a threshold of 0.5,
without tuning for low FPR.

For both deep learning models, we also present training
convergence curves, which show how the accuracy improves

TABLE 2. NEURAL NET RESULTS AGAINST DATA FILTERED FROM
REAL TRAFFIC (THRESHOLD SET FOR 0.01% FPR)
(TPRgo: RETROSPECTIVE; TPR;_3: PROSPECTIVE)

Model TPRo TPR1 TPR2 TPR3
CNN | 4031% | 537% | 10.14% | 8.17%
LSTM | 40.46% | 2.43% 8.49% 6.64%

TABLE 3. BASELINE VS NEURAL NETS AGAINST DATA FILTERED
FROM REAL TRAFFIC (THRESHOLD SET FOR 0.1% FPR)
(TPRg: RETROSPECTIVE; TPR;_3: PROSPECTIVE)

Model TPRo TPR; TPR2 TPR3

CNN | 64.04% | 35.65% | 41.05% | 37.64%

LSTM | 57.71% | 37.14% | 42.88% | 40.35%
RF 63.77% | 62.06% | 63.48% | 20.79%

TABLE 4. RESULTS AGAINST TRUTH MARKED GOLD SET FROM
ALEXA AND DGARCHIVE (THRESHOLD: 0.5)

Model TPR FPR

CNN 72.89% | 0.31%

LSTM 74.05% | 0.54%
Random Forest | 71.28% | 1.33%

L 33:ch ke nah
@ A AL A et B gt et
@ 2605132a35cab6.ddns. net.
@ 16bd5d935235e delns.net.
@ 7249a1b6d59F8 ddns. net. @ Sd4de73a88e6f ddns.net.

@ 39d3fe103cab4.ddns.net. @ 367d7c9289adb.ddns net.

@ 619/313eea453.ddns.net @ 76957de266954.ddns. net

@ 259446750bb43. dddns.net @ 0d1deE57ccl5e. ddns.net.

506f8h04395b3. ddns.net.
@ 4edfic5c73c37.ddns.net. .

© 0604524575457 ddns et @ 2c358d7cd4dbb.ddns.net.

@ 76752383be704.ddns. net. @ ©557082fe526de.ddns.net.

. 45.76.192.49

@ 33a5b896b56c2.ddns.net. @ #08a5cd8196cf.ddns.net.

@ 5cb9801696639. ddns. net. @ FcTaR3ebd485f ddns net.
@ 121fcc327 8de.ddns.net. @ 19ead0cfa0f6c.ddns.net.

@ <lefdé0dfeldc.ddns.net.
@ 00f7Fe8d9152.ddns.net.

@ 532170735e9b9.ddns net.
@ 334675641Fb0Z2 ddns.net.

@ 6f37f¢f96eact. ddns net. @ 73f75024d67 8a.ddns.net.

® 30dcd652e4csd ddns et @ 039339947Fd4a.ddns. net.

e 5‘23??4%%%&5.;’5;;;;& pj. 4d5chea5390el.ddns.net.
F.
Pl T

Figure 3. Above is a graph of domains which resolve to a potentially
malicious host discovered through deployment of our CNN on a live stream
of traffic.

after each iteration over the training data; see Fig. 4 and 5.
Note that these accuracies are also computed at a prediction
threshold of 0.5. It is important to point out that the training
accuracy is lower than the validation accuracy in these
curves. Accuracy against the training set is computed in an
averaged way across batches while dropout is being applied,
whereas performance on the validation set is determined at
the end of each epoch with dropout disabled.

How the random forest compares to our neural nets is
seen in the ROC plot (see Fig. 6), and we further highlight
the performance of each model at 0.1% FPR in Table 3.

TABLE 5. RESULTS AGAINST DGARCHIVE BREAKUP BY DGA FAMILY

0971 L L L L L i L L N N N N N L L
0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

12 3
Figure 4. Accuracy over Epochs for CNN

6.2. Evaluation by Metrics

Performance of the neural nets against our data from
real traffic is shown in Table 2. The four columns give
TPR against the validation set, Pros1, Pros2, and Pros3 from
left to right (each TPR is given at 0.01% FPR). The CNN
outperforms the LSTM model by each metric except for
slightly worse TPR on the validation set.

