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SUPPLEMENTARY MATERIAL
Additional technical details

Uniform consistency of G

Lemma 4.2 of Wang (1991) establishes the pointwise consistency of G. However, we
require uniform consistency. We begin by proving the uniform consistency of G on [0, a
for any 0 < a < b. We notice that, for t € [0, al,

PdG'(u) [ dG(u)
o S(u) o S(u)

/0 {S(lu) — S(lu)}dé’(u) +/0 (lu)d{é’(u) —G’(u)}|

g/o 5(1u)_S<lu) dé (u) + /0 S(lwd{é’(u)—G’(u)}'
Lo, (u) At ’
< o st~ s || s G- a0}
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2 M. CARONE, M. ASGHARIAN AND M.C. WANG

and therefore, defining Fo = {f : f(u) = Ijg4(u)/S(u) for some ¢ € [0,a] and all u}, we
have that

PdG'(u) [T dG(u)
S (u) o S(u)

.o 80~ S|

mw&@ s | [ rwa{ew -

Both summands converge to zero in probability: the first is a consequence of the uniform
consistency of the product-limit estimator S (Tsai et al., 1987, and references cited
therein) and the second follows from Fj being a Glivenko-Cantelli class for G’. This
last statement is justified by Theorem 19.13 and the first paragraph on page 276 of van
der Vaart (2000) along with the fact that F{ is a Vapnik-Cervonenkis subgraph class,
as verified using, for example, Lemma 2.6.16 and part (vi) of Lemma 2.6.18 of van der
Vaart & Wellner (2000), with envelope function Fy(u) = Tjg 4)(u)/S(u) satistying trivially
the condition [ Fy(u)dG'(u) < co. We may write

t€[0,a]

R dé'( )5 [t dG(u)
sup |G(t) — G(t)| = sup I3
tE[O,a]| Q )l t€[0,a] ( o S(u)
X LdG (u LdG! (u
<l [(1) gy | (1800 G
S(u t€[0,a] S(u) o S(u)

and thus conclude, in view of the result above and the consistency of 3 (Lemma 4.2 of
Wang, 1991), that G is uniformly consistent for G on [0, a] for each 0 < a < b. Now, let
€ > 0 be given and select a. € (0,b) such that 1 —¢/2 < G(a¢) < 1. Because

pr (tes[li‘gb] |G(t) — G(t)| > e) <pr (max{l — G(ac),1—Glad)} > e)
=pr <1 — G(ae) > e)

< pr (16(ar) ~ Gla0) = ¢/2)

the uniform consistency of G on [0,b] follows from the uniform consistency on intervals
of the form [0,a] for 0 < a < b and the fact that

pr ( sup |G(t) — G(t)| > e)
te(0,b]

< pr ( sup |G(t) — G(t)| > 6) +pr ( sup |G(t) — G(t)| > 6) .

t€(0,ae) telae,b]



97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Nonparametric incidence estimation from prevalent cohort survival data 3

Asymptotic representation of {A(t;c) — A(t;¢)} /npop

For the ¥ individual in the target population, set the indicator n; to value one if this
individual is a member of the cross-sectional population and to zero otherwise; it follows
then that npep = Y ;- 7. Denote by w > 0 the marginal success probability of these
Bernoulli random variables, and observe that ®(7) = nw¢o(7). By the Weak Law of Large
Numbers, npop/n converges to w in probability, and by the Central Limit Theorem and

the delta method,
nm<’l1)
Npop W

converges to a normal variate. By algebraic manipulation, we may write r,,(t) as

1 n

ﬁ%@)+{®@ﬁhwqﬁ{d;@)—rﬁ@)}+¢@ﬂw<-—)dﬂ@%

w Npop

i = [ [T s - s el - [T csa{e - cw}.

nl/? L(T) — o) } =nl/? {QE(T) - <Z5(T)} + ¢w (%)1/2 nl/2 <:} — nn )

—nl{d(r) = 6(7)} + 0,(1)

while ni/Z{QAﬁ(T) — ¢(7)} converges to a normal variate, n;/Q{tiJ(T)—CI)(T)}/npOp is
bounded in probability. This observation, the consistency of B and the uniform con-
sistency of G imply, using the equality

