
Generating Membership Functions for a Noise 
Annoyance Model from Experimental Data 

A. Verkeyn *, M. De Cock **, D. Botteldooren *, E. E. Kerre ** 
* Ghent University 

Department of Information Technology 
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium 

** Ghent University 
Department of Applied Mathematics and Computer Science 
Krijgslaan 281 (S9), 9000 Gent, Belgium 

Summary: 
The success of fuzzy expert systems could be mainly attributed to the inclusion of 
linguistic terms into their reasoning scheme. This allows reasoning about complex 
issues within a certain (tolerated) degree of imprecision. Hence, an important 
issue in the development of such systems is the choice of the membership functions 
that model the linguistic terms involved in the application. In this chapter we will 
describe several methods for the construction of these membership functions 
(which represent information) from measurements obtained in psycholinguistic 
experiments. Special attention will be paid to the inclusive and the non-inclusive 
interpretation of linguistic terms. Secondly, these techniques are applied to data 
gathered in an International Annoyance Scaling Study, where the relationship 
between more than 20 different linguistic terms and their corresponding noise 
annoyance level was under survey.  
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1 Introduction 
People tend to express real-life information by means of natural language. It 
allows them to reason about everyday issues within a certain (tolerated) degree of 
imprecision. It is, therefore, not surprising that the introduction of the fuzzy set 
theory as a framework for the mathematical representation of linguistic concepts 
has given a rise to an important evolution in the field of computer science. The 
fuzzy expert systems that emerged in this context have proved to be a useful tool 



in many real-life applications. A fundamental issue in the development of such 
systems, is the design of the membership functions that model the linguistic terms 
involved in the application. In this chapter we will describe several methods for 
the construction of those functions (which represent information) from 
measurement results obtained in psycholinguistic experiments.  
The chapter is structured as follows: after presenting the problem of noise 
annoyance modelling (Section 2) and describing the form of the experimental data 
at hand (Section 3), we will briefly recall how linguistic terms are represented in 
fuzzy expert systems, thereby stressing the difference between an inclusive and a 
non-inclusive interpretation (Section 4). The main part of this chapter is an 
overview of well-known, improved and new methods for the construction of 
membership functions; we explain in detail how they can be applied for noise 
annoyance terms (Sections 5, 6, 7, 8).  

2 Noise Annoyance Modelling 
As an environmental factor, noise has several adverse effects on man. Annoyance 
or disturbance is commonly used as an impact indicator for these effects. Noise 
surveys can be used as a measurement tool. One of the most important questions 
in such a survey sounds out about the level in which someone is annoyed by the 
noise, namely “Thinking about the last 12 months, when you were here at home, 
how much did noise bother, disturb, or annoy you?” If the survey is conducted by 
telephone, the subjects are given a set of linguistic terms to choose from: e.g. not 
at all annoyed, slightly annoyed, very annoyed,... Throughout this chapter we will 
refer to the linguistic terms that are generated by applying an adverb to the base 
term annoyed as annoyance terms. In postal or face-to-face surveys, a numerical 
or graphical scale can be used. Even in this case the question must be asked 
whether the mark on a numerical or graphical scale is not a forced expression of a 
feeling that is more easily expressed using natural language. 
The goal of an annoyance model is to predict the outcome of annoyance surveys. 
Such models can be used by noise policy makers to make strategic decisions. For 
instance, they can help to choose the “best” route for a new railway by comparing 
the predicted level of annoyance that the population living along two different 
possible routes will experience. Fuzzy techniques are very well suited for this 
modelling purpose: it is far more easy for humans to express annoyance by means 
of a linguistic term - which is intrinsically vague - than by some crisp number.  
The output of a linguistic noise annoyance model will be a noise annoyance term. 
The input can be either crisp or vague facts. Examples of crisp facts that may 
influence noise annoyance are age, number of children under 18, average daytime 
noise exposure level, average nighttime noise exposure level, etc. An example of a 



vague fact is a person’s sensitivity to noise or the state of the environment in 
general. Rules used in the model are always fuzzy. For more details on a fuzzy 
system to model noise annoyance we refer to [2].  