Table 2 is structured in the same manner and compares
the neural nets to the baseline random forest model. Here
it is seen that at 0.1% FPR, the CNN is instead beaten by
the LSTM on each metric but the validation TPR. Prospec-

DGA Size Size CNN LSTM Random
Family Before Filter | After Filter Forest
bamital 225911 225911 100.00% | 100.00% 99.96%
banjori 421,383 421,383 17.02% 30.54% 15.31%
bedep 14,473 14,473 97.19% 96.14% 93.87%
beebone 210 105 0.00% 0.00% 50.00%
blackhole 623 623 99.04% 99.20% 96.95%
bobax 300 128 42.00% 42.00% 42.67%
conficker 1,511,912 359,783 23.10% 23.10% 22.67%
corebot 147,030 147,030 91.84% 99.63% 95.46%
cryptolocker 1,183,256 1,183,256 98.17% 98.14% 96.41%
darkshell 49 0 0.00% 0.00% 0.00%
dircrypt 538 451 82.90% 82.71% 81.04%
dnsbenchmark 5 5 100.00% | 100.00% | 100.00%
dnschanger 1,499,578 1,499,578 96.79% 96.84% 92.70%
downloader 60 0 0.00% 0.00% 0.00%
dyre 746,962 746,962 100.00% | 100.00% | 100.00%
ekforward 1460 0 0.00% 0.00% 0.00%
emotet 137,687 137,687 99.01% 98.96% 96.37%
feodo 192 192 99.48% 100.00% 98.44%
fobber 1,996 1,996 98.25% 98.15% 95.34%
0.978 0.974
é o977 § 0.972}
(=) 9]
5 T
< 0976 [
g £ 0970}
2 = H
2 0,975 a 1
S S 1
] T 0968} 1
B o074 J ‘
o s ;
o (%) 1
g 0 0,966,
§ 0973 S !
> 1 >]
g ; € o964
E 0972¢ — Validation Set Acc E g — Validation Set Acc
- - Average Train Set Acc - - Average Train Set Acc
0.962

012345678 9101112131415161718192021222324
Epochs

Figure 5. Accuracy over Epochs for LSTM

tive results for the random forest would seem to indicate
superior generalization, but the poor performance on Pros3
is peculiar. The neural nets achieve similar scores for each
month of the prospective data, and consistently do best on
Pros2, followed by Pros3 and Prosl.

6.3. Evaluation on Truth Marked Data

Due to the lack of ground truth in our filtered data, we
also evaluate against a small truth marked set for concrete
validation (see Gold set in Section 3). We evaluate each
model against this set using a prediction threshold of 0.5

1.0
» .|I|u|.|.-|-|q—|-rr\ FTRT
| m LA _‘_ e
0.8} et ‘: - |
\‘\‘ '4’
- b d
% & '¢'
< 06 /2,7 |
2 :
5 V'
S o4l I 7
2 -
R
02} CNN AUC = 0.9918 ||
- - = LSTM AUC = 0.9896
- =1 RF AUC = 0.9873
.0 ‘ ‘ ‘ ‘
0.000 0.002 0.004 0.006 0.008 0.010

False Positive Rate
Figure 6. ROC Curves

TABLE 6. COMPARISON OF FALSE POSITIVES TO DGARCHIVE
(FP: TOTAL NUMBER OF FP ON RETROSPECTIVE AND PROSPECTIVE
SETS; FP ON DGARCHIVE: NUMBER OF SUCH FP FOUND TO BE
KNOWN DGA DOMAINS; PERCENT MATCH: FP ON DGARCHIVE / FP)