ﬂ(Qz{ﬁﬂ—Qm}{GW—QTGW—Q_GW_Q_G“_Q}

B B

that lim,,, . ny/? SUDPte(c,7] [, (£)] = 0 in probability. Both integrand and integrator in

/"

r

. (t) are of bounded variation pathwise, being differences of non-decreasing functions.
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4 M. CARONE, M. ASGHARIAN AND M.C. WANG

Using integration by parts, we may write r; (t) =17, (¢) — 77, (t) — 5, (t), where
M (t) = w o { G 1)~ @ 1)
Lns S(r—t) Sr—1) ’

Both n./ 27“’1’7,15 (¢) and na/? SUPsele,r] |71, (t)] converge to zero in probability in view of

the uniform consistency of S and the fact that na/? SUPye[0,7] |G'(u) — G'(u)] is bounded
in probability. Indeed, the empirical process

Gy () = /> { &' (w) - &'(w)}

converges weakly to a tight process By = B3 o G’, where Bs is a Brownian bridge. In
particular, By has continuous sample paths almost surely.

Let € > 0 be given. Then, the tightness of By implies that there exists a constant
K = K(e) such that pr(sup,ejo - [B2(u)| > K) < €/2. Let the operator T'c : Do — Dy,
with Dy the space of cadlag functions on [0, 7] vanishing at the endpoints, be defined
pointwise as

IeB(u) = =K~ - k] (B(u)) + B(w)l[_ g, k) (B(u)) + Kl o) (B(u))

for each B € Dy and u € [0, 7]: this operator has bounded image and is continuous with
respect to the Skorohod norm. By the Continuous Mapping Theorem (Theorem 1.11.1
of van der Vaart & Wellner, 1996), G, = I'.G,, converges weakly to By =I'cBs, a
bounded process with continuous sample paths almost surely.

Let 0 < v < S(7 — ¢) be given and define O,, () to be the subset of the sample space
on which S(t — ¢) > S(7 — ¢) — 7. The consistency of S implies that for some n(e) € N,
pr(©,,(7)) > 1 —¢/2 holds for each ns > n(e). Denote

O = UnSZn(e)@’ﬂs (7)

and note that the complement O of O, satisfies pr(©¢) < €/2. Define D,,_(u) = 1/8(u) —
1/S(u), D;, (u) = Dy, (u)le, and D, (u) = Dy, (u)lec. Processes D, D,, and D;, each
converge uniformly to zero in probability on [0, 7 — ¢]. Further, the total variation V.(Dy, )
of D;, over [0, T — ] is eventually uniformly bounded: indeed, for ny > n(e), we have that

A 1 1
Ve(Dy,) < Ve(lo,/S) + Ve(lo, /S) < {S(T_C)_,y - 1} + {S(T—c) - 1}
using the definition of O, and the elementary fact that the total variation of a monotone
function h on an interval [a1, ag] is |h(a1) — h(az2)|. Using Proposition 7.27 and part (iii)
of Lemma 7.22 of Kosorok (2008), we find that
T—C
| Buewap), w
.

sup
tele,7]
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Nonparametric incidence estimation from prevalent cohort survival data 5

converges to zero in probability. Further, it is easy to see that, for any ¢ > 0,

sup / Gng,e(u)dD;, (u)
te(e,7]

Since D,,, = D/, —|—D;{, we have that pr (supte[”
bounded above by

sup / Gny.e(u)dDy, L(u)
tele,7]

and thus, it is true that lim sup,,, pr (suptE (7]

> 5) <pr(©f) <e/2.

[T Gy e (u)d Dy, (u )\>5) is

>06/2 | +pr| sup > 0/2
tele,T]

7 Grye(u)dDy, ()‘>5)§e/2forany

.

| Guacwdl )
—t

6 > 0. Now, we may finally write

pr (n}i/Q sup |ry,, (t)| > (5) = pr < sup
te(e,T] t€le,7]

[ Gutwin,.