3 Experimental Data: an International Scaling Study. 
To get a better understanding of what people really mean when they use some 
annoyance term, an International Annoyance Scaling Study was conducted (see 
[5]). In 9 different languages for 21 annoyance terms people were asked to 
indicate with a mark on a continuous line what each term meant to them, with the 
most left-hand side being no annoyance at all and the most right-hand side being 
the most possible degree of annoyance one can imagine. While processing the 
data, each mark on the line was converted into the distance (expressed in 
centimetres) from the left-hand side on the 10 centimetres long line. This resulted 
in a continuous numerical domain ranging from 0 to 10 and a dataset containing 
21 values for each subject. In the same study, people were also asked to select five 
annoyance terms dividing the annoyance level scale in equal intervals. With these 
data and classical statistical analysis, five terms for each language were selected to 
globally represent five equidistant portions of the annoyance scale.  For the 
English language they are: not at all, slightly, moderately, very and extremely 
annoyed. These five terms are the ones which will be used throughout this chapter. 
We will refer to them as A1, A2, A3, A4 and A5 respectively. Finally, it should be 
stressed that these data were not gathered with the purpose of membership 
function construction in mind. 

4 Representing Annoyance Terms  
Representing terms. In fuzzy set theoretical contexts, a linguistic term is usually 
represented by a fuzzy set on the suitable universe X. This fuzzy set is 
characterized by a X → [0,1] mapping A which is called the membership function. 
For each x in X, A(x) is called the membership degree of x in the fuzzy set A. The 
class of all fuzzy sets on X will be denoted F(X). Throughout this chapter we will 
use the same symbol (e.g. A) to denote the term being modelled, the fuzzy set and 
the membership function. Recall that for A and B fuzzy sets on X, the inclusion is 
defined as follows: A ⊆ B iff (∀x ∈ X)(A(x) ≤ B(x)). 
The height of  A is defined by hgt A = sup{A(x) | x ∈ X}. If hgt A = 1 then A is 
called normalized. For the representation of annoyance terms, we will use the 
universe X = [0,10] which corresponds to the real interval denoted by the 10 
centimetres long line used in the scaling study as described in the previous section. 



If A and B are two (annoyance) terms then the terms “A and B” and “not A” are 
usually represented by the fuzzy sets A ∩ B and co(A) respectively, defined by  
(A ∩ B)(x) = min(A(x),B(x)) and co(A)(x) = 1-A(x), for all x in X.  
Representing modified terms. In the literature, adverbs such as slightly, very,... 
are often interpreted as linguistic modifiers that alter the meaning of a linguistic 
term. Therefore,  they are represented by a fuzzy modifier on X, i.e. a F(X)-F(X) 
mapping (for an overview we refer to [11]). For instance, in very young, the 
adverb very is represented by an operator that transforms the fuzzy set young into 
another fuzzy set which is then interpreted as very young. In the main part of this 
chapter however, we will consider annoyance terms as linguistic terms "as such": 
e.g. very annoyed will be considered as one term rather than the term annoyed 
being modified by very. In Section 8 this approach is compared to an approach 
based on modifiers.  
General Shape Functions. For the representation of linguistic terms by fuzzy sets 
on a numerical universe, usually a general shape function is chosen. This allows 
for the fuzzy set to be fully described by only a small number of parameters. In 
this chapter we will use sigmoidal and bell-shaped functions, characterized by real 
parameters  µ, σ, and δ, and defined by 
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for all x in R. For positive σ, a sigmoidal function is increasing. A bell-shaped 
function is partly increasing and partly decreasing: µ corresponds to the “top” of 
the bell, while σ and δ determine the width of the left and the right flank of the bell 
respectively. The shape of these functions is considered to be acceptable from a 
psycholinguistic point of view  [7] for the representation of linguistic terms. 
Inclusive and Non-Inclusive Interpretation. 
Linguistic models found in literature are usually based on one of two different  
interpretations of the linguistic terms involved, each characterized by a typical 
shape for the corresponding membership functions. 
In the inclusive interpretation, we assume that the membership function for not 
at all annoyed is decreasing, while the membership functions for the four other 
terms are increasing. Furthermore  