CNN
Data Set FP FP on DGArchive | Percent Match
Train 638 256 40.1%

Val 219 67 30.6%
Pros1 468 123 26.3%
Pros2 643 172 26.7%
Pros3 36 2 5.6%

LSTM
Data Set FP FP on DGArchive | Percent Match
Train 1047 265 25.3%

Val 218 44 20.2%
Pros1 545 113 20.7%
Pros2 638 75 11.8%
Pros3 34 0 0%

(this is intended to maximize accuracy over prioritizing low
FPR). The resulting true and false positive rates are shown
in Table 4. We also show the percentages of each DGA
family found in the Gold set in Table 5. Note that the
totals for the Gold set in Table 1 only show the number
of examples given to our classifier. Many examples are
filtered out so that inputs follow the same form as domains
in the training data (see Section 3). In computing results
for the Gold set, we count any domains which were filtered
out as negative predictions (except those initially removed
for having overlap with the training data). These additional
negative predictions are accounted for in Table 4 and Table
5 to better represent the actual performance of our approach,
since the the same filtering should be applied in deployment.
To summarize, we have:

e DGArchive:

— Before deleting duplicates: 6,598,492
— After deleting duplicates: 5,893,625
— Positives input to classifier: 4,739,563

— Positives counted as negative predictions
from filtering: 1,154,062

e Alexa IM:

Before deleting duplicates: 1,000,000

After deleting duplicates: 986,886

Negatives input to classifier: 489030
Negatives counted as negative predictions
from filtering: 497,856

We additionally check for false positives from our retro-
spective and prospective sets that exist on DGArchive. Our
data is not noise-free, and thus it is reasonable that some
DGA domains in our data are labeled negative. Our classifier
may successfully identify these domains, but these instances
will be counted as false positives due to an incorrect label.
Table 6 shows the total number of false positives in each
set, followed by the number and percentage of false positives
which were found to be real DGA domains. The significant
overlap suggests that our actual FPR on real traffic may be
lower than the target rate of 0.01%.

We expect these DGA domains that appear as nega-
tives are mostly honeypots. To monitor malware activity,
researchers have registered known DGA domains to track
when they are queried. In our selection logic, we choose
negatives as domains which are queried over a 30 day span
and never get an NXDomain response. Hence active DGA
domains will appear as negatives if registered as honeypots
throughout our dates of observation.

6.4. Live Stream Deployment

Finally, we deploy our CNN on a live stream of re-
solving traffic. Each domain flagged resolves to some host
IP address, which can then be inspected manually. Fig. 3
is a screenshot of our UI, which shows domains from the
live stream that resolved to a given IP address within the
previous seven days (the UI updates daily to show a seven
day history for any given host IP encountered in the live
stream). The particular IP address shown is a host resolved
to by one of the domains flagged in this experiment. In
this manner, we are able to gain further confidence that our
model catches DGA domains on live traffic.

6.5. Analysis

At 0.01% FPR, the CNN is found to be the best perform-
ing model. However, we also observe that at different FPRs,
the LSTM can attain better generalization (see Table 3). The
deep learning models see a significant drop in TPR going
from validation to prospective sets, which is not initially
observed from the random forest. This is not surprising; with
well selected features, a feature based approach should be
more generalized than featureless approach, which attempts
to model the training distribution directly. Still, traditional
methods lack the adaptability required of a practical solution
to DGAs. As for TPR3 of the random forest, we do not have
an explanation for the particularly low result.

In Table 2, the drop in prospective results appears ex-
treme at 0.01% FPR. This effect is consistent, however. The
further we tune the neural nets towards low FPR, the greater
the drop in prospective results. At threshold 0.5, we observe
no significant drop in performance compared to the vali-
dation set. Intuitively, slight differences in the prospective
distributions is magnified by the highly restrictive threshold,
resulting in what is initially perceived as an extreme drop
in performance.

The deep learning approach shows markedly better per-
formance on the truth marked Gold set (see Table 4). This
may indicate the deep learning models better handle noise in
our data. The CNN achieves 72.89% TPR and 0.31% FPR
on the Gold set. The LSTM results in slightly better TPR
(74.05%), but at significantly worse FPR (0.54%).

Inspecting classification examples, we find that our mod-
els, in general, flagged domains which contain effectively
gibberish sequences (..e. sequences which clearly differ
from natural language). Strictly dictionary-based DGA do-
mains (those crafted by concatenating words selected from a
set vocabulary) were not detected upon a manual inspection
possibly due to their relatively small presence in traffic.
This will be addressed in a separate project. However,
domains which contain both words and gibberish sequences
are caught. The only DGA to incorporate words in the Gold
set is banjori, which seems to feature a mix of natural and
non-natural sequences, and we see far worse performance on
these domains compared to others (see Table 5). Our models
are also unable to catch any instances of beebone, which
(at least in our sample) features two concatenated words
followed by a number, with a large variety of TLDs. Other
than these, we see low performance where large portions of
the DGA family are filtered out.