(sup / Gnye(w)dDy (u)| + sup / (G, (1) — Gy e(uw)] dDp (uw)| > 6)
t€le,T] tele,) 17—t
<pr| sup / Gnye(w)dDy (w)| > 6/2

tele, ] 11—t

[ (Gnt) = Gy} a1, ()

T—t

+pr | sup > 6/2
t€le,7]
<pr| sup / Gny,e(w)dDy (u)| > 6/2 | + pr sup |Gy, (u)| > K
tele,r] 17—t u€l0,7—¢]

and therefore, using the results above, we find that

lim sup pr (ncl/z sup |rh, (t)] >(5> < €/2+€/2 = ¢

Ns te[c T]

for any 6 > 0. Since € > 0 was arbitrary, this proves that n(l/ 2 SUPsele,r] 72,5, ()] converges
to zero in probability and therefore that
lim n/? sup rn (£)] =0
MM tele,7]
in probability.
To show that lim,,_ , na/? SUPselc,7] [T, ()| = 0 in probability, it suffices to show that

lim n}/? sup /T_C {S(u) - S(u)}2 4G (u) =0 (1)

TN tele,r) JT—t S('LL)2

in probability. Indeed, if € > 0 is given and 0 < 6 < S(7 — ¢) is selected, we have that

or (@/2 sup. |17 (1) >e> < pr (@/2 sw [ {800 - s} T > 9<T—c>e>

te[e,r] tele,T]
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6 M. CARONE, M. ASGHARIAN AND M.C. WANG

< pr (n;ﬂ sup /T_C {g(u) - S(u)}2 (?S’CZL()? >S(t—c)e, S(t—¢)> ’y)

tele, ] JT—t

+pr (S(T —c) < ’y)

< pr (ni/g e /T:C {g(U) - S(U)}2 Og;(;;) > 76) +pr (9(7 —c) < 7)

and thus prove the desired statement using (1) and the fact that pr(S(r —¢) <) — 0.
That (1) is true follows from the uniform convergence of S, and the fact that

ny/?{S(u) — S(u)}

converges weakly to a Gaussian process and is thus uniformly bounded in probability.
Finally, the fact that limy,, , ®(7)/npop = ¢(7) € (0,1) in probability, that r,”(t) is
bounded in probability, and that

1/2 1
hmnl/2< - >—hm< ) {n1/2 <— z >}=0
Ns,N w Mpop ns,n \ T w Npop

in probability, in conjunction with the results above, suffice to conclude, as required, that

limnl/2 sup |rn,(¢)] =0
TossT tele,T]

in probability.
Weak convergence of A(t;c)

We first establish the marginal weak convergence of each summand in the asymptotic
representation to its counterpart in A(¢;c¢). The weak convergence of the first summand
is a trivial application of the classical Central Limit Theorem. The second summand is
an easy application of the Continuous Mapping Theorem. The process

nl/? {S(u) - S(u)}

converges weakly to a mean-zero Gaussian process B; (Tsai et al., 1987; page 135
of Wang, 1991; pages 174-177 of Woodroofe, 1985) while n§/2{§(u) — S(u)} converges
weakly to {4(7)} /2By, where the scaling factor is the limit in probability of (ns/nq)'/2.
Denote by D; the class of cadlag functions on [O b] vanishing at the endpoints. Define
the operator Q : D1 — Dy, pointwise as Q(H)(t) = [T H(u)dG'(u)/S(u)? for H € D;
and t € [c, 7]: this is a linear and bounded operator Wlth norm at most

/0 T G (W) /S ()2 < oo

Hence, the Continuous Mapping Theorem (Theorem 1.11.1 of van der Vaart & Wellner,
1996) applies and the weak convergence of the second summand is obtained. For the
weak convergence of the third summand, we first observe that

nl/? {G’(u) - G’(u)}
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Nonparametric incidence estimation from prevalent cohort survival data 7

converges weakly, as a process, to Bs by Donsker’'s Theorem (Theorem 19.3 of

van der Vaart, 2000). As before, this implies that niﬂ{@’(u) — G'(u)} converges
weakly to {¢(7)} Y/2By. In view of Theorem 19.14 and the first paragraph on
page 276 of van der Vaart (2000), it then suffices to observe that F; = {f: f(u) =
st 7—q(u)/S(u) for some t € [c,7] and all u} is a Donsker class for G’, being a Vapnik-
Cervonenkis subgraph class with envelope function Fi(u) = Ijg _q(u)/S(u) trivially sat-
isfying [ Fi(u)?dG'(u) < oco.

