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Chapter 1

The Vibrating String

4 Jan p1
p1prv.yr.Chapter Goals:

• Construct the wave equation for a string by identi-
fying forces and using Newton’s second law.

• Determine boundary conditions appropriate for a
closed string, an open string, and an elastically
bound string.

• Determine the wave equation for a string subject to
an external force with harmonic time dependence.

The central topic under consideration is the branch of differential equa-
tion theory containing boundary value problems. First we look at an pr:bvp1
example of the application of Newton’s second law to small vibrations:
transverse vibrations on a string. Physical problems such as this and
those involving sound, surface waves, heat conduction, electromagnetic
waves, and gravitational waves, for example, can be solved using the
mathematical theory of boundary value problems.

Consider the problem of a string embedded in a medium with a pr:string1
restoring force V (x) and an external force F (x, t). This problem covers pr:V1

pr:F1most of the physical interpretations of small vibrations. In this chapter
we will investigate the mathematics of this problem by determining the
equations of motion.

1
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Figure 1.1: A string with mass points attached to springs.

1.1 The String

We consider a massless string with equidistant mass points attached. In
the case of a string, we shall see (in chapter 3) that the Green’s function
corresponds to an impulsive force and is represented by a complete set
of functions. Consider N mass points of mass mi attached to a masslesspr:N1

pr:mi1 string, which has a tension τ between mass points. An elastic force at

pr:tau1 each mass point is represented by a spring. This problem is illustrated
in figure 1.1 We want to find the equations of motion for transversefig1.1

pr:eom1
vibrations of the string.

1.1.1 Forces on the String

For the massless vibrating string, there are three forces which are in-
cluded in the equation of motion. These forces are the tension force,
elastic force, and external force.

Tension Force
4 Jan p2

For each mass point there are two force contributions due to the tensionpr:tension1
on the string. We call τi the tension on the segment between mi−1

and mi, ui the vertical displacement of the ith mass point, and a thepr:ui1
pr:a1 horizontal displacement between mass points. Since we are considering

transverse vibrations (in the u-direction) , we want to know the tensionpr:transvib1
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force in the u-direction, which is τi+1 sin θ. From the figure we see that pr:theta1
θ ≈ (ui+1 − ui)/a for small angles and we can thus write

F
τi+1

iy = τi+1
(ui+1 − ui)

a
and pr:Fiyt1

F τi
iy = −τi

(ui − ui−1)

a
.

Note that the equations agree with dimensional analysis: Grif’s uses
Taylor exp
pr:m1

pr:l1
pr:t1

F τi
iy = dim(m · l/t2), τi = dim(m · l/t2),
ui = dim(l), and a = dim(l).

Elastic Force
pr:elastic1

We add an elastic force with spring constant ki: pr:ki1

F elastic
i = −kiui,

where dim(ki) = (m/t2). This situation can be visualized by imagining pr:Fel1
vertical springs attached to each mass point, as depicted in figure 1.1.
A small value of ki corresponds to an elastic spring, while a large value
of ki corresponds to a rigid spring.

External Force

We add the external force F ext
i . This force depends on the nature of pr:ExtForce1

pr:Fext1the physical problem under consideration. For example, it may be a
transverse force at the end points.

1.1.2 Equations of Motion for a Massless String

The problem thus far has concerned a massless string with mass points
attached. By summing the above forces and applying Newton’s second
law, we have pr:Newton1

pr:t2
Ftot = τi+1

(ui+1 − ui)

a
− τi

(ui − ui−1)

a
− kiui + F ext

i = mi
d2

dt2
ui. (1.1)

This gives us N coupled inhomogeneous linear ordinary differential eq1force
equations where each ui is a function of time. In the case that F ext

i pr:diffeq1
is zero we have free vibration, otherwise we have forced vibration. pr:FreeVib1

pr:ForcedVib1
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1.1.3 Equations of Motion for a Massive String
4 Jan p3

For a string with continuous mass density, the equidistant mass points
on the string are replaced by a continuum. First we take a, the sep-
aration distance between mass points, to be small and redefine it as
a = ∆x. We correspondingly write ui − ui−1 = ∆u. This allows us topr:deltax1

pr:deltau1 write
(ui − ui−1)

a
=
(

∆u

∆x

)
i
. (1.2)

The equations of motion become (after dividing both sides by ∆x)

1

∆x

[
τi+1

(
∆u

∆x

)
i+1

− τi

(
∆u

∆x

)
i

]
− ki

∆x
ui +

F ext
i

∆x
=
mi

∆x

d2ui

dt2
. (1.3)

In the limit we take a→ 0, N →∞, and define their product to beeq1deltf

lim
a→0

N→∞
Na ≡ L. (1.4)

The limiting case allows us to redefine the terms of the equations of
motion as follows:pr:sigmax1

mi → 0 mi

∆x
→ σ(xi) ≡ mass

length
= mass density;

ki → 0 ki

∆x
→ V (xi) = coefficient of elasticity of the media;

F ext
i → 0 F ext

∆x
= ( mi

∆x
· F ext

mi
) → σ(xi)f(xi)

(1.5)
where

f(xi) =
F ext

mi

=
external force

mass
. (1.6)

Since

xi = x

xi−1 = x−∆x

xi+1 = x+ ∆x

we havepr:x1 (
∆u

∆x

)
i
=
ui − ui−1

xi − xi−1

→ ∂u(x, t)

∂x
(1.7)
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so that

1

∆x

[
τi+1

(
∆u

∆x

)
i+1

− τi

(
∆u

∆x

)
i

]

=
1

∆x

[
τ(x+ ∆x)

∂u(x+ ∆x)

∂x
− τ(x)

∂u(x)

∂x

]

=
∂

∂x

[
τ(x)

∂u

∂x

]
. (1.8)

This allows us to write 1.3 as 4 Jan p4

∂

∂x

[
τ(x)

∂u

∂x

]
− V (x)u+ σ(x)f(x, t) = σ(x)

∂2u

∂t2
. (1.9)

This is a partial differential equation. We will look at this problem in eq1diff

pr:pde1detail in the following chapters. Note that the first term is net tension
force over dx.

1.2 The Linear Operator Form

We define the linear operator L0 by the equation pr:LinOp1

L0 ≡ − ∂

∂x

(
τ(x)

∂

∂x

)
+ V (x). (1.10)

We can now write equation (1.9) as eq1LinOp[
L0 + σ(x)

∂2

∂t2

]
u(x, t) = σ(x)f(x, t) on a < x < b. (1.11)

This is an inhomogeneous equation with an external force term. Note eq1waveone
that each term in this equation has units of m/t2. Integrating this
equation over the length of the string gives the total force on the string.

1.3 Boundary Conditions
pr:bc1

To obtain a unique solution for the differential equation, we must place
restrictive conditions on it. In this case we place conditions on the ends
of the string. Either the string is tied together (i.e. closed), or its ends
are left apart (open).
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rr
'

&

$

%
a
b

Figure 1.2: A closed string, where a and b are connected.

1.3.1 Case 1: A Closed String

A closed string has its endpoints a and b connected. This case is illus-pr:ClStr1
pr:a2 trated in figure 2. This is the periodic boundary condition for a closed

fig1loop

pr:pbc1

string. A closed string must satisfy the following equations:

u(a, t) = u(b, t) (1.12)

which is the condition that the ends meet, andeq1pbc1

∂u(x, t)

∂x

∣∣∣∣
x=a

=
∂u(x, t)

∂x

∣∣∣∣
x=b

(1.13)

which is the condition that the ends have the same declination (i.e.,eq1pbc2
the string must be smooth across the end points).

1.3.2 Case 2: An Open String
sec1-c2
4 Jan p5 For an elastically bound open string we have the boundary condition

pr:ebc1
pr:OpStr1

that the total force must vanish at the end points. Thus, by multiplying
equation 1.3 by ∆x and setting the right hand side equal to zero, we
have the equation

τa
∂u(x, t)

∂x

∣∣∣∣∣
x=a

− kau(a, t) + Fa(t) = 0.

The homogeneous terms of this equation are τa
∂u
∂x
|x=a and kau(a, t), and

the inhomogeneous term is Fa(t). The term kau(a) describes how the
string is bound. We now definepr:ha1

ha(t) ≡
Fa

τa
and κa ≡

ka

τa
.
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rr -� n̂n̂
ab

Figure 1.3: An open string, where the endpoints a and b are free.

The term ha(t) is the effective force and κa is the effective spring con-pr:EffFrc1
stant.pr:esc1

−∂u
∂x

+ κau(x) = ha(t) for x = a. (1.14)

We also define the outward normal, n̂, as shown in figure 1.3. This eq1bound
pr:OutNorm1

fig1.2

allows us to write 1.14 as

n̂ · ∇u(x) + κau(x) = ha(t) for x = a.

The boundary condition at b can be similarly defined:

∂u

∂x
+ κbu(x) = hb(t) for x = b,

where

hb(t) ≡
Fb

τb
and κb ≡

kb

τb
.

For a more compact notation, consider points a and b to be elements
of the “surface” of the one dimensional string, S = {a, b}. This gives pr:S1
us

n̂S∇u(x) + κSu(x) = hS(t) for x on S, for all t. (1.15)

In this case n̂a = −~lx and n̂b = ~lx. eq1osbc

pr:lhat1

1.3.3 Limiting Cases
6 Jan p2.1

It is also worthwhile to consider the limiting cases for an elastically
bound string. These cases may be arrived at by varying κa and κb. The pr:ebc2
terms κa and κb signify how rigidly the string’s endpoints are bound.
The two limiting cases of equation 1.14 are as follows: pr:ga1
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κa → 0 −∂u
∂x

∣∣∣∣
x=a

= ha(t) (1.16)

κa →∞ u(x, t)|x=a = ha/κa = Fa/ka. (1.17)

The boundary condition κa → 0 corresponds to an elastic media, and pr:ElMed1
is called the Neumann boundary condition. The case κa → ∞ corre-pr:nbc1
sponds to a rigid medium, and is called the Dirichlet boundary condi-
tion.pr:dbc1

If hS(t) = 0 in equation 1.15, so thatpr:hS1

[n̂S · ∇+ κS]u(x, t) = hS(t) = 0 for x on S, (1.18)

then the boundary conditions are called regular boundary conditions.eq1RBC

pr:rbc1 Regular boundary conditions are either

see Stakgold
p269

1. u(a, t) = u(b, t), d
dx
u(a, t) = d

dx
u(b, t) (periodic), or

2. [n̂S · ∇+ κS]u(x, t) = 0 for x on S.

Thus regular boundary conditions correspond to the case in which there
is no external force on the end points.

1.3.4 Initial Conditions
pr:ic1
6 Jan p2 The complete description of the problem also requires information about

the string at some reference point in time:pr:u0.1
u(x, t)|t=0 = u0(x) for a < x < b (1.19)

and
∂

∂t
u(x, t)|t=0 = u1(x) for a < x < b. (1.20)

Here we claim that it is sufficient to know the position and velocity of
the string at some point in time.

1.4 Special Cases
This material
was originally
in chapter 3
8 Jan p3.3

We now consider two singular boundary conditions and a boundary

pr:sbc1

condition leading to the Helmholtz equation. The conditions first two
cases will ensure that the right-hand side of Green’s second identity
(introduced in chapter 2) vanishes. This is necessary for a physical
system.
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1.4.1 No Tension at Boundary

For the case in which τ(a) = 0 and the regular boundary conditions
hold, the condition that u(a) be finite is necessary. This is enough to
ensure that the right hand side of Green’s second identity is zero.

1.4.2 Semi-infinite String

In the case that a → −∞, we require that u(x) have a finite limit as
x→ −∞. Similarly, if b→∞, we require that u(x) have a finite limit
as x → ∞. If both a → −∞ and b → ∞, we require that u(x) have
finite limits as either x→ −∞ or x→∞.

1.4.3 Oscillatory External Force
sec1helm

In the case in which there are no forces at the boundary we have

ha = hb = 0. (1.21)

The terms ha, hb are extra forces on the boundaries. Thus the condition
of no forces on the boundary does not imply that the internal forces
are zero. We now treat the case where the interior force is oscillatory
and write pr:omega1

f(x, t) = f(x)e−iωt. (1.22)

In this case the physical solution will be

Re f(x, t) = f(x) cosωt. (1.23)

We look for steady state solutions of the form pr:sss1

u(x, t) = e−iωtu(x) for all t. (1.24)

This gives us the equation[
L0 + σ(x)

∂2

∂t2

]
e−iωtu(x) = σ(x)f(x)e−iωt. (1.25)

If u(x, ω) satisfies the equation

[L0 − ω2σ(x)]u(x) = σ(x)f(x) with R.B.C. on u(x) (1.26)

(the Helmholtz equation), then a solution exists. We will solve this eq1helm

pr:Helm1equation in chapter 3.
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1.5 Summary

In this chapter the equations of motion have been derived for the small
oscillation problem. Appropriate forms of the boundary conditions and
initial conditions have been given.

The general string problem with external forces is mathematically
the same as the small oscillation (vibration) problem, which uses vectors
and matrices. Let ui = u(xi) be the amplitude of the string at the point
xi. For the discrete case we have N component vectors ui = u(xi), and
for the continuum case we have a continuous function u(x). These
considerations outline the most general problem.

The main results for this chapter are:

1. The equation of motion for a string is[
L0 + σ(x)

∂2

∂t2

]
u(x, t) = σ(x)f(x, t) on a < x < b

where

L0u =

[
− ∂

∂x

(
τ(x)

∂

∂x

)
+ V (x)

]
u.

2. Regular boundary conditions refer to the boundary conditions for
either

(a) a closed string:

u(a, t) = u(b, t) (continuous)

∂u(a, t)

∂x

∣∣∣∣∣
x=a

=
∂u(b, t)

∂x

∣∣∣∣∣
x=b

(no bends)

or

(b) an open string:

[n̂S · ∇+ κS]u(x, t) = hS(t) = 0 x on S, all t.

3. The initial conditions are given by the equations

u(x, t)|t=0 = u0(x) for a < x < b (1.27)
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and
∂

∂t
u(x, t)

∣∣∣∣∣
t=0

= u1(x) for a < x < b. (1.28)

4. The Helmholtz equation is

[L0 − ω2σ(x)]u(x) = σ(x)f(x).

1.6 References

See any book which derives the wave equation, such as [Fetter80, p120ff],
[Griffiths81, p297], [Halliday78, pA5].

A more thorough definition of regular boundary conditions may be
found in [Stakgold67a, p268ff].
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Chapter 2

Green’s Identities

Chapter Goals:

• Derive Green’s first and second identities.

• Show that for regular boundary conditions, the lin-
ear operator is hermitian.

In this chapter, appropriate tools and relations are developed to solve
the equation of motion for a string developed in the previous chapter.
In order to solve the equations, we will want the function u(x) to take
on complex values. We also need the notion of an inner product. The note

pr:InProd1inner product of S and u is defined as

pr:S2

〈S, u〉 =

{ ∑n
i=1 S

∗
i ui for the discrete case∫ b

a dxS
∗(x)u(x) for the continuous case.

(2.1)

In the uses of the inner product which will be encountered here, for the eq2.2
continuum case, one of the variables S or u will be a length (amplitude
of the string), and the other will be a force per unit length. Thus the
inner product will have units of force times length, which is work.

13
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2.1 Green’s 1st and 2nd Identities
6 Jan p2.4

In the definition of the inner product we make the substitution of L0u
for u, where

L0u(x) ≡
[
− d

dx

(
τ(x)

d

dx

)
+ V (x)

]
u(x). (2.2)

This substitution gives useq2.3

〈S, L0u〉 =
∫ b

a
dxS∗(x)

[
− d

dx

(
τ(x)

d

dx

)
+ V (x)

]
u(x)

= −
∫ b

a
dxS∗(x)

(
− d

dx

(
τ(x)

d

dx
u

))

+
∫ b

a
dxS∗(x)V (x)u(x).

We now integrate twice by parts (
∫
ūdv̄ = ūv̄ −

∫
v̄dū), letting

ū = S∗(x) =⇒ dū = dS∗(x) = dx
dS∗(x)

dx

and

dv̄ = dx
d

dx

(
τ(x)

d

dx
u

)
= d

(
τ(x)

d

dx
u

)
=⇒ v̄ = τ(x)

d

dx
u

so that

〈S, L0u〉 = −
∣∣∣∣b
a
S∗(x)τ(x)

(
d

dx
u(x)

)

+
∫ b

a
dx
dS∗

dx
τ(x)

(
d

dx
u(x)

)
+
∫ b

a
dxS∗(x)V (x)u(x)

= −
∣∣∣∣b
a
S∗(x)τ(x)

d

dx
u(x)

+
∫ b

a
dx

[(
d

dx
S∗
)
τ(x)

d

dx
u(x) + S∗(x)V (x)u(x)

]
.

Note that the final integrand is symmetric in terms of S∗(x) and u(x).
This is Green’s First Identity:pr:G1Id1
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〈S, L0u〉 = −
∣∣∣∣b
a
S∗(x)τ(x)

d

dx
u(x) (2.3)

+
∫ b

a
dx

[(
d

dx
S∗
)
τ(x)

d

dx
u(x) + S∗(x)V (x)u(x)

]
.

Now interchange S∗ and u to get eq2G1Id

〈u, L0S〉∗ = 〈L0S, u〉

= −
∣∣∣∣b
a
u(x)τ(x)

d

dx
S∗(x) (2.4)

+
∫ b

a
dx

[(
d

dx
u

)
τ(x)

d

dx
S∗(x) + u(x)V (x)S∗(x)

]
.

When the difference of equations 2.3 and 2.4 is taken, the symmetric eq2preG2Id
terms cancel. This is Green’s Second Identity: pr:G2Id1

〈S, L0u〉 − 〈L0S, u〉 =
∣∣∣∣b
a
τ(x)

[
u(x)

d

dx
S∗(x)− S∗(x)

d

dx
u(x)

]
. (2.5)

In the literature, the expressions for the Green’s identities take τ = −1 eq2G2Id
and V = 0 in the operator L0. Furthermore, the expressions here are
for one dimension, while the multidimensional generalization is given
in section 8.4.1.

2.2 Using G.I. #2 to Satisfy R.B.C.
6 Jan p2.5

The regular boundary conditions for a string (either equations 1.12 and
1.13 or equation 1.18) can simplify Green’s 2nd Identity. If S and u
correspond to physical quantities, they must satisfy RBC. We will
verify this statement for two special cases: the closed string and the
open string.

2.2.1 The Closed String

For a closed string we have (from equations 1.12 and 1.13)

u(a, t) = u(b, t), S∗(a, t) = S∗(b, t),
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τ(a) = τ(b),
d

dx
S∗
∣∣∣∣∣
x=a

=
d

dx
S∗
∣∣∣∣∣
x=b

,
d

dx
u

∣∣∣∣∣
x=a

=
d

dx
u

∣∣∣∣∣
x=b

.

By plugging these equalities into Green’s second identity, we find that

〈S, L0u〉 = 〈L0S, u〉. (2.6)

eq2twox

2.2.2 The Open String

For an open string we have

−∂u
∂x

+Kau = 0 for x = a,

−∂S
∗

∂x
+KaS

∗ = 0 for x = a,

∂u

∂x
+Kbu = 0 for x = b,

∂S∗

∂x
+KbS

∗ = 0 for x = b. (2.7)

These are the conditions for RBC from equation 1.14. Plugging theseeq21osbc
expressions into Green’s second identity gives

∣∣∣∣
a
τ(x)

[
u
dS∗

dx
− S∗

du

dx

]
= τ(a)[uKaS

∗ − S∗Kau] = 0

and ∣∣∣∣bτ(x)
[
u
dS∗

dx
− S∗

du

dx

]
= τ(b)[uKbS

∗ − S∗Kbu] = 0.

Thus from equation 2.5 we find that

〈S, L0u〉 = 〈L0S, u〉, (2.8)

just as in equation 2.6 for a closed string.eq2twox2
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2.2.3 A Note on Hermitian Operators

The equation 〈S, L0u〉 = 〈L0S, u〉, which we have found to hold for
both a closed string and an open string, is the criterion for L0 to be a
Hermitian operator. By using the definition 2.1, this expression can bepr:HermOp1
rewritten as

〈S, L0u〉 = 〈u, L0S〉∗. (2.9)

Hermitian operators are generally generated by nondissipative phys-
ical problems. Thus Hermitian operators with Regular Boundary Con-
ditions are generated by nondissipative mechanical systems. In a dis-
sipative system, the acceleration cannot be completely specified by the
position and velocity, because of additional factors such as heat, fric-
tion, and/or other phenomena.

2.3 Another Boundary Condition
6 Jan p2.6

If the ends of an open string are free of horizontal forces, the tension
at the end points must be zero. Since

lim
x→a,b

τ(x) = 0

we have

lim
x→a,b

τ(x)u(x)
∂

∂x
S∗(x) = 0

and

lim
x→a,b

τ(x)S∗(x)
∂

∂x
u(x) = 0.

In the preceding equations, the abbreviated notation lim
x→a,b

is introduced

to represent either the limit as x approaches the endpoint a or the limit
as x approaches the endpoint b. These equations allow us to rewrite
Green’s second identity (equation 2.5) as

〈S, L0u〉 = 〈L0S, u〉 (2.10)

for the case of zero tension on the end points This is another way of eq2G2Id
getting at the result in equation 2.8 for the special case of free ends.
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2.4 Physical Interpretations of the G.I.s
sec2.4

Certain qualities of the Green’s Identities correspond to physical situ-
ations and constraints.

2.4.1 The Physics of Green’s 2nd Identity
6 Jan p2.6

The right hand side of Green’s 2nd Identity will always vanish for phys-
ically realizable systems. Thus L0 is Hermitian for any physically real-
izable system.

We could extend the definition of regular boundary conditions by
letting them be those in which the right-hand side of Green’s second
identity vanishes. This would allow us to include a wider class of prob-
lems, including singular boundary conditions, domains, and operators.
This will be necessary to treat Bessel’s equation. For now, however, we
only consider problems whose boundary conditions are periodic or of
the form of equation 1.18.

2.4.2 A Note on Potential Energy

The potential energy of an element dx of the string has two contribu-
tions. One is the “spring” potential energy 1

2
V (x)(u(x))2 (c.f., 1

2
kx2 in

U = −
∫
Fdx = −

∫
(−kx)dx = 1

2
kx2 [Halliday76, p141]). The other is

the “tension” potential energy, which comes from the tension force in
section 1.1.3, dF = ∂

∂x
[τ(x) ∂

∂x
u(x)]dx, and thus Utension is

U = −
∫ ∂

∂x

(
τ
∂u

∂x

)
dx,

so
dU

dt
= − d

dt

∫ ∂

∂x

(
τ
∂u

∂x

)
dx = −

∫
x

∂

∂x

(
τ
∂u

∂x

)(
∂u

∂t

)
dx,

and so the change in potential energy in a time interval dt is

U dt = −
∫ b

a

∂

∂x

(
τ
∂u

∂x

)(
∂u

∂t

)
dt dx

parts
=

∫ b

a

(
τ
∂u

∂x

)
∂

∂t

∂u

∂x
dt dx−

[(
τ
∂u

∂x

)
∂u

∂t
dt

]b

a
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=
∫ b

a

(
τ
∂u

∂x

)
∂

∂t

∂u

∂x
dt dx

=

 ∂
∂t

∫ b

a

1

2
τ

(
∂u

∂x

)2

dx

t+dt

t

.

The second term in the second equality vanishes. We may now sum
the differentials of U in time to obtain the potential energy:

U =
∫ t

t′=0
U dt =

∫ b

a

1

2
τ

(
∂u

∂x

)2

dx

t

0

=
∫ b

a

1

2
τ

(
∂u

∂x

)2

dx.

2.4.3 The Physics of Green’s 1st Identity
sec2.4.2
6 Jan p2Let S = u. Then 2.3 becomes

〈u, L0u〉 = −
∣∣∣∣b
a
u∗(x)τ(x)

d

dx
u(x) (2.11)

+
∫ b

a
dx

[(
d

dx
u∗
)
τ(x)

d

dx
u(x) + u∗(x)V (x)u(x)

]
.

For a closed string we have

〈u, L0u〉 =
∫ b

a
dx

τ(x)(du
dx

)2

+ V (x)(u(x))2

 = 2U (2.12)

since each quantity is the same at a and b. For an open string we found eq2x
8 Jan p3.2(equation 1.15)

du

dx

∣∣∣∣
x=a

= Kau (2.13)

and
du

dx

∣∣∣∣
x=b

= −Kbu (2.14)

so that

〈u, L0u〉 = τ(a)Ka|u(a)|2 + τ(b)Kb|u(b)|2

+
∫ b

a
dx

τ(x)(du
dx

)2

+ V (x)(u(x))2


= 2U,
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twice the potential energy. The term 1
2
τ(a)Ka|u(a)|2 + 1

2
τ(b)Kb|u(b)|2 see FW p207,

expl. p109
p126
eq2y
pr:pe1

is the potential energy due to two discrete “springs” at the end points,
and is simply the spring constant times the displacement squared.

The term τ(x) (du/dx)2 is the tension potential energy. Since du/dx
represents the string stretching in the transverse direction, τ(x) (du/dx)2

is a potential due to the stretching of the string. V (x)(u(x))2 is the
elastic potential energy.

For the case of the closed string, equation 2.12, and the open string,
equation 2.15, the right hand side is equal to twice the potential energy.
If Ka, Kb, τ and V are positive for the open string, the potential energy
U is also positive. Thus 〈u, L0u〉 > 0, which implies that L0 is a positive
definite operator.pr:pdo1

2.5 Summary

1. The Green’s identities are:

(a) Green’s first identity:

〈S, L0u〉 = −
∣∣∣∣b
a
S∗(x)τ(x)

d

dx
u(x)

+
∫ b

a
dx
[ (

d

dx
S∗
)
τ(x)

d

dx
u(x)

+ S∗(x)V (x)u(x)
]
,

(b) Green’s second identity:

〈S, L0u〉−〈L0S, u〉 =
∣∣∣∣b
a
τ(x)

[
u(x)

d

dx
S∗(x)− S∗(x)

d

dx
u(x)

]
.

2. For a closed string and an open string (i.e., RBC) the linear op-
erator L0 is Hermitian:

〈S, L0u〉 = 〈u, L0S〉∗.
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2.6 References

Green’s formula is described in [Stakgold67, p70] and [Stakgold79,
p167].

The derivation of the potential energy of a string was inspired by
[Simon71,p390].
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Chapter 3

Green’s Functions

Chapter Goals:

• Show that an external force can be written as a
sum of δ-functions.

• Find the Green’s function for an open string with
no external force on the endpoints.

In this chapter we want to solve the Helmholtz equation, which was
obtained in section 1.4.3. First we will develop some mathematical
principles which will facilitate the derivation. 8 Jan p3.4

Lagrangian
stuff com-
mented out3.1 The Principle of Superposition

Suppose that pr:a1.1
f(x) = a1f1(x) + a2f2(x). (3.1)

If u1 and u2 are solutions to the equations (c.f., 1.26)

[L0 − ω2σ(x)]u1(x) = σ(x)f1(x) (3.2)

[L0 − ω2σ(x)]u2(x) = σ(x)f2(x) (3.3)

with RBC and such that (see equation 1.15) eq3q

(n̂S · ∇+ κS)u1 = 0
(n̂S · ∇+ κS)u2 = 0

}
for x on S

23
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then their weighted sum satisfies the same equation of motion

[L0 − ω2σ(x)](a1u1(x) + a2u2(x))

= a1 [L0 − ω2σ(x)]u1(x)︸ ︷︷ ︸
σ(x)f1(x)

+a2 [L0 − ω2σ(x)]u2(x)︸ ︷︷ ︸
σ(x)f2(x)

= σ(x)f(x).

and boundary condition

[n̂S · ∇+ κS][a1u1(x) + a2u2(x)]

= a1[n̂S · ∇+ κS]u1 + a2[n̂S · ∇+ κS]u2

= a1(0) + a2(0) = 0.

We have thus shown that

L0[a1u1 + a2u2] = a1L0u1 + a2L0u2. (3.4)

This is called the principle of superposition, and it is the defining prop-pr:pos1
erty of a linear operator.

3.2 The Dirac Delta Function
11 Jan p4.1

We now develop a tool to solve the Helmholtz equation (which is also
called the steady state equation), equation 1.26:

[L0 − ω2σ(x)]u(x) = σ(x)f(x).

The delta function is defined by the equationpr:DeltaFn1

pr:Fcd
Fcd =

∫ d

c
dxδ(x− xk) =

{
1 if c < xk < d
0 otherwise.

(3.5)

where Fcd represents the total force over the interval [c, d]. Thus we seeeq3deltdef

pr:Fcd1 that the appearance of the delta function is equivalent to the application
of a unit force at xk. The Dirac delta function has units of force/length.
On the right-hand side of equation 1.26 make the substitution

σ(x)f(x) = δ(x− xk). (3.6)
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Integration gives us ∫ d

c
σ(x)f(x)dx = Fcd, (3.7)

which is the total force applied over the domain. This allows us to writeeq3fdc

[L0 − σω2]u(x, ω) = δ(x− xk) a < x < b,RBC (3.8)

where we have written RBC to indicate that the solution of this equa-
tion must also satisfy regular boundary conditions. We may now use 11 Jan p2
the principle of superposition to get an arbitrary force. We define an
element of such an arbitrary force as

Fk =
∫ xk+∆x

xk

dxσ(x)f(x) (3.9)

= the force on the interval ∆x. (3.10)

eq3Fsubk
We now prove that

σ(x)f(x) =
N∑

k=1

Fkδ(x− x′k) (3.11)

where xk < x′k < xk + ∆x. We first integrate both sides to get eq3sfd

x′ replaces x
so δ-fn isn’t on
boundary

∫ d

c
dxσ(x)f(x) =

∫ d

c
dx

N∑
k=1

Fkδ(x− x′k). (3.12)

By definition (equation 3.7), the left-hand side is the total force applied
over the domain, Fcd. The right-hand side is∫ d

c

N∑
k=1

Fkδ(x− x′k)dx =
N∑

k=1

∫ d

c
dxFkδ(x− x′k) (3.13)

=
∑

c<xk<d

Fk (3.14)

=
∑

c<xk<d

∫ xk+∆x

xk

dxσ(x)f(x) (3.15)

N→∞−→
∫ d

c
dxσ(x)f(x) (3.16)

= Fcd. (3.17)
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In the first equality, 3.13, switching the sum and integration holds for eq3sum1-5
all well behaved Fk. Equality 3.14 follows from the definition of the
delta function in equation 3.5. Equality 3.15 follows from equation 3.9.
By taking the continuum limit, equality 3.16 completes the proof.

The Helmholtz equation 3.2 can now be rewritten (using 3.11) aspr:Helm2

[L0 − σ(x)ω2]u(x, ω) =
N∑

k=1

Fkδ(x− xk). (3.18)

By the principle of superposition we can write

u(x) =
N∑

k=1

Fkuk(x) (3.19)

where uk(x) is the solution of [L0−σ(x)ω2]uk(x, ω
2) = δ(x−xk). Thus,

if we know the response of the system to a localized force, we can find
the response of the system to a general force as the sum of responses
to localized forces.11 Jan p3

We now introduce the following notation

uk(x) ≡ G(x, xk;ω
2) (3.20)

where G is the Green’s function, xk signifies the location of the distur-pr:Gxxo1
bance, and ω corresponds to frequency. This allows us to write

u(x) =
N∑

k=1

Fkuk(x)

=
N∑

k=1

∫ xk+∆x

xk

dx′σ(x′)f(x′)G(x, xk;ω
2)

N→∞−→
∫ b

a
dx′G(x, x′;ω2)σ(x′)f(x′).

We have defined the Green’s function by

[L0 − σ(x)ω2]G(x, x′;ω2) = δ(x− x′) a < x, x′ < b,RBC. (3.21)

The solution will explode for ω2 when ω is a natural frequency of the11 Jan p4
pr:NatFreq1 system, as will be seen later.

where will nat
freq be defined
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Figure 3.1: The pointed string

Let λ = ω2 be an arbitrary complex number. Since the squared

pr:lambda1

frequency ω2 cannot be complex, we relabel it λ. So now we want to

fix this

solve[
− d

dx

(
τ(x)

d

dx

)
+ V (x)− σ(x)λ

]
G(x, x′;ω2) = δ(x− x′) (3.22)

a < x, x′ < b,RBC

Note that G will have singularities when λ is a natural frequency. To eq3.19a
obtain a condition which connects solutions on either side of the sin-
gularity, we integrate equation 3.22. Consider figure 3.1. In this case

fig3.1∫ x′+ε

x′−ε
dx

[
− d

dx

(
τ(x)

d

dx

)
+ V (x)− σ(x)λ

]
G(x, x′;λ)

=
∫ x′+ε

x′−ε
δ(x− x′)dx

which becomes pr:epsilon1

−τ(x) d
dx
G(x, x′;λ)

∣∣∣∣∣
x′+ε

x′−ε

= 1 (3.23)

since the integrals over V (x) and σ(x) vanish as ε → 0. Note that in
this last expression “1” has units of force.
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3.3 Two Conditions
11 Jan p5

3.3.1 Condition 1

The previous equation can be written as

d

dx
G

∣∣∣∣
x=x′+ε

− d

dx
G

∣∣∣∣
x=x′−ε

= −1

τ
. (3.24)

This makes sense after considering that a larger tension implies a smallereq3other
kink (discontinuity of first derivative) in the string.eq3b

3.3.2 Condition 2

We also require that the string doesn’t break:

G(x, x′)|x=x′+ε = G(x, x′)|x=x′−ε. (3.25)

This is called the continuity condition.eq3d

pr:ContCond1

3.3.3 Application

To find the Green’s function for equation 3.22 away from the point x′,
we study the homogeneous equationpr:homog1

[L0 − σ(x)λ]u(x, λ) = 0 x 6= x′,RBC. (3.26)

This is called the eigen function problem. Once we specify G(x0, x
′;λ)pr:efp1

and d
dx
G(x0, x

′;λ), we may use this equation to get all higher derivatives
and thus determine G(x, x′;λ).

We know, from differential equation theory, that two fundamental
solutions must exist. Let u1 and u2 be the solutions to

[L0 − σ(x)λ]u1,2(x, λ) = 0 (3.27)

where u1,2 denotes either solution. Thuspr:AABB

G(x, x′;λ) = A1u1(x, λ) + A2u2(x, λ) for x < x′, (3.28)

andeq3ab1
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G(x, x′;λ) = B1u1(x, λ) +B2u2(x, λ) for x > x′. (3.29)

We have now defined the Green’s function in terms of four constants.eq3ab2
11 Jan p6 We have two matching conditions and two R.B.C.s which determine

these four constants.

3.4 Open String
13 Jan p2

where is 13 Jan
p1

We will solve for an open string with no external force h(x), which was
first discussed in section 1.3.2. G(x, x′;λ) must satisfy the boundary
condition 1.18. Choose u1 such that it satisfies the boundary condition
for the left end

− ∂u1

∂x

∣∣∣∣∣
x=a

+Kau1(a) = 0. (3.30)

This determines u1 up to an arbitrary constant. Choose u2 such that
it satisfies the right end boundary condition

∂u2

∂x

∣∣∣∣∣
x=b

+Kbu2(b) = 0. (3.31)

We find that in equations 3.28 and 3.29, A2 = B1 = 0. Thus we
have two remaining conditions to satisfy. 13 Jan p1

We now have

G(x, x′;λ) = A1(x
′)u1(x, λ) for x < x′. (3.32)

Note that only the boundary condition at a applies since the behavior
of u1(x) does not matter at b (since b > x′). This gives G determined
up to an arbitrary constant. We can also write

G(x, x′;λ) = B2(x
′)u2(x, λ) for x > x′. (3.33)

We also note that A and B are constants determined by x′ only.
Thus we can write the previous expressions in a more symmetric form: pr:CD

G(x, x′;λ) = Cu1(x, λ)u2(x
′, λ) for x < x′, (3.34)

G(x, x′;λ) = Du1(x
′, λ)u2(x, λ) for x > x′. (3.35)
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In one of the problem sets we prove that G(x, x′;λ) = G(x′, x;λ).
This can also be stated as Green’s Reciprocity Principle: ‘The ampli- pr:grp1
tude of the string at x subject to a localized force applied at x′ is
equivalent to the amplitude of the string at x′ subject to a localized
force applied at x.’

We now apply the continuity condition. Equation 3.25 implies that
C = D.13 Jan p3

Now we have a function symmetric in x and x′, which verifies the
Green’s Reciprocity Principle. By imposing the condition in equation
3.24 we will be able to determine C:

dG

dx

∣∣∣∣∣
x=x′+ε

= C
du1

dx

∣∣∣∣∣
x′
u2(x

′) (3.36)

eq3trione
dG

dx

∣∣∣∣
x=x′−ε

= Cu1(x
′)
du2

dx

∣∣∣∣
x′

(3.37)

Combining equations (3.24), (3.36), and (3.37) gives useq3tritwo

C

[
u1
du2

dx
− du1

dx
u2

] ∣∣∣∣
x=x′

=
−1

τ(x′)
. (3.38)

The Wronskian is defined aspr:wronsk1

W (u1, u2) ≡ u1
du2

dx
− u2

du1

dx
. (3.39)

This allows us to write

C =
1

−τ(x′)W (u1(x′, λ), u2(x′, λ))
. (3.40)

Thus13 Jan p4

G(x, x′;λ) =
u1(x<, λ)u2(x>, λ)

−τ(x′)W (u1(x′, λ), u2(x′, λ))
, (3.41)

where we defineeq3.39

pr:xless1 u(x<) ≡
{
u(x) if x < x′

u(x′) if x′ < x

and

u(x>) ≡
{
u(x) if x > x′

u(x′) if x′ > x.
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The u’s are two different solutions to the differential equation:

[L0 − σ(x)λ]u1 = 0 [L0 − σ(x)λ]u2 = 0. (3.42)

Multiply the first equation by u2 and the second by u1. Subtract one FW p249
equation from the other to get −u2(τu

′
1)
′ + u1(τu

′
2)
′ = 0 (where we

have used equation 1.10, L0 = − ∂
∂x

(τ ∂
∂x

) + V ). Rewriting this as a
total derivative gives

d

dx
[τ(x)W (u1, u2)] = 0. (3.43)

This implies that the expression τ(x)W (u1(x, λ), u2(x, λ)) is indepen- but isn’t
W ′(x) = 0 also
true?

dent of x. Thus G is symmetric in x and x′.
The case in which the Wronskian is zero implies that u1 = αu2,

since then 0 = u1u
′
2−u2u

′
1, or u′2/u2 = u′1/u1, which is only valid for all

x if u1 is proportional to u2. Thus if u1 and u2 are linearly independent, pr:LinIndep1
the Wronskian is non-zero.

3.5 The Forced Oscillation Problem
13 Jan p5

The general forced harmonic oscillation problem can be expanded into pr:fhop1
equations having forces internally and on the boundary which are sim-
ple time harmonic functions. Consider the effect of a harmonic forcing
term [

L0 + σ
∂2

∂t2

]
u(x, t) = σ(x)f(x)e−iωt. (3.44)

We apply the following boundary conditions: eq3ss

−∂u(x, t)
∂x

+ κau(x, t) = hae
−iωt for x = a, (3.45)

and
∂u(x, t)

∂x
+ κbu(x, t) = hbe

−iωt. for x = b. (3.46)

We want to find the steady state solution. First, we assume a steady
state solution form, the time dependence of the solution being

u(x, t) = e−iωtu(x). (3.47)
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After making the substitution we get an ordinary differential equation
in x. Next determine G(x, x′;λ = ω2) to obtain the general steady state
solution. In the second problem set we use Green’s Second Identity to
solve this inhomogeneous boundary value problem. All the physics of
the exciting system is given by the Green’s function.

3.6 Free Oscillation

Another kind of problem is the free oscillation problem. In this casepr:fop1
f(x, t) = 0 and ha = hb = 0. The object of this problem is to find the
natural frequencies and normal modes. This problem is characterizedpr:NatFreq2
by the equation: [

L0 + σ
∂2

∂t2

]
u(x, t) = 0 (3.48)

with the Regular Boundary Conditions :eq3fo

• u is periodic. (Closed string)

• [n̂ · ∇+KS]u = 0 for x in S. (Open string)

The goal is to find normal mode solutions u(x, t) = e−iωntun(x). The
natural frequencies are the ωn and the natural modes are the un(x).pr:NatMode1

We want to solve the eigenvalue equation

[L0 − σω2
n]un(x) = 0 with R.B.C. (3.49)

The variable ω2
n is called the eigenvalue of L0. The variable un(x) iseq3.48

called the eigenvector (or eigenfunction) of the operator L0.pr:EVect1

3.7 Summary

1. The Principle of superposition is

L0[a1u1 + a2u2] = a1L0u1 + a2L0u2,

where L0 is a linear operator, u1 and u2 are functions, and a1 and
a2 are constants.
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2. The Dirac Delta Function is defined as∫ d

c
dxδ(x− xk) =

{
1 if c < xk < d
0 otherwise.

3. Force contributions can be constructed by superposition.

σ(x)f(x) =
N∑

k=1

Fkδ(x− x′k).

4. The Green’s Function is the solution to to an equation whose
inhomogeneous term is a δ-function. For the Helmholtz equation,
the Green’s function satisfies:

[L0 − σ(x)ω2]G(x, x′;ω2) = δ(x− x′) a < x, x′ < b,RBC.

5. At the source point x′, the Green’s function satisfies d
dx
G|x=x′+ε−

d
dx
G|x=x′−ε = − 1

τ
and G(x, x′)|x=x′+ε = G(x, x′)|x=x′−ε.

6. Green’s Reciprocity Principle is ‘The amplitude of the string at
x subject to a localized force applied at x′ is equivalent to the
amplitude of the string at x′ subject to a localized force applied
at x.’

7. The Green’s function for the 1-dimensional wave equation is given
by

G(x, x′;λ) =
u1(x<, λ)u2(x>, λ)

−τ(x′)W (u1(x′, λ), u2(x′, λ))
.

8. The forced oscillation problem is[
L0 + σ

∂2

∂t2

]
u(x, t) = σ(x)f(x)e−iωt,

with periodic boundary conditions or the elastic boundary condi-
tions with harmonic forcing.

9. The free oscillation problem is[
L0 + σ

∂2

∂t2

]
u(x, t) = 0.
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3.8 Reference

See [Fetter81, p249] for the derivation at the end of section 3.4.
A more complete understanding of the delta function requires knowl-

edge of the theory of distributions, which is described in [Stakgold67a,
p28ff] and [Stakgold79, p86ff].

The Green’s function for a string is derived in [Stakgold67a, p64ff].



Chapter 4

Properties of Eigen States

13 Jan p7
Chapter Goals:

• Show that for the Helmholtz equation, ω2
n > 0, ω2

n

is real, and the eigen functions are orthogonal.

• Derive the dispersion relation for a closed massless
string with discrete mass points.

• Show that the Green’s function obeys Hermitian
analyticity.

• Derive the form of the Green’s function for λ near
an eigen value λn.

• Derive the Green’s function for the fixed string
problem.

By definition 2.1 ω2 > 0

〈S, u〉 =
∫ b

a
dxS∗(x)u(x). (4.1)

In section 2.4 we saw (using Green’s first identity) for L0 as defined
in equation 2.2, and for all u which satisfy equation 1.26, that V > 0
implies 〈u, L0u〉 > 0 . We choose u = un and use equation 3.49 so that

0 < 〈un, L0un〉 = 〈un, σun〉ω2
n. (4.2)

35
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Remember that σ signifies the mass density, and thus σ > 0. So we
conclude

ω2
n =

〈un, L0un〉
〈un, σun〉

> 0. (4.3)

This all came from Green’s first identity.13 Jan p8
Next we apply Green’s second identity 2.5,ω2 real

〈S, L0u〉 = 〈L0S, u〉 for S, u satisfying RBC (4.4)

Let S = u = un. This gives us

ω2
n〈un, σun〉 = 〈un, L0un〉 (4.5)

= 〈L0un, un〉 (4.6)

= (ω2
n)∗〈un, σun〉. (4.7)

We used equation 3.49 in the first equality, 2.5 in the second equality,
and both in the third equality. From this we can conclude that ω2

n is
real.

Now let us choose u = un and S = um. This gives usorthogonality

〈um, L0un〉 = 〈L0um, un〉. (4.8)

Extracting ω2
n gives (note that σ(x) is real)

ω2
n〈um, σun〉 = ω2

m〈σum, un〉 = ω2
m〈um, σun〉. (4.9)

So
(ω2

n − ω2
m)〈um, σun〉 = 0. (4.10)

Thus if ω2
n 6= ω2

m then 〈um, σun〉 = 0:∫ b

a
dxu∗m(x)σ(x)un(x) = 0 if ω2

n 6= ω2
m. (4.11)

That is, two eigen vectors um and un of L0 corresponding to differenteq4.11
13 Jan p8 eigenvalues are orthogonal with respect to the weight function σ. If

pr:ortho1 the eigen vectors um and un are normalized, then the orthonormality

pr:orthon1 condition is ∫ b

a
dxu∗m(x)σ(x)un(x) = δmn if ω2

n 6= ω2
m, (4.12)

where the Kronecker delta function is 1 if m = n and 0 otherwise.eq4.11p
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Figure 4.1: The closed string with discrete mass points.

4.1 Eigen Functions and Natural Modes
15 Jan p1

We now examine the natural mode problem given by equation 3.49. To
find the natural modes we must know the natural frequencies ωn and pr:NatMode2
the normal modes un. This is equivalent to the problem pr:lambdan1

L0un(x) = σ(x)λnun(x), RBC. (4.13)

To illustrate this problem we look at a discrete problem. eq4A

4.1.1 A Closed String Problem
pr:dcs1
15 Jan p2This problem is illustrated in figure 4.11. In this problem the mass

fig4w
density σ and the tension τ are constant, and the potential V is zero.
The term u(xi) represents the perpendicular displacement of the ith
mass point. The string density is given by σ = m/a where m is the
mass of each mass point and a is a unit of length. We also make the

definition c =
√
τ/σ. Under these conditions equation 1.1 becomes

müi = Ftot =
τ

a
(ui+1 + ui−1 − 2ui).

Substituting the solution form ui = eikxieiωt into this equation gives

mω2 = 2
τ

a

(
−e

ika + e−ika

2
+ 1

)
= 2

τ

a
(1− cos ka) = 4

τ

a
sin2 ka

2
.

But continuity implies u(x) = u(x+Na), so eikNa = 1, or kNa = 2πn,
so that

k =
(

2π

Na

)
n, n = 1, . . . , N.

1See FW p115.
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The natural frequencies for this system are then

ω2
n =

c2 sin2(kna/2)

a2/4
(4.14)

where kn = 2π
L
n and n can take on the values 0,±1, . . . ,±N−1

2
for oddeq4r

N , and 0,±1, . . . ,±N
2
− 1,+N

2
for even N . The constant is c2 = aτ/m.

Equation 4.14 is called the dispersion relation. If n is too large, the unpr:DispRel1
take on duplicate values. The physical reason that we are restricted to a
finite number of natural modes is because we cannot have a wavelength
λ < a. The corresponding normal modes are given by

φn(xi, t) = e−iωntun(xi) (4.15)

= e−i[ωnt−knxi] (4.16)

= e−i[ωnt− 2π
L

nxi]. (4.17)

The normal modes correspond to traveling waves. Note that ωn iseq4giver

pr:travel1 doubly degenerate in equation 4.14. Solutions φn(x) for n which are
larger than allowed give the same displacement of the mass points, but
with some nonphysical wavelength. Thus we are restricted to N modes
and a cutoff frequency.

4.1.2 The Continuum Limit

We now let a become increasingly small so that N becomes large for L
fixed. This gives us ∆kn = 2π/L for L = Na. In the continuum limit,
the number of normal modes becomes infinite. Shorter and shorter
wavelengths become physically relevant and there is no cutoff frequency.pr:cutoff1

Letting a approach zero while L remains fixed givesfrequency
expression

ω2
n =

c2 sin2 kna
2

a2

4

Na=L
a→0−→ c2k2

n (4.18)

and so
ωn = c|kn| (4.19)

∆ωn = c|∆kn| = c

∣∣∣∣2πL
∣∣∣∣ (4.20)
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ωn = c
2π

L
n. (4.21)

Equation (4.17) gives us the un’s for all n.

We have found characteristics

• For a closed string, the two eigenvectors for every eigenvalue
(called degeneracy) correspond to the two directions in which a pr:degen1
wave can move. The eigenvalues are ω2

n.

• The natural frequencies ωn are always discrete, with a separation
distance proportional to 1/L.

• For open strings there is no degeneracy. This is because the po-
sition and slope of the Green’s function at the ends is fixed by
the open string boundary conditions, whereas the closed string
boundary conditions do not determine the Green’s function at
any particular point.

For the discrete closed case, the ωn’s are discrete with double degeneracy, 15 Jan p4
giving u±. We also find the correspondence ∆ωn ∼ c/L where c ∼√
τ/σ. We also found that there is no degeneracy for the open discrete

case.