We originally anticipated that a CNN would be able to
detect dictionary-based DGAs by learning their vocabulary.
We observe that dictionary-based DGA domains make up a
small portion of DGA traffic, and it is unlikely our filtering
gives a strong enough signal for these types of domains to
be learned. However, we have come to believe that catching
these domains with high accuracy is very hard in a real-
time approach. The reason for this is what we have begun
to refer to as active dictionaries. The sets of words observed
from dictionary-based DGAs can change on a daily basis:
the dictionary is swapped such that the same DGA produces
domains from new vocabulary.

Looking into classification examples, there is no obvious
difference between the CNN and LSTM in terms of what
is and is not classified malicious. We find that the neural
networks largely agree; we show how their predictions
compare in Tables 7 and 8. On the validation set, the neural
nets agree on 99.985% of negative examples and 90.120% of
positive examples. This suggests we can deploy both models
with voting to further increase the accuracy.

An important note not yet discussed is that blocking
suspicious host IPs may be left to the client’s discretion. We
have suggested thus far that the DNS server would refuse
to return IPs which exceed a certain threshold of suspicion.
Instead, a DNS response could return the host IP address as

TABLE 7. COMPARISON OF CNN AND LSTM PREDICTIONS ON
NEGATIVE EXAMPLES FROM VALIDATION SET

LSTM-Neg | LSTM-Pos
CNN-Neg | 2,191,881 159
CNN-Pos 159 60

TABLE 8. COMPARISON OF CNN AND LSTM PREDICTIONS ON
POSITIVE EXAMPLES FROM VALIDATION SET

LSTM-Neg | LSTM-Pos
CNN-Neg 1,246,892 114,427
CNN-Pos 110,885 808,369

usual, but also include a score indicating the likelihood that
it is malicious. This system would allow clients to choose
their own threshold to better suit their security requirements
as needed.

6.6. CNN Prediction Time

Here we assess the time cost of prediction using the
CNN model. We time prediction for 1000 domains, and
repeat this test 20 times. All domains used pass filtering
(i.e. SLD length > 10) and trigger detection. The hardware
used is an Amazon EC2 p2.8xlarge instance with 8 NVIDIA
Tesla K80 GPUs. Averaging across the 20 trials, we find that
prediction takes a single GPU 50-70ms per domain.

6.7. Future Work

Many possibilities exist for improving performance. In
our experiments, we set a predetermined number of epochs
for simplicity. However, the training history of the LSTM
(Fig. 5) indicates it would likely benefit from further epochs.
Furthermore, the CNN achieved its best accuracy on the
validation data after 18 epochs (see Fig. 4). Generally, only
the model weights which perform best on the validation data
during training should be retained. Our results are intended
to validate the hypothesis of this work, and better training
practices may be used for a deployment model. However,
unlike many other deep learning projects, we do not look
for higher accuracy on training nor validation data sets since
they are not noise-free. The objective is to have higher TPR
on prospective test data sets while keeping a very low FPR.

Neural networks themselves have many parameters to
tune. Primary parameters include choices such as network
architecture, weight initialization, and regularization meth-
ods. Secondary parameters include choice of optimizer (and
its respective parameters), activation function for each layer,
loss function for weight updates, and batch size. After
independently tuning these models, it may be rewarding to
merge LSTM and CNN architectures for an ensemble deep
learning approach. Also notable is that LSTMs can accept
variable length inputs, as opposed to the fixed width padded
inputs of this work. We leave exploring these options to
future work.

Finally, the domain name string contains a key piece
of additional information which we did not provide our
networks: the TLD. DGAs tend to select TLDs to avoid
collisions with legitimate traffic, and thus TLD information
is highly valuable for DGA detection. We leave incorpo-
rating TLD information into our neural networks to future
work.