As argued in Appendix 3, the limit processes By, By and By are orthogonal to each
other, and hence, so are the summands in the definition of A. This asymptotic indepen-
dence suffices, in view of Example 1.4.6 of van der Vaart & Wellner (2000), to conclude
that the marginal weak convergence of each summand of the asymptotic representation
indeed directly characterizes the weak convergence of the full representation itself.

We now proceed with the calculation of the covariance function for each summand in
A. Throughout, fix s < ¢, both in the interval [c, 7]. We first have that

So(s,t) = E [{Bo /Ti‘ dG(/())} {Bo /T: dg(’q(g) H
—ee [
—on) (1- o [ A [T
= ¢(r) {1 = o(1)HG(r =) = G(r = s)HG(T =) = G(r =)} /5

Further, we may write that

With obvious abuse of notation, the trivariate 1ntegrat10n operator above may be sim-
plified by using Fubini’s Theorem:

T—C T—C uNv T—C v u T—C T—C v
[ A e A Y A SR A |
v=r—8 Ju=7—t Jor=0 v=1—s Ju=1—t Jx=0 v=r7—s Ju=v Jx=0
_/v /m 0/_ t)Va /v /m—() /u—v
_/m:() /v (T s)\/:v/u (T t)Va /x / (r— st/u v
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8 M. CARONE, M. ASGHARIAN AND M.C. WANG

Therefore, we obtain X1 (s,t) to be

—s)
_ / T G(r— o) = G{(r = 5) Va)] [G(r — ©) — G{(r — ) V a}]
. R(z)S(x)

dF (x)/6” .

Finally, because we may write that

e 1/2 [ Ar , 12 | 1 & T (T) /T_C dG' (u)
——d G e — il i et Sl
/Tt () @ - G ] =n, o z; S(T)) L 8w [
the classical Central Limit Theorem (Example 2.1 of van der Vaart, 2000) may be used
to conclude that

Fy(s.8) = B {H[T-;E;)] (T) H[T_gf(;)] (1) } _ g {W} E {W}

- s L S L S

— [ 18 (6~ 0) - G(r = )G — o) Glr )} /6

SUPPLEMENTARY MATERIAL

Additional simulation results

Table 4 provides, for each simulation scenario considered in Section 4, the empirical
standard error of A(t; 10) at t = 20,60,100 and for effective sample size 250, 500 and
1,000. These estimates were obtained by simulating 5,000 datasets for each combination
of parameters considered. Table 4 is obtained from the same simulation study reported
in Tables 1 and 2.

Simulation studies were performed to investigate the sampling distribution of A(t; 10)
and its discrepancy with respect to the family of normal distributions. For scenarios I,
II, III and IV, and for effective sample size 250, 500 and 1,000, more than 1,000 datasets
were generated, and A(t; 10) was computed at ¢ = 30, 70. Figs. 4-7 are quantile-quantile
plots assessing the normality of the sampling distribution of interest.

Additional simulation studies were also conducted to illustrate the estimation of age-
specific incidence rates using the estimator presented in Subsection 3.2. In the following,
we denote by Z°, W0 = Z0 + X9 and D, respectively, age at disease onset, age at death,
and lifetime disease status, defined as the binary indicator of ever developing the disease
of interest. These simulation studies were carried out by assuming the following work-
ing structure, which rendered the computation of theoretical quantities mathematically
tractable:

¢ births in the population arise from a stationary Poisson process with rate Ay > 0;
e lifetime disease status D° is independent of date of birth and is a Bernoulli random
variable with success probability = € (0, 1);
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Nonparametric incidence estimation from prevalent cohort survival data 9

e the law of age at disease onset Z° given DY = 1 has support Z;
e for some partition Pz = (24, ..., 23) of Z, the law of X given Z° = z and D° = 1 is
identical to that of X© given Z° € 2 and D° = 1, provided {2} C Z;;

Denoting by p; the probability pr (ZO €% | D= 1), it is not difficult to show that,
under the above structure, the average number of individuals of age at least m in the
population is, at any given time,

k
Mpop = Ao |[TQE (20 =m | D’ =1)+ > E(X°|2°€ 2;,D° =1)p,
j=1

+1-mE(W?—=m|W°>m,D°=0)pr(W°>m | D’ =0)| ,

provided m is at most the infimum of Z. Furthermore, it is easy to see that the age-
specific incidence rate for age-group Z; is constant through time with value

>\j = )\07‘(’])]'

and that the mean prevalence of age-specific disease for age-group Z; is itself constant
at

P =X\mp;E(X° | 2% € 2;,D° =1) .

These theoretical quantities were used to validate results from our simulation studies.
Simulation outputs are presented below for the above working structure with particular
distributions and parameter values according to the follow specifications:

1. fix A\g = 300,000 births per year;

2. set m = 0.4;

3. let Z° given D° =1 have the law of 60 + 40B,, where B, is a beta variate with
parameters a = 3 = 2;

4. define Z; = [60 + 10(j — 1),60 + 104) for j =1,...,4, which forms a partition of
Z =[60,100), and let X° given Z° Z; and DY =1 have the law of 208y, where
B, is a beta variate with parameters as listed below:

j oo B
1 12 5
2 10 10
3 8 20
4 4 30

5. let WO given D® = 0 have the law of 60 + 60B,,, where B,, is a beta variate with
parameters a = 3 and § = 10.

Fig. 8 consists of an overlay of the age-specific cumulative incidence estimated from
each of 50 random datasets generated according to the above guidelines. The size of the
cross-sectional sample was set at 20,000; this corresponds, on average, to approximately
905, 1,410, 806 and 151 sampled prevalent cases from age-subgroups 60-70, 70-80, 80-
90 and 90-100, respectively. The age-specific curves were trimmed at ¢ = 84, 87,92,97,
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10 M. CARONE, M. ASGHARIAN AND M.C. WANG

Table 4. Estimated standard error of A(t; 10) at t = 20, 60,100 and for effective
sample size E(ng) = 250,500, 1000 under scenarios I, II, III and IV using 5,000
random datasets

t 20 20 20 60 60 60 100 100 100
E(ng) 250 500 1,000 250 500 1,000 250 500 1,000
Scenario
I 4,958 3,457 2,482 6,790 4,823 3,405 7,895 5,565 4,008
II 3,504 2,434 1,717 5,361 3,783 2,665 7,000 4,927 3,486
111 12,798 8,454 5,966 29,124 20,153 13,343 40,350 28,871 18,611
v 8,061 5481 3,847 18,286 12,637 8,927 28,196 20,012 14,196

respectively. Fig. 8 provides an illustration of the appropriateness of the extension of our
methodology to the estimation of age-specific rates.
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Sample quantiles

Sample quantiles
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Fig. 4. Quantile-quantile plot assessing the normal-

ity of the sampling distribution of A(¢;10) at ¢ = 30

(top) and 70 (bottom) and for effective sample size

250 (light grey dots), 500 (grey dots) and 1000 (black
dots) under scenario 1.
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Theoretical quantiles
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Fig. 5. Quantile-quantile plot assessing the normal-

ity of the sampling distribution of A(¢;10) at t = 30

(top) and 70 (bottom) and for effective sample size

250 (light grey dots), 500 (grey dots) and 1000 (black
dots) under scenario II.
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Sample quantiles

Sample quantiles

Theoretical quantiles

Fig. 6. Quantile-quantile plot assessing the normal-

ity of the sampling distribution of A(¢;10) at ¢ = 30

(top) and 70 (bottom) and for effective sample size

250 (light grey dots), 500 (grey dots) and 1000 (black
dots) under scenario I1I.
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Fig. 8. Overlay of 50 plots of the estimated age-

specific cumulative incidence. From left to right,

curves correspond to age-groups 60-70, 70-80, 80-90

and 90-100, respectively. Grey lines represent esti-

mated curves and black lines indicate true theoreti-
cal curves.
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