extremely annoyed ⊆ very annoyed ⊆ moderately annoyed ⊆ slightly annoyed 



The underlying semantics is that e.g. everybody who is very annoyed is also 
moderately annoyed. In this interpretation the membership degree of x in A 
clearly corresponds to the degree to which x satisfies the term modelled by A: 
indeed the degree to which somebody is moderately annoyed is always larger than 
or equal to the degree to which he or she is very annoyed. To distinguish this 
interpretation more clearly, the membership functions could be labelled with a 
preceding at least.
In the non-inclusive interpretation, not at all annoyed is decreasing and 
extremely annoyed is increasing, but the membership functions for the other three 
terms are partly increasing, partly decreasing (e.g. bell-shaped). They denote 
neither subsets nor supersets of each other, but different, possibly overlapping 
categories.  In this interpretation the membership degree of x in A corresponds to 
the degree to which x is representative for the term modelled by A.  
For a more detailed discussion about the inclusive and the non-inclusive 
interpretation we refer to [7,11,16]. In fuzzy control applications the non-inclusive 
interpretation is the most popular one (see e.g. [9]), although the inclusive 
interpretation is sometimes also used (see [15]). 

5 Overview of existing methods 
In this section, we will briefly describe the two broad categories of methods for 
the construction of membership functions that are commonly found in the 
literature. The first category constructs membership functions based on inquiries, 
solely done for this purpose. A second, fundamentally different approach, obtains 
the membership functions as a by-product of fuzzy clustering techniques. 

5.1 Inquiry-driven methods 
The bottomline of the inquiry is always the same: for a certain linguistic term A, 
we want for each element x of the universe, the degree of compatibility A(x) 
between the element and the term (“compatibility” may both refer to 
“satisfiability” or “representativity” as mentioned in the previous section, 
depending how the question is posed). However, the way in which the questions 
are formulated has a serious impact on the size and the position of the resulting 
membership function (see [12] for a more detailed discussion). 
1. Direct rating. One possibility is to directly ask one or more experts, or the 

group in which the experiment is conducted, for the membership degree of 
some elements, for example: “How A is x?”. 



2. Reverse rating. In this approach, the questions are formulated in reverse 
form: “Which element x has a given degree A(x) of membership in A?”. 

3. Polling. In the two methods described above, people are very directly asked 
to assign a certain degree of membership to some elements. This is for most 
domains very difficult and at the same time somewhat arbitrary. Hersh and 
Caramazza [7] overcome this, by asking only yes/no questions of the form: 
“Does x belong to A?”. Afterwards, A(x) is calculated as the total number of 
“yes” responses for x divided by the total number of responses for x (yes and 
no together). 

4. Indirect rating. These methods also try to replace the direct assignments of 
degrees with simpler tasks, for instance with pairwise comparisons which are 
generally easier to estimate. One such method is the analytic hierarchy 
process (AHP) (see [14]), where questions are asked as “To what degree does 
x1 imply A in comparison with x2 ?”. If the cardinality of the universe is an 
integer n,  then all those answers, for instance on a scale from 1 till 10, result 
in a square matrix P of order n with Pij = 1/Pji  for all i=1,…,n and j=1,…,n. 
After column-wise normalisation, A(xi) is then calculated as the (if desirable, 
again normalized) row average of the i-th row of P.  

Final construction phase. Whatever method above used, we always end up with 
couples (x, A(x)). Finally, the resulting membership function can then be 
constructed using some well-known curve fitting method, for instance Lagrange 
interpolation and least-square error method. Other techniques such as learning 
through neural networks can be also applied for this purpose (see [12]). 
Annoyance terms. In the case of annoyance the universe is quite abstract: the 
scale from 0 to 10 does not correspond to any quantity people are used to 
experience. Therefore, it is not possible to use the techniques described above in 
their direct form.  

5.2 Methods based on fuzzy clustering 
Fuzzy clustering. The primary goal of fuzzy clustering algorithms, such as the 
fuzzy c-means (FCM) algorithm (see [8]), is to partition a given set of data or 
objects into fuzzy subsets called clusters such that objects strongly belonging to 
the same cluster (the membership degree of both objects to that cluster are close to 
1) are as “similar” as possible and objects that belong to different clusters (the 
membership degree of one of those objects to that cluster is close to 0) are as 
“different” as possible. The notions “similar” and “different” are defined by a user 
given dissimilarity measure d (for instance, the Euclidean distance in a metric 
space). The aim of the clustering procedure is then to globally minimise this 
dissimilariy between elements belonging to the same cluster. In a two-dimensional 
universe X x Y, clustering is often used to extract the relationship between a 



variable u on X and a variable v on Y. Each cluster C (which is a fuzzy set on X x 
Y) gives rise to a fuzzy rule of the form: “IF u is A THEN v is B”, in which A and 
B are fuzzy sets on X and Y respectively, obtained by "projecting" C on X and Y 
respectively. A common practice in the field of fuzzy clustering is to assign “ad 
hoc” linguistic terms to the obtained fuzzy sets A and B. This way, the resulting 
rules are fully linguistical and easy to understand by domain experts (not 
necessarily having much knowledge of fuzzy logic). 
Annoyance terms. Suppose, we have data from an annoyance survey that 
contains the noise level the subject is exposed to (expressed in decibels) as well as 
the experienced annoyance level (expressed on a continuous 0-10 scale). We 
would then be able to use fuzzy clustering (where the variable u is the exposure 
and v is the annoyance), generate fuzzy rules describing that relationship and 
derive the necessary membership functions used in the rules. If five membership 
functions for the consequent variable v would emerge from the clustering process, 
we could consider to label them with the five annoyance terms introduced in 
Section 3. However, it can be expected that the generated rules and membership 
functions are optimally suited for the training data, but will not necessarily behave 
well in the general case. The membership functions associated with the annoyance 
terms would not really represent the meaning that people give to that term. 
Therefore, fuzzy clustering is less suitable for a real-world annoyance model with 
linguistic rules.   

6 A Probabilistic Approach 
The construction of membership functions presented in this section is based on a 
pure probabilistic approach, which resembles to the polling method. The 
underpinnings of these methods can be found in the statement by Zadeh that the 
probability of a fuzzy event is equal to the expected grade of membership of the 
event itself (see [17]). In the polling method as presented in [7], for each linguistic 
term A, 13 elements xj of the universe were evaluated. Hence 13 pairs (xj,
<answer>) were obtained (j=1,..,13 and <answer> either "yes" or "no").  In the 
annoyance scaling study for each term Am, (m=1,..,5) the informant placed a mark 
at a point xm on the 0-10 scale. This corresponds to the pair (xm,yes) for Am. For 
all other x in [0,10]\{xm }, however, the scaling study does not give any 
information about the second part of the pair (x,<answer>). We can, however, 
make some intuitively justifiable assumptions about this, thereby forcing either the 
inclusive or the non-inclusive interpretation. 



6.1 Inclusive interpretation 
Assume that for all x < xm (m=2,..,5) the informant would have meant "no," and 
for all x ≥ xm he would have answered "yes." In other words, he placed a mark on 
the line to indicate the annoyance level corresponding to at least Am. Computing 
the average number of "yes"-responses for each x-value taken over all informants 
then comes down to constructing the cumulative distribution function. The 
inclusive membership functions is then created by fitting a sigmoidal S-function 
SIGM(µ,σ,.) on the cumulative distribution function.  
This approach works well for all the terms, except for A1 = not at all annoyed. 
Indeed for this term, the informant would have answered "yes" for all x ≤ x5 and 
"no" for all x > x5, thereby indicating with his mark the annoyance level 
corresponding to at most A. To obtain the curve of not at all annoyed, therefore 
the reversed cumulative distribution function (thus moving from 10 down to 0 in 
our domain) was used and fitted on the reflected sigmoidal function 
co(SIGM(µ,σ,.)). 
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Figure 1: a) Non-inclusive (left) and b) inclusive (right) membership 
functions for not at all, slightly, moderately, very and extremely annoyed 
(probabilistic) 

 Non-inclusive Inclusive 
µ σ µ σ

not at all -0.0128 0.0723 4.0456 49.0496 
slightly 1.2928 0.6662 2.7888 1.9846 

moderately 4.9634 0.1742 7.9807 1.7820 
very 7.9206 0.7561 12.2168 1.5988 

extremely 10.2227 0.3276 27.3687 2.8424 
Table 1: Numerical parameters for the fitted curves (probabilistic) 



The generated membership functions are depicted in Figure 1b; the values of the 
parameters are given in Table 1. Please note, that not every fitted function A is 
normalized. If necessary, this can be solved by dividing all membership degrees of 
A by hgt A. 

6.2 Non-inclusive interpretation  
Another possibility is that the informant wanted to indicate with his mark on xm
(m=1,..,5): "this (and the surrounding) annoyance level(s) I call Am, but the other 
ones not." This means that the answer is "yes" for xm (and perhaps for the levels in 
a small interval containing xm) but "no" for the others. Computing the average 
number of "yes" answers for every x taken over all informants now corresponds to 
constructing the (normalized) probabilistic histogram. The non-inclusive 
membership function is then derived from the histogram by fitting an exponential 
function BELL(µ,σ,σ,.) on it with the least-square error method. See Figure 1a for 
the membership functions and Table 1 for the obtained parameters of those 
functions. 

7 Aggregation of individual curve methods 
The probabilistic method does not use any information about how far the marks 
for all linguistic terms placed on the 0-10 scale by an informant, lie from each 
other.  Each term is modelled as such, without using the relationships between the 
terms. A method taking this relationship into account is explained in [3] for the 
non-inclusive interpretation. For every term first an individual curve for each 
informant is constructed. Then all these curves are combined into the final 
membership function for that term. The curves generated with the approach in [3] 
however tend to overlap each other a lot, which makes them less suitable for 
practical purposes. In this section we will present a variant to this technique, in 
which the overlap is intrinsically smaller and can even be controlled by a 
parameter. Furthermore we explain how the same approach can be used for the 
inclusive interpretation as well. 

7.1 Non-inclusive interpretation 
The general underlying idea is that the mark xm (m=1,..5) placed by an informant 
for a term Am can be considered as a value with some uncertainty. In the non-
inclusive interpretation this uncertainty is proportional to the distance from xm to 
the previous mark xm-1 (for term Am-1) and the next mark xm+1 (for term Am+1). 
Since there is no previous mark for x1, we can only take the distance to the next 



mark x2 into account to construct a curve for A1. Likewise there is no next mark 
for x5; hence we will only use the distance to the previous mark x4.
Individual curves. First a fixed membership degree α is chosen. The individual 
curves will be constructed such that the height of the intersection of two 
succeeding curves Am and Am+1 is α. For each informant and for each term Am (m 
= 2,..,4) an individual bell-shaped function Am = BELL(xm,σm,δm,.)  is constructed 
such that for ∆xm = (xm+1 - xm)/2 

Am(xm+∆xm) = α = Am+1(xm+1-∆xm)
The top of the bell for Am corresponds to the mark xm placed by the informant, and 
the width of the flanks is determined by the distance of the mark xm to the 
previous mark xm-1 and the next mark xm+1, as well as by the parameter α. Solving 
this equation results in the value for δm and σm+1, namely:  
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For the left-most and the right-most terms A1 and A5:we will use the functions 
co(SIGM(x1, δ1,.)) and SIGM(x5, σ5,.) respectively.  
Aggregation. After all the individual curves for a linguistic term Am (m = 1,..,5) 
are calculated, they are numerically added and normalized. Finally, the curve is 
fitted to the appropriate shape function to produce the final membership function.  
Remark. It can be observed that this method comes down to the probabilistic 
histogram method for the limit value 0 of parameter α, where 

( ) 0ln2
1lim

0
=−→ αα , which means that the width of all flanks is 0. Stated 

otherwise: no flanks are added at all, hence only the given crisp points are 
summed, which is exactly the same as the histogram approach. 
The results of this method, fitted on the same exponential and sigmoidal functions, 
for parameter α=0.1 are shown in Figure 2a. The exact parameters of the fitted 
functions are given in Table 2. 
Compared to Figure 1a, the curves in Figure 2a cover the whole universe in a 
uniform manner. This covering is induced by taking the distance between the 
marks into account when constructing the membership functions, and make them 
far more suitable for practical purposes such as an annoyance model. For if we 
would use the curves in Figure 1a, what would happen for an annoyance level of 
e.g. 4? It does not belong to any fuzzy set to a degree greater than 0, so how can 
we call it, how should we treat it?  
On the other hand the functions in Figure 1a are more desirable from a linguistic 
point of view. The curves might in fact indicate that the number of terms taken 



into account is too small to cover the whole universe. Perhaps two more terms 
should be taken into consideration, namely one "concentrated" around 4, and one 
around 6. 
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Figure 2: a) Non-inclusive (left) and b) inclusive (right) membership 
functions for not at all, slightly, moderately, very and extremely annoyed 
(aggregation) 

 Non-inclusive Inclusive 
µ σ δ µ σ

Not at all 2,1832 5,0436 - 2,1832 5,0436 
Slightly 1.4777 0.6261 1.0959 2,6666 2,5325 

Moderately 4.8681 1.2452 0.7677 6,2700 1,7293 
Very 7.8198 1.2588 0.7340 10,9270 1,6229 

Extremely 23.1984 2.5647 - 23,6321 2,6111 
Table 2: Numerical parameters for the fitted curves (aggregation) 

7.2 Inclusive interpretation.  
Like in the previous section for the inclusive interpretation we will assume that, by 
placing a mark xm (m=2,..,5), the informant indicates that all levels greater than 
that mark are surely Am (Am to degree 1). Hence the only uncertainty is situated 
left from the mark xm. As a membership function  for Am we will therefore use a 
sigmoidal curve SIGM(xm,σm,.), in which σm is determined by the distance 
between xm and the previous mark xm-1, as well as by a parameter α. For the term 
A1 on the other hand we will use a reflected sigmoidal curve, with a flank 
determined by the distance between x1 and x2 and the parameter α.



Those results for the same parameter value α=0.1, again after fitting to a 
sigmoidal function, are shown in Figure 2b and given in Table 2. 

8 Using Fuzzy Logical Operators and Modifiers 

8.1 Logical operators 
From inclusive to non-inclusive Please note that the membership functions for 
A1 = not at all annoyed and A5 = extremely annoyed in the inclusive and the non-
inclusive interpretation are practically interchangeable. It is worth mentioning that 
also very acceptable membership functions for the terms A2, A3, and A4 in the 
non-inclusive interpretation can be derived from those in the inclusive 
interpretation, using the fuzzy logical operations not and but (=and). E.g. the term 
very annoyed in the non-inclusive interpretation corresponds to very annoyed but 
not extremely annoyed in the inclusive interpretation. Formally - for m=2,..,4 - 

(Am)NI = (Am)I ∩ co((Am+1)I)
in which NI stands for the non-inclusive and I for the inclusive interpretation.  
Note that in the inclusive interpretation co(slightly annoyed) is also a possible 
membership function for not at all annoyed.

8.2 Fuzzy Modifiers 
As briefly mentioned in Section 4, fuzzy modifiers (mappings from F(X) to F(X)) 
can be used to derive the membership function for "<adverb> A" from that of A. 
In the five terms of the scaling study, the base term annoyed is lacking. 
Nevertheless it is interesting to consider A3 = moderately annoyed as base term 
instead, and to try to derive the membership functions for the terms A2, A4 and A5
from A3 (generated with a method described in Section 6 or 7), using fuzzy 
modifiers.  
Powering modifiers 
The oldest and most popular modifiers used in the inclusive interpretation are the 
powering modifiers Pα originally developed by Zadeh [18] and defined by (for α
in [0,+∞[): Pα(A)(x) = (A(x))α, for all A in F(X), x in X. The most important 
shortcoming is that for all x in X, Pα(A)(x) = 1 iff A(x) = 1 and that Pα(A)(x) = 0 
iff A(x) = 0. Looking at the Figures 1b and 2b one immediately sees that the 
intervals in which the inclusive membership functions are 0 (1 respectively) are 
usually different. Powering modifiers are therefore not really suitable. 



Shifting modifiers 
The shifting modifiers Sα, informally suggested by Lakoff [13] and more formally 
developed by Hellendoorn [6], Bouchon-Meunier [1] and Kerre [10], are defined 
by (for α in R): Sα(A)(x) = A(x-α), for all A in F(R), x in R. They simply shift 
the original membership function of A to the left or the right (for a positive and 
negative α respectively) and can be used in both the inclusive and the non-
inclusive interpretation. In Figures 3a and 3b the membership functions for A2, A3,
A4 and A5 from Figures 1a and 1b are repeated. The dashed curves correspond to 
shifted versions of A3 that are most suitable to represent the other terms. Although 
the shape of all curves in Figure 1b is not really the same, the functions obtained 
by shifting A3 in Figure 3b are very good approximations. The same holds for the 
membership functions in Figures 2a and 2b. In Figure 3a however, we are not able 
to derive from the small curve for A3 the wide functions for slightly annoyed and 
very annoyed simply by using a shifting operator.  
Modifiers based on fuzzy relations 
In [4] a new class of fuzzy modifiers is introduced. They are based on fuzzy 
relations R on X, i.e. fuzzy sets on X x X. For y in X, the R-foreset of y is denoted 
Ry and defined by Ry(x) = R(x,y), for all x in X. Furthermore the concepts of 
degree of inclusion and degree of overlap are used. For A and B two fuzzy sets on 
X are defined by 

INCL(A,B) = inf{min(1-A(x)+B(x),1) | x ∈ X} 
OVERL(A,B) = sup{max(A(x)+B(x)-1,0) | x ∈ X} 

Inclusive interpretation. For the inclusive interpretation a resemblance relation 
E1 is used, i.e. for all x and y in X, E1 (x,y) is the degree to which x and y 
resemble to each other. Hence E1y is the fuzzy set of objects resembling to y. The 
general idea is that an object y can be called slightly A if it resembles to an object 
that can be called A; in other words if the set of objects resembling to y overlaps 
with A (cfr. a man can be called slightly old if he resembles to somebody who is 
old). On the other hand y can be called very A if every object resembling to y can 
be called A; in other words if the set of objects resembling y is included in A (cfr. 
a man can be called very old if everybody whom he resembles to is old). Formally 
and fuzzy: 

slightly A(y) = OVERL(E1y,A) 
very A(y) = INCL(E1y,A) 

Extremely A is modelled in a similar, but with a looser resemblance relation E2
(i.e. E1⊆ E2): 

extremely A(y) = INCL(E2y,A) 
Following this scheme and using the resemblance relations  



E1(x,y) = min(1,BELL(x,1.5,1.5,y)*10)  
E2(x,y) = min(1,BELL(x,2.5,2.5,y)*10) 

the dotted membership functions in Figure 3b were obtained. 
Non-inclusive interpretation. As stated above, shifting modifiers work well for 
Figure 1b, 2a, and 2b. It is explained in [4] that Sα is actually a fuzzy modifier 
based on the fuzzy relation Gα defined by  

( ) otherwise
yxifyxG 0

1,
=

−== α
α

namely Sα(A)(y) = OVERL(Gαy,A).  Gα is based on the crisp equality between x 
and y - α. If this equality is fuzzified by means of a resemblance relation E, a 
more general kind of relation Fα arises, defined by Fα (x,y) = E(x,y - α). The fuzzy 
modifier built on this relation, namely WSα(A)(y) = OVERL(Fαy,A) does not only 
have a shifting but also a widening effect on the membership function of A. Hence 
it can be applied to A3 to obtain approximations for the curves in Figure 1a. Using 
the resemblance relation E(x,y) = BELL(x,0.7,0.7,y) the dotted curves in Figure 3a 
were obtained. The α-values were chosen as –3.7, 3, and 5.2 respectively. Note 
that the obtained membership function for A2 even coincides in the picture with 
the original membership function generated with the probabilistic approach; 
therefore the dotted curve for A2 is not visible. 

Figure 3: a) Non-inclusive (left) and b) inclusive (right) membership 
functions (fuzzy modifiers) 
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