Both CNN and LSTM models are underperforming on
dictionary-based DGAs. One possible reason can be biased
sample distribution between traditional and dictionary-based
DGAs. An unsupervised machine learning technique could
be applied to separate positive samples using above men-
tioned features. This can turn the two-class supervised ma-
chine learning problem into three-class. Therefore, detection
performance on dictionary-based DGAs can be significantly
improved in the future.

7. Conclusion

In this paper, we proposed and explored a means of
applying supervised learning for real-time DGA detection.
In this approach, we used simple filtering steps to obtain
sufficiently pure DGA/non-DGA samples from real DNS
traffic which are more representative. Such an approach is
necessary for a deployable model; approaches which depend
on reverse engineered malware are simply not scalable and
adaptive to changes in real traffic. Moreover, we leveraged
deep learning for the advantages of automatic feature extrac-
tion and the potential for online learning to keep up with
changes in DGA domain patterns. We further implemented
traditional methods for comparison and found that our deep
networks are also superior DGA detectors. We tuned our
models for a target false positive rate as low as 0.01%, and
tested our approach on three prospective data sets as well
as truth marked data from third parties.

The design of deep neural networks involves a myriad
of design choices related to the architecture of the network,
the parameters, and the optimization algorithms. Given the
encouraging results obtained in this paper, a natural direc-
tion for future research is a systematic study of different
character-level based CNN and LSTM architectures, and the
impact of various design choices on the network’s predictive
accuracy for DGA detection.

References

[1] “Does Alexa have a list of its top-
ranked websites?” Amazon, accessed: 2017-05-28.
[Online]. Available: https://support.alexa.com/hc/en-us/articles/

200449834-Does- Alexa-have-a-list- of - its-top-ranked- websites-

[2] “DGArchive,” Fraunhofer FKIE, accessed: 2017-05-28. [Online].
Available: https://dgarchive.caad.fkie.fraunhofer.de/

[3] B. Yu, L. Smith, M. Threefoot, and F. Olumofin, “Behavior analysis
based DNS tunneling detection with big data technologies,” in Proc.
of the International Conference on Internet of Things and Big Data,
2016, pp. 284-290.

[4] B. Yu, L. Smith, and M. Threefoot, “Semi-supervised time series
modeling for real-time flux domain detection on passive DNS traffic,”
in Proc. of the 10th International Conference on Machine Learning
and Data Mining, 2014, pp. 258-271.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proc. of the
10th ACM SIGCOMM Conference on Internet Measurement, 2010,
pp. 48-61.

S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detect-
ing algorithmically generated domain-flux attacks with DNS traffic
analysis,” IEEE/ACM Transactions on Networking, vol. 20, no. 5, pp.
1663-1677, 2012.

S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, “Phoenix: Dga-
based botnet tracking and intelligence,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, 2014, pp. 192-211.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou II, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From throw-away traffic to bots:
Detecting the rise of DGA-based malware,” in USENIX Security
Symposium, vol. 12, 2012.

S. Krishnan, T. Taylor, F. Monrose, and J. McHugh, “Crossing the
threshold: Detecting network malfeasance via sequential hypothesis
testing,” in 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2013, pp. 1-12.

J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Pre-
dicting domain generation algorithms with long short-term memory
networks,” preprint arXiv:1611.00791, 2016.

“OSINT feeds from Bambenek
Consulting, accessed: 2017-05-28.

/losint.bambenekconsulting.com/feeds/
Farsight Security, accessed: 2017-05-28. [Online]. Available: https:
/Iwww.farsightsecurity.com/

Consulting,” Bambenek
[Online]. Available: http:

C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, 1948.

Google Books Ngram Viewer. [Online]. Available: http://storage.
googleapis.com/books/ngrams/books/datasetsv2.html

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT Press, 2016, accessed: 2017-05-28. [Online]. Available:
http://www.deeplearningbook.org

X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649-657.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, accessed: 2017-05-28. [Online].
Available: http://tensorflow.org/

F. Chollet. Keras. Accessed: 2017-05-28.
https://github.com/fchollet/keras

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” preprint arXiv:1301.3781,
2013.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. of the 13th International
Conference on Artificial Intelligence and Statistics, vol. 9, 2010, pp.
249-256.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
preprint arXiv:1412.6980, 2014.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929-1958, 2014.

[Online]. Available:

