Risk and Safety Analysis of Nuclear Systems  

John C. Lee, Norman J. McCormick

ISBN: 978-0-470-90756-6

Hardcover

504 pages

Wiley, July 2011

                                                                   Description: Description: Description: Cover image for product 0470907568                                                                  

Preface.

1 Risk and safety of engineered systems.

1.1 Risk and its perception and acceptance.

1.2 Overview of risk and safety analysis.

1.3 Two historical reactor accidents.

1.4 Definition of risk.

1.5 Reliability, availability, maintainability, and safety.

1.6 Organization of the book.

2 Probabilities of events.

2.1 Events.

2.2 Even tree analysis and minimal cut sets.

2.3 Probabilities.

2.4 Time-independent versus time-dependent probabilities.

2.5 Time-independent probabilities.

2.6 Normal distribution.

2.7 Reliability functions.

2.8 Time-dependent probability distributions.

2.9 Extreme-value probability distributions.

2.10 Probability models for failure analyses.

Exercises.

3 Reliability data.

3.1 Estimation theory.

3.2 Bayesian updating of data.

3.3 Central limit theorem and hypothesis testing.

3.4 Reliability quantification.

Exercises.

4 Reliability of multiple-component systems.

4.1 Series and active-parallel systems.

4.2 Systems with standby components.

4.3 Decomposition analysis.

4.4 Signal flow graph analysis.

4.5 Cut set analysis.

Exercises.

5 Availability and reliability of systems with repair.

5.1 Introduction.

5.2 Markov method.

5.3 Availability analyses.

5.4 Reliability analyses.

5.5 Additional capabilities of Markov models.

Exercises.

6 Probabilistic risk assessment.

6.1 Failure modes.

6.2 Classification of failure events.

6.3 Failure data.

6.4 Combination of failures and consequences.

6.5 Fault tree analysis.

6.6 Master logic diagram.

6.7 Uncertainty and importance analysis.

Exercises.

7 PRA computer programs.

7.1 Fault tree methodology of the SAPHIRE code.

7.2 Fault and event reevaluation with the SAPHIRE code.

7.3 Other features of the SAPHIRE code.

7.4 Other PRA codes.

7.5 Binary decision diagram algorithm.

Exercises.

8 Nuclear power plant safety analysis.

8.1 Engineered safety features of nuclear plants.

8.2 Accident classification and general design goals.

8.3 Design basis accident: large break LOCA.

8.4 Severe (Class 9) accidents.

8.5 Anticipated transients without scram.

8.6 Radiological source and atmospheric dispersion.

8.7 Biological effects of radiation exposure.

Exercises.

9 Nuclear power plant accidents and incidents.

9.1 Three Mile Island Unit 2 accident.

9.2 PWR in-vessel accident progression.

9.3 Chernobyl accident.

9.4 Salem anticipated transient without scram.

9.5 LaSalle transient event.

9.6 Davis-Besse potential LOCA event.

Exercises.

10 PRA studies of nuclear power plants.

10.1 WASH-1400 Reactor Safety Study.

10.2 NUREG-1150 assessment of severe accident risks.

10.3 Simplified PRA in the structure of NUREG-1150.

Exercises.

11 Passive safety and advanced nuclear systems.

11.1 Passive safety demonstration tests at EBR-II.

11.2 Safety characteristics of Generation III+ plants.

11.3 Generation IV nuclear power plants.

Exercises.

12 Risk-informed regulations and maintenance.

12.1 Risk measures for nuclear plant regulations.

12.2 Reliability-centered maintenance.

Exercises.

13 Dynamic event tree analysis.

13.1 Basic features of dynamic event tree analysis.

13.2 Continuous event tree formulation.

13.3 CCM technique for parameter estimation.

13.4 Diagnosis of component degradations.

Exercises.

Appendix A: Reactor radiological sources.

A.1 Fission product inventory and decay heat.

A.2 Health effects of radiation exposure.

Appendix B: Some special mathematical functions.

B.1 Gamma function.

B.2 Error function.

Appendix C: Some failure rate data.

Appendix D: Linear Kalman filter algorithm.

Answers to selected exercises.

Index.