4.1.3 Schrödinger’s Equation
pr:Schro1

Consider again equation 4.13

L0un(x) = σ(x)λnun(x) RBC (4.22)

where

L0 = − d

dx
τ(x)

d

dx
+ V (x). (4.23)

We now consider the case in which τ(x) = h̄2/2m and σ = 1, both
quantities being numerical constants. The linear operator now becomes

L0 =
−h̄2

2m

d2

dx2
+ V (x). (4.24)
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Figure 4.2: Negative energy levels

This is the linear operator for the Schrödinger equation for a particle
of mass m in a potential V :[

−h̄2

2m

d2

dx2
+ V (x)

]
un(x) = λnun(x) + RBC (4.25)

In this case λ gives the allowed energy values.
The potential V (x) can be either positive or negative. It needs to

be positive for L0 to be positive definite, in which case λ0 > 0. For
V < 0 we can have a finite number of of eigenvalues λ less that zero.
On a physical string the condition that V > 0 is necessary.verify this

paragraph
15 Jan p5

One can prove that negative energy levels are discrete and bounded
from below. The bound depends on the nature of V (x) (Rayleigh quo-
tient idea). Suppose that V has a minimum, as shown in figure 4.2 forpr:RayQuo1
example. By Green’s first identity the quantity L0 − Vmin gives a newfig4neg
operator which is positive definite.

4.2 Natural Frequencies and the Green’s

Function

We now look at a Green’s function problem in the second problem set.
Under consideration is the Fredholm equationpr:Fred1

[L0 − σ(x)ω2
n]u(x) = σ(x)f(x), RBC. (4.26)



4.3. GF BEHAVIOR NEAR λ = λN 41

In problem 2.2 one shows that the solution un(x) for this equation only
exists if ∫

dxu∗n(x)σ(x)f(x) = 0. (4.27)

This is the condition that the eigenvectors un(x) are orthogonal to eq4.26
the function f(x). We apply this to the Green’s function. We choose
λ = λn = ω2

n and evaluate the Green’s function at this point. Thus for Ask Baker
Isn’t this just
hitting a sta-
tionary point?

the equation
[L0 − σ(x)λn]G(x, x′;λ) = δ(x− x′) (4.28)

there will be a solution G(x, x′;λ) only if (using 4.27)
eq4.26p

clarify this.G(x, x;λ) =
∫
dx′G(x, x′;λ)δ(x− x′) = 0. (4.29)

The result G(x, x;λ) = 0 implies that u∗n(x′) = 0 (using equation 3.41). eq4.26b
15 Jan p6There will be no solution unless x′ is a node. In physical terms, this

means that a natural frequency can only be excited at a node.

4.3 GF behavior near λ = λn
15 Jan p6

From the result of the previous section, we expect that if the driving
frequency ω is not a natural frequency, everything will be well behaved.
So we show that G(x, x′;λ) is good everywhere (in the finite interval
[a, b]) except for a finite number of points. The value of G(x, x′;λ)
becomes infinite near λn, that is, as λ → λn. For λ near λn we can
write the Green’s function as pr:gnxx1

G(x, x′;λ) ∼ 1

λn − λ
gn(x, x′) + finite λ→ λn (4.30)

where finite is a value always of finite magnitude. We want to find gn,
so we put [L0 − λσ(x)] in front of each side of the equation and then
add and subtract λnσ(x)G(x, x′;λ) on the the right-hand side. This
gives us (using 4.28)

δ(x− x′) = [L0 − λnσ(x)]
[

1

λn − λ
gn(x, x′) + finite

]
+ (λn − λ)σ(x)

[
1

λn − λ
gn(x, x′) + finite

]
λ→ λn

= [L0 − λnσ(x)]
[

1

λn − λ
gn(x, x′)

]
+ finite λ→ λn.
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The left-hand side is also finite if we exclude x = x′. This can only15 Jan p7
occur if

[L0 − λnσ(x)]gn(x, x′) = 0 x 6= x′. (4.31)

From this we can conclude that gn has the form

gn(x, x′) = un(x)f(x′), x 6= x′, (4.32)

where f(x′) is a finite term and un(x) satisfies [L0 − λnσ(x)]un(x) = 0eq4guf

pr:fxprime1 with RBC. Note that here the eigen functions un(x) are not yet nor-
malized. This is the relation between the natural frequency and thepr:NatFreq3
Green’s function.

4.4 Relation between GF & Eig. Fn.
20 Jan p2

We continue developing the relation between the Green’s function and
spectral theory. So far we have discussed the one dimensional problem.pr:SpecThy1
This problem was formulated as

[L0 − σ(x)λ]G(x, x′;λ) = δ(x− x′), RBC. (4.33)

To solve this problem we first solved the corresponding homogeneouseq4.31m
problem

[L0 − σ(x)λn]un(x) = 0, RBC. (4.34)

The eigenvalue λn is called degenerate if there is more than one un per
λn. We note the following properties in the Green’s function:

1. G∗(x, x′;λ∗) = G(x, x′;λ). Recall that σ, L0, and the boundary
condition terms are real. First we take the complex conjugate of
equation 4.33,

[L0 − σ(x)λ∗]G∗(x, x′;λ) = δ(x− x′), RBC (4.35)

and then we take the complex conjugate of λ to get

[L0 − σ(x)λ]G∗(x, x′;λ∗) = δ(x− x′), RBC (4.36)

which gives us
G∗(x, x′;λ∗) = G(x, x′;λ). (4.37)
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2. G is symmetric. In the second problem set it was seen that

G(x, x′;λ) = G(x′, x;λ). (4.38)

3. The Green’s function G has the property of Hermitian analyticity. 18 Jan p3
pr:HermAn1By combining the results of 1 and 2 we get

G∗(x, x′;λ) = G(x′, x;λ∗). (4.39)

This may be called the property of Hermitian analyticity. eq4ha

In the last section we saw that

G(x, x′;λ)
λ→λn−→ gn(x, x′)

λn − λ
(4.40)

for g such that eq4cA
[L0 − σ(x)λn]gn(x, x′) = 0. (4.41)

For the open string there is no degeneracy and for the closed string
there is double degeneracy. (There is also degeneracy for the 2- and give ref
3-dimensional cases.)

4.4.1 Case 1: λ Nondegenerate

Assume that λn is non-degenerate. In this case we can write (using
equation 4.32)

gn(x, x′) = un(x)fn(x′). (4.42)

Hermitian analyticity and the complex conjugate of equation 4.40 give eq4cB
(note that λn ∈ R)

g∗n(x, x′)

λn − λ∗
=
gn(x′, x)

λn − λ∗
(4.43)

as λ→ λn. This implies that

g∗n(x, x′) = gn(x′, x). (4.44)

eq4cC
So now 4.42 becomes 20 Jan p4
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u∗n(x)f ∗n(x′) = fn(x)un(x′) (4.45)

so that (since x and x′ are independent) if un(x) is normalized (accord-
ing to equation 4.12)

fn(x) = u∗n(x). (4.46)

In the non-degenerate case we have (from 4.40 and 4.42)

G(x, x′;λ)
λ→λn−→ un(x)u∗n(x′)

λn − λ
. (4.47)

where un(x) are normalized eigen functions.eq4.47

pr:normal1

4.4.2 Case 2: λn Double Degenerate

In the second case, the eigenvalue λn has double degeneracy like the
closed string. The homogeneous closed string equation isis it +?

(L0 + λnσ)u(±)
n (x) = 0.

The eigenfunctions corresponding to λn are u+
n (x) and u−n (x). By using

the same reasoning that lead to equation 4.47 we can writewhy?

G(x, x′;λ) → 1

λn − λ
[u(+)

n (x)u(+)∗
n (x) + u(−)

n (x)u(−)∗
n (x)] (4.48)

for the equation

[L0 − σ(x)λn]u(±)
n (x) = 0, RBC. (4.49)

The eigenfunction un may be written as un = A+u
+ + A−u

−. DoubleHow does this
fit in? degeneracy is the maximum possible degeneracy in one dimension.

In the general case of α-fold degeneracy20 Jan p5

G(x, x′;λ)
λ→λn−→ 1

λn − λ

∑
α

[uα
n(x)uα∗

n (x′)] (4.50)

where uα
n(x) solves the equation

[L0 − σ(x)λn]uα
n(x) = 0, RBC. (4.51)

The mathematical relation between the Green’s function and the
eigen functions is the following: The eigenvalues λn are the poles of G.pr:poles1
The sum of bilinear products

∑
α u

α
n(x)uα∗

n (x′) is the residue of the pole
λ = λn.
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4.5 Solution for a Fixed String

We want to solve equation 3.22. Further, we take V = 0, σ and τ
constant, and a = 0, b = L.[

−τ d
2

dx2
− λσ

]
G(x, x′;λ) = δ(x− x′) for 0 < x, x′ < L (4.52)

for the case of a fixed end string. Our boundary conditions are

G(x, x′;λ) = 0 for x = a, b.

4.5.1 A Non-analytic Solution

We know from equation 3.41 the solution is 20 Jan p6

G(x, x′;λ) =
u1(x<, λ)u2(x>, λ)

−τW (u1, u2)
. (4.53)

This solution only applies to the one dimensional case. This is because eq4.54
the solution was obtained using the theory of ordinary differential equa-
tions. The corresponding homogeneous equations are given by pr:homog2[

d2

dx2
+
λ

c2

]
u1,2(x, λ) = 0. (4.54)

In this equation we have used the definition 1/c2 ≡ σ/τ . The variables eq4lcu
pr:c1u1 and u2 also satisfy the conditions

u1(0, λ) = 0 and u2(L, λ) = 0. (4.55)

The solution to this homogeneous problem can be found to be

u1 = sin

√
λ

c2
x and u2 = sin

√
λ

c2
(L− x). (4.56)

In these solutions
√
λ appears. Since λ can be complex, we must define

a branch cut2. pr:branch1
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4.5.2 The Branch Cut

Since G ∼ 1
λn−λ

(see 4.40) it follows (from λn > 0) that Gn is analytic pr:analytic1
for Re (λ) < 0. As a convention, we choose θ such that 0 < θ < 2π.
This is illustrated in figure 4.3.fig4one

Using this convention,
√
λ can be represented by

√
λ =

√
|λ|eiθ/2 (4.57)

=
√
|λ|
[
cos

θ

2
+ i sin

θ

2

]
. (4.58)

Note that
√
λ has a discontinuity along the positive real axis. Theeq4.58-59

20 Jan p7 function G is analytic in the complex plane if the positive real axis is
removed. This can be expressed mathematically as the condition that

Im
√
λ > 0. (4.59)

4.5.3 Analytic Fundamental Solutions and GF

We now look back at the fixed string problem. We found thatpr:u1.1

u1(x, λ) = sin

√
λ

c2
x

so that
du1

dx
=

√
λ

c2
cos

√
λ

c2
x.

This gives us the boundary valuebut only if x =
a = 0.

2See also FW p485.
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du1

dx

∣∣∣∣∣
x=a

=

√
λ

c2
. (4.60)

Because of the
√
λ, this is not analytic over the positive real axis. We eq4fs

choose instead the solution pr:baru1

u1 →
u1

du1

dx
|x=a

=
1√

λ
c2

sin

√
λ

c2
x ≡ u1. (4.61)

The function u1 has the properties

u1(a) = 0 and
du1

dx

∣∣∣∣∣
x=a

= 1.

This satisfies the differential equation. 18 Jan p8[
d2

dx2
+
λ

c2

]
u1(x, λ) = 0. (4.62)

So u1 is analytic for λ with no branch cut. Similarly, for the substitution justify this
u2 ≡ u2/(

du2

dx
|x=b) we obtain

u2 = (λ/c2)−1/2 sin
√
λ/c2(L− x).

One can always find u1 and u2 as analytic functions of λ with no branch
cut. Is this always

true?

4.5.4 Analytic GF for Fixed String

We have been considering the Green’s function equation

[L0 − λσ(x)]G(x, x′;λ) = δ(x− x′) for 0 < x, x′ < b (4.63)

with the open string RBC (1.18)

[n̂S · ∇+ κS]G(x, x′;λ) = 0 for x on S (4.64)

and linear operator L0 defined as

L0 = − d

dx
τ(x)

d

dx
+ V (x). (4.65)



48 CHAPTER 4. PROPERTIES OF EIGEN STATES

We found that the solution to this equation can be written (3.41)

G(x, x′;λ) =
u1(x<, λ)u2(x>, λ)

−τ(x)W (u1, u2)
(4.66)

where u1 and u2 are solutions to the homogeneous equation with theeq4cD
same boundary conditions as (1.18)

[L0 − λσ(x)]u1,2(x, λ) = 0 for a < x < b (4.67)

− ∂

∂x
u1(x, λ) + kau1(x, λ) = 0 for x = a (4.68)

+
∂

∂x
u2(x, λ) + kbu2(x, λ) = 0 for x = b. (4.69)

We have been calculating the Green’s function for a string with
fixed tension (τ = constant) and fixed string density (σ = constant) in
the absence of a potential field (V = 0) and fixed end points. This last
condition implies that the Green’s function is restricted to the boundary
condition that G = 0 at x = a = 0 and x = b = L. We saw that

u1 = sin

√
λ

c2
x (4.70)

and

u2 = sin

√
λ

c2
(L− x). (4.71)

We also assigned the convention that22 Jan p2

√
λ =

√
|λ|eiθ/2. (4.72)

This is shown in figure 4.3.
The Wronskian in equation 4.53 for this problem can be simplified

as

W (u1, u2) = u1
∂u2

∂x
− u2

∂u1

∂x

=

√
λ

c2

− sin

√
λ

c2
x cos

√
λ

c2
(L− x)
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− sin

√
λ

c2
(L− x) cos

√
λ

c2
x


= −

√
λ

c2
sin

√
λ

c2
L. (4.73)

Thus we can write the full solution for the fixed string problem as eq4.75b

G(x, x′;λ) =
sin

√
λ
c2
x< sin

√
λ
c2

(L− x>)

τ
√

λ
c2

sin
√

λ
c2
L

. (4.74)

eq4ss

4.5.5 GF Properties

We may now summarize the properties of G in the complex λ plane.

• Branch Cut: G has no branch cut. It is analytic except at isolated
simple poles. The λ1/2 branch vanishes if the eigen functions are
properly chosen. This is a general result for discrete spectrum. pr:DiscSpec1

Justify• Asymptotic limit: G goes to zero as λ goes to infinity. If λ is
pr:asymp1

real and we do not go through the poles, this result can be seen
immediately from equation 4.74. For complex λ, we let |λ| → ∞
and use the definition stated in equation 4.57 which is valid for
0 < θ < 2π. This definition gives Im

√
λ > 0. We can then write

sin
√
λ/c2x =

ei
√

λ/c2x − e−i
√

λ/c2x

2i
(4.75)

|λ|→∞−→ e−i
√

λ/c2x

2i
(4.76)

for θ > 0. Thus from equation 3.44 we get 23 Jan p3

G(x, x′;λ)
|λ|→∞−→ − 1

2i

e−i
√

λ/c2x<e−i
√

λ/c2(L−x>)

τ
√
λ/c2e−i

√
λ/c2L

(4.77)

= − 1

2i

e+i
√

λ/c2(x>−x<)

τ
√
λ/c2

. (4.78)
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By convention x> − x< > 0, and thus we conclude

G(x, x′;λ)
|λ|→∞−→ 0. (4.79)

eq4.81a

• Poles: The Green’s function can have poles. The Green’s function
is a ratio of analytic functions. Thus the poles occur at the zeros
of the denominator.

We now look at sin
√

λn

c2
L = 0 from the denominator of equation

3.44. The poles are at λ = λn. We can write
√
λn/c2L = nπ or

λn =
(
cnπ

L

)2

for n = 1, 2, . . . (4.80)

We delete the case n = 0 since we have a removable singularity ateq4et
λ = 0. Equation 4.80 occurs when the Wronskian vanishes. This
happens when u1 = constant × u2 (not linearly independent). Both
u1 and u2 satisfy the boundary conditions at both boundaries and are
therefore eigenfunctions. Thus the un’s are eigenfunctions and the λn’s
are the eigenvalues. So23 Jan p4

[L0 − λnσ]un(x) = 0 RBC (4.81)

is satisfied for λn by un.eq4star

4.5.6 The GF Near an Eigenvalue

We now look at equation 4.74 near an eigenvalue. First we expand the
denominator in a power series about λ = λn:

sin

√
λ

c2
L =

(λ− λn)L
c

cos
√
λn

L
c

2
√
λn

+O(λ− λn)2. (4.82)

So for λ near an eigenvalue we haveeq4.85

τ

√
λ

c2
sin

√
λ

c2
L

λ→λn−→ τL

2c2
(λ− λn) cosnπ. (4.83)
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eq4.86
Now we look at the numerator of 4.74. We can rewrite

sin
√
λ/c2(L− x>) = − sinnπx> cos

√
λ/c2L. (4.84)

Note that f(x<)f(x>) = f(x)f(x′). So, with σ = τ/c2, and substitut-eq4.87
ing 4.83 and 4.84, equation 4.74 becomes

G(x, x′;λ)
λ→λn−→ 2

σL

sin nπx
L

sin nπx′

L

λn − λ
. (4.85)

So we conclude that

G
λ→λn−→ un(x)un(x′)

λn − λ
(4.86)

as in 4.47 where the eigenfunction is eq4cC2
22 Jan p5

un(x) =

√
2

σL
sin

nπx

L
, (4.87)

which satisfies the completeness relation
∫ L
0 um(x)u∗n(x)σdx = δmn. eq4.91

pr:CompRel1

4.6 Derivation of GF form near E.Val.

4.6.1 Reconsider the Gen. Self-Adjoint Problem

We now give an indirect proof of equation 4.86 based on the specific
Green’s function defined in equation 4.53,

G(x, x′;λ) =
u1(x<, λ)u2(x>, λ)

−τ(x)W (u1, u2)
. (4.88)

The boundary conditions are (see 1.18) eq4nt

−∂u1

∂x
+ kau1 = 0 for x = a = 0 (4.89)

+
∂u2

∂x
+ kbu2 = 0 for x = b = L. (4.90)

The function u1 (respectively u2) may be any solution which is an
analytic function of λ, and independent of λ at x = a (respectively
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x = b). Thus both the numerator and the denominator of equation
4.88 are analytic functions of λ, so there is no branch cut. Note that 22 Jan p6
G(x, x′;λ) may only have poles when W (u1(x, λ)u2(x, λ)) = 0, which
only occurs when

u1(x, λn) = dnu2(x, λn). (4.91)

where the dn are constants.
Look at the Green’s function near λ = λn. Finding the residue will

give the correct normalization. We have (using 4.73 and 4.82)

τ(x)W (u1, u2)
λ→λn−→ (λ− λn)cn, (4.92)

where cn is some normalization constant. In this limit equation 4.88
becomes

G(x, x′;λ)
λ→λn−→

1
dn
ūn(x<)ūn(x>)

(λ− λn)cn
(4.93)

where dn is some constant. So un ≡ ūn

√
1

cndn
is the normalized eigen-

function. Equation 4.88 then implies

G(x, x′;λ)
λ→λn−→ un(x)u∗n(x′)

(λ− λn)
(4.94)

where un satisfies equation 4.81.

4.6.2 Summary, Interp. & Asymptotics
25 Jan p1

In the previous sections we looked at the eigenvalue problem

[L0 − λnσ(x)]un(x) = 0 for a < x < b, RBC (4.95)

and the Green’s function problem

[L0− λnσ(x)]G(x, x′;λ) = δ(x− x′) for a < x, x′ < b, RBC (4.96)

whereeq4fooo

L0 = − d

dx

(
τ(x)

d

dx

)
+ V (x), (4.97)

which is a formally self-adjoint operator. The general problem requirespr:selfadj1
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finding an explicit expression for the Green’s function for a force local-
ized at x′.

For λ→ λn we found

G(x, x′;λ) → un(x)u∗n(x′)

λn − λ
. (4.98)

This equation shows the contribution of the nth eigenfunction. We saw eq4.102
that G is an analytic function of λ (with poles at λn) where G→ 0 as
|λ| → ∞. We can think of G as the inverse operator of L0 − λnσ:

G =
1

L0 − λnσ
. (4.99)

Thus the poles are at L0 = λnσ.
For large λ the behavior of G is determined by the d2

dx2G term since
it brings down the highest power of λ. Thus for our simple example of
τ constant,

L0 ≈ −τ d
2

dx2
(4.100)

and for λ large

G ∼ exp(i
√
λ/c2x), G′ ∼

√
λG, G′′ ∼ (

√
λ)2G (4.101)

where the derivatives are taken with respect to x.

4.7 General Solution form of GF
25 Jan p2

fig4ffIn this section we obtain a general form (equation 4.108) for the Green’s
function which is constructed using the solutions to the corresponding
eigen value equation. This is done by evaluating a particular complex
integral. We have seen that G(x, x′;λ) is analytic in the complex λ-
plane except for poles on the real axis at the eigen values λn.

We consider the following complex integral∮
c1+c2

dλ′G(x, x′;λ′)

λ′ − λ
≡
∮

c1+c2
dλ′F (λ′) (4.102)

where we have defined F (λ′) ≡ G(x, x′;λ′)/(λ′−λ). Let the contour of
integration be the contour illustrated in figure 4.4. This equation has
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Figure 4.4: The contour of integration

a singularity only at λ. Thus we need only integrate on the contour pr:singular1
around λ. This is accomplished by deforming the contour C1 + C2 to
the contour S (following Cauchy’s theorem)pr:Cauchy1 ∮

C1+C2

dλ′F (λ′) =
∮

S
dλ′F (λ′). (4.103)

See figure 4.5. Note that although F (λ′) blows up as λ′ approaches λ,
G(x, x′;λ′) → G(x, x′;λ) in this limit. Thus the integration about the
small circle around λ can be written∮

S
dλ′F (λ′)

λ′→λ−→G(x, x′;λ)
∮

S

dλ′

λ′ − λ
.

Now make the substitution

λ′ − λ = εeiα (4.104)

dλ′ = iεeiαdα (4.105)

dλ′

λ′ − λ
= idα. (4.106)

This allows us to write∮
S

dλ′

λ′ − λ
= i lim

ε→0

∫ 2π

0
dα = 2πi.
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"!
# q��ε�λ

Figure 4.5: Circle around a singularity.

We conclude ∮
S
dλ′F (λ′) = 2πiG(x, x′;λ)

and thus

2πiG(x, x′;λ) =
∮

C1+C2

dλ′
G(x, x′;λ′)

λ′ − λ
. (4.107)

eq4tpig
We now assume that G(x, x′;λ) → 0 as λ → ∞. We must check

this for each example we consider. An intuitive reason for this limit is
the following. The Green’s function is like the inverse of the differential
operator: G ∼ 1/(L0 − λσ). Thus as λ becomes large, G must vanish.
This assumption allows us to evaluate the integral around the large
circle C2. We parameterize λ′ along this contour as

λ′ − λ = Reiα,

dλ′ → Reiαidα as R→∞.

So

lim
R→∞

∮
C2

G(x, x′;λ′)

λ′ − λ
dλ′ = lim

R→∞

∫ 2π

0

Reiαdα

Reiα
G(x, x′;Reiθ) → 0

since G(x, x′;Reiθ) → 0 as R→∞. fig4fof
We now only need to evaluate the integral for the contour C1.∮

C1

dλ′G(x, x′;λ′)

λ′ − λ
=
∑
n

∮
cn

dλ′G(x, x′;λ′)

λ′ − λ
.

In this equation we replaced the contour C1 by a sum of contours around
the poles, as shown in figure 4.6. Recall that fig4.6

G(x, x′;λ′)
λ′→λn−→

∑
α u

α
n(x)uα∗

n (x′)

λn − λ′
.
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Figure 4.6: Division of contour.

We note that

∮
cn

dλ′

(λ′ − λ)(λn − λ′)
=

1

λn − λ

∮
cn

dλ′

λn − λ′

=
1

λn − λ

∮ dλ′

λ′ − λn

=
1

λn − λ
2πi.

The first equality is valid since 1/(λ′ − λ) is well behaved as λ′ → λn.
The last equality follows from the same change of variables performed
above. The integral along the small circle containing λn is thus

∮
cn

dλ′

λ′ − λ
G(x, x′;λ′) =

2πi

λn − λ

∑
α

uα
n(x)uα∗

n (x′).

The integral along the contour C1 (and thus the closed contour C1+C2)
is then

∮
C1

dλ′

λ′ − λ
G(x, x′;λ′) = 2πi

∑
n

∑
α u

α
n(x)uα∗

n (x′)

λn − λ
.

Substituting equation 4.107 gives the result

G(x, x′;λ) =
∑
n

1

λn − λ

(∑
α

uα
λn

(x)uα∗
λn

(x′)

)
, (4.108)

where the indices λn sum n = 1, 2, . . . and α sums over the degeneracy.eq4.124
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4.7.1 δ-fn Representations & Completeness

Using the above result (equation 4.108) we can write

δ(x− x′) = [L0 − λσ(x)]G(x, x′;λ) (4.109)

= [L0 − λσ(x)]
∞∑

n=1

un(x)u∗n(x′)

λn − λ
(4.110)

=
∞∑

n=1

[(L0 − λnσ) + (λn − λ)σ]
un(x)u∗n(x′)

λn − λ
(4.111)

=
∞∑

n=1

σun(x)u∗n(x′). (4.112)

In the last equality we used

∞∑
n=1

(L0 − λnσ)
un(x)u∗n(x′)

λn − λ
=

∞∑
n=1

un(x′)

λn − λ
(L0 − λnσ)un(x) = 0

since L0 is a differential operator in terms of x, From this we get the
completeness relation pr:CompRel2

δ(x− x′) =
∞∑

n=1

σ(x)un(x)u∗n(x′) (4.113)

or
δ(x− x′)

σ(x)
=

∞∑
n=0

un(x)u∗n(x′). (4.114)

This is called the completeness relation because it is only true if the eq4.128b
un are a complete orthonormal set of eigenfunctions, which means that
any f(x) can be written as a sum of the un’s weighted by the projection
of f(x) onto them. This notion is expressed by the expansion theorem
(4.117 and 4.118).

We now derive the expansion theorem. Consider pr:ExpThm1
25 Jan p6

f(x) =
∫ b

a
dx′f(x′)δ(x− x′) for a < x < b (4.115)

=
∫ b

a
dx′f(x′)σ(x′)

∞∑
n=1

un(x)u∗n(x′) (4.116)

So eq4.129
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f(x) =
∞∑

n=1

un(x)fn, (4.117)

where eq4fo32

fn =
∫ b

a
dx′u′(x′)σ(x′)f(x′) (4.118)

is the generalized nth Fourier coefficient for f(x). Equation 4.117 rep-eq4.132

pr:FourCoef1 resents the projection of f(x) onto the un(x) normal modes. This was
obtained using the completeness relation.

Now we check normalization. The Green’s function G is normalizedpr:normal2
because the u’s are normalized. We check the normalization of the u’s
by looking at the completeness relation

δ(x− x′) = σ(x′)
∑
n

un(x)u∗n(x′). (4.119)

Integrate both sides by
∫
dx′um(x′). On the left hand side we immedi-

ately obtain
∫
dx′um(x′)δ(x− x′) = um(x). On the right hand side∫

dx′um(x′)σ(x′)
∑
n

un(x)u∗n(x′) =
∑
n

un(x)
∫
dx′u∗n(x′)σ(x′)um(x′)

where we used 4.11 in the equality. But

um(x) =
∑
n

un(x)δn,m.

Thus we conclude that normalized eigen functions are used in the com-
pleteness relation: ∫ b

a
dxu∗m(x)σ(x)un(x) = δn,m. (4.120)

This is the condition for orthonormality.pr:orthon2

4.8 Extension to Continuous Eigenvalues
27 Jan p1

As L (the length of the string) becomes large, the eigen values become27 Jan p2
closer together. The normalized eigen functions un(x) and eigen values
λn for the fixed string problem, equation 4.54, can be written

un =
1√
σL

e±i
√

λn/c2x (4.121)
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andfactor of 2?

λn = (ckn)2 kn =
2πn

L
n = 0, 1, 2, . . . . (4.122)

The separation between the eigen values is then

∆λn = λn − λn−1 ∼ c2
(

2π

L

)2 (
n2 − (n− 1)2

)
L→∞−→0. (4.123)

We now consider the case of continuous eigen values. Let λ be
complex (as before) and let ∆λn → 0. This limit exists as long as
λ is not on the positive real axis, which means that the denominator
will not blow up as ∆λn → 0. In the continuum case equation 4.108
becomes

lim
∆λn→0

G(x, x′;λ) =
∫ dλn

λn − λ

∑
α

uα
λn

(x)uα∗
λn

(x). (4.124)

eq4.124ab
The completeness relation, equation 4.114, becomes

δ(x− x′)

σ(x′)
=
∫
dλn

∑
α

uλn(x)u∗λn
(x′). (4.125)

Now we take any function f(x) and express it as a superposition using
the δ-function representation (in direct analogy with equations 4.115
and 4.118 in the discrete case)

f(x) =
∫
dλn

∑
α

fα
λn
uα

λn
(x). (4.126)

This is the generalized Fourier integral, with generalized Fourier coef- eq4.175
pr:GenFourInt1ficients

fα
λn

=
∫
dxuα∗

λn
(x)σ(x)f(x). (4.127)

The coefficients fα
λn

may be interpreted as the projection of f(x) with eq4.176
respect to σ(x) onto the eigenfunction uα

λn
(x).

4.9 Orthogonality for Continuum
27 Jan p3

We now give the derivation of the orthogonality of the eigenfunctions
for the continuum case. The method of derivation is the same as we
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used in the discrete spectrum case. First we choose f(x) = uα
λm

(x) for
f(x) in equation 4.126. Equation 4.127 then becomes

fα′∗
λ′n

=
∫
dxuα′

λ′n
(x)σuα

λm
(x). (4.128)

The form of equation 4.126 corresponding to this is

uα
λm

(x) =
∑
α

∫
dλ′mf

α′

λ′n
uα′

λ′n
(x). (4.129)

This equation can only be true if

fα′

λ′n
= δαα′δ(λ

′
n − λm). (4.130)

So we conclude that∫
dxuα′

λ′n
(x)σuα

λm
(x) = fα′

λ′n
= δαα′δ(λ

′
n − λm). (4.131)

This is the statement of orthogonality, analogous to equation 4.114. All
of these results come from manipulations on equation 4.108. We now
have both a Fourier sum theorem and a Fourier integral theorem.

We now investigate equation 4.124 in more detail

G(x, x′;λ) =
∫ dλn

λn − λ

(∑
α

uα
λn

(x)uα
λn

(x′)

)
.

(Generally, the integration is over the interval from zero to infinity.)
Where are the singularities? Consider λ approaching the positive real
axis. It can’t ever get there. The value approaching the negative side
may be different from the value approaching the positive side. There-
fore this line must be a branch cut corresponding to a continuous spec-
trum. Note that generally there is only a positive continuous spectrum,
although we may have a few negative bound states. So G(x, x′;λ) is
analytic on the entire complex cut λ-plane. It is in the region of non-
analyticity that all the physics occurs. The singular difference of a27 Jan p4
branch cut is the difference in the value of G above and below. See
figure 4.7.fig4555

We now examine the branch cut in more detail. Using equationpr:branch2
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rλ′ rλ
′ + iε

rλ′ − iε

Figure 4.7: λ near the branch cut.

4.108 we can write

lim
ε→0

G(x, x′;λ′ + iε)−G(x, x′;λ′ − iε)

2πi

=
1

2πi

∫ ∞

0
dλn

∑
α

uα
λn

(x)uα∗
λn

(x′)
(

1

λn − λ′ − iε
− 1

λn − λ′ + iε

)
where

1

2πi

(
1

λn − λ′ − iε
− 1

λn − λ′ + iε

)
=

1

2πi

2iε

(λn − λ′)2 + ε2

=
ε

π

1

(λn − λ′)2 + ε2
.

In the first problem set we found that

lim
ε→0

ε

π

1

(λ− λ′)2 + ε2
= δ(λ′ − λ). (4.132)

So

lim
ε→0

G(x, x′;λ′ + iε)−G(x, x′;λ′ − iε)

2πi

=
∫
dλn

∑
α

uα
λn

(x)uα∗
λn

(x′)δ(λ′ − λn)

=
∑
α

uα
λ′(x)u

α
λ′(x

′).

Therefore the discontinuity gives the product of the eigenfunctions. 27 Jan p5
We derived in the second problem set the property

G∗(x, x′;λ) = G(x, x′;λ∗). (4.133)
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Now take λ = λ′ + iε. This allows us to write

G∗(x, x′;λ′ + iε) = G(x, x′;λ′ − iε) (4.134)

and

G(x, x′;λ′ + iε)−G(x, x′;λ′ − iε)

2πi
(4.135)

=
G(x, x′;λ′ + iε)−G∗(x, x′;λ′ + iε)

2πi
(4.136)

=
1

π
ImG(x, x′;λ′ + iε) (4.137)

=
∑
α

uα
λ′(x)u

α∗
λ′ (x

′). (4.138)

So we can say that the sum over degeneracy of the bilinear producteq4.151
of the eigen function uα

λ is proportional to the imaginary part of the
Green’s function.

4.10 Example: Infinite String
29 Jan p1

Consider the case of an infinite string. In this case we take the endpr:InfStr1
points a→ −∞, b→∞ and the density σ, tension τ , and potential V
as constants. The term V is the elastic constant of media.

4.10.1 The Green’s Function

In this case the Green’s function is defined as the solution to the equa-
tion[
−τ d

2

dx2
+ V − λσ

]
G(x, x′;λ) = δ(x− x′) for −∞ < x, x′ <∞.

(4.139)
To get the solution we must take λ (= ω2) to be imaginary. The solution
for the Green’s function can be written in terms of the normal modes
(3.41)

G(x, x′;λ) =
u1(x<)u2(x>)

−τW (u1, u2)
(4.140)
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Re λ

Im λ λ

Figure 4.8: θ specification.

where u1 and u2 satisfy the equation[
−τ d

2

dx2
+ V − λσ

]
u1,2 = 0. (4.141)

The boundary conditions are that u1 is bounded and converges as x→ eq4.139
−∞ and that u2 is bounded and converges as x → ∞. Divide both ‘and converges’

- R. Hornsides of equation 4.141 by −τ and substitute the definitions σ/τ = 1/c2

and V/τ = k2. This gives us the equation pr:k2.1[
d2

dx2
+
λ− c2k2

c2

]
u(x) = 0. (4.142)

The general solution to this equation can be written as eq4.132a

u(x) = Aei
√

λ−c2k2x/c +Be−i
√

λ−c2k2x/c. (4.143)

We specify the root by the angle θ extending around the point c2k2 on eq4.132
the real axis, as shown in figure 4.8. This is valid for 0 < θ < 2π. The fig4.6a
correspondence of θ is as follows:

λ− c2k2 = |λ− c2k2|eiθ. (4.144)

Thus

√
λ− c2k2 =

√
|λ− c2k2|eiθ/2 (4.145)

=
√
|λ− c2k2|

(
cos

θ

2
+ i sin

θ

2

)
. (4.146)
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So that

θ → 0 ⇐⇒
√
λ− c2|k2| (4.147)

θ → π ⇐⇒ i
√
λ− c2|k2| (4.148)

θ → 2π ⇐⇒ −
√
λ− c2|k2|. (4.149)

This is good everywhere except for values on the real line greater than
c2k2.

4.10.2 Uniqueness
29 Jan p2

The Green’s function is unique since it was found using the theory of
ordinary differential equations. We identify the fundamental solutions
u1, u2 by looking at the large x behavior of 4.143.

ei
√

λ−c2k2x/c x→∞−→e−∞ and e−i
√

λ−c2k2x/c x→∞−→e+∞ (4.150)

ei
√

λ−c2k2x/c x→−∞−→ e+∞ and e−i
√

λ−c2k2x/c x→−∞−→ e−∞ (4.151)

so
u1(x) = e−i

√
λ−c2k2 x

c (4.152)

u2(x) = ei
√

λ−c2k2 x
c . (4.153)

The boundary condition has an explicit dependence on λ so the solution
is not analytic. Notice that this time there is no way to get rid of the
branch cut. The branch cut that comes in the solution is unavoidable
because satisfaction of the boundary condition depends on the value of
λ.

4.10.3 Look at the Wronskian

In the problem we are considering we have

W (u1, u2) = u1u
′
2 − u2u

′
1 (4.154)

= +
i

c

√
λ− c2k2 −

(
− i
c

√
λ− c2k2

)
(4.155)

=
2i

c

√
λ− c2k2. (4.156)
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4.10.4 Solution

This gives the Greens’ function

G(x, x′;λ) =
ice−i

√
λ−c2k2x</cei

√
λ−c2k2x>/c

2τ
√
λ− c2k2

(4.157)

=
ic

2τ

ei
√

λ−c2k2|x−x′|/c

√
λ− c2k2

. (4.158)

We now have a branch cut for Re (λ) ≥ c2k2 with branch point at
λ = c2k2. Outside of this, G is analytic with no poles. This is analytic
for λ in the cut λ-plane λ > c2k2. Consider the special case of large λ 29 Jan p3

G
λ→∞−→ ic

2τ

ei
√

λ|x−x′|/c

√
λ

→ 0. (4.159)

Notice that this is the same asymptotic form we obtained in the discrete
case when we looked at G as λ→∞ (see equation 4.79). Now consider
the case λ < c2k2 on the real axis. This corresponds to the case that
θ = π. So

G(x, x′;λ) =
c

2τ

e−
√

c2k−λ|x−x′|
√
c2k2 − λ

. (4.160)

This function is real and exponentially decreasing. For λ > c2k2 this eq4.159
function oscillates. If θ = 0, it oscillates one way, and if θ = 2π it
oscillates the other way, so the solution lacks uniqueness. The solutions
correspond to different directions of traveling waves.

4.10.5 Motivation, Origin of Problem

We want to understand the degeneracy in the Green’s function for an
infinite string. So we take a look at the physics behind the problem.
How did the problem arise? It came from the time dependent problem
with forced oscillation imposed by an impulsive force at x′:[
−τ d

2

dx2
+ V + σ

∂2

∂t2

]
u(x, t) = δ(x− x′)e−iωt where ω2 < c2k2.

(4.161)
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We wanted the steady state solution:

u(x, t) = e−iωtG(x, x′;λ). (4.162)

By substituting 4.160 this can be rewritten as

u(x, t) =
c

2τ

e−iωte−
√

c2k2−ω2|x−x′|

−
√
c2k2 − ω2

. (4.163)

We consider the cases ω2 < c2k2 and ω2 > c2k2 separately.eq4.163ab
If ω2 < c2k2, then there is a unique solution and the exponential

dies off. This implies that there is no wave propagation. This agreespr:WaveProp1
with what the physics tells us intuitively: k2c2 > ω2 implies large k,
which corresponds to a large elastic constant V , which in turn means
there will not be any waves.

For ω > c2k2 there is propagation of waves. For ω > c2k2 we denote29 Jan p4
the two solutions:

u±(x, t) = e−iωtG(x, x′;λ = ω2 ± iε) as ε→ 0. (4.164)

As ω increases, it approaches the branch point. We define the cutoffpr:cutoff2
frequency as being at the branch point, ω2

c = c2k2. We have seen that
for ω < ωc there is no wave propagation, and for ω > ωc there is
propagation, but we don’t know the direction of propagation, so there
is no unique solution.

The natural appearance of a branch cut with two solutions means
that all the physics has not yet been given. We may rewrite equation
4.163 as:

u±(x, t) =
e−iωt±i(

√
ω2−c2k2/c)|x−x′|

2τ
c

√
ω2 − c2k2

. (4.165)

These solutions to the steady state problem can be interpreted as
follows. The solution u+ represents a wave traveling to the right for
points to the right of (i.e. on the positive side of) the source and a
wave traveling to the left for points to the left of (i.e. on the negative
side of) the source. Mathematically this means

u+ =

{
∼ e−iω(t−x

√
ω2−c2k2/cω) for x > x′

∼ e−iω(t+x
√

ω2−c2k2/cω) for x < x′.
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Similarly, the solution u− represents a wave traveling to the left for
points to the right of the source and a wave traveling to the right for
points to the left of the source. Mathematically this means

u− =

{
∼ e−iω(t+x

√
ω2−c2k2/cω) for x > x′

∼ e−iω(t−x
√

ω2−c2k2/cω) for x < x′.

These results can be rephrased by saying that u+ is a steady state
solution having only waves going out from the source, and u− is a
steady state solution having only waves going inward from the outside
absorbed by the point. So the equation describes two situations, and
the branch cut corresponds to the ambiguity in the situation.

4.11 Summary of the Infinite String
2 Feb p1

We have considered the equation

(L0 − λσ)G = δ(x− x′) (4.166)

where

L0 = −τ d
2

dx2
+ V. (4.167)

We found that is V 6= 0?

G(x, x′;λ) =

 i

2τ
√

λ
c2
− k2

 ei

√
λ
c2
−k2|x−x′|

(4.168)

where we have introduced the substitutions V/τ ≡ k2 and σ/τ ≡ 1/c2.
The time dependent response is

u±(x, t) =
1

2τ
√

λ
c2
− k2

e
−iωt−i

√
k2− λ

c2
|x−x′|

. (4.169)

If ω2 < c2k2 ≡ ω2
c there is exponential decay, in which case there is no

singularity of G at λ = ω2.
The other case is that

u±(x, t) = e−iωtG(x, x′;λ = ω2 ± iε). (4.170)
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This case occurs when ω2 > ω2
c , for which there is a branch cut across

the real axis. In this case we have traveling waves.
Note that in the case that k = 0 we always have traveling waves.

The relevance of the equation k2 = V/τ is that the resistance of the1 Feb p2
medium to propagation determines whether waves are produced. When
k = 0 there is no static solution — wave propagation always occurs. If
ω2 < ω2

c , then the period of the external force is small with respect to
the response of the system, so that the media has no time to respond —
the system doesn’t know which way to go, so it exponentially decays.

Recall that the solution for the finite string (open or closed) allowed
incoming and outgoing waves corresponding to reflections (for the open
string) or different directions ( for the closed string). Recall the periodic
boundary condition problem:

u(x, t) = e−iωtG(x, x′;λ) (4.171)

= e−iωt c

2ω

cos[ω
c
(L

2
− |x− x′|)]

sin[ω
c

l
2
]

. (4.172)

This is equal to the combination of incoming and outgoing waves, which
can be seen by expanding the cosine. We need the superposition to
satisfy the boundary conditions and physically correspond to reflections
at the boundaries. The sum of the two waves superimpose to satisfy
the boundary conditions.

4.12 The Eigen Function Problem Revis-

ited
1 Feb p3

We now return to the the connection with the eigen function problem.
We have seen before that the expressionpr:efp2

G(λ = λ′ + iε)−G(λ = λ′ − iε)

2πi
(4.173)

vanishes if λ′ < c2k2. In the case that λ′ > c2k2 we have

G(λ = λ′ + iε)−G(λ = λ′ − iε)

2πi
=
∑
α

uα
λ′(x)(u

α
λ′(x

′))∗. (4.174)
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q
c2k2

��

√
λ/c2 − k2 → +|λ/c2 − k2|1/2

BBM
√
λ/c2 − k2 → −|λ/c2 − k2|1/2

Figure 4.9: Geometry in λ-plane

The geometry of this on the λ-plane is shown in figure 4.9. This giveseq4777
us

G(λ = λ′ + iε)−G(λ = λ′ − iε)

2πi

=
1

2πi

1

2τ | λ
c2
− k2|1/2

(ei| λ
c2
−k2|1/2|x−x′| − e−i| λ

c2
−k2|1/2|x−x′|)

=
1

π

1

2τ | λ
c2
− k2|1/2

sin

∣∣∣∣∣ λc2 − k2

∣∣∣∣∣
1/2

|x− x′|


=

1

π
ImG(λ = λ′ + iε).

For λ′ > c2k2 we can write (using equation 4.138)

u±λ′(x) =
1√

4πτ
√

λ′

c2
− k2

e±i
√

λ′−c2k2x/c (4.175)

for λ′ > c2k2. We now see that no eigen functions exist for λ′ < c2k2 eq4.188
since it exponentially increases as λ′ →∞ and we must kill both terms.
The Green’s function is all right since λ ∈ C.

4.13 Summary

1. For the Helmholtz equation, ω2
n > 0, ω2

n is real, and the eigen
functions are real.

2. The dispersion relation for a closed massless string with discrete
mass points is

ω2
n =

c2 sin2(kna/2)

a2/4
.
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3. The Green’s function obeys Hermitian analyticity:

G∗(x, x′;λ) = G(x′, x;λ∗).

4. The form of the Green’s function for λ near an eigen value λn is

G(x, x′;λ)
λ→λn−→ un(x)u∗n(x′)

λn − λ
.

5. The Green’s function for the fixed string problem is

G(x, x′λ) =
sin

√
λ
c2
x< sin

√
λ
c2

(L− x>)

τ
√

λ
c2

sin
√

λ
c2
L

.

6. The completeness relation is

δ(x− x′) =
∞∑

n=1

σ(x)un(x)u∗n(x).

7. The expansion theorem is

f(x) =
∞∑

n=1

un(x)fn

where

fn =
∫ b

a
dx′u∗n(x′)σ(x′)f(x′).

8. The Green’s function near the branch cut is related to the eigen
functions by

1

π
ImG(x, x′;λ′ + iε) =

∑
α

uα
λ′(x)u

α
λ′(x

′).

9. The Green’s function solution for an infinite string is

G(x, x′;λ) =
ic

2τ

ei
√

λ−c2k2|x−x′|/c

√
λ− c2k2

.
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4.14 References

The Rayleigh quotient is described in [Stakgold67a, p226ff] and [Stak-
gold79, p339ff].

For other ideas in this chapter, see Fetter and Stakgold.
A discussion of the discrete closed string is given in [Fetter80, p115].
The material in this chapter is also in [Fetter81, p245ff].
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Chapter 5

Steady State Problems

Chapter Goals:

• Interpret the effect of an oscillating point source on
an infinite string.

• Construct the Klein-Gordon equation and interpret
its steady state solutions.

• Write the completeness relation for a continuous
eigenvalue spectrum and apply it to the Klein-
Gordon problem.

• Show that the solutions for the string problem with
σ = x, τ = x, and V = m/x2 on the interval
0 < x <∞ are Bessel functions.

• Construct the Green’s function for this problem.

• Construct and interpret the steady state solutions
for this problem with a source point.

• Derive the Fourier-Bessel transform.

moved from
few pages later

5.1 Oscillating Point Source
pr:ops1

We now look at the problem with an oscillating point source. In the
notation of the previous chapter this is 3 Feb p1

73
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[
L0 + σ(x)

∂2

∂t2

]
u(x, t) = δ(x− x′)e−iωt −∞ < x, x′ <∞+ R.B.C.

(5.1)
and can be written in terms of the Green function G(x, x′;λ) which
satisfies

[L0−σ(x)λ]G(x, x′;λ) = δ(x−x′) −∞ < x, x′ <∞+ R.B.C. (5.2)

The steady state solution corresponding to energy radiated outward to
infinity is

u(x, t) = e−iωtG(x, x′, λ = ω2 + iε). (5.3)

The solution for energy radiated inward from infinity is the same equa-
tion with λ = ω2 − iε, but this is generally not a physical solution.
This contrasts with the case of a finite region. In that case there are
no branch cuts and there is no radiation.1 Feb p5

5.2 The Klein-Gordon Equation
pr:kge1

We now apply the results of the previous chapter to another physical
problem. Consider the equations of relativistic quantum mechanics. In
the theory of relativity we have the energy relation

E2 = m2c4 + p2c2 (5.4)

In the theory of quantum mechanics we treat momentum and energy
as operators

p → −ih̄∇ (5.5)

E → ih̄
∂

∂t
(5.6)

where

dim[h̄] = Action (5.7)

We want to derive the appropriate wave equation, so we start with

E2 − (m2c4 + p2c2) = 0 (5.8)
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Now substitute the operators into the above equation to get(ih̄ ∂
∂t

)2

−

m2c4 +

(
h̄

i
∇
)2

c2

Φ = 0 (5.9)

This is the Klein–Gordon equation, which is a relativistic form of the pr:phi1
Schrödinger Equation. Note that |Φ|2 still has a probability interpre-
tation, as it does in non-relativistic quantum mechanics.

Now specialize this equation to one dimension. 1 Feb p6[
−h̄2c2

d2

dx2
+m2c4 + h̄2 ∂

2

∂t2

]
Φ(x, t) = 0 (5.10)

This is like the equation of a string (c.f., 1.11). In the case of the eq5.energy
string the parameters were tension τ = dim[E/t], coefficient of elasticity
V = dim[E/l3], and mass density σ = [t2E/l3], where E is energy, t
is time, and l is length. The overall equation has units of force over
length (since it is the derivative of Newton’s second law). By comparing
equation 1.11 with equation 5.10 we note the correspondence

V → m2c4 σ → h̄2 τ → h̄2c2 and f(x, t) → 0. (5.11)

Note that
√
V/τ = mc/h̄ is a fundamental length known as the Comp-

ton wavelength, λc. It represents the intrinsic size of the particle.
The expression expression σ/τ = 1/c2 shows that particle inertia
corresponds to elasticity, which prevents the particle from responding
quickly. Equation 5.10 has dimensions of energy squared (since it came ?
from an energy equation).

We look again for steady state solutions

Φ(x, t) = e−iE′t/h̄ΦE′(x) (5.12)

to get the eigen value problem[
−h̄2c2

d2

dx2
+m2c4 − E

′2

]
ΦE′(x) = 0 (5.13)

Thus we quote the previous result (equation 4.175 which solves equation
4.142)

Φ±
E′(x) = u±(x) (5.14)
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where we let k2 → (mc
h̄

)2 and λ′ → E ′2/h̄2. As a notational shorthand,

let p′ =
√
E ′2 −m2c4/c. Thus we write

Φ±
E′(x) =

e±i(
√

E′2−m2c4/h̄c)x√
4πh̄c

√
E2 −m2c4

=
e±p′/h̄

√
4πh̄p′c2

.

The cut-off energy is mc2. We have the usual condition on the solution
that λ′ > c2k2. This eigen value condition implies E2 > m2c4.

In relativistic quantum mechanics, if E < mc2, then no free particle
is emitted at large distances. In the case that E > mc2 there is radia-
tion. Also note that m becomes inertia. For the case that m→ 0 therepr:rad1
is always radiation. This corresponds to V → 0 in the elastic string
analogy. The potential V acts as an elastic resistance.

The Green’s function has the form

G(x, x′;E) ∼ exp{(
√
m2c4 − E2/h̄c)|x− x′|}.

So G(x, x′;E) has a characteristic half-width of

|x− x′| ∼ h̄c/
√
m2c4 − E2 = h̄/p.

This is a manifestation of the uncertainty principle. As x → ∞, for
E < mc2, the Green’s function vanishes and no particle is radiated,
while for E > mc2 the Green’s function remains finite at large distances
which corresponds to the radiation of a particle of mass m.

5.2.1 Continuous Completeness
pr:CompRel3

3 Feb p2 Recall that the completeness condition in the discrete case is

δ(x− x′)

σ(x)
=
∑
λ′,α

uα
λ′(x)u

α∗
λ′ (x

′). (5.15)

The corresponding equation for the case of continuous eigenvalues isR. Horn says
no λ′ in sum.

δ(x− x′)

σ(x)
=

∑
λ′,α=±

∫ ∞

ω2
c

dλ′uα
λ′(x)u

α∗
λ′ (x

′). (5.16)
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Recall that in this case the condition for an eigen function to exist is
λ′ > ω2

c . In this case

u±λ′(x) =
e
±i

√
λ′
c2
−k2x√

4πτ(λ′

c2
− k2)1/2

. (5.17)

Substituting the u± into the continuous completeness relation gives

δ(x− x′) = σ(x)
c

4πτ

∫ ∞

ω2
c

dλ′

(λ′

c2
− k2)1/2

[
ei
√

λ′−ω2
c (x−x′

c
) + e−i

√
λ′−ω2

c (x−x′
c

)
]

(5.18)
where ω2

c = k2c2. We now make a change of variables. We define the
wave number as

k =

√
λ′ − ω2

c

c
(5.19)

It follows that the differential of the wave number is given by

dk =
1

2c

dλ′√
λ′ − ω2

c

. (5.20)

With this definition we can write 3 Feb p3

δ(x− x′) =
2σc2

4πτ

∫ ∞

0
dk
[
eik(x−x′) + e−ik(x−x′)

]
. (5.21)

Note the symmetry of the transformation k → −k. This property
allows us to write

δ(x− x′) =
1

2π

∫ ∞

−∞
dkeik(x−x′). (5.22)

This is a Fourier integral. In our problem this has a wave interpretation.
We now apply this to the quantum problem just studied. In this

case λ′ = (E/h̄)2 and ωc2 = m2c4/h̄2. With these substitutions we can
write

k =
(E2

h̄2 − m2c4

h̄2 )1/2

c
(5.23)

=
1

h̄

√
E2

c2
−m2c2 =

p

h̄
(5.24)
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so

δ(x− x′) =
1

2π

∫ ∞

−∞
dp′ei(x−x′)p′/h̄. (5.25)

This Fourier integral has a particle interpretation.pr:FI1

5.3 The Semi-infinite Problem

Consider the following linear operator in the semi-infinite region3 Feb p4

L0 = − d

dx

(
x
d

dx

)
+
m2

x
0 < x <∞. (5.26)

Here we have let the string tension be τ = x and the potential be V =
m2/x. We will let the density be σ(x) = x. This is like a centrifugal
potential. The region of consideration is 0 < x <∞.

This gives us the following Green’s function equation (from 3.22)[
− d

dx

(
x
d

dx

)
+
m2

x
− λx

]
G(x, x′;λ) = δ(x− x′) (5.27)

defined on the interval 0 < x, x′ <∞.
We now discuss the boundary conditions appropriate for the semi-

infinite problem. We require that the solution be bounded at infinity,
as was required in the infinite string problem. Note that in the above
equation τ = 0 at x = 0. Then at that point the right hand side of
Green’s second identity vanishes, as long as the amplitude at x = 0
is finite. Physically, τ → 0 at x = 0 means that the string has a free
end. So there is a solution which becomes infinite at x = 0. This
non-physical solution is eliminated by the boundary condition that the
amplitude of that end is finite. Under these boundary conditions L0 is
hermitian for 0 ≤ x <∞.

The solution can be written in the form (using 3.41)

G(x, x′;λ) = −u1(x<, λ)u2(x>, λ)

xW (u1, u2)
(5.28)

The function u1 and u2 are the solutions to the equationeq5.29
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(L0 − λx)u1,2 = 0 (5.29)

where we restrict u1 to be that function which is regular at x = 0, and
u2 to be that function which is bounded at infinity.

We note that the equations are Bessel’s equations of order m: pr:Bessel1[
y2 d

2

dy2
+ y

d

dy
+ (y2 −m2)

]
Xm(y) = 0 (5.30)

where y = x
√
λ and Xm(y) is any solution. The solutions are then

u1(x) = Jm(x
√
λ) (5.31)

and
u2(x) = H(1)

m (x
√
λ). (5.32)

The function H(1)
m (x

√
λ) is known as the Hankel function. For large x 3 Feb p5

it may be approximated as

H(1)
m (x

√
λ)

x→∞∼
√

2

πx
√
λ
ei(x

√
λ−mπ

2
−π

4
) (5.33)

and since Im(
√
λ) > 0, we have decay as well as out going waves.

Now we get the Wronskian: Justify this

W (u1, u2) = W (Jm(x
√
λ), H(1)

m (x
√
λ)) (5.34)

= iW (Jm(x
√
λ), Nm(x

√
λ)) (5.35)

= i
√
λ

(
2

πx
√
λ

)
=

2i

πx
. (5.36)

In the second equality we used the definitionH(1)
m (x) = Jm(X)+iNm(x),

where

Nm(x) ≡ Jm(x) cosmπ − J−m(x)

sinmπ
.

The third equality is verified in the problem set. So τW is independent
of x, as expected.

Therefore (using equation 5.28)

G(x, x′;λ) = −1

x

πx

2i
Jm(x<

√
λ)H(1)

m (x>

√
λ) (5.37)

=
iπ

2
Jm(x<

√
λ)H(1)

m (x>

√
λ) (5.38)
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5.3.1 A Check on the Solution

Suppose that λ < 0. In this case we should have G real, since there is
no branch cut. We have

√
λ = i|λ|1/2 at θ = π. (5.39)

We can use the definitionspr:Bessel2

Im(x) ≡ e−imπ/2Jm(ix), Km(x) ≡ (πi/2)eimπ/2H(1)
m (ix)

to write

G(x, x′;λ) = i
π

2
Jm(i|λ|1/2x<)H(1)

m (i|λ|1/2x>) (5.40)

=
iπ

2
imIm(x<|λ|1/2)

(
i−m 2

πi
Km(x>|λ|1/2

)
(5.41)

= Im(x<|λ|1/2)Km(x>|λ|1/2) ∈ R (5.42)

Note also that G → 0 as x → ∞, so we have decay, and therefore no
propagation. This is because asymptotically

Im(z) ≈ (2zπ)−1/2ez | arg z| < 1/2, |z| → ∞

Km(z) ≈ (2z/π)−1/2e−z | arg z| < 3π/2, |z| → ∞.

5.4 Steady State Semi-infinite Problem
5 Feb p1

For the equation[
− d

dx

(
x
d

dx

)
+
m2

x
− λx

]
G(x, x′;λ) = δ(x−x′) for 0 < x, x′ <∞

(5.43)
the solution we obtained was

G(x, x′;λ) =
iπ

2
Jm(

√
λx<)H(1)

m (
√
λx>). (5.44)

We now look at the steady state solution for the wave equation,[
L0 + x

∂2

∂t2

]
u(x, t) = δ(x− x′)e−iωt. (5.45)
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We only consider outgoing radiation (ω2 → ω2 + iε). We take ε > 0,pr:rad2
since ε < 0 corresponds to incoming radiation. So δ(x − x′) acts as a
point source, but not as a sink.

u(x, t) = e−iωtG(x, x′;λ = ω2 + iε) (5.46)

= e−iωt iπ

2
Jm(ωx<)H(1)

m (ωx>) (5.47)

= e−iωt iπ

2
Jm(ωx′)H(1)

m (ωx>) for x > x′. (5.48)

Next let ωx� 1, so

u(x, t) =
iπ

2
Jm(ωx′)

e−iω(t−x)

√
ωx

for ωx� 1.

The condition ωx � 1 allows us to use the asymptotic form of the 5 Feb p2
Hankel function.

In this case we have outgoing (right moving) waves. These waves
are composed of radiation reflected from the boundary x = 0 and from
direct radiation. If in addition to ωx � 1 we take ωx′ → 0, then we Explain why?
have

u(x, t) =
iπ

2
(ωx′)m e

−iω(t−x)

√
ωx

(5.49)

We now look at the case x < x′ with ω large. In this case we have

u(x, t) = e−iωt iπ

2
H(1)

m (ωx′)Jm(ωx)

= e−iωt iπ

2
H(1)

m (ωx′)
1

2
[H(1)

m (ωx) +H(2)
m (ωx)]

∼ e−iωtH(1)
m (ωx′)

[
eiωx

√
ωx

+
e−iωx

√
ωx

]
ωx� 1

∼ H(1)
m (ωx′)[e−iω(t−x) + e−iω(t+x)].

We now look at the Green’s function as a complete set of eigen
functions. First we consider 5 Feb p3

1

2πi
[G(x, x′;λ′ + iε)−G(x, x′;λ′ − iε)]



82 CHAPTER 5. STEADY STATE PROBLEMS

=
1

2πi
[Jm(

√
λ′x<)H(1)

m (
√
λ′x>)− Jm(−

√
λ′x<)H(1)

m (−
√
λ′x>)]

=
1

4
[Jm(

√
λ′x>)][H(1)

n (
√
λ′x) +H(2)

n (
√
λ′x)]

=
1

2
Jm(

√
λ′x)Jm(

√
λ′x′)

=
1

π
Im G(x, x′;λ′ + iε).

5.4.1 The Fourier-Bessel Transform

The eigen functions uλ′ satisfy[
−d
dx

(
x
d

dx

)
+
m2

x
− λx

]
uλ′ = 0 for 0 < x <∞. (5.50)

In this case since there is a boundary at the origin, waves move only to5 Feb p4
the right. There is no degeneracy, just one eigen function:

uλ′ =

√
1

2
Jm(

√
λ′x). (5.51)

We know from the general theory that if there is no degeneracy, then

1

σ(x)
δ(x− x′) =

∫ ∞

0
dλ′uλ′(x)u

∗
λ′(x

′) (5.52)

so

1

x
δ(x− x′) =

1

2

∫ ∞

∞
dλ′Jm(

√
λ′x)Jm(

√
λ′x′) (5.53)

=
∫ ∞

0
ω′dω′Jm(ω′x)Jm(ω′x′). (5.54)

This is valid for 0 < x, x′ <∞. Thus for f(x) on 0 < x <∞ we have

f(x) =
∫ ∞

0
dx′f(x′)δ(x− x′) (5.55)

=
∫ ∞

0
dx′f(x′)x′

∫ ∞

0
ω′dω′Jm(ω′x)Jm(ω′x′) (5.56)

=
∫ ∞

0
ωdω′Jm(ω′x)

∫ ∞

0
dx′x′f(x′)Jm(ω′x′). (5.57)
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Thus for a given f(x) on 0 < x <∞ we can write5 Feb p5

f(x) =
∫ ∞

0
ω′dω′Jm(ω′x)Fm(ω′). (5.58)

This is the inversion theorem.

Fm(ω) =
∫ ∞

0
x′dx′f(x′)Jm(ωx′). (5.59)

This is the Fourier-Bessel transform of order m. Explain why
this is useful?
pr:FBt1

5.5 Summary

1. The string equation of an oscillating point source on an infinite
string has solutions corresponding to energy radiated in from or
out to infinity.

2. The Klein-Gordon equation is[
−h̄2c2

d2

dx2
+m2c4 + h̄2 ∂

2

∂t2

]
Φ(x, t) = 0.

Steady-state solutions for a point source with |E| > mc2 corre-
spond to a mass m particle radiated to (±) infinity, where as
solutions with |E| < mc2 die off with a characteristic range of
x ∼ h̄/p. pr:chRan1

3. The string problem with σ = x, τ = x, and V = m/x2 on the
interval 0 < x <∞ corresponds the Bessel’s equation[

y2 d
2

dy2
+ y

d

dy
+ (y2 −m2)

]
Xm(y) = 0

where y = x
√
λ. The linearly independent pairs of solutions

to this equation are the various Bessel functions: (i) Jm(y) and
Nm(y), and (ii) H(1)

m (y) and H(2)
m (y).

4. The Green’s function for this problem is

G(x, x′;λ) =
iπ

2
Jm(

√
λx<)H(1)

m (
√
λx>).
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5. The steady state solutions for this problem with point source are

u(x, t) = e−iωt iπ

2
Jm(ωx<)H(1)

m (ωx>).

The outgoing solutions consist of direct radiation and radiation
reflected from the x = 0 boundary.

6. The Fourier-Bessel transform is

Fm(ω′) =
∫ ∞

0
x′dx′f(x′)Jm(ωx′).

The inversion theorem for this transform is

f(x) =
∫ ∞

0
ω′dω′Jm(ω′x)Fm(ω′).

5.6 References

The Green’s function related to Bessel’s equation is given in [Stak-
gold67a, p75].



Chapter 6

Dynamic Problems

8 Feb p1
4 Jan p1
p1prv.yr.

Chapter Goals:

• State the problem which the retarded Green’s func-
tion GR solves, and the problem which the ad-
vanced Green’s function GA solves. Give a physical
interpretation for GR and GA.

• Show how the retarded Green’s function can be
written in terms of the Green’s function which
solves the steady state problem.

• Find the retarded Green’s function for an infinite
string with σ and τ constant, and V = 0.

• Find the retarded Green’s function for a semi-
infinite string with a fixed end, σ and τ constant,
and V = 0.

• Find the retarded Green’s function for a semi-
infinite string with a free end, σ and τ constant,
and V = 0.

85
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• Explain how to find the retarded Green’s function
for an elastically bound semi-infinite string with σ
and τ constant, and V = 0.

• Find an expression for the retarded Green’s func-
tion in terms of the eigen functions.

• Show how the retarded boundary value problem
can be restated as an initial value problem.

6.1 Advanced and Retarded GF’s

Consider an impulsive force, a force applied at a point in space alongpr:impf1
the string at an instant in time. This force is represented by

σ(x)f(x, t) = δ(x− x′)δ(t− t′). (6.1)

As with the steady state problem we considered in chapter 5, we apply
no external forces on the boundary. If we can solve this problem, then
we can solve the problem for a general time dependent force density
f(x, t).

We now examine this initial value problem (in contrast to the steady
state problems considered in the previous chapter). We begin with the
string at rest. Then we apply a blow at the point x′ at the time t′. For
this physical situation we want to find the solution

u(x, t) = GR(x, t;x′, t′) (6.2)

where GR stands for the retarded Green’s function:pr:GR1 [
L0 + σ

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′)

for a < x, x′ < b; all t, t′.

Now we look at the form of the two possible Regular Boundary
Conditions. These two sets of conditions correspond to the case of an
open and closed string. In the case of an open string the boundary
condition is characterized by the equation

[n̂s∇+ κs]GR(x, t;x′, t′) = 0 x ∈ S, a < x′ < b; ∀t, t′ (6.3)
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where S is the set of end points {a, b}. In the case of a closed stringeq6RBC
the boundary condition is characterized by the equations

GR(x, t;x′, t′)|x=a = GR(x, t;x′, t′)|x=b for a < x′ < b, ∀t, t′, (6.4)

∂

∂x
GR(x, t;x′, t′)

∣∣∣∣∣
x=a

=
∂

∂x
GR(x, t;x′, t′)

∣∣∣∣∣
x=b

for a < x′ < b, ∀t, t′.

(6.5)
We now apply the condition that the string begins at rest: 8 Feb p2

GR(x, t;x′, t′) = 0 for t < t′. (6.6)

This is called the retarded Green’s function since the motionless string
becomes excited as a result of the impulse. This cause–effect relation-
ship is called causality. The RBC’s are the same as in previous chapters pr:caus1
but now apply to all times.

Another Green’s function is GA, which satisfies the same differential
equation as GR with RBC with the definition

GA(x, t;x′, t′) = 0 for t > t′ (6.7)

This is called the advanced Green’s function since the string is in an pr:AGF1
excited state until the impulse is applied, after which it is at rest. In
what follows we will usually be concerned with the retarded Green
function, and thus write G for GR (suppressing the R) except when
contrasting the advanced and retarded Green functions.

6.2 Physics of a Blow

We now look at the physics of a blow. Consider a string which satisfies
the inhomogeneous wave equation with arbitrary force σ(x)f(x). The
momentum applied to the string, over time ∆t, is then pr:momch1

∆p = p(t2)− p(t1)

=
∫ t2

t1
dt
dp

dt

=
∫ t2

t1
dt
∫ x2

x1

dxσ(x)f(x, t).
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The third equality holds because dp/dt is the force, which in this case
is
∫ x2
x1
dxσ(x)f(x, t). We now look at the special case where the force is

the δ function. In this case8 Feb p3

∆p =
∫ t2

t1
dt
∫ x2

x1

δ(t− t′)δ(x− x′)dx = 1 (6.8)

for x1 < x′ < x2, t < t′ < t2. Thus a delta force imparts one unit of
momentum. Therefore we find that GR is the response of our system
to a localized blow at x = x′, t = t′ which imparts a unit impulse of
momentum to the string.

6.3 Solution using Fourier Transform

We consider the Green’s function which solves the following problem
given by a differential equation and an initial condition:[

L0 + σ
∂2

∂t2

]
G(x, t;x′, t′) = δ(t− t′)δ(x− x′) + RBC, (6.9)

eq6de1
G(x, t;x′, t′) = 0 for t < t′.

For fixed x we note that G(x, t;x′, t′) is a function of t − t′ and not t
and t′ separately, since only ∂2/∂t2 and t − t′ appear in the equation.
Thus the transformation t → t + a and t′ → t′ + a does not change
anything. This implies that the Green’s function can be written

G(x, t;x′, t′) = G(x, x′; t− t′)

= G(x, x′; τ),

where we define τ ≡ t− t′. By this definition, G = 0 for τ < 0.
This problem can be solved by taking the complex Fourier trans-

form:pr:FTrans1

8 Feb p4 G̃(x, x′;ω) =
∫ ∞

−∞
dτeiωτG(x, x′; τ). (6.10)

Note that G̃(x, x′;ω) is convergent everywhere in the upper half ω-eq6Ftran
plane, which we now show. The complex frequency can be written as
ω = ωR + iωI . Thus

eiωτ = eiωRτe−ωIτ .
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For G̃(x, x′;ω) to exist, the integral must converge. Thus we require
eiωτ → 0 as τ →∞, which means we must have e−ωIτ → 0 as τ →∞.
This is only true when ω is in the upper half plane, ωI > 0. Thus G̃
exists for all ω such that Im ω > 0. Note that for G̃A everything is
reversed and ω is defined in the lower half plane.

By taking the derivative of both sides of G̃(x, x′;ω) in the Fourier
transform, equation 6.10, we have

d

dω
G̃(x, x′;ω) =

∫ ∞

−∞
dτ

d

dω
eiωτG(x, x′; τ) = i

∫ ∞

0
dττG(x, x′; τ)e−iωτ .

which is finite. Therefore the derivative exists everywhere in the upper Ask Baker
but how do we
know
−i
∫

dττG(τ)
converges?

half ω-plane. Thus G̃ is analytic in the upper half ω-plane. We have
thus seen that the causality condition allows us to use the Fourier trans-
form to show analyticity and pick the correct solution. The condition
that G = 0 for τ < 0 (causality) was only needed to show analyticity;
it is not needed anymore. 8 Feb p5

We now Fourier transform the boundary condition of an open string
6.3:

0 =
∫ ∞

−∞
dτeiωτ ((n̂S · ∇+ κS)G)

= (n̂S · ∇+ κS)
∫ ∞

−∞
dτeiωtG

= (n̂S · ∇+ κS)G̃.

Similarly, in the periodic case we regain the periodic boundary condi-
tions of continuity G̃a = G̃b and smoothness G̃′

a = G̃′
b. So G̃ satisfies

the same boundary conditions as G since the boundary conditions do
not involve any time derivatives.

Consider equation 6.9 rewritten as[
L0 + σ

∂2

∂t2

]
G(x, x′; τ) = δ(x− x′)δ(τ).

The Fourier transform of this equation is

L0G̃(x, x′;ω) + σ(x)
∫ ∞

−∞
dτeiωτ ∂

2

∂τ 2
G(x, x′; τ) = δ(x− x′). (6.11)



90 CHAPTER 6. DYNAMIC PROBLEMS

Using the product rule for differentiation, we can “pull out a divergence
term”:

eiωτ ∂
2

∂τ 2
G =

(
∂2

∂τ 2
eiωτ

)
G+

∂

∂τ

(
eiωτ ∂

∂τ
G−G

∂

∂τ
eiωτ

)
.

Thus our equation 6.11 becomes

δ(x− x′) = L0G̃(x, x′;ω) + σ(x)(−ω2G̃(x, x′;ω))

+ σ(x)

[
eiωτ ∂

∂t
G−G

∂

∂t
eiωτ

]t=+∞

t=−∞
.

Now we evaluate the surface term. Note that G = 0 for τ < 0 implies
∂G/∂t = 0, and thus |−∞ = 0. Similarly, as τ → ∞, eiωτ → 0 since
Im ω > 0, and thus |∞ = 0. So we can drop the boundary term.

We thus find that GR satisfies the differential equation8 Feb p6

[L0 − ω2σ(x)]G̃(x, x′;ω) = δ(x− x′) RBC, (6.12)

with Im ω > 0. We now recognize that the Green function must be theeq6stst
same as in the steady state case:

G̃(x, x′;ω) = G(x, x′;λ = ω2).

Recall that from our study of the steady state problem we know that
the function G(x, x′;λ) is analytic in the cut λ-plane. Thus by analytic
continuation we know that G̃(x, x′;ω) is analytic in the whole cut plane.
The convention ω =

√
λ compresses the region of interest to the upperthis is unclear

half plane, where λ satisfies

[L0 − λσ(x)]G(x, x′;λ) = δ(x− x′) + RBC, (6.13)

All that is left is to invert the Fourier transform.eq6ststb

6.4 Inverting the Fourier Transform

In the previous section we showed that for the Green’s function G we
have the Fourier Transform

G̃(x, x′;ω) =
∫ ∞

−∞
dτe−iωτG(x, x′; τ)
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where τ = t− t′, and we also found

G̃(x, x′;ω) = G(x, x′;λ = ω2)

where ω = ωR + iωI with ωI > 0, and G(x, x′;λ = ω2) is the solution
of the steady state problem. Now we only need to invert the Fourier but didn’t

we use analytic
continuation to
ge the whole λ
plane.

Transform to get the retarded Green’s function. We write

eiωτ = eiωRτe−ωIτ

so that

G̃(x, x′;ωR + iωI)︸ ︷︷ ︸
F̃ (ωR)

=
∫ ∞

−∞
dτeiωRτ [e−ωIτGR(x, x′; τ)]︸ ︷︷ ︸

F (τ)

.

This is a real Fourier Transform in terms of F (τ). We now apply the
Fourier Inversion Theorem: pr:FIT1

F (τ) = e−ωIτGR(x, x′; τ) =
1

2π

∫ ∞

−∞
dωRe

−iωRτ G̃(x, x′;ωR + iωI)

so

GR(x, x′; τ) =
1

2π

∫ ∞

−∞
dωRe

−iωRτ G̃(x, x′;ω)eωIτ (6.14)

fix ωI = ε and integrate over ωR (6.15)

=
1

2π

∫
L
dωe−iωτ G̃(x, x′;ω) (6.16)

where the contour L is a line in the upper half plane parallel to the ωR 10 Feb p2
axis, as shown in figure 6.1.a. The contour is off the real axis because of fig6Lcont
the branch cut. We note that any line in the upper half plane parallel
to the real axis may be used as the contour of integration. This can
be seen by considering the rectangular integral shown in figure 6.1.b.
Because G̃ = 0 as ωR →∞, we know that the sides LS1 and LS2 vanish.
And since eiωτ and G̃ are analytic in the upper half plane, Cauchy’s
theorem tells use that the integral over the closed contour is zero. Thus
the integrals over path L1 and path L2 must be equal.



92 CHAPTER 6. DYNAMIC PROBLEMS

-

?6

ωI

ωRε L1

(a) The line L1

-

�
?6

L2

L1

LS1 LS2

(b) Closed contour with L1

Figure 6.1: The contour L in the λ-plane.

6.4.1 Summary of the General IVP
pr:IVP1

We have considered the problem of a string hit with a blow of unit
momentum. This situation was described by the equation[

L0 + σ
∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) + RBC (6.17)

with the condition that GR(x, t;x′, t′) = 0 for t < t′. The Green’seq6GFxt
function which satisfies this equation was found to be

GR(x, t;x′t′) =
∫

L

dω

2π
e−iω(t−t′)G̃(x, x′;ω). (6.18)

where G̃(x, x′;ω) satisfies the steady state Green’s function problem.eq6GFT

6.5 Analyticity and Causality

To satisfy the physical constraints on the problem, we need to have
GR = 0 for t < t′. This condition is referred to as causality. This con-
dition is obtained due to the fact that the product e−iω(t−t′)G̃(x, x′;ω2)
appearing in equation 6.17 is analytic. In this way we see that the ana-Need to show

somewhere
that G̃

|ω|→∞−→ 0.
lyticity of the solution allows it to satisfy the causality condition. As a
check, for the case t < t′ we write e−iω(t−t′) = e−iωR(t−t′)eωI(t−t′) and close
the contour as shown in figure 6.2. The quantity e−iω(t−t′)G̃(x, x′;ω2)fig6Luhp
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Figure 6.2: Contour LC1 = L+ LUHP closed in UH λ-plane.

vanishes on the contour LC1 = L + LUHP since e−iωI(t−t′) → 0 as
ωI → ∞ and |e−iωR(t−t′)| = 1, while we required |G̃(x, x′;ω2)| → 0
as |ω| → ∞.

6.6 The Infinite String Problem
pr:ISP1

10 Feb p3We now consider an infinite string where we take σ and τ to be a
constant, and V = 0. Thus our linear operator (cf 1.10) is given by

L0 = −τ d
2

dx2
.

6.6.1 Derivation of Green’s Function

We want to solve the equation[
−τ ∂

2

∂x2
+ σ

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x−x′)δ(t−t′) for −∞ < x, x′ <∞

(6.19)
with the initial condition

GR(x, t;x′t′) = 0 for t < t′.



94 CHAPTER 6. DYNAMIC PROBLEMS

We write the Fourier transform of the Green’s function in terms of λ:

G̃(x, x′;ω) = G(x, x′;λ = ω2).

From 6.13, we know that G(x, x′;λ) satisfies[
−τ d

2

dx2
− σλ

]
G(x, x′;λ) = δ(x− x′) for −∞ < x, x′ <∞.

For the case of λ largewe found the solution (4.159)Actually since
V = 0

G =
i

2
√
λ

c

τ
ei
√

λ/c2|x−x′|

or (λ→ ω2)

G̃(x, x′;ω) =
i

2ω

c

τ
eiω|x−x′|/c.

This gives us the retarded Green’s function

GR(x, t;x′, t′) =
1

2π

∫
L
dωe−iω(t−t′) i

2ω

c

τ
e

iω
c
|x−x′|. (6.20)

Now consider the termeq6GRInfStr

e
−iω

[
(t−t′)− |x−x′|

c

]
.

We treat this term in two cases:

• t− t′ < |x−x′|
c

. In this case

e
−iω

[
(t−t′)− |x−x′|

c

]
→ 0 as ωI →∞.

But the term (i/2ω) → +∞ as ωR → 0 in equation 6.20. Thus
the integral vanishes along the contour LUHP shown in figure 6.2
so (using Cauchy’s theorem) equation 6.20 becomes

GR(x, t;x′, t′) =
∮

L
=
∮

L+LUHP

= 0.
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Figure 6.3: Contour closed in the lower half λ-plane.

• t− t′ > |x−x′|
c

. In this case10 Feb p4

e
−iω

[
(t−t′)− |x−x′|

c

]
→ 0 as ωI → −∞

so we close the contour below as shown in figure 6.3. Since thefig6Llhp
integral vanishes along LLHP , we have GR =

∫
L =

∫
L+LLHP

.
Cauchy’s theorem says that the integral around the closed con-
tour is −2πi times the sum of the residues of the enclosed poles.
The only pole is at ω = 0 and its residue is 1

2π
ic
2τ

. For this case
we obtain

GR(x, t;x′, t′) = −2πi
(

1

2π

ic

2τ

)
=

c

2τ
,

which is constant.

From these two cases we conclude that

GR(x, t;x′, t′) =
c

2τ
θ

(
t− t′ − |x− x′|

c

)
. (6.21)

The function θ is defined by the equation

θ(u) =

{
0 for u < 0
1 for u > 0.
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G = 0 G = 0

x′ − c(t− t′) x′ + c(t− t′)x′

GR(x, t;x′, t′)
c
2
τ

Figure 6.4: An illustration of the retarded Green’s Function.

The situation is illustrated in figure 6.4. This solution displays somefig6retGF
interesting physical properties.

• The function is zero for x < x′−c(t− t′) and for x > x′+c(t− t′),
so it represents an expanding pulse.

• The amplitude of the string is c/2τ , which makes sense since for a
smaller string tension τ we expect a larger transverse amplitude.

• The traveling pulse does not damp out since V = 0.is this right?

6.6.2 Physical Derivation
10 Feb p5

We now explain how to get the solution from purely physical grounds.
Consider an impulse ∆p applied at position x′ and time t′. Applying
symmetry, at the first instant ∆py = 1/2 for movement to the left and
∆py = 1/2 for movement to the right. We may also write the velocity
∆vy = ∆py/∆m = 1

2
/σdx since ∆py = 1/2 and ∆m = σdx. By substi-

tuting dx = cdt, we find that in the time dt a velocity ∆vy = 1/2cσdt
is imparted to the string. This ∆vy is the velocity of the string portion
at dx. By conservation of momentum, the previous string portion must
now be stationary. In time dt the disturbance moves in the y direction
an amount ∆y = vydt = 1

2σc
= c

2τ
. In these equalities we have used

the identity 1/c2 = σ/τ . Thus momentum is continually transferred
from point to point (which satisfies the condition of conservation of
momentum).12 Feb p1
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6.7 Semi-Infinite String with Fixed End

We now consider the problem of an infinite string with one end fixed.
We will get the same form of Green’s function. The defining equation
is (c.f. 6.19)[
−τ ∂

2

∂x2
+ σ

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) (6.22)

for −∞ < t, t′ <∞; 0 < x, x′ <∞

with the further condition eq6qdblst

GR(x, t;x′, t′) = 0 for x = 0. (6.23)

This is called the Dirichlet boundary condition. We could use transform eq6qdblstbc
methods to solve this problem, but it is easier to use the method of
images and the solution 6.21 to the infinite string problem.

To solve this problem we consider an infinite string with sources at 12 Feb p2
x′ and −x′. This gives us a combined force

σf(x, t) = [δ(x− x′)− δ(x+ x′)]δ(t− t′)

and the principle of superposition allows us to write the solution of the
problem as the sum of the solutions for the forces separately:

GR(x, t;x′, t′) =
c

2τ

[
θ

(
t− t′ − |x− x′|

c

)
− θ

(
t− t′ − |x+ x′|

c

)]
(6.24)

where u is the solution (c.f. 6.21) of the infinite string with sources at eq6qsst
x and x′. This solution is shown in figure 6.5. Since u satisfies 6.22 fig6LandG
and 6.23, we can identify GR = u for x ≥ 0. The case of a finite string
leads to an infinite number of images to solve (c.f., section 8.7).

6.8 Semi-Infinite String with Free End

We now consider a new problem, that of a string with two free ends.
The free end Green’s function is

GR =
c

2τ

[
θ

(
t− t′ − |x− x′|

c

)
+ θ

(
t− t′ − |x+ x′|

c

)]
.
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−x′
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(a) GR at time t
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GR

x−x′
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(a) GR at time t

Figure 6.5: GR at t1 = t′ + 1
2
x′/c and at t2 = t′ + 3

2
x′/c.

This satisfies the equation[
−τ ∂

2

∂x2
+ σ

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) (6.25)

for −∞ < t, t′ <∞; a < x, x′ < b

with the boundary conditioneq6qdblst2

d

dx
GR(x, t;x′, t′)

∣∣∣∣∣
x=0

= 0

which corresponds to κa = 0 and ha = 0 is equation 6.3 (c.f., section
1.3.3).

The derivative of GR(x = 0) is always zero. Note that12 Feb p3

∫ b

a

d

dx
θ(x) = θ(b)− θ(a) =

{
1 for a < 0 < b
0 otherwise.

(6.26)

which implies
d

dx
θ(x) = δ(x).

But for any fixed t− t′ we can chose an ε such that the interval [0, ε] is
is flat. Thereforeask Baker

d

dx
Gfree end

R = 0.
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Notes about the physics: For a string with a free end, the force on the
end point is Fy = τ dG

dx
= 0 at x = 0 which implies dG

dx
= 0 at x = 0

if the tension τ does not vanish. If the tension does vanish at x = 0,
then we have a singular point at the origin and do not restrict dG

dx
= 0

at x = 0.

6.9 Elastically Bound Semi-Infinite String

We now consider the problem with boundary condition[
− d

dx
+ κ

]
GR = 0 for x = 0.

The solution can be found using the standard transform method. Do
an inverse Fourier transform of the Green’s function in eq. 6.13 for the
related problem [−d/dx + κ]G̃ = 0. The frequency space part of this
problem is done in problem 4.3.

6.10 Relation to the Eigen Fn Problem

We now look at the relation between the general problem and the eigen
function problem (normal modes and natural frequencies). The normal
mode problem is used in solving

[L0 − λσ]G(x, x′;λ) = δ(x− x′) +RBC

for which G(x, x′;λ) has poles at the eigen values of L0. We found in
chapter 4 that G(x, x′;λ) can be written as a bilinear summation

G(x, x′;λ) =
∑
n

un(x)u∗n(x′)

λn − λ
(6.27)

where the un(x) solve the normal mode problem: eq6qA

[L0 − λnσ]un(x) = 0 + RBC. (6.28)

Here we made the identification λn = ω2
n where the ωn’s are the natural eq6qE
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frequencies and the un’s are the normal modes.
Recall also that the steady state solution for the force δ(x−x′)e−iωt

is u(x, t) = G(x, x′;λ = ω2 + iε)e−iωt. The non-steady state response is
GR(x, t;x′, t′) which is given by

GR(x, t;x′, t′) =
∫ dω

2π
e−iω(t−t′)G̃(x, x′;ω)

where G̃(x, x′;ω) = G(x, x′;λ = ω2). Plug G(x, x′;λ) (from equation
6.27) into the Fourier transformed expression (equation 6.18). This12 Feb p4
gives

GR(x, t;x′, t′) =
1

2π

∫
L
dωe−iω(t−t′)

∑
n

un(x)u∗n(x′)

λn − ω2
(6.29)

In this equation ω can be arbitrarily complex. (This equation is veryeq6qC
different (c.f. section 4.6) from the steady state problem G(x, x′;λ =
ω2 + iε)e−iωt where ω was real.) Note that we are only interested in
t > t′, since we have shown already that GR = 0 for t < t′.

Now we add the lower contour since e−iω(t−t′) is small for t′ > t andThis is back-
wards ωI < 0. This contour is shown in figure 6.3. The integral vanishes over

the curved path, so we can use Cauchy’s theorem to solve 6.29. The
poles are at λn = ω2, or ω = ±

√
λn.

We now perform an evaluation of the integral for one of the terms
of the summation in equation 6.29.12 Feb p5 ∫

L+LLHP

dω

2π

e−iω(t−t′)

λn − ω2
= −

∫
L+LLHP

dω

2π

e−iω(t−t′)

(ω −
√
λn)(ω +

√
λn)

(6.30)

=
2πi

2π

[
e−i

√
λn(t−t′)

2
√
λn

− ei
√

λn(t−t′)

2
√
λn

]

=
sin
√
λn(t− t′)√
λn

.

By equation 6.29 we geteq6qFa

GR(x, t;x′, t′) =
∑
n

un(x)u∗n(x′)
sin
√
λn(t− t′)√
λn

(6.31)

where
√
λn = ωn and t > t′. This general solution gives the relationshipeq6qF

between the retarded Green’s function problem (equation 6.17) and the
eigen function problem (eq. 6.28).
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6.10.1 Alternative form of the GR Problem

For t− t′ small, eq. 6.31 becomes

GR(x, t;x′, t′) ∼
∑
n

un(x)u∗n(x′)√
λn

√
λn(t− t′)

= (t− t′)
∑
n

un(x)u∗n(x′)

= (t− t′)
δ(x− x′)

σ(x)
.

Where we used the completeness relation 4.113. Thus for t − t′ small, 12 Feb 6
the GR has the form

GR(x, t;x′, t′)|t→t′ ∼ (t− t′)
δ(x− x′)

σ(x)
.

Differentiating, this equation gives

∂

∂t
GR(x, t;x′, t′)

∣∣∣∣∣
t→t′+

=
δ(x− x′)

σ(x)
.

Also, as t approaches t′ from the right hand side

GR(x, t;x′, t′) = 0 for t→ t
′−.

These results allow us to formulate an alternative statement of the GR

problem in terms of an initial value problem. The GR is specified by
the following three equations:[

L0 + σ(x)
∂2

∂t2

]
GR(x, t;x′, t′) = 0 for t > t′ + RBC

GR(x, t;x′, t′) = 0 for t = t′

σ(x)
∂

∂t
GR = δ(x− x′) for t = t′

Here σ(t) ∂
∂t
GR(x, t;x′, t′) represents a localized unit of impulse at x′, t′

(like ∆p = 1). Thus we have the solution to the initial value problem
for which the string is at rest and given a unit of momentum at t′.
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We have now cast the statement of the GR problem in two forms,
as a retarded boundary value problem (RBVP) and as an initial value
problem (IVP):

RBVP =

{ [
L0 + σ ∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) + RBC,

GR(x, t;x′, t′) = 0 for t < t′

IVP =


[
L0 + σ(x) ∂2

∂t2

]
GR(x, t;x′, t′) = 0 for t > t′,RBC,

GR(x, t;x′, t′) = 0 for t = t′,
σ(x) ∂

∂t
GR = δ(x− x′) for t = t′.

6.11 Comments on Green’s Function
17 Feb p1

6.11.1 Continuous Spectra

In the previous section we obtained the spectral expansion for discrete
eigenvalues:

GR(x, t;x′, t′) =
∞∑

n=1

un(x)u∗n(x′)√
λn

sin
√
λn(t− t′) (6.32)

This gives us an expansion of the Green’s function in terms of theeq6rst
natural frequencies.

For continuous spectra the sum is replaced by an integral

GR =
∫
dλn

∑
α

uα
λn
u∗αλn

sin
√
λn(t− t′)√
λn

where we have included a sum over degeneracy index α (c.f. 4.108).
Note that this result follows directly because the derivation in the pre-
vious section did not refer to whether we had a discrete or continuous
spectrum.

6.11.2 Neumann BC

Recall that the RBC for an open string, equation 1.18, is[
− d

dx
+ κa

]
GR = 0 for x = a.
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If κa → 0 (Neumann boundary condition) then the boundary condition
for the normal mode problem will be (d/dx)u(x) = 0 which will have
a constant solution, i.e., λ1 = 0. We cannot substitute λ1 = 0 into Ask why
equation 6.32, but instead must take the limit as λ1 approaches zero.
Physically, this corresponds to taking the elasticity κa as a small quan-
tity, and then letting it go to zero. In this case we can write equation
6.32 with the λ1 eigen value separated out:

GR(x, t;x′, t′)
λ1→0−→ u1(x)u

∗
1(x

′)(t− t′) (6.33)

+
∑
n

un(x)u∗n(x′)√
λn

sin
√
λn(t− t′)

t→∞−→ u1(x)u
∗
1(x

′)(t− t′).

The last limit is true because the sum oscillates in t. The Green’s
function represents the response to a unit momentum, but κa = 0
which means there is no restoring force. Thus a change in momentum
∆p = 1 is completely imparted to the string, which causes the string
to acquire a constant velocity, so its amplitude increases linearly with
time.

Note that equation 6.33 would still be valid if we had taken λ1 = 0
in our derivation of the Green’s function as a bilinear sum. In this
case equation 6.30 would have a double pole for λ1 = 0, so the residue
would involve the derivative of the numerator, which would give the
linear factor of t− t′.

Consider a string subject to an arbitrary force σ(x)f(x, t). Remember17 Feb p2
that σ(x)f(x, t) = δ(t− t′)δ(x−x′) gives GR(x, t;x′, t′). A general force
σ(x)f(x, t) gives a response u(x, t) which is a superposition of Green’s pr:GenResp1
functions:

u(x, t) =
∫ t

0
dt′
∫ b

a
dx′G(x, t;x′, t′)σ(x′)f(x′, t′)

with no boundary terms (u(x, 0) = 0 = d
dt
u(x, 0)). Now plug in the

Green’s function expansion 6.33 to get

u(x, t) = u1(x)
∫ t

0
dt′(t− t′)

∫ b

a
dx′u∗1(x

′)σ(x′)f(x′, t′)

+
∞∑

n=2

un(x)√
λn

∫ t

0
dt′ sin

√
λn(t− t′)

∫ b

a
dx′u∗n(x′)σ(x′)f(x′, t′).
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Note that again the summation terms oscillate with frequency ωn. The
spatial dependence is given by the un(x). The coefficients give the
projection of σ(x)f(x, t) onto u∗n(x). In the λ1 = 0 case the u1(x) term
is constant.

6.11.3 Zero Net Force

Now let
F (t) ≡ (const.)

∫
dt′σ(x′)f(x′, t′)

where F (t′) represents the total applied force at time t′. If F (t′) = 0,
then there are no terms which are linearly increasing in time contribut-
ing to the response u(x, t). This is a meaningful situation, correspond-
ing to a disturbance which sums to zero. The response is purely oscil-
latory; there is no growth or decay.ask baker

about last part
not included
here 6.12 Summary

1. The retarded Green’s function GR solves[
L0 + σ

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) + RBC

for a < x, x′ < b; all t, t′.

with the condition

GR(x, t;x′, t′) = 0 for t < t′.

The advanced Green’s function GA solves the same equation, but
with the condition

GA(x, t;x′, t′) = 0 for t > t′.

The retarded Green’s function gives the response of the string
(initially at rest) to a unit of momentum applied to the string at
a point in time t′ at a point x′ along the string. The advanced
Green’s function gives the initial motion of the string such that
a unit of momentum applied at x′, t′ causes it to come to rest.
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2. The retarded Green’s function can be written in terms of the
steady state Green’s function:

GR(x, t;x′t′) =
∫

L

dω

2π
e−iω(t−t′)G̃(x, x′;ω).

3. The retarded Green’s function for an infinite string with σ and τ
constant, and V = 0 is

GR(x, t;x′, t′) =
c

2τ
θ

(
t− t′ − |x− x′|

c

)
.

4. The retarded Green’s function for a semi-infinite string with a
fixed end, σ and τ constant, and V = 0 is

GR(x, t;x′, t′) =
c

2τ

[
θ

(
t− t′ − |x− x′|

c

)
− θ

(
t− t′ − |x+ x′|

c

)]
.

5. The retarded Green’s function for a semi-infinite string with a
free end, σ and τ constant, and V = 0 is

GR =
c

2τ

[
θ

(
t− t′ − |x− x′|

c

)
+ θ

(
t− t′ − |x+ x′|

c

)]
.

6. The retarded Green’s function can be written in terms of the eigen
functions as

GR(x, t;x′, t′) =
∑
n

un(x)u∗n(x′)
sin
√
λn(t− t′)√
λn

.

6.13 References

A good reference is [Stakgold67b, p246ff].
This material is developed in three dimensions in [Fetter80, p311ff].
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Chapter 7

Surface Waves and
Membranes

Chapter Goals:

• Show how the equation describing shallow water
surface waves is related to our most general differ-
ential equation.

• Derive the equation of motion for a 2-dimensional
membrane and state the corresponding regular
boundary conditions.

7.1 Introduction

In this chapter we formulate physical problems which correspond to
equations involving more than one dimension. This serves to moti-
vate the mathematical study of N -dimensional equations in the next
chapter.

107
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Figure 7.1: Water waves moving in channels.

7.2 One Dimensional Surface Waves on

Fluids

7.2.1 The Physical Situation
17 Feb p3

Consider the physical situation of a surface wave moving in a channel1.
This situation is represented in figure 7.1. The height of equilibriumpr:surf1

fig:7.1 is h(x) and the width of the channel is b(x). The height of the wave

pr:hww1 z(x, t) can then be written as

z(x, t) = h(x) + u(x, t)

where u(x, t) is the deviation from equilibrium. We now assume the
shallow wave case u(x, t) � h(x). This will allow us to linearize the
Navier–Stokes equation.

7.2.2 Shallow Water Case
pr:shal1

This is the case in which the height satisfies the condition h(x) �
λ where λ is the wavelength. In this case the motion of the waterpr:lambda2
is approximately horizontal. Let S(x) = h(x)b(x). The equation of
continuity and Newton’s law (i.e., the Navier–Stokes equation) then
give

− ∂

∂x

(
gS(x)

∂

∂x

)
u+ b(x)

∂2

∂t2
u(x, t) = 0,

1This material corresponds to FW p. 357–363.
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which is equivalent to the 1-dimensional string, where σ(x) ⇒ b(x) and 17 Feb p4
τ(x) ⇒ gS(x).

Consider the case in which b(x) is independent of x:

− ∂

∂x

(
gh(x)

∂

∂x

)
u+

∂2

∂t2
u(x, t) = 0. (7.1)

This corresponds to σ = 1 and τ = gh(x). eq7shallow
Propagation of shallow water waves looks identical to waves on a

string. For example, in problem 3.5, h(x) = x gives the Bessel’s equa-
tion, with the identification τ(x) = x and V (x) = m2/x.

As another example, take h(x) to be constant. This gives us wave

propagation with c =
√
τ/σ, τ = gh, and σ = 1. So the velocity of a

water wave is c =
√
gh. The deeper the channel, the faster the velocity.

This partially explains wave breaking: The crest sees more depth than
the trough.

7.3 Two Dimensional Problems
17 Feb p5

We now look at the 2-dimensional problem, that of an elastic membrane2.
We denote the region of the membrane by R and the perimeter (1- pr:elmem1
dimensional “surface”) by S. The potential energy differential for an
element of a 1-dimensional string is

dU =
1

2
τ(x)

(
du

dx

)2

dx.

In the case of a 2-dimensional membrane we replace u(x) with u(x, y) =
u(x). In this case the potential energy difference is (see section 2.4.2)

dU =
1

2
τ(x, y)

(du
dx

)2

+

(
du

dy

)2
 dxdy (7.2)

=
1

2
τ(x)(∇u)2dx (7.3)

2This is discussed on p. 271–288 of FW.
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where τ is the tension of the membrane. Note that there is no mixed
term d

dx
d
dy
u since the medium is homogeneous. The total potential

energy is given by the equation

U =
∫

R
dx

1

2
τ(x)(∇u)2,

where τ(x) is the surface tension. In this equation dx = dx dy and
(∇u)2 = (∇u) · (∇u). The total kinetic energy is

T =
1

2
mv2 =

∫
R
dx

1

2
σ(x)

(
∂u

∂t

)2

.

Now think of the membrane as inserted in an elastic media. We then
get an addition to the U(x) energy due to elasticity, 1

2
V (x)u(x, t)2. We

also add an additional force which will add to the potential energy:

f(x, t)σ(x)dxu(x, t) =

(
force

mass

)(
mass

length

)
(length) (displacement) .

The Lagrangian is thuspr:lagr1

L =
1

2

∫
R
dx×

σx( ∂
∂t

u

)2

− τ(x)(∇u)2 − V (x)u(x)2 − f(x, t)σ(x)dxu(x, t)

 .
Notice the resemblance of this Lagrangian to the one for a one dimen-
sional string (see section 2.4.2).19 Feb p1

We apply Hamiltonian Dynamics to get the equation of motion:19 Feb p2 [
L0 + σ

∂2

∂t2

]
u(x, t) = σ(x)f(x, t)

where L0 = −∇(τ(x)∇) − V (x). This is identical to the equation of
motion for a string except now in two dimensions. It is valid everywhere
for x inside the region R.
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r r

(0, 0) (a, 0)

(a, b)(0, b)

(0, y) (a, y)

Figure 7.2: The rectangular membrane.

7.3.1 Boundary Conditions
pr:bc2

Elastically Bound Surface

The most general statement of the boundary condition for an elastically
bound surface is

[n̂ · ∇+ κ(x)]u(x, t) = h(x, t) for x on S. (7.4)

In this equation the “surface” S is the perimeter of the membrane, n̂ is sone
the outward normal for a point on the perimeter, κ(x) = k(x)/τ(x) is
the effective spring constant at a point on the boundary, and h(x, t) =
f(x, t)/τ(x) is an external force acting on the boundary S.

Periodic Boundary Conditions
19 Feb p3

pr:pbc2We now consider the case of a rectangular membrane, illustrated in
figure 7.2, with periodic boundary conditions:

fig:7.2

u(0, y) = u(a, y) for 0 ≤ y ≤ b, (7.5)

u(x, 0) = u(x, b) for 0 ≤ x ≤ a,

and
∂2

∂x2
u(x, y)

∣∣∣∣∣
x=0

=
∂2

∂x2
u(x, y)

∣∣∣∣∣
x=a

for 0 ≤ y ≤ b,
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∂2

∂x2
u(x, y)

∣∣∣∣∣
y=0

=
∂2

∂x2
u(x, y)

∣∣∣∣∣
y=b

for 0 ≤ x ≤ a.

In this case we can consider the region R to be a torus.

7.4 Example: 2D Surface Waves

We now give one last 2-dimensional example3. We consider a tank of19 Feb p4
water whose bottom has arbitrary height h(x) and look at the surface
waves. This example connects the 1-dimensional surface wave problem
and the 2-dimensional membrane problem.

For this problem the vertical displacement is given by

z(x, t) = h(x) + u(x, t),

with λ � h(x) for the shallow water case and u � h(x). Thus (using
7.1) our equation of motion is[

−∇ · (gh(x)∇) +
∂2

∂t2

]
u(x, t) = f(x, t).

Note that in this equation we have σ = 1. For this problem we take
the Neumann natural boundary condition:

n̂ · ∇u(x, t) = 0

and
∂

∂t
u⊥ = −g∇⊥u|S

for x on S. This is the case of rigid walls. The latter equation just
means that there is no perpendicular velocity at the surface.

The case of membranes for a small displacement is the same as for
surface waves. We took σ = 1 and τ(x) = gh(x).

The formula for all these problems is just19 Feb p5 [
L0 + σ(x)

∂2

∂t2

]
u(x, t) = σ(x)f(x, t) for x in R

where L0 = −∇(τ(x)∇) + V (x). (Note that τ(x) is not necessarily
tension.) We let x = (x1, . . . , xn) and ∇ = (∂/∂x1, . . . , ∂/∂xn). The
boundary conditions can be elastic or periodic.

3This one comes from FWp. 363–366.
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7.5 Summary

1. The equation for shallow water surface waves and the equation
for string motion are the same if we identify gravity times the
cross-sectional area with “tension”, and the width of the channel
with “mass density”.

2. The two-dimensional membrane problem is characterized by the
wave equation [

L0 + σ
∂2

∂t2

]
u(x, t) = σ(x)f(x, t)

where L0 = −∇(τ(x)∇) − V (x), subject to either an elastic
boundary condition,

[n̂ · ∇+ κ(x)]u(x, t) = h(x, t) for x on S,

or a periodic boundary condition.

7.6 References

The material on surface waves is covered in greater depth in [Fetter80,
p357ff], while the material on membranes can be found in [Fetter80,
p271].
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Chapter 8

Extension to N-dimensions

Chapter Goals:

• Describe the different sorts of boundaries and
boundary conditions which can occur for the N -
dimensional problem.

• Derive the Green’s identities for the N -dimensional
case.

• Write the solution for the N -dimensional problem
in terms of the Green’s function.

• Describe the method of images.

22 Feb p1

8.1 Introduction

In the previous chapter we obtained the general equation in two dimen-
sions: [

L0 + σ(x)
∂2

∂t2

]
u(x, t) = σ(x)f(x, t) for x in R (8.1)

where eq8usf
L0 = −∇ · τ(x)∇+ V (x).

This is immediately generalizable to N -dimensions. We simply let
x = (x1, . . . , xn) and ∇ = (∂/∂x1, . . . , ∂/∂xn). and we introduce the

115
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notation n̂ · ∇u ≡ ∂u/∂n. R is now a region in N -dimensional space
and S is the (N − 1)-dimensional surface of R.

The boundary conditions can either be elastic or periodic:pr:bc3

1. Elastic: The equation for this boundary condition is

[n̂ · ∇+K(x)]u(x, t) = h(x, t) for x on S. (8.2)

The term K(x) is like a spring constant which determines theeq8.1b
properties of the medium on the surface, and h(x, t) is an exter-
nal force on the boundary. These terms determine the outward
gradient of u(x, t).

2. Periodic: For the two dimensional case the region looks like 7.2pr:pbc3
and the periodic boundary conditions are 7.5 and following. In
the N -dimensional case the region R is an N -cube. Connecting
matching periodic boundaries of S yields an N -torus in (N + 1)-
dimensional space.

To uniquely specify the time dependence of u(x, t) we must specify the
initial conditions

u(x, t)|t=0 = u0(x) for x in R (8.3)

∂

∂t
(x, t)|t=0 = u1(x) for x in R. (8.4)

For the 1-dimensional case we solved this problem using Green’s Identi-
ties. In section 8.3 we will derive the Green’s Identities forN -dimensions.

22 Feb p2

8.2 Regions of Interest

There are three types of regions of interest: the Interior problem, the
Exterior problem, and the All-space problem.

1. Interior problem: Here R is enclosed in a finite region bounded bypr:intprob1
S. In this case we expect a discrete spectrum of eigenvalues, like
one would expect for a quantum mechanical bound state problem
or for pressure modes in a cavity.
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2. Exterior problem: Here R extend to infinity in all directions but ispr:extprob1
excluded by a finite region bounded by S. In this case we expect
a continuum spectrum if V > 0 and a mixed spectrum is V < 0.
This is similar to what one would expect for quantum mechanical
scattering.

3. All-space problem: Here R extends to infinity in all directions pr:allprob1
and is not excluded from any region. This can be considered a
degenerate case of the Exterior problem.

8.3 Examples of N-dimensional Problems

8.3.1 General Response
pr:GenResp2

In the following sections we will show that the N -dimensional general
response problem can be solved using the Green’s function solution to
the steady state problem. The steps are identical to those for the single
dimension case covered in chapter 6.

G(x,x′;λ = ω2) = G̃(x,x′;λ)

→ GR(x, t;x′, t′) retarded

→ u(x, t) General Response.

8.3.2 Normal Mode Problem
pr:NormMode3

The normal mode problem is given by the homogeneous differential
equation (

L0 + σ(x)
∂2

∂t2

)
u(x, t) = 0.

Look for solutions of the form

u(x, t) = e−iωntun(x).

The natural frequencies are ωn =
√
λn, where λn is an eigen value. The

normal modes are eigen functions of L0. Note: we need RBC to ensure
that L0 is Hermitian.
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8.3.3 Forced Oscillation Problem
24 Feb p2

pr:fhop2 The basic problem of steady state oscillation is given by the equation(
L0 + σ

∂2

∂t2

)
u(x, t) = e−iωtσ(x)f(x) for x ∈ R

and (for example) the elastic boundary condition

(n̂ · ∇+K)u = h(x)e−iωt for x ∈ S.

We look for steady state solutions of the form

u(x, t) = e−iωtu(x, ω).

The value of ω is chosen, so this is not an eigen value problem. We
assert

u(x, ω) =
∫
x′∈R

dx′G(x,x′;λ = ω + iε)σ(x′)f(x′)

+
∫
x′∈S

dx′τ(x′)G(x,x′;λ = ω + iε)σ(x)h(x′).

The first term gives the contribution due to forces on the volume and
the second term gives the contribution due to forces on the surface.

In the special case that σ(x)f(x) = δ(x− x′), we have

u(x, t) = e−iωtG(x,x′;λ = ω2).

8.4 Green’s Identities

In this section we will derive Green’s 1st and 2nd identities for the
N -dimensional case. We will use the general linear operator for N -
dimensions

L0 = −∇ · (τ(x)∇) + V (x)

and the inner product for N -dimensions

〈S, L0u〉 =
∫
dxS∗(x)L0u(x). (8.5)

eq8tst
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8.4.1 Green’s First Identity
pr:G1Id2

The derivation here generalizes the derivation given in section 2.1.

〈S, L0u〉 =
∫

R
dxS∗(x)[−∇ · (τ(x)∇) + V (x)]u(x) (8.6)

integrate 1st term by parts

=
∫

R
dx[−∇ · (S∗τ(x)∇u) + (∇S∗)τ(x)∇u+ S∗V u]

integrate 1st term using Gauss’ Theorem

= −
∫

S
dSn̂ · (S∗τ(x)∇u) +

∫
R
[S∗V u+ (∇ · S∗τ(x)∇u)]dx

This is Green’s First Identity generalized to N -dimensions:

〈S, L0u〉 = −
∫

S
dSn̂·(S∗τ(x)∇u)+

∫
R
[S∗V u+(∇·S∗τ(x)∇u)]dx. (8.7)

Compare this with 2.3.

8.4.2 Green’s Second Identity
pr:G2Id2

22 Feb p3We now interchange S and u. In the quantity 〈S, L0u〉 − 〈L0S, u〉 the
symmetric terms will drop out, i.e., the second integral in 8.7 is can-
celled. We are left with

〈S, L0u〉 − 〈L0S, u〉 =
∫

S
dSn̂ · [−S∗τ(x)∇u+ uτ(x)∇S∗].

8.4.3 Criterion for Hermitian L0
pr:HermOp2

If u, S∗ satisfy the RBC, then the surface integral in Green’s second
identity vanishes. This leaves 〈S, L0u〉−〈L0S, u〉, which means that L0

is a hermitian (or self-adjoint) operator: L = L†.

8.5 The Retarded Problem

8.5.1 General Solution of Retarded Problem

We now reduce 8.1 to a simpler problem. If this is an initial value
problem, then u(x, t) is completely determined by equations 8.1, 8.2, pr:IVP2
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8.3, and 8.4. We look again at GR which is the response of a system to
a unit force:[
L0 + σ(x)

∂2

∂t2

]
GR(x, t;x′, t′) = δ(x− x′)δ(t− t′) for x,x′ in R.

(8.8)
We also require the retarded Green’s function to satisfy RBC and theeq8tB
initial condition GR = 0 for t < t′. We now use the result from problem22 Feb p4
4.2:

u(x, t) =
∫
x′∈R

dx′
∫ t

0
dt′GR(x, t;x′, t′)σ(x′)f(x′, t′)

+
∫
x′∈S

dx′τ(x′)
∫ t

0
dt′GR(x, t;x′, t′)h(x′, t′)

+
∫
x′∈R

dx′σ(x′)
[
GR(x, t;x′, 0)u1(x

′)

− ∂

∂t′
GR(x, t;x′, t′)u0(x

′)
]

(8.9)

The first line gives the volume sources, the second gives the surfaceeq8ugen
R Horn says
eval ĠR at x
’=0

sources, and the third and fourth gives the contribution from the initial
conditions. Since the defining equations for GR are linear in volume,
surface, and initial condition terms, we were able to write down the
solution u(x, t) as a linear superposition of the GR.ask Baker

about limits Note that we recover the initial value of u(x, t) in the limit t → t′.
This is true since in the above equation we can substitute

lim
t→t′

GR(x, t;x′, t′) = 0

and

lim
t→t′

GR(x, t;x′, t′) =
δ(x− x′)

σ(x′)
.

8.5.2 The Retarded Green’s Function in N-Dim.
pr:GR2

By using 8.9 we need only solve 8.8 to solve 8.1. In section 6.3 we found
that GR could by determined by using a Fourier Transform. Here we
follow the same procedure generalized to N -dimensions. The Fourier
transform of GR in N -dimensions is

GR(x, t;x′, t′) =
∫

L

dω

2π
e−iω(t−t′)G̃(x,x′;ω)
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where L is a line in the upper half plane parallel to the real axis (c.f., 22 Feb p5
section 6.4), since G̃ is analytic in the upper half plane (which is due
to the criterion GR = 0 for t < t′).

Now the problem is simply to evaluate the Fourier Transform. By
the same reasoning in section 6.3 the Fourier transform of GR is iden-
tical to the Green’s function for the steady state case:

G̃(x,x′;ω) = G(x,x;λ = ω2).

Recall that the Green’s function for the steady state problem satisfies

[L0 − λσ]G(x,x′;λ) = δ(x− x′) for x,x′ ∈ R,RBC (8.10)

We have reduced the general problem in N dimensions (equation8.1)
to the steady state Green’s function problem in N -dimensions. 22 Feb p6

8.5.3 Reduction to Eigenvalue Problem
pr:efp3

The eigenvalue problem (i.e., the homogeneous equation) inN -dimensions
is

L0un(x) = λnσun(x) x ∈ R,RBC (8.11)

The λn’s are the eigen values of L0. Since L0 is hermitian, the λn’s Lots of work
are real. The un(x)’s are the corresponding eigenfunctions of L0. We
can also prove orthonormality (using the same method as in the single
dimension case) ∫

R
dx
∑
α

uα∗
n (x)uα

m(x) = 0 if λn 6= λm.

This follows from the hermiticity of L0. Note that because we are now
in N -dimensions, the degeneracy may now be infinite. 22 Feb p7

By using the same procedure as in chapter 4, we can write a solution
of eq. 8.8 expanded in terms of a solution of 8.11:

G(x,x′;λ) =
∑
n

un(x)u∗n(x′)

λn − λ
.

Note that the sum would become an integral for a continuous spectrum.
The methods of chapter 4 also allow us to construct the δ-function 22 Feb p8
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representation

δ(x− x′) = σ(x′)
∑
n

un(x)u∗n(x′),

which is also called the completeness relation. All we have left is to
discuss the physical interpretation of G.24 Feb p1

8.6 Region R
24 Feb p3

8.6.1 Interior
pr:intprob2

In the interior problem the Green’s function can be written as a discrete
spectrum of eigenvalues. In the case of a discrete spectrum we have

G(x,x′;λ = ω2) =
∑
n

un(x)u∗n(x′)

λn − ω2

8.6.2 Exterior
pr:extprob2

For the exterior problem the sums become integrals and we have a
continuous spectrum:

G(x,x′;λ) =
∫

λn

dλn

∑
α un(x)u∗n(x′)

λn − λ
.

In this case we take λ = ω2 + iε. G now has a branch cut for all real
λ’s, which means that there will be two linearly independent solutions
which correspond to whether we approach the real λ axis from above or
below. We choose ε > 0 to correspond to the physical out going wave
solution.ask Baker

about omitted
material
24 Feb p4 8.7 The Method of Images
24 Feb p5

pr:MethIm1
We now present an alternative method for solving N -dimensional prob-
lem which is sometimes useful when the problem exhibits sufficient
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symmetry. It is called the Method of Images. For simplicity we con-
sider a one dimensional problem. Consider the GR problem for periodic
boundary conditions with constant coefficients.(

L0 − λσ
∂2

∂t2

)
GR = δ(x− x′)δ(t− t′) 0 ≤ x ≤ l.

8.7.1 Eigenfunction Method

We have previously solved this problem by using an eigen function
expansion solution (equation 6.31)

GR =
∑
n

un(x)u∗n(x′)√
λn

sin
√
λn(t− t′).

For this problem the eigen functions and eigen values are

un(x) =
(

1

l

)1/2

e2πinx/l n = 0,±1,±2, . . .

λn =
(

2πin

l

)2

n = 0,±1,±2, . . .

8.7.2 Method of Images

The method of images solution uses the uniqueness theorem. Put im-
ages over −∞ to ∞ in region of length λ.

Φ =
(
c

2τ

)
θ

(
t− t′ − |x− x′|

c

)
.

This is not periodic over 0 to l. Rather, it is over all space. Our GR is

GR =
c

2τ

∞∑
n=−∞

θ

(
t− t′ − |x− x′ − nl|

c

)
.

Notice that this solution satisfies(
L0 + σ

∂2

∂t2

)
GR =

∞∑
n=−∞

δ(x− x′ − nl) −∞ < x, x′ <∞.
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However, we only care about 0 < x < l(
L0 + σ

∂2

∂t2

)
GR =

∞∑
n=−∞

δ(x− x′ − nl) 0 < x, x′ < l.

Since the other sources are outside the region of interest they do not
affect this equation. Our Green’s function is obviously periodic.

The relation between these solution forms is a Fourier series.

8.8 Summary

1. For the exterior problem, the region is outside the boundary and
extends to the boundary. The the interior problem, the boundary
is inside the boundary and has finite extent. For the all-space
problem, there is no boundary. The boundary conditions can be
either elastic or periodic, or in the case that there is no boundary,
the function must be regular at large and/or small values of its
parameter.

2. The Green’s identities for the N -dimensional case are

〈S, L0u〉 = −
∫

S
dSn̂·(S∗τ(x)∇u)+

∫
R
[S∗V u+(∇·S∗τ(x)∇u)]dx,

〈S, L0u〉 − 〈L0S, u〉 =
∫

s
dSn̂ · [−S∗τ(x)∇u+ uτ(x)∇S∗].

3. The solution for theN -dimensional problem in terms of the Green’s
function is

u(x, t) =
∫
x′∈R

dx′
∫ t

0
dt′GR(x, t;x′, t′)σ(x′)f(x′, t′)

+
∫
x′∈S

dx′τ(x′)
∫ t

0
dt′GR(x, t;x′, t′)h(x′, t′)

+
∫
x′∈R

dx′σ(x′)
[
GR(x, t;x′, 0)u1(x

′)

− ∂

∂t′
GR(x, t;x′, t′)u0(x

′)
]
.
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4. The method of images is applicable if the original problem ex-
hibits enough symmetry. The method is to replace the original
problem, which has a boundary limiting region of the solution,
with a new problem in which the boundary is taken away and
sources are placed in the region which was excluded by the bound-
ary such that the solution will satisfy the boundary conditions of
the original problem.

8.9 References

The method of images is covered in most electromagnetism books, for
example [Jackson75, p54ff], [Griffiths81, p106ff]; a Green’s function
application is given in [Fetter80, p317]. The other material in this
chapter is a generalization of the results from the previous chapters.
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Chapter 9

Cylindrical Problems

Chapter Goals:

• Define the coordinates for cylindrical symmetry
and obtain the appropriate δ-function.

• Write down the Green’s function equation for the
case of circular symmetry.

• Use a partial expansion for the Green’s function to
obtain the radial Green’s function equation for the
case of cylindrical symmetry.

• Find the Green’s function for the case of a circular
wedge and for a circular membrane.

29 Feb p1

9.1 Introduction

In the previous chapter we considered the Green’s function equation

(L0 − λσ(x))G(x,x′;λ) = δ(x− x′) for x,x′ ∈ R

where

L0 = −∇ · (τ(x)∇) + V (x)

subject to RBC, which are either for the elastic case

(n̂ · ∇+ κ(S))G(x,x′;λ) = 0 for x ∈ S (9.1)

127
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or the periodic case. In this chapter we want to systematically solve this
problem for 2-dimensional cases which exhibit cylindrical symmetry.

9.1.1 Coordinates

A point in space can be represented in cartesian coordinates as

x = îx+ ĵy.

Instead of the coordinate pair (x, y) we may choose polar coordinatespr:CartCoord1
(r, φ). The transformation to cartesian coordinates is

x = r cosφ y = r sinφ

while the transformation to polar coordinates is (for tanφ defined on
the interval −π/2 < φ < π/2)pr:r1

r =
√
x2 + y2

φ =


tan−1(y/x) for x > 0, y > 0
tan−1(y/x) + π for x < 0
tan−1(y/x) + 2π for x > 0, y < 0

A differential of area for polar coordinates is related by that for carte-
sian coordinates by a Jacobian (see Boas, p220):pr:jak1

dxdy = dA

=

∣∣∣∣∣J
(
x, y

r, φ

)∣∣∣∣∣ drdφ
=

∣∣∣∣∣
(
∂(x, y)

∂(r, φ)

)∣∣∣∣∣ drdφ
=

∣∣∣∣∣ (∂x/∂r) (∂x/∂φ)
(∂y/∂r) (∂y/∂φ)

∣∣∣∣∣ drdφ
=

∣∣∣∣∣ cosφ −r sinφ
sinφ r cosφ

∣∣∣∣∣ drdφ
= rdrdφ
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By expanding dx and dy in terms of dr and dφ, we can write the
differential of arc length in polar coordinates (see Boas, p224)

ds =
√
dx2 + dy2 =

√
dr2 + r2dφ2.

The differential operator becomes (see Boas, p252,431) pr:grad1

gradient ∇u = r̂
∂u

∂r
+ φ̂

1

r

∂u

∂φ
,

divergence ∇ ·B =
1

r

∂

∂r
(rBr) +

1

r

∂

∂φ
(Bφ).

Let B = τ(x)∇x, then

∇ · (τ(x)∇u(x)) =
1

r

∂

∂r

(
rτ(x)

∂u

∂r

)
+

1

r

∂

∂φ

(
τ(x)

∂u

∂φ

)
. (9.2)

9.1.2 Delta Function
29 Feb p2

The N -dimensional δ-function is defined by the property pr:DeltaFn2

f(x) =
∫
d2xf(x)δ(x− x′).

In polar form we have (since dxdy = rdrdφ)

f(x) = f(r, φ) =
∫
r′dr′dφ′f(r′, φ′)δ(x− x′).

By comparing this with

f(r, φ) =
∫
dr′dφ′f(r′, φ′)δ(r − r′)δ(φ− φ′)

we identify that the delta function can be written in polar coordinates
in the form pr:delta1

δ(x− x′) =
δ(r − r′)

r
δ(φ− φ′).

29 February
1988
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Figure 9.1: The region R as a circle with radius a.

9.2 GF Problem for Cylindrical Sym.

The analysis in the previous chapters may be carried into cylindrical
coordinates. For simplicity we consider cylindrical symmetry: τ(x) =
τ(r), σ(x) = σ(r), and V (x) = V (r). Thus 9.2 becomes

∇(τ(r)∇u(x)) =
1

r

∂

∂r

(
rτ(r)

∂u

∂r

)
+
τ(r)

r2

∂2u

∂φ2
.

The equation for the Green’s function

(L0 − λσ)G(r, φ; r′, φ′) =
1

r
δ(r − r′)δ(φ− φ′)

becomes (for r, φ ∈ R)[
−1

r

∂

∂r

(
rτ(r)

∂

∂r

)
− τ(r)

r2

∂2

∂φ2
+ V (r)− λσ(r)

]
G =

1

r
δ(r−r′)δ(φ−φ′).

(9.3)
Here R may be the interior or the exterior of a circle. It could also
be a wedge of a circle, or an annulus, or anything else with circular
symmetry.

For definiteness, take the region R to be the interior of a circle of
radius a (see figure 9.1) and apply the elastic boundary condition 9.1.
We now define the elasticity on the boundary S, κ(S) = κ(φ). Wefig10a
must further specify κ(φ) = κ, a constant, since if κ = κ(φ), then we
might not have cylindrical symmetry. Cylindrical symmetry implies
n̂ · ∇ = ∂/∂r so that the boundary condition

(n̂ · ∇+ κ(S))G(r, φ; r′, φ′) = 0 for r = a

is now (
∂

∂r
+ κ

)
G(r, φ; r′, φ′) = 0 for r = a.
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We also need to have G periodic under φ→ φ+ 2π. So 29 Feb p3

G(r, 0; r′, φ′) = G(r, 2π; r′, φ′)

and
∂G

∂φ

∣∣∣∣∣
φ=0

=
∂G

∂φ

∣∣∣∣∣
φ=2π

.

We have now completely respecified the Green’s function for the case
of cylindrical symmetry.

9.3 Expansion in Terms of Eigenfunctions

Since the Green’s function is periodic in φ and since φ only appears in
the operator as ∂2/∂φ2, we use an eigenfunction expansion to separate
out the φ-dependence. Thus we look for a complete set of eigenfunctions pr:efexp1
which solve

− ∂2

∂φ2
um(φ) = µmum(φ) (9.4)

for um(φ) periodic. The solutions of this equation are

um(φ) =
1√
2π
eimφ for m = 0,±1,±2, . . .

and the eigenvalues are

µm = m2 for m = 0,±1± 2, . . ..

(Other types of regions would give different eigenvalues µm). Since pr:CompRel4
this set of eigenfunctions is complete it satisfies the expansion

δ(φ− φ′) =
∑
m

um(φ)u∗m(φ′).

9.3.1 Partial Expansion

We now want to find Gm(r, r′;λ) which satisfies the partial expansion
(using the principle of superposition) pr:partExp1

G(r, φ; r′, φ′) =
∑
m

um(φ)Gm(r, r′;λ)u∗m(φ′). (9.5)
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We plug this and 9.4 into the partial differential equation 9.3: ask Baker
where this
comes from
29 Feb p4

∑
m

um(φ)

[
−1

r

d

dr

(
r2 d

dr

)
+
µmτ

r2
+ V (r)− λσ(r)

]
Gmu

∗
m(φ′)

=
1

r
δ(r − r′)

∑
m

um(φ)u∗m(φ′)

We now define the reduced linear operatorpr:rlo1

Lµm
0 ≡ rL0 = − d

dr

(
rτ(r)

d

dr

)
+ r

[
µmτ(r)

r2
+ V (r)

]
(9.6)

so Gm(r, r′;λ) must satisfyeq9rLo

(Lµm
0 − λrσ(r))Gm(r, r′;λ) = δ(r − r′), for 0 < r, r′ < a

and the boundary condition(
∂

∂r
+ κ

)
Gm(r, r′;λ) = 0 for r = a, 0 < r′ < a.

Comments on the eigenvalues µm: The RBC will always lead to
µn > 0. If µm < 0 then the term µmτ(r)/r

2 in 9.6 would act like an
attractive sink and there would be no stable solution. Since µm > 0,
this term instead looks like a centrifugal barrier at the origin.29 Feb p5

Note that the effective “tension” in this case is rτ(r), so r = 0 is
a singular point. Thus we must impose regularity at r = 0: |G(r =
0, r′;λ)| <∞.

9.3.2 Summary of GF for Cyl. Sym.

We have reduced the Green’s function for cylindrical symmetry to the
1-dimensional problem:

(Lµm
0 − λrσ(r))Gm(r, r′;λ) = δ(r − r′), for 0 < r, r′ < a,(

∂

∂r
+ κ

)
Gm(r, r′;λ) = 0 for r = a, 0 < r′ < a,

|G(0, r′;λ)| <∞.
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9.4 Eigen Value Problem for L0

To solve the reduced Green’s function problem which we have just ob-
tained, we must solve the reduced eigen value problem pr:efp4

Lµm
0 u(m)

n (r) = λ(m)
n rσ(r)u(m)

n (r) for 0 < r < a,

du(m)
n

dr
+ κu(m)

n (r) = 0 for r = a,

|u(m)
n (r)| <∞ at r = 0.

In these equation λ(m)
n is the nth eigenvalue of the reduced operator

L
(µm)
0 and u(m)

n (r) is the nth eigenfunction of L
(µm)
0 . From the general

theory of 1-dimensional problems (c.f., chapter 4) we know that

Gm(r, r′;λ) =
∑
n

u(m)
n (r)u∗(m)

n (r′)

λ
(m)
n − λ

for m = 0,±1,±2, . . .

It follows that (using 9.5) 29 Feb p6

G(r, φ, r′, φ′;λ) =
∑
m

um(φ)

(∑
n

u(m)
n (r)u∗(m)

n (r′)

λ
(m)
n − λ

)
u∗m(φ′)

=
∑
n,m

u(m)
n (r, φ)u∗(m)

n (r′, φ′)

λ
(m)
n − λ

where u(m)
n (r, φ) = um(φ)u(m)

n (r). Recall that G satisfies (L0 − λσ)G =
δ(x− x′). with RBC. Thus we can conclude

L0u
(m)
n (r, φ) = λ(m)

n σ(r)u(m)
n (r, φ) RBC.

These u(m)
n (r, φ) also satisfy a completeness relation figure this part

out
29 Feb p7∑

m,n

u(m)
n (r, φ)u∗(m)

n (r′, φ′) =
δ(x− x′)

σ(x)

=
δ(r − r′)δ(φ− φ′)

r′σ(r′)
2 Mar p1

The radial part of the Green’s function, Gm, may also be constructed
directly if solutions satisfying the homogeneous equation are known,
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where one of them also satisfies the r = 0 boundary condition and the
other also satisfies the r = a boundary condition. The method from
chapter 3 (which is valid for 1-dimensional problems) gives

Gm(r, r′;λ) = − u1(r<)u2(r>)

rτ(r)W (u1, u2)

whereτ(r)?
(Lµm

0 − λσr)u1,2 = 0

|u1| <∞ at r = 0

∂u2

∂r
+ κu2 = 0 for r = a.

The effective mass density is rσ(τ), the effective tension is rτ(r), and
the effective potential is r(µmτ/r

2 + V (r)).

9.5 Uses of the GF Gm(r, r′;λ)
2 Mar p3

9.5.1 Eigenfunction Problem
pr:efp5

Once Gm(r, r′;λ) is known, the eigenvalues and normalized eigenfunc-
tions can be found using the relation

Gm(r, r′;λ)
λ→λ

(m)
n∼ u(m)

n (r)u(m)
n (r′)

λ
(m)
n − λ

.

The eigen values come from the poles, the eigen functions come from
the residues.

9.5.2 Normal Modes/Normal Frequencies
pr:NormMode4

In the general problem with no external forces the equation of motion
is homogeneous (

L0 + σ
∂2

∂t2

)
u(x, t) = 0 + RBC.

We look for natural mode solutions:this section is
still rough
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u(x, t) = e−iω
(m)
n tu(m)

n (r, φ).

The natural frequencies are given by

ω(m)
n =

√
λ

(m)
n .

The eigen functions (natural modes) are (cf section 9.4)

u(m)
n (r, φ) = u(m)

n (r)um(φ).

The normal modes are

u(m)
n (x, t) = e−iω

(m)
n tu(m)

n (r, φ).

The normalization of the factored eigenfunctions u(m)
n (r) and um(φ) is∫ a

0
drrσ(r)u(m)

n (r)u
∗(m)
n′ (r′) = δn,n′ for n = 1, 2, . . .

∫ 2π

0
dφum(φ)u∗m′(φ) = δm,m′ .

The overall normalization of the (r, φ) eigen functions is pr:normal3
2 Mar p4∫ 2π

0
dφ
∫ a

0
dr(rσ(r))u(m)

n (r, φ)u
∗(m′)
n′ (r, φ) = δn,n′δm,m′

or ∫ 2π

0

∫ a

0
rdrdφσ(r)u(m)

n (r, φ)u
∗(m′)
n′ (r, φ) =

∫
R
d3xσ(x)u∗(x)u(x)

= δn,n′δm,m′ .

9.5.3 The Steady State Problem
pr:sss2

This is the case of a periodic driving force:(
L0 + σ

∂2

∂t2

)
u(r, φ, t) = σf(r, φ)e−iωt

(
∂

∂r
+ κ

)
u(r, φ, t) = h(φ)e−iωt
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Note: As long as the normal mode solution has circular symmetry, we
may perturb it with forces f(r, φ) and h(φ). It is not necessary to have
circularly symmetric forces.

The solution is (using 9.5)

u(r, φ) =
∑
m

um(φ)

×
(∫ a

0
r′σ(r′)dr′Gm(r, r′;λ = ω2 + iε)

∫ 2π

0
dφ′u∗m(φ′)f(r′, φ′)

+Gm(r, a;λ = ω2 + iε)
∫ 2π

0
adφ′τ(a)u∗m(φ′)f(r′, φ′)

)
.

In this equation
∫ 2π
0 dφ′u∗m(φ′)f(r′, φ′) is the mth Fourier coefficient of

the interior force f(r′, φ′) and
∫ 2π
0 adφ′τ(a)u∗m(φ′)f(r′, φ′) is the mth

Fourier coefficient of the surface force τ(a)h(φ′).

9.5.4 Full Time Dependence
2 Mar p5

For the retarded Green’s function we havepr:GR3

GR(r, φ, t; r′, φ′, t′) =
∑
m

um(φ)GmR(r, t, r′, t′)u∗m(φ′)

where

GmR(r, t; r′, t′) =
∫

L

dω

2π
e−iω(t−t′)Gm(r, r′;λ = ω2)

Gm(r, r′;λ = ω2) = − 1

rτ(r)

u1(r<)u2(r>)

W (u1, u2)
.

Note: In the exterior case, the poles coalesce to a branch cut. All space
has circular symmetry. All the normal limits (

∑→
∫
, δn,n′ → δ(n−n′),

etc.,) hold.

9.6 The Wedge Problem
pr:wedge1

We now consider the case of a wedge. The equations are similar for the
internal and external region problems. We consider the internal region
problem. The region R is now 0 < r < a, 0 < φ < γ and its boundary
is formed by φ = 0, φ− 2π, and r = a.
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Figure 9.2: The wedge.

9.6.1 General Case

See the figure 9.2. The angular eigenfunction equation is again 9.4: fig10.3

− ∂2

∂φ2
um(φ) = µmum(φ) RBC.

Note that the operator ∂2/∂φ2 is positive definite by Green’s 1st iden-
tity. The angular eigenvalues are completely determined by the angular
boundary conditions. For RBC it is always true the µm > 0. This is
physically important since if it were negative, the solutions to 9.4 would
be real exponentials, which would not satisfy the case of periodic bound-
ary conditions.

The boundary condition is now

(n̂ · ∇+ κ)G = 0 x ∈ S.

This is satisfied if we choose κ1(r) = κ1/r, κ2(r) = κ2/r, and κ3(φ) =
κ3, with κ1, κ2 ≥ 0. The boundary condition (n̂ ·∇+κ)G = 0 becomes(

− ∂

∂φ
+ κ1

)
G = 0 for φ = 0

(
∂

∂φ
+ κ2

)
G = 0 for φ = γ(

∂

∂r
+ κ3

)
G = 0 for r = a, 0 < φ < γ.

We now choose the um(φ) to satisfy the first two boundary conditions.
The rest of the problem is the same, except that Lµm

0 gives different µm

eigenvalues.
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9.6.2 Special Case: Fixed Sides
2 Mar p6

The case κ1 → ∞ and κ2 → ∞ corresponds to fixed sides. We thus
have G = 0 for φ = 0 and φ = γ. So the um eigenvalues must satisfy

− ∂2

∂φ2
um = µmum

and

um = 0 for φ = 0, γ.

The solution to this problem is

um(φ) =

√
2

γ
sin

mπφ

γ

with

µm =

(
mπ

γ

)2

m = 1, 2, . . . .

The case m = 0 is excluded because its eigenfunction is trivial. As
γ → 2π we recover the full circle case.ask Baker

why not γ →
2π?
2 Mar p7 9.7 The Homogeneous Membrane
pr:membrane1

Recall the general Green’s function problem for circular symmetry. By
4 Mar p1 substituting the completeness relation for um(φ), our differential equa-

tion becomes

(L0 − λσ)G(x, x′;λ) = δ(x− x′) =
δ(r − r′)

r

∑
m

um(φ)u∗m(φ′)

where

L0um(φ) =
1

r
Lµm

0 um(φ),

Lµm
0 = − d

dr

(
rτ(r)

d

dr

)
+ r

(
µmτ(r)

r2
+ V (r)

)
.

We now consider the problem of a complete circle and a wedge.4 Mar p2
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We look at the case of a circular membrane or wedge with V = 0, σ=
constant, τ = constant. This corresponds to a homogeneous membrane.
We separate the problem into radial and angular parts.

First we consider the radial part. To find Gm(r, r′;λ), we want to
solve the problem[

− d

dr

(
r
d

dr

)
+
µm

r
− λr

c2

]
Gm(r, r′;λ) =

1

τ
δ(r − r′)

with G = 0 and r = a, which corresponds to fixed ends. This problem
was solved in problem set 3:

Gm =
π

2τ

J√µm(r<

√
λ/c2)

J√µm(a
√
λ/c2)

(
J√µm(r>

√
λ/c2)N√

µm(a
√
λ/c2)

− J√µm(aλ/c2)N√
µm(r>

√
λ/c2)

)
. (9.7)

Using 9.5, this provides an explicit solution of the full Green’s function
problem. Now we consider the angular part, where we have γ = 2π, so 4 Mar p3
that

√
µm = ±m which means the angular eigenfunctions are the same

as for the circular membrane problem considered before:

um =
1√
2π
eimφ for µm = m2,m = 0,±1,±2, . . ..

The total answer is thus a sum over both positive and negative m

G(r, φ, r′, φ′;λ) =
∞∑

m=−∞
um(φ)Gm(r, r′;λ)u∗m(φ′).

We now redo this with κ → ∞ and arbitrary γ. This implies that
the eigen functions are the same as the wedge problem considered before

um(φ) =

√
2

γ
sin

(
mπφ

γ

)
,

µm =

(
mπ

γ

)2

.



140 CHAPTER 9. CYLINDRICAL PROBLEMS

We now get Jmπ/γ(r
√
λ/c2) and Nmπ/γ(r

√
λ/c2). We also get the orig- Show why

(new Bessel op.inal expansion for G:

G(r, φ; r′, φ′;λ) =
∞∑

m=1

um(φ)Gm(r, r′;λ)u∗m(φ′)

9.7.1 The Radial Eigenvalues
pr:efp6

The poles of 9.7 occur when

J√µm(a
√
λ/c2) = 0.

We denote the nth zero of J√µm by x√µmn This gives us

λmn =
(x√µmnc

a

)2

for n = 1, 2, . . .

where J√µm(x√µm,n) = 0 is the nth root of the µm Bessel function. To
find the normalized eigenfunctions, we look at the residues of

Gm
λ→λn−→ u(m)

n (r)u(m)
n (r′)

λ
(m)
n − λ

.

We find4 Mar p4

um
n (r) =

√
2

σa2

J√µm(x√µmn
r
a
)

J ′√µm
(x√µmn)

.

Thus the normalized eigen functions of the overall operator

L0u
(m)
n (r, φ) = σλ(m)

n un(r, φ)

are

u(m)
n (r, φ) = u(m)

n (r)um(φ)

where the the form of um(φ) depends on whether we are considering a
wedge or circular membrane.
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9.7.2 The Physics

The normal mode frequencies are given by the radial eigenvalues

ωm,n =

√
λ

(m)
n =

c

a
x√µ,n.

The eigen values increase in two ways: as n increases and asm increases.
For small x (i.e., x� 1), J√µm ∼ (x)

√
µm which implies that for larger

µm the rise is slower.
As m increases, µm increases, so the first root occurs at larger x. As

we increase m, we also increase the number of angular nodes in eimφ or
sin(mnφ/γ). This also increases the centrifugal potential. Thus ωm,2 is this true?
increases with m. The more angular modes that are present, the more
angular kinetic energy contributes to the potential barrier in the radial
equation.

Now consider behavior with varying γ for a fixed m. µm increases 4 Mar p5
as we decrease γ, so that ωm,n increases. Thus the smaller the wedge,
the larger the first frequency. The case γ → 0 means the angular eigen-
functions oscillate very quickly and this angular energy gets thrown
into the radial operator and adds to the centrifugal barrier.

9.8 Summary

1. Whereas cartesian coordinates measure the perpendicular dis-
tance from two lines, cylindrical coordinates measure the length
of a line from some reference point in its angle from some reference
line.

2. The δ-function for circular coordinates is

δ(x− x′) =
δ(r − r′)

r
δ(φ− φ′).

3. The Green’s function equation for circular coordinates is[
−1

r

∂

∂r

(
rτ(r)

∂

∂r

)
− τ(r)

r2

∂2u

∂φ2
+ V (r)− λσ(r)

]
G = δ(x− x′).
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4. The partial expansion of the Green’s function for the circular
problem is

G(r, φ; r′, φ′) =
∑
m

um(φ)Gm(r, r′;λ)u∗m(φ′).

5. The radial Green’s function for circular coordinates satisfies

(Lµm
0 − λrσ(r))Gm(r, r′;λ) = δ(r − r′), for 0 < r, r′ < a,

where the reduced linear operator is

Lµm
0 ≡ rL0 = − d

dr

(
rτ(r)

d

dr

)
+ r

[
µmτ(r)

r2
+ V (r)

]
,

and the boundary condition(
∂

∂r
+ κ

)
Gm(r, r′;λ) = 0 for r = a, 0 < r′ < a.

9.9 Reference

The material in this chapter can be also found in various parts of [Fet-
ter80] and [Stakgold67].

The preferred special functions reference for physicists seems to be
[Jackson75].



Chapter 10

Heat Conduction

Chapter Goals:

• Derive the conservation law and boundary condi-
tions appropriate for heat conduction.

• Construct the heat equation and the Green’s func-
tion equation for heat conduction.

• Solve the heat equation and interpret the solution.

7 Mar p1

10.1 Introduction
pr:heat1

We now turn to the problem of heat conduction.1 The following physi-
cal parameters will be used: mass density ρ, specific heat per unit mass
cp, temperature T , and energy E. Again we consider a region R with
boundary S and outward normal n̂.

10.1.1 Conservation of Energy

The specific heat, cp, gives the additional amount of thermal energy
which is stored in a unit of mass of a particular material when it’s
temperature is raised by one unit: ∆E = cp∆T . Thus the total energy
can be expressed as

Etotal = E0 +
∫

R
d3xρcpT.

1The corresponding material in FW begins on page 408

143
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Differentiating with respect to time gives

dE

dt
=
∫

R
d3xρcp

(
∂T

∂t

)
.

There are two types of energy flow: from across the boundary S
and from sources/sinks in R.

1. Energy flow into R across S. This gives(
dE

dt

)
boundary

= −
∫
n̂ · jndS = −

∫
R
dx∇ · jn

where the heat current is definedpr:heatcur1

jn = −kT∇T.

kT is the thermal conductivity. Note that since ∇T points toward
the hot regions, the minus sign in the equation defining heat flow
indicates that heat flows from hot to cold regions.

2. Energy production in R due to sources or sinks,(
dE

dt

)
sources

= −
∫

R
d3xρq̇

where q̇ is the rate of energy production per unit mass by sources
inside S.

Thus the total energy is given by∫
R
d3xρcp

∂T

∂t
=

dE

dt

=

(
dE

dt

)
boundary

+

(
dE

dt

)
sources

=
∫

R
d3x(ρq̇ −∇ · jn).

By taking an arbitrary volume, we get the relation

ρcp
∂T

∂t
= ∇ · (kT∇T ) + ρq̇. (10.1)
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10.1.2 Boundary Conditions
pr:bc4
7 Mar p2 There are three types of boundary conditions which we will encounter:

1. T given on S. This is the case of a region surrounded by a heat
bath.

2. n̂ · ∇T for x ∈ S given. This means that the heat current normal
to the boundary, n̂ · jn, is specified. In particular, if the boundary
is insulated, then n̂ · ∇T = 0.

3. −kT (x)n̂ · ∇T = α(T − Texternal) for x ∈ S.

In the first case the temperature is specified on the boundary. In the
second case the temperature flux is specified on the boundary. The
third case is a radiation condition, which is a generalization of the first
two cases. The limiting value of α give

α� 1 =⇒ T ≈ Texternal → #1

α� 1 =⇒ n̂ · ∇T ≈ 0 → #2 with insulated boundary.

We now rewrite the general boundary condition (3) as

[n̂ · ∇T + θ(S)]T (x, t) = h(x, t) for x ∈ S (10.2)

where θ(S) = α/kT (S) and h(S, t) = (α/kT (S))Texternal. In the limit
θ � 1, T is given. In this case we recover boundary condition #1.
The radiation is essentially perfect, which says that the temperature
of the surface is equal to the temperature of the environment, which
corresponds to α → ∞. In the other limit, for θ � 1, n̂ · ∇T is given.
Thus we recover boundary condition # 2 which corresponds to α→ 0.

By comparing the general boundary conditions for the heat equation
with the general N -dimensional elastic boundary condition,

[n̂ · ∇+ κ(x)]u(x, t) = h(x, t)

we identify u(x, t) → T (x, t) and κ(x) → θ(x).
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10.2 The Standard form of the Heat Eq.

10.2.1 Correspondence with the Wave Equation

We can make the conservation of energy equation 10.1 look more fa-
miliar by writing it in our standard differential equation formpr:heateq1 (

L0 + ρcp
∂

∂t

)
T = ρq̇(x, t) for x ∈ G (10.3)

where the linear operator iseq10DE

L0 = −∇ · (kT (x)∇).

The correspondence with the wave equation is as follows:

Wave Equation Heat Equation

τ(x) kT (x)

σ(x) ρ(x)cp

σ(x)f(x, t) ρ(x)q̇(x, t)

V (x) no potential

For the initial condition, we only need T (x, 0) to fully specify the solu-
tion for all time.7 Mar p3

10.2.2 Green’s Function Problem

We know that because equation 10.3 is linear, it is sufficient to con-
sider only the Green’s function problem (which is related to the above
problem by pq̇(x, t) = δ(x− x′)δ(t− t′) and h(S, t) = 0):(

L0 + ρcp
∂

∂t

)
G(x, t;x′, t′) = δ(x− x′)δ(t− t′),

[n̂ · ∇+ θ(S)]G(x, t;x′, t′) = 0 for x ∈ S,

G(x, t;x′, t′) = 0 for t < t′.
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We lose symmetry in time since only the first time derivative appears.
We evaluate the retarded Green’s functions by applying the standard
Fourier transform technique from chapter 6:

G(x, t;x′, t′) =
∫

L

dω

2π
e−iω(t−t′)G̃(x,x′;ω).

We know by G = 0 for t < t′ that G̃ is analytic in the Im ω > 0 plane.
Thus we take L to be a line parallel to the real ω-axis in the upper half
plane. The Fourier Transform of the Green’s function is the solution of
the problem

(L0 − ρcpiω)G̃(x,x′;ω) = δ(x− x′),

(n̂ · ∇+ θ(x))G̃(x,x′;ω) = 0 for x ∈ S,

which is obtained by Fourier transforming the above Green’s function
problem.

10.2.3 Laplace Transform
pr:LapTrans1

We note that this problem is identical to the forced oscillation Green’s
function problem with the substitutions σ → ρcp and τ → kT . Thus
we identify

G̃(x,x′;ω) = G(x,x′;λ = iω).

The single time derivative causes the eigenvalues to be λ = iω. To
evaluate this problem we thus make the substitution s = −iω. This
substitution results in the Laplace Transformation. Under this trans- 7 Mar p4
formation the Green’s function in transform space is related by

G̃(x,x′;ω = is) = G(x,x′;λ = −s).

G̃ is now analytic in the right hand side plane: Re (s) > 0. This variable
substitution is depicted in figure 10.1. The transformed contour is
labeled L′. The Laplace transform of the Green’s function satisfies fig10a
the relation

G(x, t;x′, t′) =
i

2π

∫
L′↓
dsG̃(x,x′;λ = −s′)es(t−t′)
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Figure 10.1: Rotation of contour in complex plane.

or, by changing the direction of the path, we have

G(x, t;x′, t′) =
1

2πi

∫
L′↑
dsG̃(x,x′;λ = s′)es(t−t′). (10.4)

In the following we will denote L′ ↑ as L.
The inversion formula

G̃(ω) =
∫ ∞

0
dτeiωτG(x,x′, τ = t− t′)

is also rotated to become

G̃(s) =
∫ ∞

0
dτe−sτG(x,x′; τ).

G̃(s) is analytic for all Re (s) > 0. Note that the retarded condition
allows us start the lower limit at τ = 0 rather than τ = −∞.

10.2.4 Eigen Function Expansions
7 Mar p5

We now solve the Green’s function by writing it as a bilinear sum of
eigenfunctions:

G(x, x′;λ) =
∑
n

un(x)u∗n(x′)

λn − λ
. (10.5)

The eigenfunctions un(x) solve the problem

L0un(x) = λnρcpun(x) for x ∈ R
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Figure 10.2: Contour closed in left half s-plane.

where L0 = −∇ · (kT (x)∇) with the elastic boundary condition

(n̂ · ∇+ θ(s))un = 0 for x ∈ S.

Because of the identification

G̃(x,x′; s) = G(x,x′;λ = −s)

we can substitute 10.5 into the transform integral 10.4 to get

G(x, t;x′, t′) =
∫

L

ds

2πi

∑
n

un(x)u∗n(x′)

λn + s
es(t−t′)

=
∑
n

un(x)u∗n(x)
1

2πi

∮
L

ds

λn + s
es(t−t′).

This vanishes for t < t′. Close the contour in the left half s-plane
for t − t′ > 0, as shown in figure 10.2. This integral consists of fig10a1
contributions from the residues of the poles at −λn, where n = 1, 2, . . ..
So

1

2πi

∮
Cn

ds

λn + s
es(t−t′) = e−λn(t−t′).

Thus
G(x, t;x′, t) =

∑
n

un(x)u∗n(x′)e−λn(t−t′). (10.6)
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We now consider the two limiting cases for t.

Suppose that t→ t′. Then 10.6 becomes

G
t→t′−→

∑
n

un(x)u∗n(x′) =
δ(x− x′)

ρcp
.

Thus we see that another interpretation of G is as the solution of an7 Mar p6
initial value problem with the initial temperature

T (x, 0) =
δ(x− x′)

ρcp

and no forcing term.why is this?
Now suppose we have the other case, t − t′ � 1. We know λn > 0

for all n since L0 is positive definite (physically, entropy requires k > 0
so that heat flows from hot to cold). Thus the dominant term is the
one for the lowest eigenvalue:

G ∼ u1(x)u∗1(x
′)e−λ1(t−t′) (t− t′) � 1.

In particular, this formula is valid when (t− t′) > 1/λ2. We may thus
interpret 1/λn = τn as the lifetime of these states. After (t− t′) � τN ,
all contributions to G from eigen values with n ≥ N are exponentially
small.

This is the physical meaning for the eigen values. The reason that
the lowest eigen function contribution is the only one that contributes
for t − t′ � 1 is because for higher N there are more nodes in the
eigenfunction, so it has a larger spatial second derivative. This means
(using the heat equation) that the time derivative of temperature is
large, so the temperature is able to equilize quickly. This smoothing
or diffusing process is due to the term with a first derivative in time,
which gives the non-reversible nature of the problem.

10.3 Explicit One Dimensional Calculation
9 Mar p1

We now consider the heat equation in one dimension.
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10.3.1 Application of Transform Method
pr:fsp1

Recall that the 1-dimensional Green’s function for the free space wave
equation is defined by 9 Mar p2

(L0 − σλ)G = δ(x− x′) for −∞ < x <∞.

We found that the solution for this wave equation is

G(x, x′;λ) =
1

2
√
λ

ei
√

λ|x−x′|/c

σc
.

Transferring from the wave equation to the heat equation as discussed

above, we substitute τ → kT , σ → ρ, c =
√
τ/σ →

√
κ where κ =

KT/ρcp is the thermal diffusivity, and
√
λ→ i

√
s which means Im λ > pr:kappa1

kT → KT and
c → cp?

0 becomes Re s > 0. The substitutions yield

G̃(x, x′; s) =

(
1

2
√
s
ρcp
√
κ

)
e
−
√

s

(
|x−x′|√

κ

)

or

ρcpG̃(x, x′; s) =
1

2
√
κs
e−
√

s/κ|x−x′|.

We see that
√
κ plays the role of a velocity. Now invert the transform 9 Mar p3

to obtain the free space Green’s function for the heat equation:

ρcpG(x, t;x′, t′) =
∫

L

ds

2πi
es(t−t′)ρcpG̃(x, x′; s)

=
∫

L

ds

2πi

es(t−t′)−
√

s/κ|x−x′|

2
√
sκ

.

10.3.2 Solution of the Transform Integral

Our result has a branch on
√
s. We parameterize the s-plane:

s = |s|eiθ for −π < θ < π

This gives us Re
√
s = |s|1/2 cos(θ/2) > 0. We choose the contour of

integration based on t. 9 Mar p5
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Figure 10.3: A contour with Branch cut.

For t < t′ we have the condition G = 0. Thus we close the contour
in the right half plane so that

exp
[
s(t− t′)−

√
s|x− x|/

√
κ
]

s→∞−→0

since both terms are increasingly negative. Since the contour encloses
no poles, we recover G = 0 as required.

For t−t′ > 0, close contour in the left half plane. See figure 10.3. We
know by Cauchy’s theorem that the integral around the closed contour
L + L1 + L2 + L3 + L4 + L5 vanishes. We perform the usual Branch
cut evaluation, by treating the different segments separately. For L3 it
is convenient to use the parameterization s = εeiθ for −π < θ < π as
shown in figure 10.3. In this case the integral becomes

1

2π

1

2
√
κ

∫ π

−π
dθ|
√
ε|[1 +O(ε(t− t′)) +O(ε1/2|x− x′|/

√
κ)]

ε→0−→0.

In this equation we assert that it is permissible to take the limit ε→ 0
before the other quantities are taken arbitrarily large.

For the contour L2 above the branch cut we have
√
s = i

√
|s|,

and for the contour L4 below the branch cut we have
√
s = −i

√
|s|
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Combining the integrals for these two cases gives

lim
ε→0

∫ −ε

−∞

ds

2π

es(t−t′)

2
√
κ

2 cos
√
|s|/κ|x− x′|√
|s|

.

For L1 and L5 the integral vanishes. By letting s = Reiθ where
−π < θ < π we have∣∣∣∣∣exp [−

√
s|x− x′|/

√
κ]√

s

∣∣∣∣∣ ≤ exp
[
− |x−x′|√

κ
R2 cos 1

2
φ
]

√
R

R→∞−→ 0.

Our final result is

ρcpG(x, t;x′, t′) =
1

2π
√
κ

∫ ∞

0

ds√
s
e−s(t−t′) cos

√
s/κ(x− x′).

Substituting s = u2 gives

ρcpG(x, t;x′, t′) =
∫ ∞

0

2udu

2πu
√
κ

cos
u√
κ
|x− x′|e−u2(t−t′)

or

ρcpG(x, t;x′, t′) =
1√
κ
I(t− t′, |x− x′|/

√
κ)

where (since the integrand is even)

I(t, y) =
1

2

∫ ∞

−∞

du

π
e−u2t+iuy.

This can be made into a simple Gaussian by completing the square: pr:gaus1

I(t, y) = e−y2/(4t)
∫ ∞

−∞

du

2π
e±(u− iy

2t
)2 .

By shifting u→ u+ iy/2t, the result is 9 Mar p6

I(t, y) =
e−y2/(4t)

√
4πt

.

The free space Green function in 1-dimension is thus

ρcpG(x, t;x′, t′) =

 1√
4πκ|t− t′|

 e−(x−x′)2

4κ(t−t′) . (10.7)
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10.3.3 The Physics of the Fundamental Solution

This solution corresponds to a pure initial value problem where, if x′ =
t′ = 0, we have

ρcpG(x, t) =
e−x2/4κt

√
4πκt

.

At the initial time we have

ρcpG
t→0−→δ(x− x′) = δ(x).

1. For x2 > 4κt, the amplitude is very small. Since G is small for
x ≥

√
4κt, diffusion proceeds at rate proportional to

√
t, not t

as in wave equation. The average propagation is proportional to
t1/2. This is indicative of a statistical process (Random walk). It9 Mar p7
is non-dynamical in that it does not come from Newton’s laws.
Rather it comes from the dissipative–conduction nature of ther-
modynamics.

2. For any t > 0 we have a non-zero effect for all space. This corre-
sponds to propagation with infinite velocity. Again, this indicates
the non-dynamical nature of the problem. This is quite different
from the case of wave propagation, where an event at the origin
does not affect the position x until time x/c.

3. Another non-dynamical aspect of this problem is that it smoothes
the singularity in the initial distribution, whereas the wave equa-
tion propagates all singularities in the initial distribution forward
in time.

4. κ is a fundamental parameter whose role for the heat equation
is analogous to the role of c for the wave equation. It deter-
mines the rate of diffusion. κ (= kT/ρcp) has the dimensions of
(distance)2/time, whereas c has the dimensions of distance/time.

11 Mar p1

10.3.4 Solution of the General IVP
11 Mar p2

We now use the Green’s function to solve the initial value problem:(
−kT

∂2

∂x2
+ ρcp

d

dt

)
T (x, t) = 0 for −∞ < x, x′,∞
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T (x, 0) = T0(x)

T → 0 for |x| → ∞
The method of the solution is to use superposition and 10.8:

T (x, t) =
∫ ∞

−∞
dx′T0(x

′)ρcpG(x′, 0;x, t)

=
1√

4πκt

∫ ∞

−∞
dx′e−(x−x′)2/(4κt)T0(x

′) (10.8)

10.3.5 Special Cases

Initial δ-function

Suppose T0(x) = δ(x − x′). Then we have T (x, t) = ρcpG(x′′, 0;x, t).
Thus we see that G is the solution to the IVP with the δ-function as
the initial condition and no forcing term.

Initial Gaussian Function
pr:gaus2
11 Mar p3We now consider the special case of an initial Gaussian temperature

distribution. Let T0(x) = (a/π)1/2e−ax2
. The width of the initial dis-

tribution is (∆x)0 = 1/
√
a. Plugging this form of T0(x) into 10.8 gives

T (x, t) =
1

π
√

4κta

∫ ∞

−∞
dx′e−(x−x′)2/(4κt)−ax

′2

T (x, t) =
1√
π

1√
(1/a) + 4κt

e−
x2

(1/a)+4κt

=
1√
π

(
1

∆x

)
e(x/∆x)2

where ∆x =
√

(∆x0)2 + 4κt. The packet is spreading as (∆x)2 =

4κt + (∆x0)
2. Again, ∆x ∼ t1/2 like a random walk, (again non-

dynamical). Suppose t� τ ≡ (∆x0)/4κ. This is the simplest quantity
with dimensions of time, so τ is the characteristic time of the system.

We rewrite ∆x = (∆x0)
√

1 + t/τ . Thus for t� τ ,

∆x ∼
√
t/τ(∆x0).
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τ = (∆x0)
2/4κ is a fundamental unit of time in the problem. Since ask Baker

about omittedthe region is infinite, there does not exist any characteristic distance
for the problem.11 Mar p4

11 Mar p5

10.4 Summary

1. Conservation of energy for heat conduction is given by the equa-
tion

ρcp
∂T

∂t
= ∇ · (kT∇T ) + ρq̇,

where ρ is the mass density, cp is the specific heat, T is the temper-
ature, kT is the thermal conductivity, and q̇ is the rate of energy
production per unit mass by sources inside the region.

2. The general boundary condition for heat conduction is

[n̂ · ∇T + θ(S)]T (x, t) = h(x, t) for x ∈ S.

3. The heat equation is(
L0 + ρcp

∂

∂t

)
T = ρq̇(x, t) for x ∈ G,

where the linear operator is

L0 = −∇ · (kT (x)∇).

4. The Green’s function equation for the heat conduction problem
is (

L0 + ρcp
∂

∂t

)
G(x, t;x′, t′) = δ(x− x′)δ(t− t′).

5. The solution of the heat equation for the initial value problem in
one dimension is

T (x, t) =
1√

4πκt

∫ ∞

−∞
dx′e−(x−x′)2/(4κt)T0(x

′),

which is a weighted integration over point sources which individ-
ually diffuse with a gaussian shape.
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10.5 References

A similar treatment (though more thorough) is given in [Stakgold67b,
p194ff]. See also [Fetter80, p406ff].

The definitive reference on heat conduction is [Carslaw86].



158 CHAPTER 10. HEAT CONDUCTION



Chapter 11

Spherical Symmetry

Chapter Goals:

• Derive the form of the linear operator in spherical
coordinates.

• Show that the angular part of the linear operator
Lθφ is hermitian.

• Write the eigenvalue equations for Y m
l .

• Write the partial wave expansion for the Green’s
function.

• Find the Green’s function for the free space prob-
lem.

28 Mar p1 (17)

Our object of study is the Green’s function for the problem

[L0 − λσ(x)]G(x,x′;λ) = δ(x− x′) (11.1)

with the regular boundary condition (RBC) eq11.1

[n̂ · ∇+K(S)]G(x,x′;λ) = 0

for x′ in a region R and x in the regions boundary S. The term x is a
field point, and x′ is a source point. The unit vector n̂ is the outward
normal of the surface S. The operator L0 is defined by the equation

L0 = −∇ · (τ(x)∇) + V (x).

159
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Figure 11.1: Spherical Coordinates.

We have solved this problem for the one and two dimensional cases in
which there was a certain degree of symmetry.

11.1 Spherical Coordinates
28 Mar p2

We now treat the problem in three dimensions. For this we use spherical
coordinates (since we will later assume angular independence). A pointpr:spher1
in spherical coordinates is denoted (r, θ, ϕ), where the range of each
variable is

0 ≤ r <∞,

0 < θ ≤ π,

0 ≤ ϕ < 2π.

We use the following transformation of coordinate systems:

z = r cos θ,

x = r sin θ cosϕ,

y = r sin θ sinϕ.

This relationship is illustrated in figure 11.1 For an arbitrary volumefig11.1
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element we have

d3x = (dr)(rdθ)(r sin θdϕ)

= r2dΩdr

where Ω is the solid angle, and an infinitesimal of solid angle is dΩ = pr:Omega1
sin θdθdϕ.

We further define the delta function

f(r, θ, ϕ) = f(x)

=
∫
d3x′ f(x′) δ(x− x′)

=
∫
dr′ r′

2
sin θ′ dθ′ dϕ′ f(r′, θ′, ϕ′) δ(x− x′).

From this we can extract the form of the δ-function for spherical coor-
dinates:

δ(x− x′) =
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′)

=
δ(r − r′)

r2
δ(Ω− Ω′)

where the solid angle δ-function is 28 Mar p3

pr:delta2
δ(Ω− Ω′) =

δ(θ − θ′)δ(ϕ− ϕ′)

sin θ
.

We want to rewrite equation 11.1 in spherical coordinates. First we
define the gradient pr:grad2

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

ϕ̂

r sin θ

∂

∂ϕ
.

See [Boas] for derivations of identities involving ∇. The divergence is 87’ notes have
Gauss’ law,
p18∇ ·A =

1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂

∂ϕ
Aϕ.

When we apply this to the case

A = τ(x)∇.
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the result is

∇ · (τ∇) =
1

r2

∂

∂r

(
r2τ

∂

∂r

)
+

1

r sin θ

∂

∂θ

(
sin θ

τ

r

∂

∂θ

)

+
1

r sin θ

∂

∂ϕ

(
τ

r sin θ

∂

∂ϕ

)
(11.2)

where τ = τ(x) = τ(r, θ, ϕ).eq11.2
28 Mar p4 Now we can write L0. We assume that τ , σ, and V are spherically

symmetric, i.e., they are only a function of r: τ(x) = τ(r), σ(x) = σ(r),
V (x) = V (r). In this case the linear operator is

L0 = − 1

r2

∂

∂r

(
r2τ(r)

∂

∂r

)
+
τ(r)

r2
Lθϕ + V (r) (11.3)

whereeq11.2b

Lθϕ = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂2ϕ
,

which is the centrifugal term from equation 11.2. In the next few sec-pr:Lthph1
tions we will study the properties of L0.

11.2 Discussion of Lθϕ

Note that Lθϕ is a hermitian operator on the surface of the sphere, as
shown by the following argument. In an earlier chapter we derived the
Green’s Identity∫

d3xS∗(x)L0u(x) =
∫
d3x (u∗(x)L0S(x))∗ (11.4)

where u and S satisfy RBC. We use this fact to show the hermiticityeq11.3
of Lθϕ. Consider the functions28 Mar p5

S(x) = S(r)S(θ, ϕ) and u(x) = u(r)u(θ, ϕ)

where u and S satisfy RBC. Such functions are a subset of the functions
which satisfy equation 11.4. Choose u(θ, ϕ) and S(θ, ϕ) to be periodic
in the azimuthal angle ϕ:

u(θ, ϕ) = u(θ, ϕ+ 2π), S(θ, ϕ) = S(θ, ϕ+ 2π).
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Now substitute d3x = r2drdΩ and L0 (as defined in equation 11.3) into
equation 11.4. The term

− 1

r2

∂

∂r

(
r2τ(r)

∂

∂r

)
+ V (r)

in L0 is hermitian so it cancels out in 11.4. All that is left is∫
r2drS∗(r)

τ(r)

r2
u(r)

∫
dΩS∗(θ, ϕ)Lθϕu(θ, ϕ) =∫

r2drS∗(r)
τ(r)

r2
u(r)

∫
dΩ (u∗(θ, ϕ)LθϕS(θ, ϕ))∗

This can be rewritten as 28 Mar p6∫
r2drS∗(r)

τ(r)

r2
u(r)dΩ

[∫
S∗(θ, ϕ)Lθϕu(θ, ϕ)

−
∫
dΩ (u∗(θ, ϕ)LθϕS(θ, ϕ))∗

]
= 0.

The bracket must then be zero. So∫
dΩ(S∗(θ, ϕ)Lθϕu(θ, ϕ) =

∫
dΩ (u∗(θ, ϕ)LθϕS(θ, ϕ))∗ . (11.5)

This is the same as equation 11.4 with d3x→ dΩ and L0 → Lθϕ. Thus eq11.4
Lθϕ is hermitian. If the region did not include the whole sphere, we
just integrate the region of physical interest and apply the appropriate
boundary conditions. Equation 11.5 can also be obtained directly from 28 Mar p7
the form of Lθϕ by applying integration by parts on Lθϕ twice, but
using L0 = L∗0 is much more elegant.

Note that the operators ∂2

∂ϕ2 and Lθϕ commute:[
∂2

∂ϕ2
, Lθϕ

]
= 0.

Thus we can reduce equation 11.1 to a one dimensional case and expand
the Green’s function G in terms of a single set of eigenfunctions which
are valid for both −∂2/∂ϕ2 and Lθϕ. We know that L0 and Lθϕ are
hermitian operators, and thus the eigenfunctions form a complete set.
For this reason this method is valid.
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11.3 Spherical Eigenfunctions
28 Mar p8

We want to find a common set of eigenfunctions valid for both Lθϕ and
−∂2/∂ϕ2. Note that

− ∂2

∂ϕ2

eimϕ

√
2π

= m2 e
imϕ

√
2π

m = 0,±1,±2, . . . .

So (2π)−1/2eimϕ are normalized eigen functions of −∂2/∂ϕ2. We define
the functions Y m

l (θ, ϕ) as the set of solutions to the equationpr:sphHarm1

LθϕY
m
l (θ, ϕ) = l(l + 1)Y m

l (θ, ϕ) (11.6)

for eigen values l(l + 1) and periodic boundary conditions, and theeq11.5
equation

− ∂2

∂ϕ2
Y m

l (θ, ϕ) = m2Y m
l (θ, ϕ) m = 0,±1,±2, . . . . (11.7)

We can immediately write down the orthogonality condition (due toeq11.6

pr:orthon3 the hermiticity of the operator Lθϕ):

is this true? ∫
dΩY m

l
∗(θ, ϕ)Y m′

l′ (θ, ϕ) = δl,l′δm,m′ .

(If there are degeneracies, we may use Gram–Schmidt techniques to
arrive at this result). We can choose the normalization coefficient to
be one. There is also a completeness relation which will be given later.

11.3.1 Reduced Eigenvalue Equation
28 Mar p9

We now separate the eigenfunction into the product of a ϕ-part and a
θ-part:pr:ulm1

Y m
l (θ, ϕ) =

eimϕ

√
2π
um

l (cos θ) (11.8)

(which explicitly solves equation 11.7, the differential equation involv-eq11.6b
ing ϕ) so that we may write equation 11.6 as[

− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

m2

sin2 θ

]
um

l (cos θ) = l(l + 1)um
l (cos θ).
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All we have left to do is solve this eigenvalue equation. The original
region was the surface of the sphere because the solid angle represents
area on the surface. We make a change of variables:

x = cos θ.

The derivative operator becomes

d

dθ
=
dx

dθ

d

dx
= − sin θ

d

dx

so

− 1

sin θ

d

dθ
=

d

dx
.

The eigen value equation for u becomes[
− d

dx

(
(1− x2)

d

dx

)
+

m2

1− x2

]
um

l (x) = l(l + 1)um
l (x) (11.9)

defined on the interval −1 < x < 1. Thus x = 1 corresponds to θ = 0, eq11.7
and x = −1 corresponds to θ = π. Note that τ , which represents
the effective tension, is proportional to 1 − x2, so both end points are
singular points. On account of this we get both regular and irregular 28 Mar p10
solutions. A solution occurs only if the eigen value l takes on a special
value. Requiring regularity at x = ±1 implies l is an integer. Note also Verify this
that equation 11.9 represents an infinite number of one dimensional
eigenvalue problems (indexed by m), which makes sense because we
started with a partial differential equation eigenvalue problem.

The way to solve the equation near a singular point is to look for
solutions of the form xp·[power series], as in the solutions to Bessel’s change this
equation. 30 Mar p1

11.3.2 Determination of um
l (x)

30 Mar p2
We now determine the function um

l (x) which is regular at x = ±1.
Suppose that it is of the form

um
l (x) = (1− x2)β(power series). (11.10)

We want to determine the power term β. First we compute eq11.8
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(1− x2)
d

dx
(1− x2)β = β(−2x)(1− x2)β,

and then

d

dx

[
(1− x2)

d

dx
(1− x2)β

]
= β2(1− x2)β−1(−2x)2

+ β(−2x)(1− x2)β + . . . .

For the case x→ 1 we can drop all but the leading term:

d

dx

[
(1− x2)

d

dx
(1− x2)β

]
≈ 4x2β2(1− x2)β−1 x→ 1. (11.11)

Plugging equations 11.10 and 11.11 into equation 11.9 giveseq11.9

(1− x2)β−1A[−4β2 +m2] ≈ (l + 1)lA(1− x2)β, x→ 1.

where A is the leading constant from the power series. Note however
that (1− x2)β approaches zero faster that (1− x2)β−1 as x→ 1. So we
get m2 = 4β2, or

β = ±m
2
.

We thus look for a solution of the form

um
l (x) = (1− x2)m/2Cm(x), (11.12)

where Cm(x) is a power series in x with implicit l dependence. Weeq11.9a
expect regular and irregular solutions for Cm(x). We plug this equation30 Mar p3
into equation 11.9 to get an equation for Cm(x). The result is

−(1− x2)C ′′
m + 2x(m+ 1)C ′

m − (l−m)(l+m+ 1)Cm(x) = 0. (11.13)

We still have the boundary condition that um
l (x) is finite. In the caseeq11.9b

that m = 0 we have

−(1− x2)C ′′
0 + 2xC ′

0 − l(l + 1)C0 = 0. (11.14)

This is called Legendre’s equation. We want to find the solution ofeq11.10
pr:LegEq1 this equation which is regular at x = 1. We define Pl(x) to be such
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a solution. The irregular solution at x = 1, called Q(x), is of interest
if the region R in our problem excludes x = 1 (which corresponds to
cos θ = 1 or θ = 0). Note that we consider l to be an arbitrary complex
number. (From the “general theory”, however, we know that the eigen
values are real.) By convention we normalize: Pl(1) = 1. We know
C0(x) = Pl(x), because we defined C0(x) to be regular at x = 1. But
x = −1 is also a singular point. We define R̃l(x) to be the regular
solution and Ĩl(x) to be the irregular solution at x = −1 We can write

C0(x) = Pl(x) = A(l)R̃l(x) +B(l)Ĩl(x). (11.15)

But if we further require that Pl must be finite (regular) at x = −1, we
then have B(l) = 0 for l = 0, 1, 2, . . .. 30 Mar p4

We now take Legendre’s equation, 11.14, with C0(x) replaced by
Pl(x) (the regular solution), and differentiate it m times using Leibnitz
formula pr:LeibForm1

dm

dxm
(f(x)g(x)) =

m∑
i=0

(
m

i

)
dif

dxi

dm−ig

dxm−i
.

This yields

−(1− x2)
d2

dx2

(
dm

dxm
Pl(x)

)
+ 2(m+ 1)x

d

dx

(
dm

dxm
Pl(x)

)

− (l −m)(l +m+ 1)
dm

dxm
Pl(x) = 0. (11.16)

Thus (dm/dxm)Pl(x) is also a solution of equation 11.13. We thus see eq11.11
that

Cm(x) = α
dm

dxm
Pl(x), (11.17)

where α still needs to be determined. Once we find out how to chose l eq11.11b
so Pl(x) is 0 at l, Pl′ for l′ 6= l will also be zero. So we see that once we
determine constraints on l such that the Pl(x) which solves the m = 0
equation is zero at zero at x = ±1, we can generate a solution for the
case m 6= 0.

We now calculate a recurrence relation for Pl(x). Set x = 1 in pr:recrel1
equation 11.16. This gives

2(m+1)

[
dm+1

dxm+1
Pl(x)

]
x=1

= (l−m)(l+m+1)

[
dm

dxm
Pl(x)

]
x=1

. (11.18)
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This tells us the (m + 1)th derivative of Pl(x) in terms of the mth eq11.12
derivative. We can differentiate l times if l is an integer. Take l to be
an integer. The case m = l yields[

dl+1

dxl+1
Pl(x)

]
x=1

= 0. (11.19)

So all derivatives are zero for m > l at x = 1. This means that P (x)ask Baker isn’t
this valid only
at x = 1

is an lth order polynomial, since all of its Taylor coefficients vanish for
m > l. Since Pl is regular at x = 1 and is a polynomial of degree l,

30 Mar p5 it must be regular at x = −1 also. If l were not an integer, we would
obtain a series which diverges at x = ±1. Thus we conclude that l must
be an integer. Note that even for the solution which is not regular at
x = ±1, for which l is not an integer, equation 11.18 is still valid for
calculating the series.

For a general m, we substitute equation 11.17 into equation 11.12
to get

um
l (x) = α(1− x2)m/2 d

m

dxm
Pl(x). (11.20)

This equation holds for m = 0, 1, 2, . . . . Furthermore this equation
solves equation 11.13. Note that because dm

dxmPl(x) is regular at x = 1
and x = −1, um

l (x) is also.30 Mar p6
We now compute the derivative. Using equation 11.18, for m = 0

we get

2
d

dx
Pl(x)|x=1 = l(l + 1)Pl(1) = l(l + 1).

By repeating this process for m = 1, 2, . . . and using induction, we find
that the following polynomial satisfies equation 11.18yet to be veri-

fied

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (11.21)

This is called Rodrigues formula for the Legrendre function.eq11.13

pr:rodform1 We define the associated Legendre polynomial

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x) m ≥ 0

=
(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l, m ≥ 0. (11.22)
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For m > l, Pm
l (x) = 0. So the allowed range of m is −l ≤ m ≤ l. Thuseq11.13b

the value of m affects what the lowest eigenvalue, l(l + 1), can be.

11.3.3 Orthogonality and Completeness of um
l (x)

We want to choose um
l (x) to be normalized. We define the normalized pr:normal4

eigen functions as the set of eigen functions which satisfies the condition
(with σ = 1) ∫ 1

−1
dx (um

l (x))∗ um
l′ (x) = 1. (11.23)

We need to evaluate
∫ 1
−1 dx|Pm

l (x)|2. Using integration by parts and eq11.13c
equation 11.22 we get (a short exercise)∫ 1

−1
dx|Pm

l (x)|2 =
∫ 1

−1
dx (Pm

l (x))∗ Pm
l (x) =

2

2l + 1

(l +m)!

(l −m)!
, (11.24)

so the normalized eigenfunctions are 30 Mar p7

um
l (x) =

√√√√ 2

2l + 1

(l +m)!

(l −m)!
Pm

l (x). (11.25)

The condition for orthonormality is eq11.14

pr:orthon4
〈um

l (x), um
l′ (x)〉 =

∫ 1

−1
dx (um

l (x))∗ um
l′ (x) = δll′ , (11.26)

The corresponding completeness relation is (as usual, with σ = 1)

∞∑
l=m

um
l (x)um

l (x′) = δ(x− x′). (11.27)

The problem we wanted to solve was equation 11.6, so we substitute
back in x = cos θ into the completeness relation, which gives

∞∑
l=m

um
l (cos θ)um

l (cos θ′) = δ(cos θ − cos θ′)

= δ((θ − θ′)(− sin θ))

=
δ(θ − θ′)

sin θ
.
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In the second equality we used a Taylor expansion for θ near θ′, which
yields

cos θ − cos θ′ = −(θ − θ′) sin θ.

In the third equality we used the δ-function property δ(ax) = |a|−1δ(x).
The completeness condition for um

l (cos θ) is thus

∞∑
l=m

um∗
l (cos θ)um

l (cos θ′) =
δ(θ − θ′)

sin θ
. (11.28)

Similarly, the orthogonality condition becomes (since
∫ 1
−1 d(cos θ) =30 Mar p8 ∫ π

0 sin θdθ) ∫ π

0
dθ sin θum

l′ (cos θ)um
l (cos θ) = δll′ . (11.29)

11.4 Spherical Harmonics
pr:spherH1
1 Apr p1a We want to determine the properties of the functions Y m

l , such as
completeness and orthogonality, and to determine their explicit form.
We postulated that the solution of equations 11.6 and 11.7 has the form
(c.f., equation 11.8)

Y m
l (θ, ϕ) =

eimϕ

√
2π
um

l (cos θ)

for integer l = m,m + 1,m + 2, . . . and m ≥ 0, where we have found
(equation 11.25)

um
l (cos θ) =

√√√√(l −m)!

(lm)!

2l + 1

2
(sin θ)m

(
d

d cos θ

)m

Pl(cos θ).

We define the Y −m
l (θ, ϕ), for m > 0, as

Y −m
l (θ, ϕ) ≡ (−1)mY m

l (θ, ϕ)∗

= (−1)m e
−imϕ

√
2π

um
l (cos θ).

The term (−1)m is a phase convention and e−imϕ
√

2π
is an eigen function.

This is often called the Condon-Shortley phase convention.pr:consho1
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11.4.1 Othonormality and Completeness of Y m
l

We saw that the functions um
l satisfy the following completeness con-

dition:
∞∑

l=m

um
l (cos θ)um

l (cos θ′) =
δ(θ − θ′)

sin θ
for all m

where m is fixed and positive. We know that

∞∑
m=−∞

eimϕ′

√
2π

e−imϕ

√
2π

= δ(ϕ− ϕ′). (11.30)

Multiply 1
sin θ

δ(θ − θ′) into equation 11.30, so that eq11.15

1 GApr 1b
δ(ϕ− ϕ′)δ(θ − θ′)

sin θ
=

∞∑
m=−∞

eimϕ

√
2π

 ∞∑
l≥|m|

u
|m|
l (cos θ)u

|m|
l

∗
(cos θ)

 e−imϕ′

√
2π

=
∞∑

m=−∞

∞∑
l≥|m|

Y m
l (θ, ϕ)Y m

l
∗(θ, ϕ′),

since

Y m
l = (−1)m e

imϕ

√
2π
u
|m|
l (cos θ) for m < 0,

and

Y m
l
∗ = (−1)m e

−imϕ

√
2π

u
|m|
l (cos θ) for m < 0.

Thus we have the completeness relation

δ(Ω− Ω′) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′). (11.31)

We also note that Lθϕ has (2l+ 1)–fold degenerate eigenvalues l(l+ 1) eq11.16
in

LθϕY
m
l (θ, ϕ) = l(l + 1)Y m

l (θ, ϕ).

Thus m is like a degeneracy index in this equation.

Next we look at the orthogonality of the spherical harmonics. The pr:orthon5
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orthogonality relation becomes∫
dΩY m

l
′(θ, ϕ)Y m

l (θ, ϕ) =
∫ 2π

0

dϕ

2π
δmm′

∫ 1

−1
d cos θum

l (cos θ)um′

l′ (cos θ)

= δll′δmm′ ,

where dΩ = dϕdθ sin θ on the right hand side, Because the u’s are
orthogonal and the e−imϕ’s are orthogonal, the right hand side is zero
when l 6= l′ or m 6= m′.

11.5 GF’s for Spherical Symmetry
1 Apr 2a

We now want to solve the Green’s function problem for spherical sym-
metry.

11.5.1 GF Differential Equation

The first step is to convert the differential equation into spherical co-
ordinates. The equation we are considering is

[L0 − λσ(x)]G(x,x′;λ) = δ(x− x′). (11.32)

By substituting the L0 for spherically symmetric problems, which weeq11.16a
found in equation 11.3, we haveI don’t know

how to fix this. [
− 1

r2

d

dr

(
r2τ(r)

d

dr

)
+
τ(r)

r2
Lθϕ + V (r)− λσ

]
Glm(x,x′;λ′)

=
δ(r − r′)

r2
δ(Ω− Ω′) (11.33)

=
δ(r − r′)

r2

∞∑
l=0

l∑
m=l

Y m
l (θ, ϕ)Y m∗

l (θ′, ϕ′).

where the second equality follows from the completeness relation, equa-eq11.17
tion 11.31. Thus we try the solution formpr:ExpThm2

G(x,x′;λ) =
∞∑
l=0

l∑
m=l

Y m
l (θ, ϕ)Glm(r, r′;λ′)Y m

l
∗(θ, ϕ). (11.34)



11.5. GF’S FOR SPHERICAL SYMMETRY 173

Note that the symmetry of θ, φ and θ′, φ′ in this solution form meanseq11.17b
that Green’s reciprocity principle is satisfied, as required. Substituting
this into equation 11.33 and using equation 11.6 results in Lθφ being
replaced by the eigenvalue of Y m

l , which is l(l+ 1). Superposition says
that we can look at just one term in the series. Since the linear operator
no longer involves θ, φ, we may divide out the Y m

l ’s from both sides to
get the following radial equation[
− 1

r2

d

dr

(
r2τ(r)

d

dr

)
+
τ(r)

r2
l(l + 1) + V (r)

]
Glm(r, r′;λ′) =

δ(r − r′)

r2
.

(11.35)
The linear operator for this equation has no m dependence. That is, m eq11.18
is just a degeneracy index for the 2l + 1 different solutions of the Lθφ

equation for fixed l. Thus we can rewrite our radial Green’s function
Glm as Gl and define the radial operator as

L
(l)
0 = − d

dr

(
r2τ(r)

d

dr

)
+ r2

[
τ(r)

r2
l(l + 1) + V (r)

]
. (11.36)

We have reduced the three dimensional Green’s function to the standard eq11.18b
single dimensional case with effective tension r2τ(r), effective potential
energy V (r), and a centripetal kinetic energy term (τ(r)/r2)l(l + 1).

11.5.2 Boundary Conditions
pr:bc5

What about the boundary conditions? If the boundary conditions are 1 Apr 2b
not spherically symmetric, we need to take account of the angles, i.e.,

[n̂ · ∇+ κ(S)]G(x x′, λ) = 0,

for x on S and x′ in R.
Consider a spherical region as shown in figure 11.2. For spherically fig11b

symmetric boundary conditions, we can set κint(S) = ka and κext(S) =
kb. Thus [

− ∂

∂r
+ ka

]
G = 0 for r = a,

[
∂

∂r
+ kb

]
G = 0 for r = b.
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Figure 11.2: The general boundary for spherical symmetry.

If we insert G from equation 11.34 into these conditions, we find the
following conditions on how Gl behaves:[

− ∂

∂r
+ ka

]
Gl = 0 for r = a,

[
∂

∂r
+ kb

]
Gl = 0 for r = b,

for all l. These equations, together with equation 11.35, uniquely de-
termine Gl.

With these definitions we can examine three interesting cases:

(1) the internal problem a→∞,
(2) the external problem b→ 0, and
(3) the all space problem a→ 0 and b→∞.

pr:spcProb1
These cases correspond to bound state, scattering, and free space prob-
lems respectively.

11.5.3 GF for the Exterior Problem
4 Apr p1

We will now look at how to determine the radial part of the Green’s
function for the exterior problem. essential idea is that we have taken
a single partial differential equation and broken it into several ordinary
differential equations. For the spherical exterior problem the region R
of interest is the region outside a sphere of radius a, and the boundary S
is the surface of the sphere. The physical parameters are all spherically
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symmetric: τ(r), σ(r), V (r), and κ(S) = ka. Our boundary condition
is [

− ∂

∂r
+ ka

]
G(x,x′;λ) = 0,

where r = a for all θ, ϕ (that is, |x′| > |x| = a). This implies 4 Apr p2,3[
− ∂

∂r
+ ka

]
Gl(r, r

′;λ) = 0 for r′ > r = a.

The other boundary condition is that Gl is bounded as r →∞.
We now want to solve Gl(r, r

′;λ). Recall that we have seen two
ways of expressing the Green’s function in terms of solutions of the
homogeneous equation. One way is to write the Green’s functions as
a product of the solution satisfying the upper boundary condition and
the solution satisfying the lower boundary condition, and then divide
by the Wronskian to ensure continuity. Thus we write

Gl(r, r
′;λ) = − 1

r2τ(r)

ul
1(r<, λ)ul

2(r>, λ)

W (ul
1, u

l
2)

, (11.37)

where ul
1 and ul

2 satisfy the equations eq11.18c

[Ll
0 − λσ(r)r2]ul

1(r, λ) = 0,

[Ll
0 − λσ(r)r2]ul

2(r, λ) = 0,

and the boundary conditions[
− ∂

∂r
+ ka

]
ul

1 = 0 for r = a,

ul
2(r, λ) <∞ when r →∞.

The other way of expressing the Green’s function is to look at how
it behaves near its poles (or branch cut) and consider it as a sum of
residues. This analysis was performed in chapter 4 where we obtained
the following bilinear sum of eigenfunctions: 4 April p4

Gl(r, r
′, λ) =

∑
n

u(l)
n (r)u(l)

n (r′)

λ
(l)
n − λ

. (11.38)
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Note that what is meant here is really a generic sum which can mean eq11.19
either a sum or an integral depending on the spectrum of eigenvalues.
For the external problem we are considering, the spectrum is a pure
continuum and sums over n should be replaced by integrals over λn.

The u(l)
n (r) solve the corresponding eigen value problem

L
(l)
0 u

(l)
n (r) = λ(l)

n r
2σ(r)u(l)

n (r)

with the boundary conditions that[
− ∂

∂r
+ ka

]
u(l)

n = 0 for r = a,

and u(l)
n is finite as r → ∞. The interior problem, with ul

n finite as
r → 0, has a discrete spectrum.

The normalization of the u(l)
n (r) is given by the completeness relation

∑
n

u(l)
n (r)u(l)

n (r′) =
δ(r − r′)

r2σ(r)
.

We insert equation 11.38 into 11.34 to get4 Apr p5

G(x,x′;λ) =
∑
n

u(l,m)
n (x)u(l,m)

n (x′)

λ
(l)
n − λ

(11.39)

whereeq11.20
u(l,m)

n (x) = Y m
l (θ, ϕ)u(l)

n (r).

and λ(l)
n is the position of the nth pole of Gl. So the eigenvalues λn are

the λ(l)
n determined from the r-space eigenvalue problem. The corre-

sponding eigenfunctions u(l,m)
n (x) satisfy

L
(l)
0 u

(l,m)
n (x) = λ(l)

n r
2σ(r)u(l,m)

n (x).

The completeness relation for u(l,m)
n (x) is found by substituting equation

11.39 into 11.32 and performing the same analysis as in chapter 4. The
result is ∑

n

u(l)
n (r)u(l)

n (r′) =
δ(x− x′)

σ(x)
.
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11.6 Example: Constant Parameters
4 Apr p6

We now look at a problem from the homework. We apply the aboveOld HW#4
analysis to the case where V = 0 and τ and σ are constant. Our
operator for L becomes (c.f., equation 11.36)

L
(l)
0 = τ

[
− d

dr

(
r2 d

dr

)
+ l(l + 1)

]
.

The equation for the Green’s function becomes (after dividing by τ):[
− d

dr

(
r2 d

dr

)
+ l(l + 1)− k2r2

]
Gl(r, r

′;λ) =
1

τ
δ(r − r′),

where k2 = λσ/τ = λ/c2.

11.6.1 Exterior Problem

We again have the boundary conditions[
− ∂

∂r
+ ka

]
Gl(r, r

′;λ) = 0, (11.40)

where r = a, r′ > a, and Gl bounded as r →∞. As usual, we assume (eq11.21d
the solution form

Gl(r, r
′, λ) = − 1

r2τ(r)

u
(l)
1 (r<, λ)u

(l)
2 (r>, λ)

W (u
(l)
1 , u

(l)
2

. (11.41)

We solve for u1 and u2: eq11.21a
4 Apr p7[

− d

dr

(
r2 d

dr

)
+ l(l + 1)− k2r2

]
u

(l)
1,2 = 0,

where u1 and u2 satisfy the boundary conditions as r = a and r → ∞
respectively and k ≡ ω/c =

√
λ/c2. This is the spherical Bessel equa-

tion from the third assignment of last quarter. We found the solution

u(r) =
R(r)√
r
,
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where R(r) satisfies the regular Bessel equation[
− d

dr

(
r
d

dr

)
+

(l + 1
2
)2

r
− k2r

]
R(r) = 0.

The solutions for this equation are:

R ∼ Jl+ 1
2
, Nl+ 1

2
.

By definitionpr:sphBes

jl(x) =

√
π

2x
Jl+ 1

2
(x),

nl(x) =

√
π

2x
Nl+ 1

2
(x),

h
(1)
l (x) =

√
π

2x
Hl+ 1

2
(x),

where jl(kr) is a spherical Bessel function, nl(kr) is a spherical Neu-

mann function, and h
(1)
l (kr) is a spherical Hankel function. So we can

write
u1 = Ajl(kr<) +Bnl(kr<),

u2 = h1
l (kr>),

Note that the u2 solution is valid because it is bounded for large r:Is this correct?

lim
x→∞

h
(1)
l (x) = − i

x
eix(−i)l.

11.6.2 Free Space Problem
4 Apr p8

We now take the special case where a = 0. The boundary condition
becomes the regularity condition at r = 0, which kills the nl(kr<)
solution.

The solutions u
(1)
l and u

(2)
l are then

u
(1)
l = jl(kr),

u
(2)
l = h

(1)
l (kr).

Let λ be an arbitrary complex number. Note that since h
(1)
l (x) =4 Apr p9
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jl(x) + inl(x), we have

W (jl(x), h
(1)
l (x)) = iW (jl(x), nl(x)) =

i

x2
.

The last equality follows immediately if we evaluate the Wronskian for
large r using

jl(x) ≈ cos(x− (l + 1)π/2) x→∞,

nl(x) ≈ sin(x− (l + 1)π/2) x→∞,

and recall that τW is a constant (for the general theory, c.f., problem
1, set 3) where “τ” is r2τ for this problem. In particular we have

W (jl, h
(1)
l ) =

i

(kr)2
.

We then get from equation 11.41

Gl =
1

r2τ

jl(kr<)h
(1)
l (kr>)

k i
(kr)2

=
ik

τ
jl(kr<)h

(1)
l (kr>). (11.42)

(eq11.21c
We have thus found the solution of[

−∇2 − λ

c2

]
G =

δ(x− x′)

τ
, (11.43)

which is the fundamental three-space Green’s function. We found (eq11.22

4 Apr p10
G(x,x′, λ) =

ik

τ

∑
lm

Y m
l (θ, ϕ)jl(kr<)hl(kr>)Y m

l
∗, (11.44)

which is a simple combination of equation 11.34 and 11.42. In the first eq11.22a
homework assignment we solve this by a different method to find an
explicit form for equation 11.43. Here we show something related. In
equation 11.43 we have G = G(|x − x′|) since V = 0 and σ and τ
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constant. This gives translational and rotational invariance, which cor-
responds to isotropy and homogeneity of space. We solve by choosing
x = 0 so that

jl(kr<) = j0(kr) + 0′s

as r′ → 0. Only the l = 0 term survives, since as r′ → 0 we have 4 Apr p11

l = 0 −→ jl(0) = 1,

l 6= 0 −→ jl(0) = 0.

Thus we have

G(x,x′;λ) =
ik

τ
|Y 0

0 |2h0(kr).

Since l = 0 implies m = 0, we get Y 0
0 = const. = 1/4π since it satisfies

the normalization
∫
dΩ|Y |2 = 1. We also know that

h
(1)
0 (x) = − i

x
eix.

This gives us

G(x x′;λ) =
1

τ4πr
eikr.

We may thus conclude that

G(|x− x′|) =
eik|x−x′|

4π|x− x′|τ
. (11.45)

eq11.25

stuff omitted

11.7 Summary

1. The form of the linear operator in spherical coordinates is

L0 = − 1

r2

∂

∂r

(
r2τ(r)

∂

∂r

)
+
τ(r)

r2
Lθϕ + V (r),

where

Lθϕ = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂2ϕ
.
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2. Lθφ is hermitian.

3. The eigenvalue equations for Y m
l are

LθϕY
m
l (θ, ϕ) = l(l + 1)Y m

l (θ, ϕ),

− ∂2

∂ϕ2
Y m

l (θ, ϕ) = m2Y m
l (θ, ϕ) m = 0,±1,±2, . . . .

4. The partial wave expansion for the Green’s function is

G(x,x′;λ) =
∞∑
l=0

l∑
m=l

Y m
l (θ, ϕ)Glm(r, r′;λ′)Y m

l
∗(θ, ϕ).

5. The Green’s function for the free spce problem is

G(|x− x′|) =
eik|x−x′|

4π|x− x′|τ
.

11.8 References

The preferred special functions reference for physicists seems to be
[Jackson75]. Another good source is [Arfken85].

This material is developed by example in [Fetter81].
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Chapter 12

Steady State Scattering

Chapter Goals:

• Find the free space Green’s function outside a circle
of radius a due to point source.

• Find the free space Green’s function in one, two,
and three dimensions.

• Describe scattering from a cylinder.

12.1 Spherical Waves
6 Apr p1

We now look at the important problem of steady state scattering.
Consider a point source at x′ with sinusoidal time dependence pr:sssc1

f(x′, t) = δ(x− x′)e−iωt,

whose radiated wave encounters an obstacle, as shown in figure 12.1 fig11.3
We saw in chapter 1 that the steady state response for free space

with a point source at x′ satisfies[
L0 − σ

∂2

∂t2

]
u0(x, t) = δ(x− x′)e−iωt,

and was solved in terms of the Green’s function,

u0(x, ω) = G0(x,x
′, λ = ω2 + iε)e−iωt (12.1)

183
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Figure 12.1: Waves scattering from an obstacle.

=
eik|x−x′|−iwt

4πτ |x− x′|
(12.2)

where the Green’s function G0 satisfies the equation 11.43 and theeq11.25b
pr:uoxo1 second equality follows from 11.45. The equation for G0 can be written

[−∇2 − k2]G0(x,x
′;λ) =

1

τ
δ(x− x′) (12.3)

with the definition k =
√
λ/c2 = ω/c (Remember that λ = ω2 + iε).eq11.25c

6 Apr p3 We combine these observations to get

u0(x,x
′;ω) =

1

4πτ |x− x′|
e−iω(t−(x−x′)/c).

If there is an obstacle (i.e., interaction), then we have a new steady
state response

u(x,x′;ω) = G(x,x′;λ = ω2 + iε)e−iωt,

where
[L0 − λσ]G(x,x′;λ) = δ(x− x′) RBC. (12.4)

This is the steady state solution for all time. We used u0 and G0 for
the free space problem, and u and G for the case with a boundary.
Note that equation 12.4 reduces to 12.2 if there is no interaction. The
scattered part of the wave is

GSe
−iωt = (G−G0)e

−iωt.

pr:GS1
6 Apr p4
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12.2 Plane Waves

We now look at the special case of an incident plane wave instead of
an incident spherical wave. This case is more common. Note that once
we solve the point source problem, we can also solve the plane wave
problem, since plane waves may be decomposed into spherical waves.
An incident plane wave has the form

Φ0 = ei(wt−k·x)

where k = (ω/c)n̂. This is a solution of the homogeneous wave equation pr:Phi0[
−∇2 +

1

c2
∂2

∂t2

]
Φ0 = 0.

So Φ0 is the solution to the equation without scattering.
Let Φ be the wave when an obstacle is present,[

−∇2 +
1

c2
∂2

∂t2

]
Φ = 0

which solves the homogeneous wave equation and the regular boundary
condition at the surface of the obstacle.

To obtain this plane wave problem, we let x′ go to −∞. We now
describe this process. To obtain the situation of a plane wave approach-
ing the origin from −∞ẑ, we let x′ = −rẑ, as r′ →∞. We want to find
out what effect this limit has on the plane wave solution we obtained
in equation 11.45,

G0 =
eik|x−x′|

4πτ |x− x′|
.

We define the angles γ and θ as shown in figure 12.2. From the figure pr:gamma1

fig12awe see that

|x− x′| = r′ + r cos θ = r′ − r cos γ, |x′| → ∞.

We further recall that the dot product of unit vectors is equal to the
cosine of the separation angle,

cos γ =
x · x′

rr′
= − cos θ.
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Figure 12.2: Definition of γ and θ..

So the solution is

G0(x,x
′;λ) =

eik|x−x′|

4πτ |x− x′|

=
1

4πτr′
eik(r−r cos γ)

=
1

4πτr′
eikr′eikx·(−x̂′)

=
eikr′

4πτr′
eik·x

where k = w
c
(−x̂′). Note that we have used the first two terms of the

approximation in the exponent, but only the first term in the denomi-
nator. Thus we see that in this limit the spherical wave u0 in free space
due to a point source is

lim
|x′|→∞

u0 = G0e
−iωt

=
eikr′

4πr′τ
Φ0

where
Φ0 = e−i(ωt−k·x).

12.3 Relation to Potential Theory
pr:PotThy1
8 Apr p1 Consider the problem of finding the steady state response due to a

point source with frequency ω located at x′ outside a circular region of
radius a. The steady state response must satisfy the regular boundary
condition [

− ∂

∂r
G+ κaG

]
= 0 for r = a. (12.5)
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In particular we want to find this free space Green’s function outside a eq11A1
circle of radius a, where V = 0 and σ and τ are constant.

The Green’s function G satisfies the inhomogeneous wave equation

[−∇2 − k2]G(x,x′) =
δ(x− x′)

τ

where k2 = λσ/τ = λ/c2. The solution was found to be (from problem
1 of the final exam of last quarter)

G =
1

4πτ

∞∑
m=−∞

eim(ϕ−ϕ′)[Jm(kr<) +XmH
(1)
m (kr<)]H(1)

m (kr>). (12.6)

with eq11A3
pr:Xm1Xm = − [kJ ′m(ka)−KaJm(ka)]

[kH
(1)
m (ka)−KaH

(1)
m (ka)]

. (12.7)

Note that H(1)
m (kr>) comes from taking Im

√
λ > 0. If we consider (Eq.BE)

Im
√
λ < 0, we would have H(2)

m instead. All the physics is in the
functions Xm. Note that from this solution we can obtain the solution 8 Apr p2
to the free space problem (having no boundary circle). Our boundary
condition is then then G must be regular at |x| = 0:

G regular, |x| = 0. (12.8)

(That is, equation 12.5 becomes 12.8.) How do we get this full space eq11A2
solution? From our solution, let a go to zero. So Xm in equation 12.6
goes the zero as a goes to zero, and by definition G → G0. The free
space Green’s function is then

G0 =
i

4πτ

∞∑
m=−∞

eim(ϕ−ϕ′)Jm(kr<)H(1)
m (kr>). (12.9)

This is the 2-dimensional analog of what we did in three dimensions. eq11A4
We use this to derive the plane wave expression in 3-dimensions.

We may now obtain an alternative expression for the free space
Green’s function in two dimensions by shifting the origin. In particular,
we place the origin at x′. This gives us r′ = 0, for which

Jm(kr′)H(1)
m (kr)|r′=0 =

{
H

(1)
0 (kr) m = 0

0 else.
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Thus equation 12.9 reduces to

G0(r) =
i

4πτ
H

(1)
0 (kr),

which can also be written as

G0(|x− x′|) =
i

4πτ
H

(1)
0 (k|x′ − x|). (12.10)

This is the expression for the two dimensional free space Green’s func-eq11A5
tion. In the process of obtaining it, we have proven the Hankel function
addition formula

H
(1)
0 (k|x′ − x|) =

∞∑
m=−∞

eim(ϕ−ϕ′)Jm(kr<)H(1)
m (kr>).

We now have the free space Green’s functions for one, two, and
three dimensions:

G1D
0 (|x− x′|) =

i

2kτ
eik|x−x′|,

G2D
0 (|x− x′|) =

i

4πτ
H

(1)
0 (k|x′ − x|),

G3D
0 (|x− x′|) =

eik|x−x′|

4πτ |x− x′|
. (12.11)

We can interpret these free space Green’s functions physically as fol-eq11A6

pr:fsp2 lows. The one dimensional Green’s function is the response due to a

8 Apr 5 plane source, for which waves go off in both directions. The two dimen-
sional Green’s function is the cylindrical wave from a line source. The
three dimensional Green’s functions is the spherical wave from a point
source. Note that if we let k → 0 in each case, we have

eik|x−x′| = 1 + ik|x− x′|,

and thus we recover the correct potential respectively for a sheet of
charge, a line charge, and a point charge.
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12.4 Scattering from a Cylinder

We consider again the Green’s function for scattering from a cylinder,
equation 12.6

G =
1

4πτ

∞∑
m=−∞

eim(ϕ−ϕ′)[Jm(kr<) +XmH
(1)
m (kr<)]H(1)

m (kr>). (12.12)

What is the physical meaning of [Jm(kr<)+XmH
(1)
m (kr<)] in this equa- eq11A6b

tion? This is gives the field due to a point source exterior to the cylin-
der:

u = G(x,x′, λ = ω2 + iε)e−iωt

= G0e
−iωt︸ ︷︷ ︸

u0

+ (G−G0)e
−iωt︸ ︷︷ ︸

us

(12.13)

Note that Xm contains the physics of the boundary condition, eq11A6c[
−∂G
∂r

+ κaG

]
= 0 for r = a.

From equations 12.12 and 12.13 we identify the scattered part of the
solution, us, as

us =
e−iωt

4πτ

∞∑
m=0

eim(φ−φ′)XmH
(1)
m (kr)H(1)

m (kr′). (12.14)

So we have expanded the total scattered wave in terms of H(1)
m , where eq11A7

Xm gives the mth amplitude. Why are the r> and r< in equation 12.11
but not in equation 12.14? Because there is a singular point at x = x′

in equation 12.11, but us will never have a singularity at x = x′. (Eq.j)
Now consider the more general case of spherical symmetry: V (r),

τ(r), σ(r). If these parameters are constant at large distances,

V (r) = 0,

τ(r) = τ = constant,

σ(r) = σ = constant,
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then at large distances G must have the form of equation 12.11,

G0(|x− x′|) =
eik|x−x′|

4πτ |x− x′|
.

We shall see that this formula is basic solution form of quantum me-
chanical scattering.

12.5 Summary

1. The free space Green’s function outside a circle of radius a due
to point source is

G =
1

4πτ

∞∑
m=−∞

eim(ϕ−ϕ′)[Jm(kr<) +XmH
(1)
m (kr<)]H(1)

m (kr>).

with

Xm = − [kJ ′m(ka)−KaJm(ka)]

[kH
(1)
m (ka)−KaH

(1)
m (ka)]

.

2. The free space Green’s function in one, two, and three dimensions
is

G1D
0 (|x− x′|) =

i

2kτ
eik|x−x′|,

G2D
0 (|x− x′|) =

i

4πτ
H

(1)
0 (k|x′ − x|),

G3D
0 (|x− x′|) =

eik|x−x′|

4πτ |x− x′|
.

3. For the problem of scattering from a cylinder, the total response
u is easily decomposed into an incident part a scattered part us,
where us contains the coefficient Xl.

12.6 References

See any old nuclear of high energy physics text, such as [Perkins87].



Chapter 13

Kirchhoff’s Formula

As a further application of Green’s functions to steady state problems,
let us derive Kirchhoff’s formula for diffraction through an aperture. pr:Kirch1
Suppose we have a point source of sound waves of frequency ω at some
point x0 in the left half plane and at x = 0 we have a plane with a hole.
We want to find the diffracted wave at a point x in the right-half plane. fig19a
If we look at the screen directly, we see the aperture is the yz-plane
at x = 0 with a hole of shape σ′ as shown in the figure. The solution
G(x,x0;ω) satisfies the equations

−[∇2 + k2]G(x,x0;ω) = δ(x− x0),

∂G

∂x

∣∣∣∣∣ x=0
x 6∈σ′

= 0.

We will reformulate this problem as an integral equation. This
integral equation will have as a kernel the solution in the absence of
the hole due to a point source at x′ in the R.H.P. This kernal is the
free space Green’s function, G0(x,x

′;ω), which satisfies the equations

−[∇2 + k2]G0(x,x
′;ω) = δ(x− x′),

∂G0

∂x

∣∣∣∣∣ x=0
all y,z

= 0.

This we solve by the method of images. The boundary condition is pr:MethIm2

191



192 CHAPTER 13. KIRCHHOFF’S FORMULA

S R

σ′

x
x0 vv

Figure 13.1: A screen with a hole in it.

satisfied by adding an image source at x′∗, as shown in figure 13.2 Thus
the Green’s function for this boundary value problem is

G(x,x′) =
1

4π

[
eik|x−x′|

|x− x′|
+
e−ik|x−x′|

|x− x′|

]

Now by taking L0 = −(∇2 + k2) we may apply Green’s second identity∫
x∈R

(S∗L0u− uL0S
∗) =

∫
x∈S

dSn̂ · [u∇S∗ − S∗∇u]

with u = G(x,x0) and S∗ = G0(x,x
′) where R is the region x > 0 and

S is the yz-plane. This gives us

L0u = 0 for x > 0,

∂u

∂x

∣∣∣∣∣ x=0
x6∈σ

= 0,

and

L0S
∗ = δ(x− x′),

∂S∗

∂x

∣∣∣∣∣
x=0

= 0.
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x = 0

x′∗v x′v
xv
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��� x0v
x′v

Figure 13.2: The source and image source.

These identities allow us to rewrite Green’s second identity as

−
∫
dxG(x,x0)δ(x− x′) =

∫
dy dzG0(x,x

′)

(
− ∂

∂x
G(x,x0)

)
x=0

and therefore

G(x′,x0) = −
∫
dy dzG0(x,x

′)
∂

∂x
G(x,x0)

∣∣∣∣∣
x=0

. (13.1)

Thus the knowledge of the disturbance, i.e., the normal component of eq19a
the velocity at the aperture, determines the disturbance at an arbitrary
point x in the right half plane. We have then only to know ∂

∂x
G at the

aperture to know G everywhere.
Furthermore, if x0 approaches the aperture, equation 13.1 becomes

an integral equation for G for which we can develop approximation
methods.

G(x′,x0) = −
∫
x∈σ′

dy dzG0(x,x
′)
∂

∂x
G(x,x0). (13.2)

The configurations for the different G’s are shown in figure 13.3. Note eq19b

fig19b
G0(x,x

′)|x′=0 =
1

2π

eik|x−x′|

|x− x′|
,

and equation 13.2 becomes

G(x′,x0) = − 1

2π

∫
x∈σ′

dy dz
eik|x−x′|

|x− x′|
∂

∂x
G(x,x0)

∣∣∣∣∣
x=0

.
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G0(x,x
′)

xv
x′v

G(x0,x
′)

x0v
x′v

G(x,x0)

x0v xv

Figure 13.3: Configurations for the G’s.

Now suppose that the size a of the aperture is much larger than
the wavelength λ = 2π/k of the disturbance which determines the
distance scale. In this case we expect that the wave in the aperture
does not differ much from the undisturbed wave except for within a
few wavelengths near the aperture. Thus for ka� 1 we can write

G(x,x0) ≈ − 1

2π

∫
x∈σ′

dy dz
eik|x−x′|

|x− x′|
∂

∂x
G(x,x0)

∣∣∣∣∣
x=0

∂

∂x

∣∣∣∣∣ eik|x−x′|

4π|x− x′|

∣∣∣∣∣
x=0

,

where we have used the substitution

∂

∂x
G(x,x0)

∣∣∣∣∣
x=0

=
∂

∂x

∣∣∣∣∣ eik|x−x′|

4π|x− x′|

∣∣∣∣∣
x=0

.

This equation then gives us an explicit expression for G(x′,x0) in terms
of propagation from the source at x to the field point x′ of the velocity

disturbance at x of the velocity distribution ∂
∂x

eik|x−x′|

4π|x−x′| produced by free
propagation to x from the point x0 of the disturbance. This yields Huy-fig19c
gen’s principle and other results of physical optics (Babenet’s principle,pr:Huyg1
etc.).

13.1 References

See [Fetter80, pp327–332] for a discussion of these results.



Chapter 14

Quantum Mechanics

Chapter Goals:

• State the Green’s function equation for the inho-
mogeneous Schrödinger equation.

• State the Green’s function for a bound-state spec-
tra in terms of eigen wave functions.

• State the correspondence between classical wave
theory and quantum particle theory.

8 Apr p8
pr:QM1

The Schrödinger equation is[
H − ih̄

∂

∂t

]
ψ(x, t) = 0

where the Hamiltonian H is given by

H = − h̄2

2m
∇2 + V (x).

This is identical to our original equation, with the substitutions τ =
h̄2/2m, L0 = H, and in the steady state case λσ = E. For the free space
problem, we require that the wave function ψ be a regular function.
The expression |ψ(x, t)|2 is the probability given by the probability
amplitude ψ(x, t). For the time dependent Schrödinger equation, we
have the same form as the heat equation, with ρcp → ih̄. In making the

195
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Figure 14.1: An attractive potential.

transition from classical mechanics to quantum mechanics, we use H =
p2/2m + V (x) with the substitution p → (h̄/i)∇; this correspondence
for momentum means that the better we know the position, and thus
the more sharply the wave function falls off, the worse we know the
subsequent position. This is the essence of the uncertainty principle.

We now look at the steady state form. Steady state solutions willpr:sss3
be of the form

ψ(x, t) = e−iωtψω(x),

where ψω(x) satisfies the equation

[H − h̄ω]ψω(x) = 0.

The allowed energy levels for h̄ω are the eigen values E of H:pr:enLev1
8 Apr p9

Hψ = Eψ. (14.1)

So the allowed frequencies are ω = E/h̄, for energy eigenvalues E. Theeq13.1
energy spectrum can be either discrete or continuous. Consider the
potential shown in figure 14.1. For E = En < V (0), the energy levelsfig13.1
are discrete and there are a finite number of such levels; for E > V (0),
the energy spectrum is continuous: any energy above V (0) is allowed.
A plot of the complex energy plane for this potential is shown in figure
14.2. The important features are that the discrete energies appear as
poles on the negative real axis, and the continuous energies appear as a
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uuuuu Re E

Im EE-plane

Figure 14.2: The complex energy plane.

branch cut on the positive real axis. Note that where as in this problem
there are a finite number of discrete levels, for the coulomb potential
there are instead an infinite number of discrete levels. If, on the other
hand, we had a repulsive potential, then there would be no discrete
spectrum.

The Green’s function solves the Schrödinger equation with an inho-
mogeneous δ-function term: 8 Apr p10

(H − E)G(x,x′;E) = δ(x− x′) (14.2)

where E is a complex variable. The boundary condition of the Green’s eq13.2
function for the free space problem is that it be a regular solution. Un-
like previously considered problems, in the quantum mechanical prob-
lems, the effect of a boundary, (e.g., the surface of a hard sphere) is
enforced by an appropriate choice of the potential (e.g., V = ∞ for
r > a). Once we have obtained the Green’s function, we can look at its
energy spectrum to obtain the ψ’s and En’s, using the formula obtained
in chapter 4:

G(x,x;E) =
∑
n

ψn(x)ψn(x′)

En − E
.

This formula relates the solution of equation 14.1 to the solution of
equation 14.2. fig13.2

11 Apr p1
11 Apr p2
11 Apr p3

14.1 Quantum Mechanical Scattering

pr:QMS1We now look at the continuum case. This corresponds to the prob-
lem of scattering. We use the Green’s function to solve the problem of
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quantum mechanical scattering. In the process of doing this, we will
see that the quantum mechanics is mathematically equivalent to the
classical mechanics of waves. Both situations involve scattering. The
solution u for the classical wave problem is interpreted as a velocity
potential, whereas the solution ψ for the quantum mechanical problem
is interpreted as the probability amplitude. For the classical wave prob-
lem, u2 is interpreted as intensity, while for quantum mechanics, |ψ|2 is
interpreted as probability density. Thus, although the mathematics for
these problems is similar, the general difference is in the interpretation.

The case of quantum mechanical scattering is similar to classical
scattering, so we consider classical scattering first. We use the Green’s
function in classical wave theory,

[L0 − λσ]G(x,x;λ) = δ(x− x′),

with λ = ω2 + iε for causality, to obtain the steady state response due
to a point source,

u = e−iωtG(x,x;λ = ω2 + iε).

This steady state solution solves the time dependent classical wave
equation, [

L0 + σ
∂2

∂t2

]
u(x, t) = δ(x− x′). (14.3)

We may decompose the solution u into two parts,eq13.3

u = u0 + uscat,

where

u0 = e−iωtG0 =
e−i(ωt−kR)

4πτR

where R = |x− x′|, and

uscat = e−iωt[G−G0].

Note that u0 is the steady state solution for a point source at x = x′,pr:uscat1
solution for a point source at x, G0 is the solution for the free case,
and us is the solution for outgoing scattered waves. Note also that the
outgoing scattered waves have no singularity at x = x′.
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14.2 Plane Wave Approximation
pr:PlWv1
11 Apr p4If one solves the problem of the scattering of the spherical wave from

a point source, that is, for the Green’s function problem, then we also
have the solution for scattering from a plane wave, merely by letting
|x′| → ∞. We now define Φ(x, t) as the solution of equation 14.3 for
the special case in which x′ → −∞ẑ,[

L0 + σ
∂2

∂t2

]
Φ(x, t) = 0. (14.4)

eq13.4
11 Apr p5For the steady state solution

Φ(x, t) = e−iωtΦ(x, ω),

we get the equation

[L0 − σω2]Φ(x, ω) = 0.

How is this equation solved for positive ω? There isn’t a unique solution
for this, just like there wasn’t a unique solution for the Green’s function.
We have already found a solution to this equation by considering the
Green’s function with the source point going to infinity in the above
method, but it does not satisfy the boundary condition appropriate for 11 Apr p6
scattering.

In order to determine the unique scattering solution, we must in-
troduce a new boundary condition appropriate for scattering. This is
necessary because although our previous equation

[L0 − σλn]un = 0 (14.5)

with RBC gave the eigenfunctions, it does not give unique physical eq13abc
solutions for the case of scattering.

To find the un’s in equation 14.5 we would extract them from the
Green’s function using, for the discrete case,

G(x,x′;λ) =
∑
n

unu
∗
n

λn − λ
,
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or for the continuum case,

un =
1

2πi
[G(x,x′;λ = λn + iε)−G(x,x′;λ = λn − iε)]

=
1

π
Im [G(x,x′;λ = λn + iε)].

But these un’s are not solutions corresponding to the scattering bound-
ary condition, since they contain both incoming and outgoing waves.

14.3 Quantum Mechanics
11 Apr p7

We now apply what we have said for particles to the case of quantum
mechanics. In this case the steady state solutions are of the form

ψ = e−i(E/h̄)tψ0.

We want the total wave to be a superposition of an incident plane wave
and a scattered wave.

ψ = eik·x−iωt + ψs

where ω = E/h̄. Note that eik·x corresponds to an incident plane wave,
and ψs corresponds to outgoing waves. To get this form, we use the11 Apr p9
Green’s function for the free space problem (no potential)

G0 =
eikR

4πRτ
=

m

2πh̄2

eikR

R
,

where

k2 =
λσ

τ
=

E

h̄2/2m
=

2mE

h̄2 =
p2

h̄2 .

Take the limit |x′| → ∞, the free space Green’s function becomes

e−i(E/h̄)tG0(x,x
′;E) = ψ0

m

2πh̄2

eikr

r
,

where ψ0 = e−ik·x−i(E/h̄)t.11 Apr p9
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14.4 Review

We have been considering the steady state response problem13 Apr p1 [
L0 + σ

∂2

∂t2

]
u(x, t) = δ(x− x′)e−iωt.

The steady state response for outgoing waves (i.e., that which satisfies
the boundary condition for scattering) is

u(x, t) = e−iωtG(x,x′, λ = ω2 + iε) (14.6)

where G solves eq14.g

[L0 − σλ]G(x,x′;λ) = δ(x− x′).

We want to get the response Φ(x, t) for scattering from a plane
wave. We only need to let |x′| go to infinity:

lim
|x′|→∞

u(x′, t) =
eikr′

4πr′
Φ(x, t).

This gives scattering from a plane wave. Φ is the solution of

[L0 + σ
∂2

∂t2
]Φ(x, t) = 0

which satisfies the boundary condition of scattering. For the case of
steady state response we can write

Φ(x, t) = e−iωtΦ(x, ω)

where Φ(x, ω) solves the equation

[L0 − σω2]Φ(x, ω) = 0.

This equation satisfies the boundary condition of scattering: 13 Apr p2

Φ(x, ω) = eik·x + Φs(x),

where Φs(x) has only outgoing waves. Note that

k2 =
ω2σ

τ
=
ω2

c2
and k = kn̂,

where σ = limr→∞ σ(r) and τ = limr→∞ τ(r).
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14.5 Spherical Symmetry Degeneracy

We now compare the mathematics of the plane wave solution Φ with
that of the eigen function u. The eigenvalue equation can be written

[L0 − σω2]uα(x, ω2) = 0.

In this equation uα is a positive frequency eigen function with degener-
acy number α and eigen value ω2. The eigen functions can be obtained
directly from the Green’s function by using

1

π
Im G(x,x′;λ = ω2 + iε) =

∑
α

uα(x, ω2)u∗α(x′, ω2).

For the case of spherical symmetry we have

uα(x, ω2) = ulm(x, ω2)

= Ylm(θ, ϕ)ul(r, ω
2)

where l = 0, 1, . . . and m = −l, . . . , 0, . . . , l. The eigenvalues ω2 are13 Apr p3
continuous: 0 < ω2 <∞. Because of the degeneracy, a solution of the
differential equation may be any linear combination of the degenerate
eigen functions:

Φ(x, ω) =
∑

cαuα,

where the cα’s are arbitrary coefficients. This relates the eigen function
to the plane wave scattering solution. In the next chapter we will see
how the cα’s are to be chosen.

14.6 Comparison of Classical and Quan-

tum
pr:ClasMech1

Mathematically we have seen that classical mechanics and quantum
mechanics are similar. Here we summarize the correspondences between
their interpretations.

classical wave theory quantum particle theory
u = wave amplitude ψ = probability amplitude
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u2 = energy density |ψ|2 = probability density
ωn = natural frequencies En = energy eigenvalues
Normal modes: Stationary states
un(x)e−iωnt = un(x, t) ψn(x)e−i(En/h̄)t = ψn(x, t)

L0un = σω2
nun Hψn(x) = Enψn(x)

L0 is positive definite: H+ = H:
ω2

n > 0 En ∈ R
13 Apr p4

The scattering problem is like the eigen value problem but we look
at the region of continuous spectrum. For scattering, we require that
En > 0. In this continuum case, look at the eigen values from:

(H − E)ψα(x, E) = 0, (14.7)

where α labels wave functions with degenerate eigenvalues. Rather eq13.25
than a wave we have a beam of particles characterized by some energy
E. The substitution from classical mechanics to quantum mechanics is
as follows:

ω2σ → E, τ → h̄2

2m
, k2 → E

h̄2/2m
=

2mE

h̄2 =
(
p

h̄

)2

.

This last equation is the De Broglie relation. pr:DeBr1
13 Apr p5Now we want to look at the solution for quantum mechanical scat-

tering using Green’s functions. Suppose we have a beam of particles
coming in. This incident free wave has the form eik·x−iEt/h̄ which solve
the free space hamiltonian

H0 =
h̄2

2m
∇2.

We want the solution to equation 14.7 which corresponds to scattering.
That is, we want the solution for

(H − E)Φ(x, E) = 0

which is of the form
Φ(x, E) = e−k·x + Φs

where Ψs has only outgoing waves.
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To solve this we look at the Green’s function.

(H − E)G(x,x′;E) = δ(x− x′) for ImE > 0,

with the appropriate boundary conditions. We make the substitution

ψ(x, t) = e−i(E/h̄)tG(x,x′;E + iε).

This corresponds not to a beam of particles but rather to a source of
particles.13 Apr p6

Stuff omitted

14.7 Summary

1. The Green’s function equation for the inhomogeneous Schrödinger
equation is

(H − E)G(x,x′;E) = δ(x− x′),

where

H = − h̄2

2m
∇2 + V (x).

2. The Green’s function for a bound-state spectra in terms of eigen
wave functions is

G(x,x;E) =
∑
n

ψn(x)ψn(x′)

En − E
.

3. There is a close connection between classical and quantum me-
chanics which is discussed in section 14.6.

14.8 References

See your favorite quantum mechanics text.



Chapter 15

Scattering in 3-Dim

Chapter Goals:

• State the asymptotic form of the response function
due to scattering from a localized potential.

• Derive the scattering amplitude for a far-field ob-
server due to an incident plane wave.

• Derive the far-field form of the scattering ampli-
tude.

• Define the differential cross section and write it in
terms of the scattering amplitude.

• Derive and interpret the optical theorem.

• Derive the total cross section for scattering from a
hard sphere in the high energy limit.

• Describe the scattering of sound waves from an os-
cillating sphere.

15 Apr p1

We have seen that the steady state case reduces the Green’s function
problem to the equation

[L0 − λσ]G(x,x′;λ) = δ(x− x′)

205
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with RBC, where the linear operator is given by

L0 = −∇ · τ(x)∇+ V (x).

In the spherically symmetric case we have V (r), σ(r), and τ(r). In
chapter 11 we saw that the Green’s function can be written as an ex-
pansion in terms of spherical harmonics,

G(x,x′;λ) =
∑
lm

Y m
l (θ, ϕ)Gl(r, r

′;λ)Y m∗
l (θ′, ϕ′).

In the last chapter we saw how to solve for scattering from a point
source and scattering from a plane wave. We did this for a particular
case in the problem set. This all had nothing to due with spherical
symmetry.Only partly

true. Now consider the case of spherical symmetry. From chapter 3 we
know that the radial Green’s function can be written

Gl(r, r
′;λ) = −u

l
1(r<, λ)ul

2(r>, λ)

r2τ(r)W (ul
1, u

l
2)
. (15.1)

The u’s solve the same radial eigenvalue equationeq14.0 [
− 1

r2

d

dr

(
r2τ(r)

d

dr

)
+
τ(r)l(l + 1)

r2
+ V (r)− λσ(r)

]
ul

1,2 = 0, (15.2)

but different boundary conditions. The eigenfunction u1 satisfies theeq14.1
15 Apr p2 boundary condition

∂

∂r
ul

1 − κul
1 = 0 for r = a

and as a→ 0 we replace this with the boundary condition ul
1(r) finite

at r = 0. The eigenfunction u2 satisfies the boundary condition u2

finite as r →∞.
By comparing equation 15.2 with previous one-dimensional equa-

tions we have encountered, we identify the second and third terms as
an effective potential,

Veff =
τ(r)l(l + 1)

r2
+ V (r).

In quantum mechanics we havepr:Veff1

Veff =
h̄2l(l + 1)

2mr2
+ V (r).
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15.1 Angular Momentum

The above spherical harmonic expansion for the Green’s function was
obtained by solving the corresponding eigenfunction equation for the
angular part,

h̄2LθϕY
m
l = h̄2l(l + 1)Y m

l .

The differential operator Lθϕ can be related to angular momentum by
recalling that the square of the angular momentum operator satisfies
the equation

L2
opY

m
l = h̄2l(l + 1)Y m

l .

Thus we identify h̄2Lθϕ as L2
op, the square of the angular momentum

operator.

h̄2Lθϕ ≡ L2
op.

In the central potential problem of classical mechanics it was found
that

Veff =
L2

2mr2
+ V (r),

where pr:bfL1
L = x× p

and

L2 = L · L.

In quantum mechanics the momentum operator is p = (h̄/i)∇, so that

L = x× p → Lop =
h̄

i
x×∇

and thus

L2
op =

(
h̄

i
x×∇

)
·
(
h̄

i
x×∇

)
= h̄2Lθϕ.

This gives the relation between angular momentum in classical mechan-
ics and quantum mechanics.
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Figure 15.1: The schematic representation of a scattering experiment.

15.2 Far-Field Limit

We now take the far field limit, in which r → ∞, meaning the field
is measured far from the obstacle. This situation is accurate for ex-
perimental scattering measurements and is shown in figure 15.1. Wepr:ExpScat1

fig14a assume that in this r → ∞ limit, we have σ(r) → σ, τ(r) → τ , and
rV (r) → 0. If instead the potential went as V (r) = γ/r, e.g., the
Coulomb potential, then our analysis would change somewhat. We will

also use the wave number k =
√
σλ/τ , where λ = ω2 + iε classically,

and λ = E + iε for the quantum case. In classical mechanics we then
have k = ω/c and in quantum mechanics we have k = p/h̄.15 Apr p3

Our incident wave is from a point source, but by taking the source-
to-target separation r′ big, we have a plane wave approximation. After
making these approximations, equation 15.2 becomes[

− 1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2
− k2

]
ul

1,2 = 0. (15.3)

If we neglect the term l(l + 1)/r2, compared to k2 we would need kr �eq14.2
l, which we don’t want. Instead we keep this term in order to keep
conventional solutions. In fact, it will prove easier to keep it, even
though it may vanish faster than V (r) as r → ∞, and since we also
have to consider l large, we don’t want to kill it. In this limit the
Green’s function is proportional to a product of the u’s,

lim
r→∞

Gl(r, r
′;λ) = Aul

1(r
′, λ)ul

2(r, λ). (15.4)
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We assume the the point source is not in the region where things are eq14.3
really happening, but far away. In this case V (r′) = 0, σ(r′) = σ, and
τ(r′) = τ , for large r′. Thus we are looking at the far field solution
where the point source is outside the region of interaction. 15 Apr p4

We already know the explicit asymptotic solution to the radial equa-
tion:

ul
2(r>) ≈ h

(1)
l (kr>) for kr> � 1, (15.5)

ul
1(r<) ≈ j

(1)
l (kr<) +Xlh

(1)
l (kr<) for kr< � 1. (15.6)

Xl contains all the physics, which arises due to the boundary condition. eq14.5
In general, Xl must be evaluated numerically. For specific cases such as
in the problem set, V (r) = 0 so equation 15.3 is valid everywhere, and
thus we may obtain Xl explicitly. For our present situation we have
assumed the far field approximation and an interaction-free source, for
which the asymptotic form of the Green’s function may be written in
terms of equation 15.5 and 15.6 as

lim
r→∞

Gl(r, r
′;λ) = A[jl(kr

′) +Xlh
(1)
l (kr′)]h

(1)
l (kr).

We have not yet specified r > r′, only that r � 1 and r′ � 1.
To obtain the scattered wave at large r, we look at G − G0. In

particular we will evaluate Gl − Gl0. So we look at Gl
0(r, r

′;λ) for
r � r′. Recall that Gl0 has the form 15 Apr p5

Gl0(r, r
′;λ) =

ik

τ
jl(kr<)h

(1)
l (kr>).

This is for the free problem; it solves all the way to the origin. Now
take the difference.

Gl −Gl0 =

(
A− ik

τ

)
jl(kr<)h

(1)
l (kr>) + AXlh

(1)
l (kr<)h

(1)
l (kr>).

This equation assumes only that we are out of the range of of interac-
tion. The term h

(1)
l (kr>) gives the discontinuity on dG/dr at r = r′.

We now assert that A must equal ik/τ because the scattering wave What does this
mean?
15 Apr p6

Gl −Gl0 has to be nonsingular. Now look at the case r > r′:

pr:scatWv1
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Gl −Gl0 =
ik

τ
Xlh

(1)
l (kr′)h

(1)
l (kr).

All that is left to see is what the scattered wave looks like. We take kr
to be large, as in the problem set.

To solve this equation not using Green’s function, we first look for
a solution of the homogeneous problem which at large distances gives
scattered plus incident waves.

Φ =
∞∑

m=−∞
cmu

m(r, ϕ).

At large distances we have15 Apr p7

Φ → eixt + outgoing waves.
18 Apr p1
18 Apr p2

15.3 Relation to the General Propagation

Problem

We could instead consider the general problem of propagation, but at
this time we are just considering the case of scattering, for which the
source lies in a homogeneous region where V (r) = 0 and σ and τ are
constant. The propagation problem is more general because it allows
the source to be anywhere.

15.4 Simplification of Scattering Problem

For the scattering problem, we are considering a beam of particles from
a distant (r′ � 1) point source in a homogeneous medium incident on
a target, which scatter and are detected by detectors far away (r � 1).
This latter condition is called the far field condition. In this case we
have seen that the problem can be simplified, and that we may explicitly
calculate the scattered Green’s function GlS(r, r′;λ):pr:scGF1

GlS = Gl(r, r
′, λ)−Gl0(r, r

′, λ) =
ik

c
Xlh

1
l (kr)h

1
l (kr

′),
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with k =
√
λσ/τ =

√
λ/c, where c is the speed. The value of Xl

depends on k and is obtained from the behavior of u1 at large r = |x|.
We already know that ul

1(r) must be of the form 18 Apr p3

lim
r→∞

ul
1(r) = jl(kr) +Xl(k)h

1
l (kr),

since this is the asymptotic form of the solution of the differential equa- What does this
mean Physi-
cally? Isn’t U l

1

for distances
less than
rsource? Don’t
we need r <
r′?

tion. Thus scattering reduces to this form. All we need is Xl, which
is obtained from the behavior of ul

1(r). In particular, we don’t need to
know anything about ul

2(r) if we are only interested in the scattering
problem, because at large distances it cancels out.

The large distance behavior of the function which satisfies the bound-
ary condition at small distances is what determines the scattering so-
lution. In this case r and r′ are both large enough that we are in
essentially a homogeneous region.

15.5 Scattering Amplitude
pr:scAmp1

Consider the special problem where V = 0, σ = const., and τ = const.,
with the boundary condition

∂u1

∂r
+ ku1 = 0 for r = a.

In the problem set we found Xl by satisfying this condition. The result
was

Xl = − [kj′l(ka)− κjl(ka)]

[kh1
l
′
(ka)− κh1

l (ka)]
.

This equation is valid for r > a. 18 Apr p4
GivenXl we can calculate the difference, Gl−Gl0 so we can calculate

GlS. Thus we can determine the scattered wave, which we now do.
We calculate the scattered piece by recalling the expansion in terms

of spherical harmonics,

GS = G−G0 =
∑
l,m

Y m
l (θ, ϕ)[Gl(r, r

′;λ)−Gl0(r, r
′;λ)]Y m∗

l (θ′, ϕ′).

(15.7)
We substitute into this the radial part of the the scattered Green’s eq14.6
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ẑ
origin

Figure 15.2: The geometry defining γ and θ.

function,

G(r, r′;λ)−G0(r, r
′;λ) =

∞∑
l=0

ik

c
Xl(k)h

(1)
l (kr)h

(1)
l (kr′), (15.8)

and the spherical harmonics addition formulaeq14.7
18 Apr p5

pr:addForm1
l∑

m=−l

Y m
l (θ, ϕ)Y m∗

l (θ′, ϕ′) =
2l + 1

4π
Pl(cos γ)

=
(−1)l

4π
(2l + 1)Pl(cos θ) (15.9)

where cos γ = x̂ · x̂′. The geometry is shown in figure 15.2. The resulteq14.8

fig14b of plugging equations 15.8 and 15.9 into equation 15.7 is

GS = G−G0 =
∞∑
l=0

ik

τ
Xl(k)h

1
l (kr)h

1
l (kr

′)
(−1)l

4π
Pl(cos θ)(2l + 1).

15.6 Kinematics of Scattered Waves

We take the limit kr →∞ to get the far field behavior. In the asymp-
totic limit, the spherical Hankel function becomes

h(1)(x)
x→∞−→ − i

x
(−i)leix.

Thus in the far field limit the scattered Green’s function becomes

G−G0 →
ik

τ

eikr

kr

(−i)
4π

∞∑
l=0

Xkh
1
l (kr

′)(i)l(2l + 1)Pl(cos θ).

This in the case for a detector very far away. We can write also this as18 Apr p6



15.7. PLANE WAVE SCATTERING 213

G−G0 =
eikr

r
f̃(θ, r′, k),

where

f̃(θ, r′, k) =
1

4πτ

∞∑
l=0

(2l + 1)(i)lPl(cos θ)Xl(k)h
1
l (kr

′). (15.10)

This is an independent proof that the scattered Green’s function, G− eq14.9
G0, is precisely an outgoing wave with amplitude f̃ .

The scattered part of the solution for the steady state problem is
given by

us = e−iωt(G−G0).

The energy scattered per unit time per unit solid angle will be propor-
tional to the energy per unit area, which is the energy flux u2. This in
turn is proportional to the scattering amplitude f̃ . Thus

dE

dtdΩ
∼ |f |2.

18 Apr p7
We know the radial differential ds = r2dr of the volume dV = dsdΩ

for a spherical shell, so that we get

dE

dtdΩ
=

dE

dtds

ds

dr

Note that dimensionally we have dE
dtds

= 1
r2 and ds

dr
= r2, so that dE

dtdΩ
is

dimensionless. Thus it is the 1/r term in the scattered spherical wave
which assures conservation of energy. pr:ConsE1

15.7 Plane Wave Scattering

We now look at scattering from a plane wave. Let r′ = |x′| go to
infinity. This gives us

h
(1)
l (kr′)

r′→∞−→ (−i)l+1 e
|kr′|

kr′
.

In this limit equation 15.10 becomes

f̃(θ, r′, k) → e|kr′|

4πτr′
f(θ, k)
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where 18 Apr p8
ekr′

r′
f(θ, k) = − i

k

∞∑
l=0

(2l + 1)Pl(cos θ)Xl. (15.11)

f(θ, k) is called the scattering amplitude for a field observer from aneq14fth

pr:ftrk1 incident plane wave. We can now compute the total wave for the far
field limit with incident plane wave. It is

u = e−iωtG = e−iωt[G−G0 +G0]

= e−iωt

(
− eikr′

4πτr′

)(
eik·x +

eikr

r
f

)
.

In this equation the term eik·x corresponds to a plane wave and the
term eikr

r
f corresponds to an outgoing scattered wave. So

|f 2| ∼ dE

dtdΩ

This is a problem in the problem set.

15.8 Special Cases
20 Apr p1

So far we have considered the case in which all the physics occurs within
some region of space, outside of which we have essentially free space.
We thus require that in the area exterior to the region, V0 = 0, τ =
constant, and σ = constant. The source emits waves at x′, and we want
to find the wave amplitude at x. Note that for the Coulomb potential,
we have no free space, but we may instead establish a distance after
which we may ignore the potential.20 Apr p3

15.8.1 Homogeneous Source; Inhomogeneous Ob-
server

In this case x′ is in a region where V (r) ≈ 0, and σ and τ are constant.
We define u0 to be the steady state solution to the point source problem
without a scatterer present, i.e., u0 is the free space solution.

u0 = e−iωtG0,
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where

G0 =
eik|x−x′|

4πτ |x− x′|
.

Further we define the scattered solution

us ≡ u− u0.

To find us we use equation 15.1 to get the spherical wave expansion

G0l =
ik

τ
jl(kr<)h

(1)
l (kr>).

Thus
us = e−iωt(G−G0).

For the case of a homogeneous source and an inhomogeneous observer
r> = r′, r< = r = 0. We take

u
(l)
2 (r′) = h

(1)
l (kr′).

Remember that r′ is outside the region of scattering, so ul
2 solves the 20 Apr p4

free space equation, 15.3,[
− 1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2
− k2

]
u2 = 0, (15.12)

where k2 = λσ/τ with the condition ul
2(r) finite as r →∞. The general eq14.10

solution to equation 15.12 is

u
(l)
2 (r′) = h

(1)
l (kr′).

We still need to solve the full problem for u1 with the total effective
potential V (r) 6= 0.

15.8.2 Homogeneous Observer; Inhomogeneous Source

In this case the source point is in the interior region. We want to find 20 Apr p5
u for x inside the medium, but we cannot use the us method as we did
in case 1. The reason why it is not reasonable to separate u0 and uS in
this case is because the source is still inside the scattering region.
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We replace r> → r and r< → r′ so that

u
(l)
2 (r) → h

(1)
l (kr)

and u
(l)
1 (r) satisfies the full potential problem So once again we only

need to solve for u
(l)
1 (r). The physics looks the same in case 1 and

case 2, and the solutions in these two cases are reciprocal. This is a
manifestation of Green’s reciprocity principle. The case of a field inside
due to a source outside looks like the case of a field outside due to a
source inside.

15.8.3 Homogeneous Source; Homogeneous Observer

For this case both points are in exterior region. By explicitly taking
|x| > |x′| we make this a special case of the previous case. Thus we
have r> → r and r< → r′. Now both u1 and u2 satisfy the reduced
ordinary differential equation[

− 1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2
− k2

]
u1,2 = 0, (15.13)

where u1 satisfies the lower boundary condition and u2 satisfies theeq14rad
upper boundary condition. As we have seen, the asymptotic solutions
to this equation are

u
(l)
1 (r′) → jl(kr

′) +Xlh
(1)
l (kr′). (15.14)

u
(l)
2 (r) → h

(1)
l (kr). (15.15)

To obtain Xl we must solveeq14.11,12
20 Apr p6

[
− 1

r2

d

dr

(
r2τ(r)

d

dr

)
+

(
l(l + 1)

r2
+ V (r)

)
τ(r)− λσ

]
u1 = 0,

and then take r � 1. We can then get Xl(k) simply by comparing
equations 15.14 and 15.15. The scattered wave is then

us = e−iωt(G−G0),

where

Gl −G0
l →

ik

τ
e−iωtXlh

(1)
l (kr)h

(1)
l (kr′).

We see that the field at x is due to source waves u0 and scattered waves
uS.
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Homogeneous Source and Observer, Far Field

For this case the source and the field point are out of the region of
interaction. We take r > r′ and r′ →∞.

For these values of r and r′ we have V = 0 and τ and σ constant.
In this case

e−iωtG→ e−iωtG0 =
eik|x−x′|−iωt

4πτ |x− x′|
(15.16)

(Eq.f)

G0 =
∞∑
l=0

(2l + 1)

4π
(−1)lPl(cos θ)G0

l (15.17)

where (Eq.g)

G0
l =

ik

τ
jl(kr<)h

(1)
l (kr>) (15.18)

(Eq.h)
u = e−iωtG = e−iωtG0 + us (15.19)

where (Eq.i)

22 Apr p3
us = e−iωt(G−G0)

=
ik

τ
e−iωt

∞∑
l=0

Xl
(2l + 1)(−1)l

4π
Pl(cos θ)h

(1)
l (kr)h

(1)
l (kr′)

where for large r,

u1 → jl(kr) +Xlh
(1)
l (kr) (15.20)

This is the large r behavior of the solution satisfying the small r bound- (Eq.k)
ary condition.

15.8.4 Both Points in Interior Region

We put x very far away, next to a detector. The assumption that x lies
in the vicinity of a detector implies kr � 1. This allows us to make
the following simplification from case 2:

h
(1)
l (kr) → (−i)l (−i)

kr
eikr. (15.21)

Thus we can rewrite u1. We have (Eq.m)

20 Apr p7
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us = e−iωt(G−G0) (15.22)

and the simplification (Eq.n)

Gl
0 → jl(kr

′)h
(1)
l (kr). (15.23)

(Eq.0)

22 Apr p1

15.8.5 Summary

Here is a summary of the cases we have looked at

case 4 need to know u1, u2 everywhere
cases 1, 2 need to know u1 everywhere
case 3 need to know u1 at large r only

We now look at two more special cases.22 Apr p4

15.8.6 Far Field Observation

Make a large r expansion (r →∞):

h
(1)
l (kr) → (−i)l(

−i
kr

)e−ikr (15.24)

(EQ.l)

u =
e−i(ωt−k|x−x′|)

4πτ |x− x′|
+
e−i(ωt−kr)

r
f̃(θ, r′, k). (15.25)

The term e−i(ωt−kr)

r
f̃(θ, r′, k) is explicitly just the outgoing wave. We(Eq.m)

found

f̃(θ, r′, k) =
1

4πτ

∞∑
l=0

(2l + 1)(i)lPl(cos θ)Xlh
(1)
l (kr′) (15.26)

The term f̃(θ, r′, k) is called the scattering amplitude for a point source(Eq.n)

22 Apr p5 at r′. The flux of energy is proportional to f̃ 2.
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15.8.7 Distant Source: r′ →∞
Let the distance of thee source go to infinity. Define

k = k(−x̂′) (15.27)

and in f̃ , let r′ →∞. This gives us(Eq.o)

u→ eikr′

4πr′τ

[
e−i(ωt−k·x) +

e−i(ωt−kr)

r
f(θ, k)

]
(15.28)

We can then get (Eq.p)

22 Apr p6
f =

−i
k

∞∑
l=0

(2l + 1)Pl(cos θ)Xl (15.29)

This equation is seen in quantum mechanics. f̃ is called the scattering (Eq.q)
amplitude at angle θ, and does not depend on ϕ due to symmetry. The
basic idea is that plane waves come in, and a scattered wave goes out.

The wave number k comes from the incident plane wave. 22 Apr p7

15.9 The Physical significance of Xl

Recall that Xl is determined by the large distance behavior of the solu- pr:Xl1
tion which satisfies the short distance boundary condition. Xl is defined
by

u
(1)
l (kr) → jl(kr) +Xl(k)h

(1)
l (kr). (15.30)

This equation holds for large r with V = 0 and σ, τ constant. By using eq14.20
the identity

jl(kr) =
1

2

(
h

(1)
l (kr) + h

(2)
l (kr)

)
,

we can rewrite equation 15.30 as

u
(1)
l (kr) → 1

2

[
h

(2)
l (kr) + (1 + 2Xl)h

(1)
l (kr)

]
. (15.31)

We now define δl(k) by eq14.21

1 + 2Xl = e2iδl(k),
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We will prove that δl(k) is real. This definition allows us to rewrite
equation 15.31 as

u
(1)
l (kr) → 1

2

[
h

(2)
l (kr) + e2iδl(k)h

(1)
l (kr)

]
,

or

u
(1)
l (kr) =

1

2
eiδl

[
e−iδlh

(2)
l + eiδlh

(1)
l

]
. (15.32)

The solution ul
1 satisfies a real differential equation. The boundaryeq14.22

condition at r → 0 gives real coefficients. Thus ul
1 is real up to an

overall constant factor. This implies δl real. Another way of seeing this
is to note that by the definition of h

(1)
l and h

(2)
l we have

h
(2)
l (kr) =

[
h

(1)
l (kr)

]∗
.

Thus the bracketed expression in equation 15.32 is an element plus
its complex conjugate, which is therefore real. If ul

1(kr) ∈ R, then
δl(kr) ∈ R.Ask Baker

We now look at the second term in equation 15.32 for far fields,22 Apr p8

eiδlh
(1)
l (kr)

r→∞−→eiδl(k)−i
kr

(−i)leikr.

Note that
(−i)l = e−iπl/2.

This gives

eiδlh
(1)
l (kr) = − i

kr
ei(kr−πl/2+δl)

So

ul
1(kr) ∼

1

kr
sin(kr − πl/2 + δl(k)) r →∞. (15.33)

Thus δl(k) is the phase shift of the lth partial wave at wave number k.eq14.23
In the case that V = 0 we have

ul
1(kr) → ul

1,0(kr).

If there is no potential, then we have

Xl(k) → 0,
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u
(l)
1 (r)u

(l)
1,0(r)u

rRn

R(0)
n

Figure 15.3: Phase shift due to potential.

and by using the asymptotic expansion of j, we see that equation 15.3022 Apr p9
becomes

ul
1,0(r) ∼

1

kr
sin

(
kr − πl

2

)
. (15.34)

Thus the phase shift δl(k) is zero if the potential is zero. eq14.24
25 Apr p1
25 Apr p2
25 Apr p3

Consider the values of r for which the waves u1 and u1,0 are zero in
the far field limit. For equation 15.33 and equation 15.34 respectively,
the zeros occur when

kRn −
πl

2
+ δl = nπ,

and

kR0
n −

πl

2
= nπ.

By taking the difference of these equations we have

k(Rn −R0
n) = −δl(k). (15.35)

Thus δl(k) gives the large distance difference of phase between solutions (eq14.25
with interaction and without interaction. This situation is shown in fig-
ure 15.3. For the case shown in the figure, we have R0

n > Rn, which fig14c
means δl > 0. Note that turning on the interaction “pulls in” the scat-
tered wave. Thus we identify two situations. δl > 0 corresponds to an
attractive potential, which pulls in the wave, while δl < 0 corresponds
to a repulsive potential, which pushes out the wave.
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We now verify this behavior by looking at the differential equation
for the quantum mechanical case. We now turn to the quantum me-25 Apr p4
chanical case. In this case we set τ(r) = h̄2/2m and k2(x) = 2mE

h̄2 in
the equation[

− 1

r2

d

dr

(
r2 d

dr

)
+
V l

eff(r)

τ(r)
− λσ(r)

τ(r)

]
ul

1(r) = 0.

So for the radial equation with no interaction potential we have λσ/τ =
2mE/h̄2, while for the radial equation with an interaction potential we
have λσ/τ = 2m(E − V )/h̄2. Thus the effect of the interaction is to
change the wave number from

k2
0 =

2mE

h̄2 ,

to an effective wave number

k2(r) =
2m(E − V )

h̄2 . (15.36)

eq14.26
Suppose we have an attractive potential, V (r) > 0. Then from

equation 15.36 we see k2(r) > k2
0, which means momentum is increasing.

Also, since k2(r) > 0, increasing k2 increases the curvature of u, which
means the wavelength λ(r) decreases and the kinetic energy increases.
Thus the case k2(r) > l20 corresponds to an attractive potential pulling
in a wave, which means δl(k) > 0. The phase shift δl(k) > 0 is a
measure of how much the wave is pulled in. Note that this situation is
essentially that of a wave equation for a wave moving through a region
of variable index of refraction.25 Apr p5

Now consider a repulsive potential with l = 0, as shown in figure
15.4. We have V (r) = E for r = r0, and V (r) > E for r > r0. Infig14d
this latter case equation 15.36 indicates that k2(r) > 0, which means
the wave will be attenuated. Thus, as the wave penetrates the barrier,
there will be exponential decay rather than propagation.

15.9.1 Calculating δl(k)
From Griffies,
28 April, p2b It is possible to calculate δl(k) directly from ul

1 without calculating
Xl(k) as an intermediate step. To do this, let r →∞ and then compare
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V (r)

rr0

E

Figure 15.4: A repulsive potential.

this ul
1 with the general asymptotic form from equation 15.33, u ∼

sin(kr − lπ/2 + δl(k))/r. A different method for calculating δl(k) is
presented in a later section.

15.10 Scattering from a Sphere
pr:ScSph1

We now look at the example of scattering from a sphere, which was
already solved in the homework.

We have the boundary conditions

V = 0 at r = a

∂

∂r
ul

1 + κu1 = 0 at r = a.

We found in problem set 2, that Xl for this problem is 25 Apr p7

Xl =
[kj′l(ka)− κjl(ka)]

[kh
(1)′
l (ka)− κh

(1)
l (ka)]

(15.37)

by solving the radial equation. Stuff missing
Now look at the long wavelength limit, which is also the low energy

limit. In this case ka � 1 where k = 2π/λ. We know asymptotically
that

jl(ka) ∼ (ka)l,
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and

h
(1)
l (ka) ∼ 1

(ka)l+1
.

Thus we have

Xl(k)
ka�1−→ (ka)2l+1

(
l − κa

l + κa

)
� 1

since

(ka)2l+1 =
(ka)l

(ka)−l−1
.

Again, k =
√

2mE/h̄2. We now look at the phase shift for low energy25 Apr p8
scattering. We use the fact

Xl(k) ∼ (ka)2l+1

to write

1 + 2Xl(k) = ei2δ(k)

= 1 + 2iδl + · · · .

Thus we have

δl(k) ∼ (ka)2l+1.

15.10.1 A Related Problem
25 Apr p9

We now turn to a related problem. Take an arbitrary potential, for
example

V = V0e
−r/a.

In this case the shape of Veff is similar, except that is has a potential
barrier for low values of r. V and Veff for this example are shown in
figure 15.5. The centrifugal barrier increases as l increases, that is, itfig14e
gets steeper. Thus, as l increases, the scattering phase shift gets smaller
and smaller since the centrifugal barrier gets steeper.

Recall that a represents the range of the potential and 2l + 1 rep-
resents the effect of a potential barrier. We assert that in the long
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V (r) Veff(r)
r r

r0

a

Figure 15.5: The potential V and Veff for a particular example.

wave length limit, that is, low energy scattering, the phases shift goes
generally as

δl(k) ∼ (ka)2l+1 for ka� 1.

This is a great simplification for low energy scattering. It means that
as long as ka � 1, we need only consider the first few l in the infinite
series for the scattering amplitude f(θ). In particular, the dominant
contribution will usually come from the l = 0 term. For the case l = 0,
the radial equation is easier to solve, and X0(k) is easier to obtain.
Thus the partial wave expansion is very useful in the long wavelength,
or low energy, limit. This limit is the opposite of the geometrical or
physical optics limit.

The low energy limit is useful, for example, in the study of the
nuclear force, where the range of the potential is a ∼ 10−13cm, which
gives ka � 1. Note that in the geometrical optics limit, ka � 1, it is
also possible to sum the series accurately. The summation is difficult in
the middle region, ka ∼ 1. In this case many terms of the series must
be retained. 27 Apr p1

27 Apr p2
27 Apr p3

15.11 Calculation of Phase for a Hard Sphere

We use the “special case” from above. Take κ→∞ (very high elastic
constant, very rigid media, a hard sphere). In this case u → 0 when
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r = a. Thus we get from equation 15.37

X0(k) =
− sin ka

ka

− ieika

ka

=
−ieika − e−ika

2ieika

= −1

2
[1− e−2ika].

So
e2iδ0 = 1− [1− e−2ika] = e−2ika,

and thus
δ0(k) = −ka. (15.38)

In terms of quantum mechanics, this is like havingeq14do
27 Apr p4

V (r) = ∞ for r < a,

V (r) = 0 for r > a.

Outside we get the asymptotic solution form given in equation 15.33.
For l = 0 and substituting equation 15.38, this becomes

u
(0)
1 =

1

r
sin(kr − ka).

By substituting this into equation 15.13 it is easy to verify that this
is an exact solution for ul=0

1 . This is exactly what we would expect:
a free space spherical wave which satisfies the boundary condition at
r = a. The wave is pushed out by an amount ka. We thus see that
δl(k) is determined by the boundary condition. This situation is shown
in figure 15.6.fig14f

15.12 Experimental Measurement
pr:ExpMeas1

We now look at the experimental consequences. Assume that we have
solved for u1 and know Xl(k) and thus know δl(k). By writing the
scattering amplitude from equation 15.11 in terms of the phase shift
δl(k), we have27 Apr p5
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V (r)

ra

ul=0
1 (r)

ra

Figure 15.6: An infinite potential wall.

f(θ) =
1

k

∞∑
l=0

(2l + 1)Pl(cos θ)
e2iδl − 1

2i
.

To get δl for the solution for u1, we look at large r. Note that

e2iδl − 1

2i
=

eiδl [eiδl − e−iδl ]

2i
= eiδl sin δl.

So

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ). (15.39)

eq14.55

15.12.1 Cross Section
pr:CrSec1

This scattering amplitude is the quantity from which we determine the
energy or probability of the scattered wave. However, the scattering
amplitude is not a directly measurable experimental quantity.

Recall our original configuration of a source, an obstacle, and a
detector. The detector measures the number of particles intercepted
per unit time, dN/dt. (It may also distinguish energy of the intercepted pr:N2
particle.) This number will be proportional to the solid angle covered
by the detector and the incident flux of particles. If we denote the
proportionality factor as σ(θ, φ), then this relationship says that the
rate at which particles are scattered into an element of solid angle is is
dN/dt = jincdσ = jinc(dσ/dΩ)dΩ. Note that an element of solid angle pr:jinc1
is related to an element of area by r2dΩ = dA. The scattered current
through area dA is then dN/dt = jinc(σ(θ, φ)/dΩ)dA/r2. From this we
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identify the scattered current density

jscat = jinc
σ(θ, φ)

dΩ

1

r2
r̂. (15.40)

Now the quantum mechanical current density j is defined in terms ofeq14cs1
the wave function:

j(r) = Re

[
ψ†

h̄

im
∇ψ

]
,

where in the far-field limit the boundary condition of scattering tells us
that the wave function goes as

ψscat
r→∞−→N

(
eikz +

eikr

r
f(θ, φ)

)
.

The wave function has an incident plane wave part and a scattered
spherical wave part. The current density for the incident wave is then

jinc = |N |2 h̄k
m
ẑ = jincẑ,

and the current density for the scattered wave is

jscat = |N |2 h̄k
m

|f(θ, φ)|2

r2
r̂ +O(r−3) ≈ jinc

|f(θ, φ)|2

r2
r̂. (15.41)

By comparing equations 15.40 and 15.41, we identify the differentialeq14cs2
cross section as

dσ

dΩ
≡ |f(θ, k)|2. (15.42)

eq14.57
This relationship between cross section and scattering amplitude

agrees with dimensional analysis. Note that the only dimensionful
quantity appear in equation 15.39 for f is k:

dim(f(θ)) = dim(k−1) = dim(length).

On the other hand, the dimension of the differential cross section is

dim[dσ/dΩ] = dim[l2/1] and dim[|f(θ, k)|2] = dim[l2].

Thus equation 15.42 is dimensionally valid. Note also that, because the
differential cross section is an area per solid angle, it must be real and
positive, which also agrees with |f |2. The total cross section is

σ(k) =
∫
dΩ

dσ

dΩ
=
∫
dΩ|f(θ, k)|2.
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15.12.2 Notes on Cross Section

By using equation 15.39 we can calculate the differential cross section:

dσ

dΩ
=

1

k2

∞∑
l,l′=0

(2l + 1)(2l′ + 1)eiδl sin δle
−iδl′ sin δl′Pl(cos θ)Pl′(cos θ)

(15.43)
In this equation we get interference terms (cross terms). These interfer- eq14.60

27 Apr p6ence terms prevent us from being able to think of the differential cross
section as a sum of contributions from each partial wave individually.
If we are measuring just σ, we can integrate equation 15.43 to get

σ =
∫
dΩ

dσ

dΩ
(15.44)

=
∫
dΩ

1

k2

∞∑
ll′=0

(2l + 1)(2l′ + 1)eiδl sin δle
−iδl′ sin δl′Pl(cos θ)Pl′(cos θ)

We can simplify this by using the orthogonality of the Legendre poly- eq14.61
nomials: ∫

dΩPl(cos θ)Pl′(cosθ) = δll′
4π

2l + 1
.

In equation 15.44 the terms eiδl cancel. So we now have

σ(k) ≡
∫
dΩ|f(θ, k)|2

=
4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (15.45)

From this we can conclude that eq14.64

σ =
∞∑
l=0

σl,

where

σl =
4π

k2
(2l + 1) sin2 δl. (15.46)

Note that σl is the contribution of the total cross section of scattering eq14.65
from the 2l + 1 partial waves which have angular momentum l. There
are no interference effects, which is because of spherical symmetry. 27 Apr p7
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Another way to think about this point is that the measuring appa-
ratus has introduced an asymmetry in the field, and the we have inter-
ference effects in dσ/dΩ. On the other hand, in the whole measurement
of σ, there is still spherical symmetry, and thus no interference effects.
A measurement of σ(k) is much more crude than a measurement of
dσ/dΩ.

Because sine is bounded by one, the total cross section of the partial
waves are also bounded:

σl ≤ σmax
l =

4π

k2
(2l + 1),

or, by using λ = 2π/k,

σmax
l = 4π

(
λ

2π

)2

(2l + 1). (15.47)

Note that the reality of δl(k) puts a maximum value on the contributioneq14.67
σl(k) of the lth partial wave on the total cross section.

15.12.3 Geometrical Limit
pr:GeoLim1

In the geometrical limit we have ka� 1, which is the long wavelength
limit, λ� a. Recall that in this limit

δl ∼ (ka)2l+1.

Thus the dominant contribution to the cross section will come from

σ0 =
4π

k2
sin2 δ0 =

4π

k2
(ka)2 = 4πa2. (15.48)

From equation 15.47 we have

σmax
0 ∼ 4π

(
λ

2π

)2

,

and from equation 15.48 we have27 Apr p8

σ0 = 4πλ2
(
a

λ

)2

.

Comparing these gives us σ0/σ
max
0 � 1 for a/λ � 1, which is the

fraction of the incident beam seen by an observer.
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15.13 Optical Theorem
pr:OptThm1

We now take the imaginary part of equation 15.46:

Imf(θ) =
1

k

∞∑
l=0

(2l + 1) sin2 δlPl(cos θ).

In the case that θ = 0 we get

Imf(0) =
1

k

∞∑
l=0

(2l + 1) sin2 δl.

By comparing this with equation 15.45 we obtain

Imf(0) = σ
k

4π
.

This is called the optical theorem. The meaning of this is that the
imaginary part of the energy taken out of the forward beam goes into
scattering. This principle is called unitarity or conservation of momen-
tum. The quantity Im f(θ)|θ=0 represents the radiation of the intensity
in the incident beam due to interference with the forward scattered
beam. This is just conservation of energy: energy removed from the
incident beam goes into the scattered wave. 29 Apr p1

15.14 Conservation of Probability Inter-

pretation:
29 Apr p2

σk/4π as
a proportional-
ity factor

15.14.1 Hard Sphere

pr:HardSph1

For the case of a hard sphere of radius a we found that

δ0 = −ka.

In the case of (ka) � 1, only the lower terms of equation 15.39 matter.
Exact scattering amplitude from a hard sphere k = 0? So for a sphere
of radius a, we have

δl ∼ (ka)2l+1.
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πa2 πa2
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��	

strong forward peak

Figure 15.7: Scattering with a strong forward peak.

In the case that k → 0, we get (noting that eiδl → 0):

f(θ) =
i

k
eiδl sin δ0(k)P0(cos θ) =

i

k
eiδl(−ka) =

i

k
(−ka) = −ia, as k → 0.

Thus29 Apr p3
dσ

dΩ
= a2, as k → 0.

Note that the hard sphere differential cross section is spherically sym-
metric at low energy (that is, when ka � 1). In this case the total
cross section is

σ
∫ dσ

dΩ
= 4πa2.

For the geometrical optics limit, ka � 1, corresponding to short
wavelength and high energy, we would expect σ ∼ πa2 since the sphere
looks like a circle, but instead we get

σ ∼ 2(πa2).

The factor of two comes from contributions from all partial waves and
has a strong forward peak. The situation has the geometry shown in
figure 15.7. The figure is composed of a spherically symmetric part andfig14g
a forward peak, which each contribute πa2 to the total cross section σ.

29 Apr p4

15.15 Radiation of Sound Waves
pr:soundWv1

We consider a non-viscous medium characterized by a sound velocity
v. In this medium is a hard sphere oscillating about the origin along
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the z-axis. The motion of the center of the sphere is given by

xc = εae−iωtẑ,

where ε� 1, and the velocity of the center of the sphere is then given
by

vc = −iωae−iωtẑ.

Note that the normal component of the velocity at the surface of the
sphere is

n̂ · vsphere = −iεωae−iωt cos θ. (15.49)

where we have used n̂ · ẑ = cos θ with θ measures from the ẑ-axis. The eq14.88
minus sign appears because we choose n to point into the sphere. For
the velocity of the fluid outside of the hard sphere we have

vfluid = ∇Φ,

where Φ is the velocity potential. Thus near the surface of the sphere
we have, up to first order in ε,

n̂ · v|r=a =
∂Φ

∂r

∣∣∣∣
r=a

.

We want to find the velocity potential where the velocity potential
satisfies the equation[

∇2 +
1

c2
∂2

∂t2

]
Φ(x, t) = 0, r > a,

with the hard sphere boundary condition that the fluid and the sphere
move at the same radial velocity near the surface of the sphere,

n̂ · vsphere = n̂ · vfluid.

The velocity of the fluid is then given by (using equation 15.49)

−∂Φ

∂r
|r=a = −iεωaeiωt cos θ. (15.50)

eq14.93
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15.15.1 Steady State Solution
pr:sss4

The steady state solution is of the form

Φ(x, t) = e−iωtΦ(x, ω),

where Φ(x, ω) satisfies

[∇2 + l2]Φ(x, ω), r > a,

with the outgoing wave boundary condition (from equation 15.50)29 Apr p5

∂Φ

∂r
= −iεωa cos(θ), r = a.

Our boundary condition is of the form

∂Φ

∂r

∣∣∣∣
r=a

= g(θ, ϕ),

where for our specific case

g(θ, ϕ) = −iεωa cos θ. (15.51)

We want to solve the steady state equation subject to the boundaryeq14.98
condition. A more general form of the boundary condition is

∂Φ

∂r
+ κΦ = g(θ, ϕ). (15.52)

We writeeq14.99
[−∇2 − k2]G(x,x′;λ) = δ(x′ − x)/c2,

where k2 = λ/c2. This is the standard form of the Green’s function in
the case that τ = c2, L0 = τ∇2, and |x′||x| > 0. The solution of this
equation, which we found previously, is

c2G(x,x′;λ) = ik
∑
lm

Ylm(θ, ϕ)Y ∗
lm(θ′, ϕ′)

zl(kr<)h
(1)
l (kr>)

κh
(1)
l (ka)− kh

(1)
l

′
(ka)

.

(15.53)
The general solution is given by a superposition of the Green’s function(eq14.101
solution for source points on the surface of the sphere,29 Apr p6
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Φ(x) = c2
∫
x′∈S

G(x,x′;λ = ω2 + iε)g(θ, ϕ)a2dΩ′. (15.54)

By setting λ = ω2 + iε, we have automatically incorporated the out-eq14.102
going wave condition. Physically, g(θ, ϕ)a2dΩ′ is the strength of the
disturbance.

We use equation 15.53 with r> = 0 and r< = a. Thus zl is

zl(kr) = [κh
(1)
l (ka)− kh

(1)
l

′
(ka)]jl(kr)

−[κj′l(ka)− j′l(ka)]h
(1)
l (kr)

= −kW (jl(ka)h
(1)
l (ka)).

Recall that we have evaluated this Wronskian before, and plugging in
the result gives

zl(ka) = −k i

(ka)2
= − i

ka2
(15.55)

By combining equations 15.55 and 15.53 into equation 15.54, we obtain (eq14.106

29 Apr p7

Φ(x) = −a2(
i

ka2
)(ik)

∑
lm

Ylm(θ, ϕ)h
(1)
l (kr)

κh
(1)
l (ka)− kh

(1)
l (ka)

∫
dΩ′Y ∗

lm(θ′, ϕ′)g(θ′, ϕ′)

=
∑
lm

Ylm(θ, ϕ)h
(1)
l (kr)

κh
(1)
l (ka)− kh

(1)
l (ka)

glm. (15.56)

This is called the multipole expansion, where we also have defined eq14.108

glm ≡
∫
dΩ′Y ∗

lm(θ′, ϕ′)g(θ′, ϕ′). (15.57)

glm is the (l,m)th multipole moment of g(θ, ϕ). eq14.109
2 May p2

15.15.2 Far Field Behavior
pr:farFld1

At distances far from the origin (r →∞) the spherical Hankel functions
can be approximated by

h
(1)
l (k, r) = − i

kr
(−i)leilr, r � 1.
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In this limit the velocity potential can be written

Φ(x) =
eikr

r
f(θ, ϕ), r →∞,

where the amplitude factor f is given by

f(θ, ϕ) = − i

k

∑
l,m

gl,mY
m
l (θ, ϕ)(−i)l

κh
(1)
l (k, a)− kh

(1)′

l (k, a)
.

This amplitude may be further decomposed into components of partic-
ular l and m:

f =
∑
l,m

fl,mY
m
l (θ, ϕ),

where

fl,m =
(−i)l+1

k

gl,m

κh
(1)
l (k, a)− kh

(1)′

l (k, a)
.

The interpretation of the l’s is

l = 1 dipole radiation m = 0,±1
l = 2 quadrapole radiation m = 0,±1,±2
l = 3 octopole radiation m = 0,±1,±2,±3

For the case l = 1, the 3 possible m’s correspond to different polariza-
tions.2 May p3

15.15.3 Special Case

We now return to the specific case of the general boundary condition,
equation 15.52, which applies to a hard sphere executing small oscilla-
tions. In this case the hard surface implies κ = 0 and the oscillatory
motion implies that g is given by equation 15.51, which can be rewritten
in terms of the spherical harmonic Y 0

1 :

g(θ, ϕ) = −iωaε
√

3

4π
Y 0

l (θϕ).
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By plugging this into equation 15.57, we have obtained the (l,m) com-
ponents of g(θ, φ),

gl,m =
∫
dΩY m

l (θ, φ)g(θ, φ)

=
∫
dΩ(−iωaε)Y m

l (θ, φ)

√
3

4π
Y 0

1 (θ, ϕ)

= −iωaε
√

3

4π
δm0δl1.

This shows that the oscillating sphere only excites the Y 0
l mode.

f = −1

k

−iωat
−kh(1)′

l (ka)

√
3

4π
Y 0

l (θ, ϕ)

=
−iaεω cos θ

k2h
(1)′

l (ka)
.

Thus we have pure dipole radiation for this type of oscillation. This
final equation gives the radiation and shows the dependence on k. omitted qm

stuff
2 May p415.15.4 Energy Flux

Consider a sound wave with velocity

v = −∇Φ(x, t),

where in the far field limit the velocity potential is

Φ(x, t) → eikr

r
f(θ, ϕ)e−iωt, x →∞.

We now obtain the rate dE/dt at which energy flows through a
surface. This is given by the energy flux through the surface,

dE

dt
≡
∫
ds · jE,

where jE is the energy flux vector. For sound waves the energy flux
vector can be expressed as a product of velocity and pressure,

jE = vp. (15.58)
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This can be intuited as follows. The first law of thermodynamics says eq14jvp
FW p299that for an ideal fluid undergoing a reversible isentropic process, the

change in internal energy dE matches the work done on the element,
−pdV . The total energy flowingout of through the surface S is

∫
S
ds · jE =

dEs

dt
=
∫

S
ds
dE

dt
=
∫

S
pdV =

∫
S
ds ·

(
p
dr

dt

)
.

By comparing integrands we obtain equation 15.58, as desired. Note
that jE = vp has the correct dimensions for flux — that is, velocity
times pressure gives the correct dimensions for energy.2 May p5

The velocity and pressure are defined in terms of the velocity po-
tential and density,

x = −∇Φ, p = ρ
∂Φ

∂t
.

We now look at the real parts of the velocity and the pressure for the
steady state solution,

Re v =
1

2
ve−iωt + v∗eiωt,

Re p =
1

2
(pe−iωt + p∗e−iωt).

The flux is thenask Baker
about this.

j = Re vRRe pR

=
1

4
(vp∗ + v∗p) + e−2iωtvp+ e2iωtv∗p∗.

The time averaged flux is then

〈j〉 =
1

4
(vp∗ + v∗p) =

1

2
Re (xp∗),

where we have used

〈e−2iωt〉+ 〈e+2iωt〉 = 0.
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The angled brackets represents the average over time. Note that x and
p∗ are still complex, but with their time dependence factored out. To
obtain p we use

p(t) = e−iωtp = −ρωΦe−iωt,

from which we obtain
p = −ρωΦ.

Thus the time averaged flux is

〈jE〉 =
1

2
Re(−∇Φ)(+iωe)Φ∗. (15.59)

The radial derivative of Φ is eq14.149

−r̂∇Φ = −∂Φ

∂r
= −ikΦ.

Thus in this case the time averaged energy rate is〈
dE

dt

〉
= r2dΩr̂ · 〈jE〉 = r2dΩ

|f |2

r2
ωρk.

Therefore 〈
dE

dt

〉
=

1

2
ρkω|f |2, r � 1. (15.60)

eq14.152

Plane Wave Approximation
pr:PlWv2

Now suppose that instead of a spherical wave, we have a plane wave,

Φ(x, t) = eik·x−iωt.

In this special case the velocity and pressure are given by

v = −∇Φ = ikΦ r � 1,

p = ρ(−iω)Φ.

Using equation 15.59, the energy flux is

j =
1

2
kω =

1

2
kωρ.
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The power radiated through the area element dA is then 2 May p8

dEA

dt
=
∫

dA
ds · j =

ρkω

2
dA,

and we have
1

dA

dEA

dt
≡ Incident flux =

ρkω

2
. (15.61)

(eq14.158

15.15.5 Scattering From Plane Waves

The far field response to scattering from an incident plane wave is

Φ(x) = eik·x + f
eikr

r
.

Note that in the limit r →∞, the scattered wave ΦS is feikr/r. So

dEs

dt dΩ
=

1

2
ρkω|f |2.

By definition, the differential cross section is given by the amount of2 May p5
energy per unit solid angle per unit time divided by the incident energy
flux,

dσ

dΩ
≡

dEs

dt dΩ

Incident flux

=
1
2
ρkω|f |2
1
2
ρkω

= |f |2.

In the second equality we have used equation 15.60 and 15.61. This
duplicates our earlier result, equation 15.42.

If we are just interested in the radiated wave and not the incident
flux, the angular distribution of power is

dP

dΩ
=

dE

dtdΩ
=

1

2
kρω|f |2.

Now expand f in terms of spherical harmonics,

f =
∑
l,m

Yl,mfl,m.
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The radiated differential power can then be written

dP

dΩ
=

1

2
kρω|f |2 =

1

2
kρω

∑
l,m

Y m
l fl,m

∑
l′,m′

Y m′∗
l′ f ∗l′,m′

 ,
where we have interference terms. The total power is 2 May p6

P =
∫
dΩ

dP

dΩ
=
∑
l,m

|fl,m|2.

In this case there is no interference. This is the analogue for sound
wave of the differential cross section we studied earlier. For the case of
a sphere

fl,0 6= 0.

4 May p1

15.15.6 Spherical Symmetry

We now consider the situation where the properties of the medium
surrounding the fluid exhibit spherical symmetry. In this case the scat-
tering amplitude can be expanded in terms of spherical harmonics,

f(θ, ϕ) =
∑
l,m

fl,mY
m
l (θ, ϕ).

This is called the multipole expansion. The term fl,m corresponds to
the mode of angular momentum radiation. Spherical symmetry here
means that the dynamic terms are spherically symmetric: σ(r), τ(r),
and V (r). However, any initial condition or disturbance, such as g,
may have asymmetry. We now look at the external distance problem.

gl,m =
∫
dΩY m∗

l (θ, ϕ)g(θ, ϕ).

For the general boundary condition the scattering amplitude is related
to g by

fl,m =
(−i)l+1

k

gl,m

κh
(1)
l (ka)− kh

(1)′

l (ka)
.



242 CHAPTER 15. SCATTERING IN 3-DIM

For our case of small oscillations of a hard sphere, we have κ = 0 and 4 May p2

gl,m = −δl,1δm,0

√
3

4π
iεaω.

In this case the scattering amplitude becomes

f(θ, ϕ) =
∑
l,m

FlmY
m
l (θϕ) =

−iaεω
k2h

(1)
l=1(ka)

cos θ =
−iaεc cos θ

kh
(1)′

l (ka)
.

Thus the differential power radiated is

dP

dΩ
=

1

2
ρk2

∣∣∣∣∣aεck cos θ

h
(1)′

1 (ka)

∣∣∣∣∣
=

1

2

ρa2ε2c2∣∣∣h(1)′

1 (ka)
∣∣∣2 cos2 θ.

Notice that this cos2 θ dependence is opposite that of dipole radiation,
which goes like sin2 θ. The total power radiated is in general given by

P =
∫
dΩ

dP

dΩ
=

1

2
ρck2

∑
l,m

|fl,m|2.

Note that there are no interference terms. It is simply a sum of power4 May p3
from each partial wave.

15.16 Summary

1. The asymptotic form of the response function is

lim
r→∞

ul
1(r) = jl(kr) +Xl(k)h

1
l (kr).

2. The scattering amplitude for a far-field observer due to an inci-
dent plane wave is

f(θ, k) = − i

k

∞∑
l=0

(2l + 1)Pl(cos θ)Xl.
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3. The phase shift δl(k) is defined by the relation

1 + 2Xl = e2iδl(k),

which results in a scattered wave solution of the form

ul
1(kr) ∼

1

kr
sin(kr − πl/2 + δl(k)) r →∞,

where δl(k) appears as a simple shift in the phase of the sine wave.

4. The scattering amplitude is given by

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ).

5. The differential cross section represents the effective area of the
scatterer for those particle which are deflected into the solid angle
dΩ, and can be written in terms of the scattering amplitude as

dσ

dΩ
≡ |f(θ, k)|2.

6. The optical theorem is

Imf(θ)|θ=0 = σ
k

4π
.

It relates forward wave to the scattered wave.

7. The total cross section for scattering from a hard sphere in the
high energy limit is

σ ∼ 2(πa2).

15.17 References

See any old nuclear or high energy physics text, such as [Perkins87].
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Chapter 16

Heat Conduction in 3D

Chapter Goals:

• State the general response to the time-dependent
inhomogeneous heat equation.

• Describe the physical significance of the boundary
condition.

• Derive the temperature exterior to a fixed temper-
ature circle.

16.1 General Boundary Value Problem

We saw in an earlier chapter that the heat equation is[
L0 + ρcp(x)

∂

∂t

]
T (x, t) = ρq(x, t)

for x in R, with the linear operator

L0 = −∇κT (x)∇.

For the time dependent problem need both an initial condition and a
boundary condition to determine a unique solution. The initial condi-
tion is

T (x, t) = T0(x) for t = 0.

245
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For our boundary condition we take the radiation condition,

κT n̂ · ∇T = α[Text(s, t)− T (x, t)] for x on s.

Recall the the radiation condition came from the equilibrium condition
for radiation conduction balance. As an example of this sort of problem,
consider the boundary to be the surface of the earth. In the evening
time the temperature of the surface is determined by radiation. This is
a faster method of transfer than heat conduction. The above radiation
condition says that there exists a radiation conduction balance. Note
that when we consider convection, we must keep the velocity dependent
term x · ∇ and the problem becomes non-linear. In this context v is
the motion of the medium due to convection.

The solution in terms of the Green’s function is given by the prin-
ciple of superpositionpr:GenSolHeat1

T (x, t) =
∫ t

0
dt′
∫

R
dx′G(x, t;x′, t′)ρ(x′)q̇(x′, t′)

+
∫ t

0
dt′
∫
x∈S

ds′G(x, t;x′, t′)αText(s
′, t′)

+
∫

R
G(x, t;x′, 0)ρ(x′)cp(x

′)T0(x
′).

The integral containing ρ(x′)q̇(x′, t′) represents contributions due toeq15.0
4 May p4 volume sources; the integral containing αText(s

′, t′) represents contribu-
tions due to surface sources; and the integral containing ρ(x′)cp(x

′)T0(x
′)

represents contributions due to the initial conditions. The integrations
over time and space can be done in either order, which ever is easiest.
The Green’s function is given by

G(x, t;x′, t′) =
∫

L

ds

2πi
es(t−t′)G(x,x′;λ = −s), (16.1)

where L is the upward directed line along any constant Re s > 0. Thiseq15.1
choice of contour is necessary since L0 is positive definite, which means
that all the singularities of G(x,x′;λ = −s) lie on the negative real
s axis. This integral, which gives the inverse Laplace transform, is
sometimes called the Bromwich integral. The Laplace space Green’spr:Brom1
function satisfies the differential equation

[L0 − λρcp]G(x,x′;λ) = δ(x− x′) x,x′ ∈ R,
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and the boundary condition

[κT n̂ · ∇+ α]G(x,x′, λ) = 0 x ∈ R,x′ ∈ S.

If the dynamical variables cp(x), ρ(x), and κT (x) are spherically sym-
metric, then the Green’s function can be written as bilinear product of
spherical harmonics,

G(x,x′;λ) =
∑

Y m
l (θ, ϕ)Gl(r, r

′;λ)Y m∗
l (θ′, ϕ′).

By plugging this into equation 16.1, we obtain

G(x, t,x′, t′) =
∑
l,m

Y m
l (θ, ϕ)Gl(r, t; r

′, t′)Y m∗
l (θ′, ϕ′)

where

G(r, t; r′, t′) =
∫

L

ds

2πi
es(t−t′)Gl(r, r

′;λ = −s).
7 May p1

16.2 Time Dependent Problem

We now consider the case in which the temperature is initially zero, and
the volume and surface sources undergo harmonic time dependence:

T0(x, t) = 0

ρq̇(x, t) = ρq̇(x)e−iωt

αText(s
′, t) = αText(s

′)e−iωt.

We want to find T (x, t) for t > 0. Note that if T0(x) 6= 0 instead,
then in the following analysis we would also evaluate the third integral
in equation 16.1. For the conditions stated above, the temperature 7 May p2
response is

T (x, t) =
∫ t

0
dt′
∫

R
dx′G(x, t;x′, t′)ρ(x′)q̇(x′)e−iωt′

+
∫ t

0
dt′
∫
x∈S

ds′G(x, t;x′, t′)αText(s
′)e−iωt′ .
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We are looking for the complete time response of the temperature rather
than the steady state response. The time integration is of the form∫ t

0
dtG(x, t;x′, t′)e−iωt′ =

∫
L

ds

2πi
estG(x,x′;λ = −s)

∫ t

0
e−st′−iωt′dt′

=
∫

L

ds

2πi
estG(x,x′;λ = −s)1− e−(s+iω)t

s+ iω

=
∫

L

ds

2πi

G(x,x′;λ = −s)
s+ iω

[est − e−iωt].(16.2)

The contour of integration, L, is any upward-directed line parallel toeq15.10
the imaginary axis in the left half plane. We got the first equality by
substituting in equation 16.1 and interchanging the s and t integrations.
The second equality we got by noting∫ t

0
e−st′−iωt′dt =

∫ t

0
e−(s+iω)t′dt′

=
1

s+ iω

(
1− e−(s+iω)t

)
.

If we allow T0(x) 6= 0, then in evaluating the third integral of equation
16.1 we would also need to calculate the free space Green’s function, as
was done in chapter 10.

G(x, t;x′, 0) =
∫ ds

2πi
estG(x,x′;λ = −s)

=
e−(x−x′)2/4κt

√
4πκt

. (16.3)

This applies to the special case of radiation in the infinite one-dimensionaleq15.15
7 May p3 plane.

16.3 Evaluation of the Integrals

Recall that the Green’s function can also be written as a bilinear ex-
pansion of the eigenfunctions. The general form of solution for equation
16.3 is

G(x, t;x′, 0) =

{ ∑
n e

−λntun(x)u∗n(x′) interior∫∞
0 dλ′e−λ′t 1

π
ImG(x,x′, λ′ + iε) exterior.

(16.4)
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In the case when there is explicit time dependence, it may prove usefuleq15.16
7 May p4 to integrate over t first, and then integrate over s. The expressions in

equation 16.4 are particularly useful for large times. In this limit only
a small range of λn must be used in the evaluation. In contrast, for
short times, an expression like equation 16.3 is more useful.

If the functions Text, T0, q and ρ are spherically symmetric, then we
only need the spherically symmetric part of the Green’s function, G0.
This was done in the second problem set. In contrast, for the problem
presently being considered, the boundary conditions are arbitrary, but
the sources are oscillating in time. Ask Baker

about rotating.Now we will simplify the integral expression in equation 16.2.

7 May p5To evaluate equation 16.2, we will use the fact from chapter 10 that
G(x, x′; s) has the form

G(x,x′, s) ∝ e−
√

s

√
s
.

Note that the second term in equation 16.2 is∫ ds

2πi

G(x,x′;λ = −s)
s+ iω

e−iωt = 0,

because the integrand decays in the right-hand plane as e−
√

s. Thus
the fact that we have oscillating sources merely amounts to a change
in denominator,∫ ds

2πi
G(x,x′;λ = −s)e−st osc.−→

∫ ds

2πi

G(x,x′;λ = −s)
s+ iω

e−st. (16.5)

eq15osc
We thus need to evaluate the first term in equation 16.2. We close

the contour in the left-hand s-plane, omitting the branch along the
negative real axis, as shown in figure 16.1. By Cauchy’s theorem, the fig15a
closed contour gives zero:∫

L

ds

2πi

G(x,x′;λ = −s)
s+ iω

e−st = 0.

The integrand vanishes exponentially along L1, L5. Over the small
circle around the origin we have∫ ds

2πi

G(x,x′;λ = −s)
s+ iω

e−st = e−iωtG(x,x′, λ = iω).
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Figure 16.1: Closed contour around branch cut.

This looks like a steady state piece. We can use equation 16.4 to write7 May p6
7 May p7 ∫ ds

2πi

G(x,x′, λ = −s)
s+ iω

est =

∫
=
∑∞

n=0 e
−λmt un(x)u∗nx′)

(ω−λn)
discrete,∫∞

0 dλ′
e−λ′t 1

π
Im G(x,x′,λ′−iε)

iω−λ′
continuum.

∫ ds

2πi

G(x,x′, λ = −s)est

s+ iω
=

1

2πi

[∫ 0

−∞

ds′

s+ iω
G(x,x′;λ = s′ + iε)

+
∫ −∞

0

ds′

s′ + iω
G(x,x′;λ = s′ − iε)

]
.

Change variables7 May p8
λ′ = −s′,

to obtain∫ ds

2πi

G(x,x′, λ = −s)
s+ iω

est =
∫ ∞

0

dλ′

iω − λ′
1

2πi
[G(x,x′, λ+ iε)−G(x,x′, λ′ − iε)]

=
∫ ∞

0
dλ′

e−λ′t 1
π
Im G(x,x′, λ′ − iε)

iω − λ′
.

9 May p1
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16.4 Physics of the Heat Problem

We have been looking at how to evaluate the general solution of the
heat equation,

T (x, t) =
∫ t

0
dt′
∫

R
dx′G(x, t,x′, t)ρ(x′)q̇(x′, t′)

+
∫ t

0
dt′
∫
x in R

ds′G(x, t,x′, t′)αText(s
′, t′)

+
∫
x in R

G(x, t,x′, 0)ρ(x′), cp(x
′)T0(x

′).

We now look at the physics. We require the solution to satisfy the
initial condition

T (x, t) = T0(x) = 0 for t = 0,

and the general regular boundary condition

[κT (x)n̂ · ∇+ α]T (x, t) = αText(x, t) x ∈ S.

This boundary condition represents the balance between conduction
and radiation.

16.4.1 The Parameter Θ
pr:Theta1

We can rewrite the regular boundary condition as

n̂ · ∇T |x on S =
α

κTh

[Text(s, t)− T (x, t)]x on S

= Θ [Text(s, t)− T (x, t)]x on S ,

where Θ = α/κTh. The expression on the left had side is the conduction
in the body, while the expression on the right hand side is the radiation
into the body. Thus, this equation is a statement of energy balance.
The dynamic characteristic parameter in this equation is Θ, which has
the dimensions of inverse distance:

Θ =
α

κTh

∼ 1

distance
.

We now consider large and small values of Θ. 9 May p2
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Case 1: radiation important

In this region we have

Θ =
α

κth

� 1.

For this case we have radiation at large s and conduction is small, which
means

T (x, t) ≈ Text(s, t) for x ∈ S.

Case 2: heat flux occurs

This applies to the case

Θ =
α

κth

� 1.

Thus we take
lim

Tint→∞
α→0

αTint ≡ F (s, t),

where F (s, t) is some particular heat flux at position s and time t. The
boundary condition then becomes a fixed flux condition,

κthn̂ · ∇T(x, t)|x on s = F (s, t).

9 May p3
HW comments
omitted

16.5 Example: Sphere

The region is the exterior region to a sphere with

Text(θ, ϕ; t) = Text(t).

So we can write

G(x, t,x′, t′) =
1

4π
G0(r, t, r

′, t′).

So we just need to evaluate equation 16.1. We will get the typical
functions of the theory of the heat equation.9 May p4

We take the temperature Text on the surface of the sphere to be
uniform in space and constant in time:

Tt(θ, ϕ, t) = Text.
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In this case plugging equation 16.3 into 16.1 yields

T (r, t) =
∫
dt
∫
dxG(x, t;x′, 0)αText

=
∫
dt
∫
dx
e−(x−x′)2/4κt

√
4πκt

αText

= Text
a

r
erfc

(
r − a√

4κt

)
,

where we define ask Baker

erf x =
2√
π

∫ x

0
dze−z2

,

and

erfc x = 1− erf x =
2√
π

∫ 0

x
dze−z2

. (16.6)

For short times, x is large, and for small times x is small and (Eq.14) eq15.32
is easy to evaluate. For large x we use integration by parts, Mysterious

equation omit-
tederfc x =

2√
π

∫ ∞

x
zdze−z2 1

z

=
2√
π

[
−1

2
e−z2 1

z
−
∫ ∞

x
dz
(
−1

2
e−z2

)(
− 1

z2

)]

=
2√
π

(
e−x2

2x
− 1

2

∫ ∞

x

dz

z2
e−z2

)

=
2e−x2

√
π

(
1

2x
− 1

4x3
+ · · ·

)
.

Thus we have a rapidly converging expansion for large x. For x � 1, 9 May p5
we can directly place the Taylor series of e−z2

inside the integral.

16.5.1 Long Times

We have standard diffusion phenomena. As t → ∞, the solution goes
T (r, t)

t→∞−→ a
r
Text. This is the steady state solution. It satisfies the con-

ditions
∇2T (x, t) = 0, |x| > a,

T (x, t) = Text, |x| = a.
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If

x2 =
(r − a)2

4κt
� 1

then we satisfy the steady state condition, and we can define τ by

(r − a)2

4κτ
= 1 and so τ =

(r − a)2

4κt
.

The variable τ is the characteristic time which determines the rate of
diffusion. So for t� τ , the temperature T is if the form of the steady
state solution.

16.5.2 Interior Case

Having considered the region exterior to the sphere, we now consider
the problem for the interior of the sphere. In particular, we take the
surface source Text to have harmonic time dependence and arbitrary
spatial independence:

Text(t, s) = eiωtText(s).

We further assume that there are no volume source and that the internal9 May p6
temperature is initially zero:

ρq̇(x, t) = 0, T (x, t = 0) = 0.

In this case equation 16.2 reduces to

T (x, t) =
∫
x on s

ds′
∫ t

0
dt′G(x, t;x′, t′)αeiωtText(t, s),

or

T (x, t) =
∫
x on s

ds′
[
αText(s

′)
∫ ∞

0
dt′G(x, t,x′, t′)e−iωt′

]
.

This equation was computed previously for an external region. The
solution was

T (x, t) =
∫
x′
ds′αText(s

′)
[
e−iωtG(x,x′;λ = iω)

+
∑
m

e−λntun(x)u∗n(x′)

iω − λn

]
.



16.6. SUMMARY 255

This holds for the discrete case, which occurs when the region is the
interior of a sphere. For the continuous case, which is valid for the
external problem, we have

T (x, t) =
∫
x′
ds′αText(s

′)
[
e−iωtG(x,x′;λ = iω)

+
1

π

∫ ∞

0
dλ′e−λ′t Im G(x,x′;λ = λ′ + iω)

iω − λ′

]
.

The first term in the bracketed expression is the steady state part of 9 May p7
the response. The second term is the transient part of the response.
These transient terms do not always vanish, as is the case in the fixed
flux problem, in which there is a zero eigenvalue. Many

HW comments
omitted
11 May p1
11 May p2
11 May p3
11 May p4
11 May p5

16.6 Summary

1. The general response to the time-dependent inhomogeneous heat
equation is

T (x, t) =
∫ t

0
dt′
∫

R
dx′G(x, t;x′, t′)ρ(x′)q̇(x′, t′)

+
∫ t

0
dt′
∫
x∈S

ds′G(x, t;x′, t′)αText(s
′, t′)

+
∫

R
G(x, t;x′, 0)ρ(x′)cp(x

′)T0(x
′).

2. The boundary condition for the heat equation can be written

n̂ · ∇T |x on S = Θ [Text(s, t)− T (x, t)]x on S ,

where Θ = α/κTh. If Θ � 1, then radiation is dominant, other-
wise if Θ � 1, then heat flux is dominant.

3. The temperature exterior to a fixed temperature circle is

T (r, t) = Text
a

r
erfc

(
r − a√

4κt

)
,

where

erfc x = 1− erf x =
2√
π

∫ 0

x
dze−z2

.
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16.7 References

See the references of chapter 10.



Chapter 17

The Wave Equation

Chapter Goals:

• State the free space Green’s function in n-
dimensions.

• Describe the connection between the even– and
odd-dimensional Green’s functions.

17.1 introduction

The Retarded Green’s function for the wave equation satisfies[
−τ∇2 + σ

∂2

∂t2

]
G(x, t;x′, t′) = δ(x− x′)δ(t− t′)

with the retarded boundary condition that GR = 0 for t < t′. The
solution to this equation is

GR(x, t;x′, t′) =
∫

L

dω

2π
e−iω(t−t′)G(x,x′;λ = ω2), (17.1)

where the integration path L is any line in the upper half plane parallel eq16ft1
to the real axis and R = |x− x′| and where G(x,x′;λ) satisfies

[−τ∇2 − σλ]G(x,x′;λ) = δ(x− x′). (17.2)

We denote the solution of equation 17.2 in n-dimensions as Gn. We eq16B

257
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then have

G1(x,x
′;λ) =

iei
√

λ/c2R

2τ
√
λ/c2

(17.3)

G2(x,x
′;λ) =

i

4τ
H

(1)
0 (k,R) (17.4)

G3(x,x
′;λ) =

ei
√

λ/c2R

4πτR
, (17.5)

where k =
√
λ/c2. It is readily verified that these three equations can

be written in the more general form

Gn(R;λ) =
i

4τ

(
k

2πR

)n
2
−1

H
(1)
n
2
−1(k,R).

The Fourier transform, equation 17.1, for the 3-dimensional case can be
reduced to the Fourier transform for the one dimensional case, which
we have already solved. The trick to do this is to rewrite the integral
as a derivative with respect to the constant parameter R, and then pull
the differential outside the integral.

GR(x, t,x′, t′) =
∫

L

dω

2π
e−iω(t−t′)G3(x,x

′;λ = ω2)

=
∫

L

dω

2π
e−iω(t−t′) e

(iω/c)R

4πτR

=
∫

L

dω

2π
e−iω(t−t′)

(
− 1

2πR

)
∂

∂R

i
2
ei ω

c
R

2τ ω
c

= − 1

2πR

∂

∂R

∫
L

dω

2π

ei ω
c
R

2τ ω
c

ie−iω(t−t′)

=
1

2πR

∂

∂R
G1(x, t;x

′, t′)

=
1

2πR

∂

∂R

[
c

2τ
θ(c(t− t′)−R)

]
where the θ-function satisfies dθ(x/dx = δ(x). Note that

f(ax) =
1

|a|
δ(x).
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Thus we can write11 May p6

G3(x, t;x
′, t′) =

1

2πR

∂

∂R

[
c

2τ
θ(c(t− t′)−R)

]
=

1

4πRτ
δ(c(t− t′)−R/c)

=
1

4πRτ
δ(t− t′ −R/c).

Our result is then

G3(R, t− t′) =
1

τπR

∂

∂R
G1(R, t− t′) =

δ(t− t′ −R/c)

4πRτ
. (17.6)

eq16.4
13 May p1

17.2 Dimensionality

17.2.1 Odd Dimensions
pr:oddDim1

Note that H
(1)
n
2
−1(k,R) is a trigonometric function for any odd integer.

Thus for n odd, we get 13 May p2

Gn(R, t− t′) =

(
− 1

2πR

∂

∂R

)n−1
2

G1(R, t− t′)

and

Gn(R, λ) =

(
− 1

2πR

∂

∂R

)n−1
2

G1(R, λ).

Thus

Gn(R, λ) =
(
− i

2πR

)n−1
2

G1(R, λ)

for n odd. We also have

Gn(R, t− t′) =

(
− 1

2πR

∂

∂R

)n−3
2

G3(R, t− t′) (17.7)

=

(
− 1

2πR

∂

∂R

)n−3
2 δ(t− t′ − R

c
)

4πτR
. (17.8)
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17.2.2 Even Dimensions
pr:evDim1

Recall that the steady state Green’s function for 2-dimensions is

G2(R, λ) =
i

4τ
H

(1)
0 (k,R).

If we insert this into equation 17.1 we obtain the retarded Green’s
function,

G2(R, t− t′) =
c

2πτ

θ(c(t− t′)−R)√
c2(t− t′)2 −R2

.

13 May p3

17.3 Physics

There are two ways to define electrostatics. The first is by Guass’s law
and the second is by it’s solution, Coulomb’s law. The same relationship
is true here.

17.3.1 Odd Dimensions

We consider the n = 3-dimensional case,

G3(R, t− t′) =
δ(t− t′ −R/c)

4πRτ
.

At time t the disturbance is zero everywhere except at the radius R =
c(t− t′) from x′. We only see a disturbance on the spherical shell.

17.3.2 Even Dimensions

In two dimensions the disturbance is felt at locations other than the
surface of the expanding spherical shell. In two dimensions we have13 May p3

G2 =
c

2τ

θ[c(t− t′)−R]√
c2(t− t′)2 −R2

=

{
= 0 R > c(t− t′),
6= 0 R < c(t− t′).

(17.9)

The case G = 0 for R > c(t− t′) makes sense since the disturbance has
not yet had time to reach the observer. We also have

G2 =
c

2τ

θ[c(t− t′)−R]√
c2(t− t′)2 −R2

→∞ as R→ c(t− t′).
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G2

Rc(t− t′)

Figure 17.1: Radial part of the 2-dimensional Green’s function.

Thus the maximum disturbance occurs at R→ c(t− t′). Finally, G 6= 0
for R < c(t − t′). Thus we have propagation at speed c, as well as all
smaller velocities. This is called a wake. The disturbance is shown in
figure 17.1. We have not yet given a motivation for why G2 6= 0 for fig16a
R > c(t− t′). This will be done in the next section, where we will also
give an alternative derivation of this result.

17.3.3 Connection between GF’s in 2 & 3-dim

We now calculate the Green’s function in 2-dimensions using the Green’s
function in 3-dimensions. This will help us to understand the difference
between even and odd dimensions. Consider the general inhomogeneous
wave equation in three dimensions,[

−τ∇2
3 + σ

∂2

∂t2

]
u(x, t) = σf(x, t). (17.10)

From our general theory we know that the solution of this equation can eq16.1
be written in terms of the Green’s function as

u(x, t) =
∫ t

0
dt′
∫
dx′G3(x, t;x

′, t′)σf(x′, t′). (17.11)

We now consider a particular source, eq16.2

σf(x′, t′) = δ(x′)δ(y′)δ(t− t0).

This corresponds to a line source along the z-axis acting at time t = t0.
What equation does u satisfy for this case? The solution will be 13 May p6

completely independent of z: u(x, t) = u(x, y, t) = u(x2+y2, t) = u(ρ, t)



262 CHAPTER 17. THE WAVE EQUATION

where ρ = x2 + y2, and the second equality follows from rotational
invariance. For this case equation 17.10 becomes[

−∇2
2 +

σ

τ

∂

∂t2

]
u(x, y, t) =

1

τ
δ(x)δ(y)δ(t− t0).

Thus
u(x, y, t) = G2(ρ, t− t0),

where G2 was given in equation 17.9. We should be able to get the same
result by plugging the expression for G3, equation 17.6, in equation
17.11. Thus we have

u(x, t) =
∫ t

0
dt′
∫
dx′dy′dz′

1

4πR
δ(t− t′ −R/c)δ(x′)δ(y′)δ(t′ − t0)

(17.12)
Now let u(x, t) = u(x, y, 0, t) = G2(ρ, t − t′) on the left hand side ofeq16.6

13 May p7 equation 17.12 and partially evaluate the right hand side to get

G2(ρ, t− t0) =
∫ t

0
dt′
∫ ∞

−∞
dz′

1

4πτ

δ(t− t0 −R/c)√
ρ2 + z′2

. (17.13)

The disturbance at time t at the field point will be due to contributionseq16.7
at z = 0 from ρ = c(t − t′). We also have disturbances at farther
distances which were emanated at an earlier time. This is shown in
figure 17.2.fig16b

16 May p1 Note that only the terms at z′ contribute, where z′2+ρ2 = c2(t−t0)2.
So we define

z′ = z± = ±
√
c2(t− t0)2 − ρ2

We now consider the value of G2 using equation 17.13 for three
different regions.

• G2 = 0 if ρ > c(t− t0) for a signal emitted at z. This is true since
a signal emitted at any z will not have time to arrive at ρ since
in travels at velocity c.

• If ρ = c(t − t0), then the signal emitted from the point z = 0 at
time t0 arrives at ρ at time t. Thus z± = 0.16 May p2

• Finally if ρ < c(t − t0), then the signals emitted at time t = t0
from the points z = z± arrive at time t.

This is the origin of the wake.
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ρ

x

y

line source
on z-axis

A
A
A
AAK

ρ

z− zz+z = 0

z′

√
ρ2 + z′2

field
pointHHHj

Figure 17.2: A line source in 3-dimensions.

17.4 Evaluation of G2

We make a change of variables in equation 17.9,

R′ =
√
ρ2 + z′2

and thus

dR′ =
zdz′

R′ ,

so
dz′

R′ =
dR′

√
R′2 − ρ2

.

The Green’s function G− 2 is then

G2 =
1

4πτ
(2)

∫ ∞

ρ

dR′/c√
R′2 − ρ2

δ(t− t0 −R′/c)

so the answer is

G2 =
c

2πτ

θ(c(t− t0)− ρ)√
c2(t− t0)2 − ρ2

.

We would get the same result if we took the inverse Fourier transform 16 May p3
of H

(1)
0 . For heat equation, the character of the Green’s function is

independent of dimension; it is always Gaussian.
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17.5 Summary

1. The free space Green’s function in n-dimensions is

Gn(R;λ) =
i

4τ

(
k

2πR

)n
2
−1

H
(1)
n
2
−1(k,R).

2. The connection between the fact that the 3-dimensional Green’s
function response propagates on the surface of a sphere and the
fact the the 2-dimensional Green’s function response propagates
inside of a cylinder is illustrated.

17.6 References

See [Fetter80] and [Stakgold67]. This chapter is mostly just an explo-
ration of how the number of dimensions affects the solution form.



Chapter 18

The Method of Steepest
Descent

pr:StDesc1
Chapter Goals:

• Find the solution to the integral I(ω) =∫
C dze

ωf(z)g(z).

• Find the asymptotic form of the Gamma function.

• Find the asymptotic behavior of the Hankel func-
tion.

Suppose that we integrate over a contour C such as that shown in figure
18.1:

I(ω) =
∫

C
dzeωf(z)g(z). (18.1)

We want to find an expression for I(ω) for large ω. Without loss of eq17.a
pr:Iint1generality, we take ω to be real and positive. This simply reflects the

choice of what we call f(z). The first step will be to take the indefinite
integral. The second step will will then be to deform the contour C
into a contour C0 such that

df

dz

∣∣∣∣
z=z0

= 0

where z0 lies on the contour C0.
In order to perform these operations we will first digress to a review

265
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z0

C
C0

Figure 18.1: Contour C & deformation C0 with point z0.

of the methods of complex analysis which are needed to compute this
integral. Then we shall explicitly solve the integral.fig17.1

18.1 Review of Complex Variables

Let z = x + iy and f(x, y) = u(x, y) + iv(x, y) where f(z) is analytic
on the region which we are considering. In general a function f ofpr:anal2
the complex variable z is analytic (or holomorphic) at a point z0 if
its derivative exists not only at z0 but also at each point z in some
neighborhood of z0, and a function f is said to be analytic in a region
R if it is analytic at each point in R. In this case we have:

df

dz
=

d

dz
(u+ iv) =

du

dz
+ i

dv

dz
.

Since the function is analytic, its derivative is independent of the path
of approach.

If we differentiate with respect to an infinitesimal change dz = dx,
we get

df

dz
=
du

dx
+ i

dv

dx
, (18.2)

and if we differentiate with respect to an infinitesimal change dz = idy,eq17.1
we get

df

dz
=

du

d(iy)
+ i

dv

d(iy)
= −idu

dy
+
dv

dy
. (18.3)

By comparing equations 18.2 and 18.3 and separating the resultingeq17.2
equation into real and imaginary parts we get the Cauchy-Riemann
equations:pr:CReq1
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Im z

Re z

∇v
∇u

v constant

u constant

Figure 18.2: Gradients of u and v.

du

dx
=
dv

dy
and

dv

dx
= −du

dy
.

These facts allow us to make the following four observations about
differentiation on the complex plane:

Observation 1. The gradient of a complex valued function is de-
picted in figure 18.2 for an integral curve of an analytic function. fig17.2

The product of gradients is given by the equation

∇u · ∇v =
du

dx

dv

dx
+
du

dy

dv

dy
= 0.

The last equality follows from the Cauchy-Riemann equations. This
means that the lines for which u is constant are perpendicular (i.e.,
orthogonal) to the lines for which v is constant.

Observation 2. For the second derivatives we have the following
relations:

d2u

dx2
=

d

dx

(
du

dx

)
=

d

dx

dv

dy
(18.4)

and eq17.3
d2u

dy2
=

d

dy

(
du

dy

)
=

d

dy

(
−dv
dx

)
. (18.5)

The differentials commute, so by combining equations 18.4 and 18.5 eq17.4
we get

d2u

dx2
+
d2u

dy2
= 0,
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u = Re f(z)

x = Re z

y = Im y

Figure 18.3: f(z) near a saddle-point.

and similarly
d2v

dx2
+
d2v

dy2
= 0.

This means that analytic functions satisfy Laplace’s equation.pr:LapEq1
Observation 3. From Observation 2 we find that:

If
d2u

dx2
> 0 then

d2u

dy2
< 0. (18.6)

Thus we cannot have a maximum or a minimum of both u and v occureq17.5
anywhere in the complex plane. The point z0 = x0 + iy0 for which

du

dx
|z0

= 0 and
du

dy
|z0

= 0

is called a saddle point. The Cauchy–Riemann equations and equation
18.6 imply that if df/dz = 0 at z0, then z0 is a saddle point of both
u(x, y) and v(x, y). This is illustrated in figure 18.3.fig17.3

Observation 4. For an analytic function f = u+iv and a differential
dl we have

df = dl · ∇f
= dl · ∇u+ idl · ∇v.

Note that |df/dz| is independent of the direction of dl due to analyticity.
Suppose that we chose dl to be perpendicular to ∇u. In this case
dl · ∇v = 0, so

df = dl · ∇u for dl‖∇u.
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As the magnitude of f changes, the change dl · ∇u is purely real, since
u(x, y) is real. Thus the real part of f has maximum change in the
direction where dl · ∇v = 0, since |df/dz| is independent of direction.
Therefore dl·∇v = 0 gives the path of either steepest descent or steepest
ascent. The information given so far is insufficient to determine which.

18.2 Specification of Steepest Descent

We want to evaluate the integral from equation 18.1,

I(ω) =
∫

C
dzeωf(z)g(z),

for ω large. We take ω to be real and positive. In the previous section
we wrote f(z) = u(z)+iv(z). Thus we want to know Re (f(z)) in order
to determine the leading order behavior of I(ω) for ω � 1.

To solve for I(ω) we deform C → C0 such that most of the contribu-
tion of the integral when ω � 1 comes from a small region on C0. Thus
we need to make an optimal choice of contour. We want df/dz = 0 at
some point z = z0 on the deformed contour C0. We parameterize C0

with the line

z(τ) = x(τ) + iy(τ).

We want the region of the curve where u(τ = Re (f(τ)) to be as lo-
calized as possible. Thus we want the contour to run in the direction
where u(τ) has maximal change. As we saw at the end of the previ-
ous section, this occurs when v(z(τ)) = v(τ) remains constant. So our
deformed contour C0 has the property that

v(τ) = a constant on C0. (18.7)

This will uniquely determine the contour. eq17.6
Note that we assume there is only one point where df/dz = 0. If

there were more than one such point, then we would merely repeat this
process at the new point and add its contribution.

Equation 18.7 is equivalent to the condition

Im[f(z(τ))− f(z0)] = 0.
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The path for which this condition is satisfied is also the one for which

Re[f(z)− f(z0)] = u(z)− u(z0)

changes most rapidly.
We want to evaluate I(ω) for ω large. Recalling the condition for a

local maximum or minimum that df/dz = 0, we note that it is useful
to rewrite the integral defined in equation 18.1 as

I(ω) =
∫

C
dzeωf(z)g(z) = eωf(z0)

∫
C0

dzeω(f(z)−f(z0))g(z).

Note that since f(z) is an analytic function, the integral over C0 is equal
to the integral over C. The main contribution is at the maximum of the
difference f(z)− f(z0). We want to find the curve with the maximum
change, which has a local maximum at z0, which means we want the
quantity f(z) − f(z0) to be negative. Thus we want the curve along
which

Re[f(z)− f(z0)] = u(z)− u(z0)

changes most rapidly and is negative. This is called the curve of steepest
descent. This condition specifies which of the two curves specified by
Im[f(z(τ)) − f(z0)] = 0 we choose: we choose the path of steepest
descent.

18.3 Inverting a Series
pr:invSer1

We choose the parameterization

f(z)− f(z0) ≡ −τ 2

so we get
z(τ = 0) = z0.

Note that τ is real since ∆v(τ) = 0 along the curve and f(z) < f(u0).
We need to invert the integral. Expand f(z) − f(z0) in a power

series about z0:

f(z)− f(z0) =
f ′′(z0)

2!
(z − z0)

2 +
f ′′′(z0)

3!
(z − z0)

3 + . . . = −τ 2. (18.8)
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We also geteq17.7

z − z0 =
∞∑

n=1

anτ
n = a1τ + a2τ

2 + a1τ
3 + . . . . (18.9)

Note that there is no constant term in this series. This is because τ = 0 eq17.8
implies z − z0 = 0. Thus, if we had an n = 0 term, we couldn’t satisfy
this stipulation.

Plug equation 18.9 into 18.8:

−τ 2 =
f ′′(z0)

2!

( ∞∑
n=1

anτ
n

)2

+
f ′′′(z0)

3!

( ∞∑
n=1

anτ
n

)3

.

To calculate a1, forget the terms (f ′′′(z0)/3!)(z − z0)
3 on. The calcu-

lation of a2 includes this term and the calculation of a3 includes the
following term. Thus

−τ 2 =
f ′′(z0)

2!
a2

1τ
2 +O(τ 3). (18.10)

Now let eq17.9
f ′′(z0)

2!
≡ Re+iθ.

Plugging this into equation 18.10 and canceling τ 2 yields

−1 = a2
1Re

iθ

so

a2
1 =

eiπ−iθ

R

where −1 = eiπ. So

a1 =
1√
R
ei(− θ

2
±π

2
). (18.11)

The calculation of the a′is is the only messy part involved in finding eq17.10
subsequent terms of the inverted series. For our purposes, it is sufficient
to have calculated a1. The ± in equation 18.11 gives us two curves for
the first term:

z − z0 ≈ a1τ =
τ√
R
ei(−θ±π)/2.
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We now assume that we have calculated the whole series, and use
the series to rewrite I(ω). We now take our integral

I(ω) = eωf(z0)
∫

C0

dzeω(f(z)−f(z0))g(z),

and make a variable substitution

dz =
dz

dτ
dτ

to obtain

I(ω) = eωf(z0)
∫ τ+

τ−
dτe−ωτ2 dz

dτ
g(z(τ)),

where τ+ and τ− are on the curve C0 on opposite sides of τ = 0. We
expand the z(τ) in the function g(z(τ)) as

z = a1τ + a2τ
2 + . . .

and thus
dz

dτ
g(z(τ)) =

∞∑
n=0

cnτ
n, (18.12)

where the cn can be determined from the an and g(z(τ)). Thus we caneq17.11
write

I(ω) = eωf(z0)
∑
n

∫ τ+

τ−
dτe−ωτ2

cnτ
n.

Thus, with no approximations being made so far, we can assert

I(ω) = eωf(z0)
∑
n

cn

∫ τ+

τ−
dτe−ωτ2

τn.

Now let τ− →∞ and τ+ →∞. Our integral becomes

I(w) = ewf(z0)
∞∑

n=0

cn

∫ ∞

−∞
dτe−wτ2

τn.

This is an elementary integral. We know∫ ∞

−∞
dτe−wτ2

=

√
π

w
,
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∫ ∞

−∞
dττ 2e−wτ2

=
d

dω

∫ ∞

−∞
dτe−wτ2

=
d

dω

√
π

w
=

√
π

2ω3/2
,

(this is called differentiating with respect to a parameter), and similarly∫ ∞

−∞
dττ 2me−wτ2

=

(
d

dω

)n ∫ ∞

−∞
dτe−wτ2

=
√
π

1 · 3 · 5 · · · (2m− 1)

2mω(2m+1)/2
.

Since odd n gives zero by symmetry, we have

I(w) = ewf(z0)
∞∑

n=0,2,4,...

cn

∫ ∞

−∞
dτe−wτ2

τn.

All this gives

I(w) = ewf(z0)

[
c0

√
π

w
+
c2
2

√
π

w3/2
+
√
π

∞∑
m=2

c2m
1 · 3 · 5 · · · (2m− 1)

2mw(2m+1)/2

]
.

The term c0
√
π/ω corresponds to Sterling’s formula and the term c2

2

√
π

w3/2

is the first correction to Sterling’s formula. The only computation re-
maining is the dz/dτ in equation 18.12.

18.4 Example 1: Expansion of Γ–function
pr:Gamma1

We want to evaluate the integral

I(w) =
∫ ∞

0
e−ttwdt.

18.4.1 Transforming the Integral

We want to get this equation into the standard form. We make an
elementary transformation to get it into the form∫

dzewf(z)g(z).

We substitute t = zw to get

I(w) =
∫ ∞

0
dze−wz(zw)w (18.13)

= ww+1
∫ ∞

0
dzew[log z−z]. (18.14)



274 CHAPTER 18. THE METHOD OF STEEPEST DESCENT

For g = 1 we have
f(z) = log z − z

and we have
df

dz
=

1

z
− 1 = 0 at z = 1.

This is a saddle point. We chose to define ϕ on the interval

−π < ϕ < π

so that
z = reiϕ, log z = log r + iϕ.

This is analytic everywhere except the negative real axis, which we
don’t need.

18.4.2 The Curve of Steepest Descent

Since we know the saddle point, we can write

f(z)− f(z0) = log z − z + 1.

So we just need to calculate

0 = Im[f(z)− f(z0)] (18.15)

= ϕ− r sinϕ. (18.16)

We expect the lines of steepest assent and descent passing through z0

to be perpendicular to each other. The two solutions of this equation
correspond to these curves. The solution ϕ = 0 gives a line on the
positive real axis. The other solution is

r =
ϕ

sinϕ
(18.17)

≈ 1 +
ϕ2

6
for ϕ� 1. (18.18)

We haven’t yet formally shown which one is the line of steepest ascent
and descent. This is determined by looking at the behavior of f(z) on
each line.
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By looking at log z − z + 1 we see that f(z)− f(z0) can be written

f(z)− f(z0) = log z − (z − 1) (18.19)

= −τ 2

=
∑
n

cn(z − 1)n.

We have to invert this in order to get the asymptotic expansion of
the gamma function. We expand equation 18.19 in a power series, after
noting that log z = log[(z − 1) + 1]:

−τ 2 = −1

2
(z − 1)2 +

1

3
(z − 1)3 − 1

4
(z − 1)4 + . . . .

We plug in
z(τ)− 1 = Aτ +Bτ 2 + Cτ 3 +O(τ 4)

−τ 2 = −1

2
(Aτ +Bτ 2 + Cτ 3)2 +

1

3
(Aτ +Bτ 2)3 − 1

4
(Aτ)4 +O(τ 5)

= −1

2
A2τ 2 − A

(
B − A2

3

)
τ 3 −

(
B2

2
+ AC − A2B +

A4

4

)
τ 4 +O(τ 5).

Comparing coefficients on the left and right hand side, we get

τ 2 : A2 = 2

τ 3 : A(B − A2/3) = 0

τ 4 :
B2

2
+ AC − A2B +

A4

4
= 0.

This method is called inverting the power series. We find

A =
√

2,

C =
√

2/8.

The positive roots were chosen for convenience. Now we calculate what
the cn’s are from

dz

dτ
g(z(τ)) =

∞∑
n=0

cnτ
n.
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Since g(z) = 1 and

dz

dτ
= A+ 2Bτ + 3Cτ 2 + . . . ,

we know that
C0 =

√
2,

C2 =

√
2

6
.

Finally, we plug in these values:∫ ∞

0
e−ttwdt = I(w)

= ewf(z0)

[
c0

√
π

w
+
c2
2

√
π

w3/2
+ . . .

]

= e−w

√2π

w
+

√
2π

12w3/2
+ . . .

 ,
which agrees with Abramowitz & Stegun, formula 6.1.37.

18.5 Example 2: Asymptotic Hankel Func-

tion
pr:Hankel1

We want to find the asymptotic form of the Hankel function, starting
with the integral representation

H(1)
ν (z) =

1

πi

∫ ∞+πi

−∞
ez sinh w−νwdw

The contour of integration is the figure 18.4. The high index and argu-fig17.4
ment behavior of the Hankel function

H(1)
ν (z)

are important in high energy scattering. The index ν is related to the
effect of an angular momentum barrier, and z to an energy barrier. In
this equation ν is an arbitrary complex number and z is an arbitrary
complex number in a certain strip of the plane.
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Re w

Im w
π

Figure 18.4: Defining Contour for the Hankel function.

We now relabel the Hankel function as H(1)
p (z), where

p

z
= cosω0.

Note that p/z is real and 0 < p/z < 1, which implies 0 < ω0 < π/2. So

Hp(z) =
1

πi

∫
C
dzezf(w)g(w)

where g(w) = 1, with

f(w) = sinhw − pw/z = sinhw − w cosω0.

To examine asymptotic values |z| � 1 with ω0 fixed, we want to deform
the contour so that it goes through a saddle point. Using the usual
method, we have

df(w)

dw
= coshw − cosω0 = 0.

We define
w0 = iω0

so that
coshw0 cosh iω0 = cosω0.

Thus

f(w = iω) = sinh iω0 − iω0 cosω0 = i[sinω0 − ω0 cosω0]

so that

f(w)− f(w0) = sinhw − w cosω0 − i[sinω0 − ω0 cosω0].
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Ascent

Descent

Re w

Im w

π/4

Figure 18.5: Deformed contour for the Hankel function.

We want to find out what the curves are. Note that

d2f(w)

dw2

∣∣∣∣
w=iω0

= sinhw
∣∣∣∣
w=iω0

= i sinω0

so we can write

−τ 2 = f(w)− f(iω0) =
1

2
i(sinω0)(w − iω0)

2 + . . . .

To invert this series, we write

w − iω0 = Aτ +Bτ 2 + Cτ 3 + . . . .

For now, we are just interested in the leading order term. So

−τ 2 =
1

2
A2τ 2i(sinω0)

which implies

A2 =
2i

sinω0

.

Recall that we are looking for the tangent of C0 at w0. Thus we have

A = ±eiπ/4

√
2

sinω0

,

so

w − iω0 = ±
√

2

sinω0

eiπ/4τ.

The deformed curve C0 has the form shown in figure 18.5. The picturefig17.5
neglects to take into account higher order terms. We choose the plus
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sign to get the direction correct. Note that the curve of steepest ascent
is obtained by a rotation of π/2 of the tangent, not the whole curve.

In the power series

g(z(τ))
dz

dτ
=

∞∑
n=0

cnτ
n

where g(z(τ)) = 1, we have

dw

dτ
= A+ higher order terms,

so

c0 = A = eiπ/4

√
2

sinω0

.

Note that

sinω0 =

√
1− p2

z2
=

1

z

√
z2 − p2.

Usually we consider z � p, so that

1

z

√
z2 − p2 = 1.

The equation for C0 comes from

Im [f(w)− f(w0)] = 0

where w = u+ iv. So in the equation

Im [f(w)− f(w0)] = coshu sin v − v cosω0 − (sinω0 − ω0 cosω0) = 0.

Thus,

u→ +∞ implies coshu→ +∞ so v = 0, π,

u→ −∞ implies coshu→ −∞ so v = 0, π,

This gives the line of steepest assent and descent. The orientation of
the curves of ascent and descent are shown in figure 18.6 fig17.6
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Descent

Re w

Im w

Figure 18.6: Hankel function contours.

18.6 Summary

1. The asymptotic solution of the integral

I(ω) =
∫

C
dzeωf(z)g(z)

is

I(w) = ewf(z0)

[
c0

√
π

w
+
c2
2

√
π

w3/2
+
√
π

∞∑
m=2

c2m
1 · 3 · 5 · · · (2m− 1)

2mw(2m+1)/2

]
.

2. The asymptotic expansion for the Gamma function is

∫ ∞

0
e−ttwdt = e−w

√2π

w
+

√
2π

12w3/2
+ . . .

 .
3. The asymptotic behavior of the Hankel function is discussed in

section 17.4.

18.7 References

See [Dennery], as well as [Arfken85].



Chapter 19

High Energy Scattering

Chapter Goals:

• Derive the fundamental integral equation of scat-
tering.

• Derive the Born approximation.

• Derive the integral equation for the transition op-
erator.

25 May p1

The study of scattering involves the same equation (Schrödinger’s) as
before, but subject to specific boundary conditions. We want solutions
for the Schrödinger equation,

ih̄
∂

∂t
Ψ(x, t) = HΨ(x, t), (19.1)

where the Hamiltonian is eq18.1

H = − h̄2

2m
∇2 + V (x) = H0 + V.

We look for steady state solutions of the form

Ψ(x, t) = e−i(E/h̄)tΨE(x), (19.2)

using the association E = h̄ω. In particular we want E > 0 solutions, eq18.3
since the solutions for E < 0 are bound states. By substituting equation pr:bound1

281
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19.2 into 19.1 we find that ΨE satisfies

(E −H)ΨE(x) = 0. (19.3)

The boundary condition of scattering requires that the wave functioneq18.4
be of the form

ΨE(x) = eiki·x + ΨS(x) (19.4)

where the incident wave number ki iseq18.5

ki =

√
2mE

h̄2 êz.

We interpret equation 19.4 as meaning that the total wave function is
the sum of an incident plane wave eiki·x with wavelength λ = 2π/ki,
and a wave function due to scattering. This solution is illustrated by
the following picture:

ψE(x) =
-
-
-

eik·x

+ z���
��� ���

��
ψS(x)25 May p2

At distances far from the scatterer (r � 1), the scattered wave
function becomes1

Ψs(x) =
eikr

r
f(ki,kf ;E) for r � 1 (19.5)

where the final wave number kf iseq18.7

kf =
pf

h̄
= x̂

√
2mE

h̄2 .

The unit vector x̂ simply indicates some arbitrary direction of interest.
Equation 19.5 is the correct equation for the scattered wave function.
The angular function f(ki,kf ;E) is called the form factor and contains
the physical information of the interaction.

1Again, see most any quantum mechanics text.
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For the case of spherical symmetry

f(kf ,ki;E) = f(kf · ki;E).

where kf · ki = kfki cos θ.
We now would like to formulate the scattering problem for an arbi-

trary interaction. Thus we look at the relation of the above formulation
to Green’s functions. The form of equation 19.3 appropriate for Green’s
functions is

(E −H)G(x,x′;E) = δ(x− x′).

Note the minus sign (used by convention) on the left hand side of this G 5/25/88
equation. We solved equation 19.3 by writing (for the asymptotic limit
|x′s| → ∞)

G→ − m

2πh̄2

eikr′

r′
ΨE(x) = − m

2πh̄2

eikr′

r′
[eik·x + Ψs(x)]

where ΨE(x) satisfies

(E −H)ΨE(x) = 0.

The Green’s function holds asymptotically since δ(x−x′) → 0 as |x′| →
∞. This is the solution of the Schrödinger equation which has the This needs

fixin’boundary condition of scattering.
pr:bcos1

19.1 Fundamental Integral Equation of Scat-

tering
G 5/25/88

¡25 May p3The equation for a general Green’s function is

(E −H)G(x,x′;E) = δ(x− x′). (19.6)

Since H = H0 + V , where H0 = −h̄2∇2/2m, the free space Green’s eq18.13
function satisfies

(E −H0)G0(x,x
′;E) = δ(x− x′).

As we have seen, the solution to this equation is See also Jack-
son, p.224.
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G0 = − m

2πh̄2

eikR

R
, (19.7)

where R = |x − x′|. We now convert equation 19.6 into an integral eq18.15
equation. The general Green’s function equation can be written

(E −H0)G = δ(x− x′) + V (x)G. (19.8)

We can now use Green’s second identity. We define an operatoreq18.16

L0 ≡ E −H0.

The operator L0 is hermitian, since both E and H0 are. Recall that
Green’s second identity is25 May p4 ∫

(S∗L0u) =
∫

(uL0S),

where we now choose

S∗ = G(x,x′;E),

u = G0(x,x
′′;E),

with the L0 from above. We now have (using equation 19.8)∫
dxG(x,x′;E)δ(x′ − x′′) =∫

dxG0(x,x
′′;E)[δ(x− x′) + V (x)G(x,x′′;E)],

so
G(x′′,x′) = G0(x

′,x′′) +
∫
dxG0(x,x

′′)V (x)G(x,x′).

We can use the fact that G is symmetric (see equation 19.7) to write

G(x′′,x′;E) = G0(x
′′,x′;E) +

∫
dxG0(x

′′,x;E)V (x)G(x,x′;E).

So, for x′′ → x and x → x1, we have

G(x,x′;E) = G0(x,x
′;E) +

∫
dx1G0(x,x1;E)V (x1)G(x1,x

′;E).

(19.9)
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This is called the fundamental integral equation of scattering. Thiseq18.23

pr:FundInt1 integral is completely equivalent to equation 19.6. We now describe a
way to write equation 19.9 diagrammatically. We establish the following
correspondences.

G(x,x′;E) = �

x ��
��
G �

x′

G0(x,x
′;E) =

x
�

x′

∫
dx1G0(x,x1;E)V (x1)G(x1,x

′;E) = �

x
z�

x1 ��
��
G �

x′
Thus a line indicates a free Green’s function. A dot indicates a poten-
tial, and a G in a circle represents the Green’s function in the presence
of the potential. The point x1 represents the position of the last inter-
action. Thus equation 19.9 can be written 25 May p5

�

x ��
��
G �

x′
=

x
�

x′
+ �

x
z�

x1 ��
��
G �

x′

The arrowheads indicate the line of causality. This helps us to
remember the ordering of x′, x1 and x.

19.2 Formal Scattering Theory

Now we want to derive this equation again more formally. We will
use the operator formalism, which we now introduce. The free Green’s pr:OpForm1
function equation is[

E +
h̄2

2m
∇2

]
G0(x,x

′;E) = δ(x− x′),
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where the right hand side is just the identity matrix,

〈x|1|x′〉 = δ(x− x′),

and (1)ij = δij. We also write

G0(x,x
′;E)

[
E +

h̄2

2m
∇′2

]
= δ(x− x′),

where the operator ∇′2 operates to the right. From these equations we
can write symbolically

[E −H0]G0 = 1 (19.10)

andeq18.25
G0 = 1[E −H0]. (19.11)

This uses the symmetry of G0 operating on x or x′. Thus our manipula-eq18.26
tions are essentially based on hermiticity. Because G is also symmetric,
we may also write

[E −H]G = 1,

and
G[E −H] = 1.

We now want to rederive equation 19.9. We write25 May p6

[E −H]G = 1

and
[E −H0 − V ]G = 1.

We now multiply on the left by G0 to get

G0[E −H0 − V ]G = G0 · 1 = G0.

With the aid of equation 19.11 this becomes

G−G0V G = G0,

or
G = G0 +G0V G, (19.12)
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where the term G0V G symbolizes matrix multiplication, which is thuseq18.31
as integral. This is equivalent to equation 19.9, which is what we wanted
to derive.

Note that

〈x|G|x′〉 = G(x,x′)

and

〈x|V |x′〉 = V (x)δ(x− x′).

19.2.1 A short digression on operators

If an integral of the form

C(x1,x2) =
∫
dx′A(x1,x

′)Bx′,x2)

were written as a discrete sum, we would let x1 → i, x2 → j, and
x′ → k. We could then express it as

Cij =
∑
k

AikBkj.

But now A, B, and C are just matrices, so we can express C as a
matrix product C = AB. This can also be viewed as an operator
equation. Quantum mechanically, this can be represented as a product
of expectation values, either for a discrete spectrum,

〈i|C|j〉 =
∑
k

〈i|A|k〉〈k|B|j〉,

or for a continuous spectrum,

〈x1|C|x2〉 =
∫
dx′〈x1|A|x′〉〈x′|B|x2〉.

We now show that the form of the fundamental integral of scattering
expressed in equation 19.12 is equivalent to that in equation 19.9. If
we reexpress equation 19.12 in terms of expectation values, we have

〈x|G|x′〉 = 〈x|G0|x′〉+ 〈x|G0V G|x′〉.
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By comparing with equation 19.10, we see that the last term can be
written as

〈x|G0V G|x′〉 =
∫
dx1dx2〈x|G0|x1〉〈x1|V |x2〉〈x2|G|x′〉

=
∫
dx1dx2〈x|G0|x1〉V (x1)δ(x1 − x2)〈x2|G|x′〉

=
∫
dx1〈x|G0|x1〉V (x1)〈x1|G|x′〉.

So by identifying

〈x|G|x′〉 = G(x,x′)

〈x|G0|x′〉 = G0(x,x
′)

we have our final result, identical to equation 19.9,

G(x,x′) = G0(x,x
′) +

∫
dx1G0(x,x1)V (x1)G(x1,x

′)

which we obtained using equation 19.12.27 May p1

19.3 Summary of Operator Method

We started with
H = H0 + V

and the algebraic formulas

(E −H)G = 1,

(E0 −H)G0 = 1.

We then found that G satisfies the integral equation

G+G0 +G0V G.

By noting that G(E −H) = 1, we also got

G = G0 +GV G0.

27 May p2
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19.3.1 Derivation of G = (E −H)−1

The trick is to multiply by G0. Thus

G(E −H0 − V ) = 1 ·G0,

and so

G−GV G0 = G0.

Operators are nothing more than matrices. By inverting the equa-
tion, we get

G =
1

E −H
.

So G is the inverse operator of [E −H]. In this context it is useful to
define G in terms of its matrix elements:

G(x,x′;E) ≡ 〈x|G(E)|x′〉

where Im E = 0. This arithmetic summarizes the arithmetic of Greens
Second Identity. We also found that the Green’s function solves the 27 May p3
following integral equation

G(x,x′;E) = G0(x,x
′;E) +

∫
dxG0(x,x1;E)V (x1)G(x1,x

′;E).

We were able to express this graphically as well. The other equation
gives

G(x,x′;E) = G0(x,x
′;E) +

∫
dxG(x,x1;E)V (x1)G0(x1,x

′;E).

19.3.2 Born Approximation

Suppose the V (x) is small. Then in the first approximation G ∼ G0.
We originally used this to calculate the scattering amplitude f . We 27 May p4
now use perturbation methods to obtain a power series in V .
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19.4 Physical Interest

We now want to look at E = E + iε. We place the source point at
x′ → −r′ẑ, where r′ → ∞. We can then write the free space Green’s
function as

G0(x,x
′;E) = − m

2πh̄2

eikr′

r′
eikx

where

k =

√
2mE

h̄2 .

In this limit the full Green’s function becomes, for the fundamental
integral equation of scattering, equation 19.9,

lim
x→r′ l̂z
r′→∞

G(x,x′;E) = − m

2πh̄2

ekr′

r′

[
eikx +

∫
dx1G(x,x1;E)V (x1)e

ik·x
]
.

(19.13)
Note that sinceeq18.13a

H = − h̄2

2m
∇2

we have
[E −H0]e

ikx = 0.

We define27 May p5

Ψ
(+)
k (x) ≡ eikx +

∫
dx1G(x,x1;E)V (x1)e

ik·x1 . (19.14)

Then what we have shown istwsedblst

lim
r′→∞

G(x,x′;E) = − m

2πh̄2

eikr′

r′
Ψ

(+)
l (x)

where [E−H]Ψ+
k = 0, and Ψ+

k satisfies outgoing wave boundary condi-

tion for scattering. We can get Ψ
(+)
k to any order in perturbation since

we have an explicit expression for it and G.
Now consider the case in which r′ →∞ with

1. G = G0 +G0V G

2. G = G0 +GV G0
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Case 2 implies that

G = − m

2πh̄2

eikr′

r′
Ψ(+)

n (x) as r′ →∞. (19.15)

By inserting Eq. (19.15) into 1., we get eq:twoseva

− m

2πh̄2

eikr′

r′
Ψ

(+)
N (x) = − m

2πh̄2

eikr′

r′

[
eik·x +

∫
G0(x,x1;E)V (x1)Ψ

(+)
k (x1)

]
.

This implies that Ψ
(+)
k (x) satisfies 27 May p6

Ψ
(+)
k (x) = eik·x +

∫
G0(x,x1;E)V (x1)Ψ

(+)
k (x1). (19.16)

This is the fundamental integral expression for Ψ. Compare with Eq. twosevst
(19.14).

We now prove that Ψ
(+)
k satisfies scattering equation with the scat-

tering condition. We use the form of Ψ(+) in Eq. (19.14).

(E −H)Ψ
(+)
k = (E −H0 − V )eik·x

+
∫
dx1(E −H0 − V )xG(x,x1;E)V (x1)e

ik·x1

= −V (x)eik·x +
∫
dx1δ(x− x′)V (x1)e

ik·x1

= −V (x)eik·x + V (x)eik·x

= 0.

27 May p7

19.4.1 Satisfying the Scattering Condition

We use the form of equation (19.16) to prove that it does satisfy the
scattering condition. Let x = êrr where r →∞. We use the result

lim
x=rêr
r→∞

G0(x,x1;E) = − m

2πh̄2

eikr

r
e−ikf ·x1
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where kf = kêr. There is a minus in the exponent since we are taking
the limit as x approaches êr∞ rather than −êr∞ as in equation (19.15).
Thus the limiting case is

Ψ
(+)
k (x) = eik·x +

eikr

r

[
− m

2πh̄2

∫
dx1e

−ikf ·x1V (x1)Ψ
(+)
k (x1)

]
.

We further define

lim
x=rêr
r→∞

Ψ
(+)
k (x) ≡ eik·x +

eikr

r
f(k,kf ;E)

where f is the scattering amplitude to scatter a particle of incident wave
k to outgoing kf with energy E. This is the outgoing wave boundary
condition.27 May p8

19.5 Physical Interpretation

We defined the wave function Ψ
(+)
k (x) using equation 19.13 whose com-

ponents have the following interpretation.

Ψ
(+)
k (x) = eik·x +

∫
dx1G0(x,x1;E)V (x1)Ψ

(+)
k (x1)

≡ Ψincident(x) + Ψscattered(x)

where

lim
|x|=r→∞

Ψs(x) =
eikr

r
f(k,kf ;E).

The physical interpretation of this is shown graphically as follows.

Ψ
(+)
k (x) =

-
-
-

Ψincident(x)

+ z���
��� ���

��
Ψscattered(x)

19.6 Probability Amplitude
27 May p9

The differential cross section is given bypr:diffcrsec1
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dσ

dΩ
(k → kf ) = |f(k,kf ;E)|2

where f is the scattering amplitude for scattering with initial momen-
tum p = h̄k and final amplitude pf = h̄kf from a potential V (x). The
scattering amplitude f is sometimes written

f(k,kf ;E) = − m

2πh̄2 〈kf |V |Ψ(+)
k 〉.

19.7 Review
1 Jun p1

We have obtained the integral equation for the Green’s function,

G(x,x′;E) = G0(x,x
′;E) +

∫
dxG0(x,x1;E)V (x1)G(x1,x

′;E).

For the case of a distant source we have seen

lim
x′→−∞ẑ

G(x,x′;E) = − m

2πh̄2

eikr′

r′
Ψ

(+)
E (x),

where

Ψ
(+)
E (x) = eik·x +

∫
dx1G0(x,x

′;E)V (x1)Ψ
(+)
E (x1).

The first term is a plane wave. The integral represents a distorted wave.
Note that Ψ

(+)
E (x) automatically satisfies the outgoing wave boundary

condition. (This is the advantage of the integral equation approach
over the differential equation approach.) To verify this, we took the
limit x →∞. We also obtained

Ψ
(+)
E (x) = eik·x +

∫
dx1G(x1,x

′;E)V (x1)e
ik·x1 .

We let E → E + iε to get a scattering solution,

G0(x,x
′;E + iε) =

eik·|x−x′|

|x− x′|

(
− m

2πh̄2

)
,

where |k| =
√

2mE/h̄2. We also have shown that Ψ
(+)
E (x) satisfies

[E −H]Ψ
(+)
E (x) = 0.
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The wave function Ψ
(+)
E (x) can also be written in the form

Ψ
(+)
E (x)

x→∞n̂−→ eik·x + f(k,k1;E)
eikr

r
,

where we have obtained the following unique expression for f ,

f(k,k1;E) = − m

2πh̄2

∫
dxe−ikf ·xV (x)Ψ

(+)
E (x),

where the integral represents a distorted wave. In particular, the term
e−ikf ·x is a free wave with the final momentum, V (x) is the interaction

potential, and Ψ
(+)
E (x) is the distorted wave. So the integral expression

for f is the overlap of Ψ and V with the outgoing final wave. Note
that we have made no use of spherical symmetry. All x contribute, so
we still need short distance behavior even for far distance results. The
differential cross section can be written in terms of f as

dσ

dΩ

∣∣∣∣∣
k→kf

= |f |2.

19.8 The Born Approximation
pr:BornAp1

We now study a particular approximation technique to evaluate Ψ
(+)
E (x)

in
Ψ

(+)
E (x) = eik·x +

∫
dx1G0(x,x

′;E)V (x1)Ψ
(+)
E (x1).

We assume that the potential is weak so that the distortion, as repre-
sented by the integral, is small. The condition that the distortion is
small is

small distortion ⇐⇒ |Ψ(+)
E (x)− eik·x| � 1.

In this case the potential must be sufficiently small, such that∫
dx1G0(x,x

′;E)V (x1)Ψ
(+)
E (x1) � 1.

We now introduce the short hand of representing this integral by VB,
the Born parameter:

VB ≡
∫
dx1G0(x,x

′;E)V (x1)Ψ
(+)
E (x1) � 1.
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For VB � 1 we may let Ψ
(+)
E (x1) be replaced by eik·x in f(k,kf ;E). In

this case f becomes fBorn(k,kf ;E), defined by

f(k,kf ;E) = − m

2πh̄2

∫
dxe−ix·(k−xf )V (x).

In this approximation the cross section becomes

dσ

dΩ
Born−→dσB

dΩ
= |fB|2.

This is called the first Born approximation. This approximation is valid
in certain high energy physics domains.

We now introduce the matrix notation∫
dxe−ix·kfV (x)Ψ

(+)
k (x) ≡ 〈xf |V |Ψ(+)

k 〉.

So in terms of this matrix element the differential cross section is

dσ

dΩ
= |f(k,kf ;E)|2,

where the scattering amplitude is given by

f(k,kf ;E) = − m

2πh̄2 〈xf |V |Ψ(+)
k 〉.

We also define the “wave number” transfer q,

q = kf − k = (pf − pi)/h̄.

Thus q is the same as (momentum transfer)/h̄. This allows us to write

fB = − m

2πh̄2 Ṽ (q),

where the fourier transformed potential, Ṽ (q), is given by

Ṽ (q) =
∫
dxe−iq·xV (x).

So in the first Born approximation, fB depends only on q.
Suppose that q → 0. In this case the potential simplifies to

Ṽ (q)
q→0−→

∫
dxV (x).

So the first Born approximation just gives us the f dependence on
the average of the potential. Notice that the first Born approximation
looses the imaginary part of f(k,kf ;E) for fB in R, the real numbers.
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Figure 19.1: Geometry of the scattered wave vectors.

19.8.1 Geometry

The relationship between k, kf , q and θ is shown in figure 19.1. Forfig18a
the special case of elastic scattering we have

k2
f = k2 = 2mE/h̄2 (elastic scattering).

In this case q2 is given by

q2 = (kf − k) · (kf − k)

= 2k2 − 2k2 cos θ

= 2k2(1− cos θ)

= 4k2 sin2(θ/2).

Thus we have q = 2π sin(θ/2). We thus know that q will be small for
either k → 0 (the low energy limit) or sin(θ/2) → 0 (forward scatter-
ing).

19.8.2 Spherically Symmetric Case

In this case the potential V (x) is replaced by V (r). We choose the
z-axis along q and use spherical coordinates. The fourier transform of
the potential then becomes

Ṽ (q) =
∫
r2drdφd(cos θ)e−iqr cos θV (r)

= 2π
∫ ∞

0
r2drV (r)

∫ 1

−1
d(cos θ)e−iqr cos θ

=
4π

q

∫ ∞

0
rdrV (r) sin qr.

This is a 1-dimensional fourier sine transform.
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19.8.3 Coulomb Case

We now choose a specific V (r) so that we can do the integral. We
choose the shielded Coulomb potential,

V (r) =
V0

r
e−r/a.

In the problem set set we use α instead of V0. The parameter α char-
acterizes the charge. The fourier sine transform of this potential is

(̃q) =
4πα

q

∫ ∞

0
dr sin rqe−r/a,

and the differential cross section is then

dσ

dΩ

∣∣∣∣∣
Born

= |fB|2

=
∣∣∣∣− m

2πh̄2 Ṽ (q)
∣∣∣∣2

= 4a2
(
αma

h̄2

)2
(

1

q2a2 + 1

)2

.

This is the shielded Coulomb scattering differential cros section in the
first Born approximation, where q = 2k sin(θ/2). Notice that as α→∞
this reduces to Rutherford scattering, which is a lucky accident.

We now look at characteristics of the differential cross section we
have obtained. Most of the cross section contribution comes from
qa = 2k sin(θ/2) � 1. Now if ka � 1, then we must require θ � 1,
which means that we can use the small angle approximation. In this
case out dominant cross section condition becomes qa ≈ 2ka(θ/2) � 1,
or θ � 1/ka. This gives a quantitative estimation of how strongly for-
ward peaked the scattered wave is. The condition ka� 1 corresponds
to the small λ, or high energy, limit. In this case the wavelength is
much smaller that the particle, which means that most of the scatter-
ing will be in the forward direction. We can see how good the first Born
approximation is by evaluating the Born parameter in this limit. We
find

VB = V0
ma2

k2

1

ka
� 1.
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In this equation V0 is the strength of the potential and a is the range of
the potential. Notice that ka� 1 can make VB � 1 even if V0 is large.
Thus we have a dimensionless measure of the strength of the potential.

19.9 Scattering Approximation

We now want to look at the perturbation expansion for the differential
cross section,

dσ

dΩ

∣∣∣∣∣
k→kf

= |f(k,kf )|2,

where the scattering amplitude f(k,kf ) is

f(k,k1;E) = − m

2πh̄2

∫
dxe−ikf ·xV (x)Ψ

(+)
E (x), (19.17)

where the incident wave function iseq18b1

Ψ
(+)
E (x) = eik·x +

∫
dx1G(x1,x

′;E)V (x1)e
ik·x1 . (19.18)

Ψ
(+)
E (x) satisfies the outgoing wave condition. By combining equationeq18b2

19.17 into 19.18 be obtain

f(k,k1;E) = − m

2πh̄2

{∫
dxe−kf ·xV (x)e−k·x

∫
dxdx′e−kf ·xV (x)G(x,x′;E)V (x′)ek·x

}
.

The first integral represents a single interaction, while the second inte-
gral represents two or more interactions. By introducing the transition
operator, we can simplify the expression for the scattering amplitude,

f(k,k1;E) = − m

2πh̄2

∫
dxdx′e−kf ·xG(x,x′;E)ek·x.

We now define the transition operator T . In function notation it ispr:transOp1

T (x,x′;E) ≡ V (x)δ(x− x′) + V (x)G(x,x′;E)V (x′).

In operator notation, we can rewrite this equation as

T = V + V GV.
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Thus in matrix notation, our old equation for f ,

f(k,kf ;E) = − m

2πh̄2 〈xf |V |Ψ(+)
k 〉,

is replaced by

f(k,k′) = − m

2πh̄2 〈xf |T |k〉,

Thus we now have two equivalent forms for expressing f .
In the first Born approximation we approximate T = V . T plays the

role in the exact theory what V plays in the first Born approximation.

19.10 Perturbation Expansion
pr:pertExp1

We now look at how the transition operator T can be used in dia-
gramatic perturbation theory. We make the following correspondences
between terms in the formulas and the graphical counterparts (these
are the “Feynman rules”): pr:FeynRul1
An incoming line:

HHjHHH
xk

represents eik·x.

An outgoing line:
��*�

��kfx
represents e−ikf ·x.

A vertex point: ux represents V (x).

A free propagator:

-
x1 x2represents G0(x2,x1).

A circled G:
-
x′ mG x

- represents G(x,x′).

Thus we can write the transition operator matrix element as

〈xf |T |k〉 =
HHjH

HH
xk u��*���kf

+
HHjH

HH
k ux′- mG - ux��*���kf

The first diagram represents the first Born approximation, which cor-
responds to a single scatterer. The second diagram represents two or
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more scatterer, where the propagation occurs via any number of inter-
actions through G.

The integral equation for the full Green’s function,

G(x,x′;E) = G0(x,x
′;E) +

∫
dx1G(x,x1;E)V (x1)G(x1,x

′;E),

has the following symbolic representation:

-
x′ mG x

- = -
x′ x

+ -
x ux1

- mG x
-

where x′ is the source point, x is the field point, and x1 is one of the
interaction points.

19.10.1 Perturbation Expansion

In matrix language the integral equation for the full Green’s function
is

G = G0 +GV G0,

which implies
G = G0(1− V G0)

−1.

Thus the following geometric series gives the solution to the integral
equation,

G = G0(1 + V G0 + (V G0)(V G0) + (V G0)(V G0)(V G0) + · · ·).

In symbolic notation, this expansion corresponds to

-
x′ mG x

- = -
x′ x

+ -
x′ x1u-

x
+ -

x′ x1u-
x2u-

x

+ -
x′ x1u-

x2u-
x3u-

x
+ · · · .

We could also write the series expansion in integral notation. In this
case the third order in V term, (V G0)(V G0)(V G0), is (writing right to
left)∫
dx1dx2dx3G0(x,x3)V (x3)G0(x3,x2)V (x2)G0(x2,x1)V (x1)G0(x1,x

′),
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where, for example,

G0(x3,x2) = − m

2πh̄2

eik·|x2−x3|

|x2 − x3|
.

Think of these terms as multiply scattered terms.
Now we can use this series to get a perturbation expansion for the

scattering amplitude f , that is, for the matrix element 〈xf |T |k〉. In
symbolic language it is is this correct?

〈xf |T |k〉 =
HHjHHH

xk u��*���kf
+

HHjHHH
k ux′- mG - ux��*���kf

=
HHjHHH

xk u��*���kf
+

HHjHHH
x′k u- ux��*���kf

+
HHjHHH

x′k u- ux1
- ux��*���kf

+
HHjHHH

x′k u- ux1
- ux2

- ux��*�
��kf

+ · · · .

To convert this to integral language we note that, for example, the
fourth Born approximation term is

HHjHHH
x′k u- ux1

- ux2
- ux��*���kf

In integral notation this is expressed as∫
dxdx′dx1dx2

[
e−ikf ·xV (x)G0(x,x2)V (x2)G0(x2,x1)V (x1)G0(x1,x

′)ek·x
′]
.

We must integrate over all space since each of the interaction points
may occur at any place.

19.10.2 Use of the T -Matrix

An alternative approach is to eliminate all direct reference to G with-
out perturbation theory. We then obtain an integral equation for the
transition matrix. By using

G = G0(1− V G0)
−1,

we have
V G = V G0(1− V G0)

−1,
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so we can write the transition matrix as

T = V + V G0(1− V G0)
−1V

= [1 + V G0(1− V G0)
−1]V

= [(1− V G0) + V G0](1− V G0)
−1V

= (1− V G0)
−1V.

This provides us with a new solution for T :

T = (1− V G0)
−1V.

We can write this as an integral equation, which would have the oper-
ator form

(1− V G0)T = V,

or
T = V + V G0T.

This gives us another Lippman/Schwinger equation. Notice that T =
(1− V G0)

−1V may be expanded in a power series in V just as was the
previous expression for G.

19.11 Summary

1. The fundamental integral equation of scattering is

G(x,x′;E) = G0(x,x
′;E) +

∫
dx1G0(x,x1;E)V (x1)G(x1,x

′;E).

19.12 References

See [Neyfeh, p360ff] for perturbation theory.



Appendix A

Symbols Used

〈S, u〉 the brackets denote an inner product, 13.

∗ as a superscript, represents complex conjugation, 13.

∇ nabla, the differential operator in an arbitrary number of dimen-
sions, 7.

A1, A2 constants used in determining the Green’s function, 28.

a the horizontal displacement between mass points on a string; an ar-
bitrary position on the string, 2, the left endpoint of a string,
6.

a1, a2 constants used in discussion of superposition, 23.

B1, B2 constants used in determining the Green’s function, 28.

b the right endpoint of a string 6.

b(x) width of a water channel, 108.

C a constant used in determining the Green’s function, 29.

c left endpoint used in the discussion of the δ-function, 24; constant
characterizing velocity, 39, 45.

D a constant used in determining the Green’s function, 29.
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d the differential operator; right endpoint used in the discussion of the
δ-function, 24.

∆p change in momentum, 87.

∆ui the transverse distance between adjacent points (ui − ui−1) on a
discrete string, 4.

∆x the longitudinal distance between adjacent points on a discrete
string, 4.

δ(x− x′) the delta function, 24, 129, 161.

δmn the Kroneker delta function, 36.

E energy, 74, 143.

e = 2.71 · · ·.

ε a small distance along the string, 27.

F (x, t) the external force on a continuous string, 1.

Fcd the force over the interval [c, d], used in the discussion of the δ-
function, 24.

F elastic
i the elastic force on the ith mass point of a discrete string, 3.

F ext
i the external force on the ith mass point of a discrete string, 3.

F τi
iy the transverse force at the ith mass point on a string due to tension,

3.

Ftot the total force on the ith mass point of the string.

f(x) is the external force density divided by the mass density at posi-
tion x, 4.

f(x′) a finite term used in discussion of asymptotic Green’s function,
42.

f1, f2 force terms used in discussion of superposition, 23.
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f(θ, k) the scattering amplitude for a field observer from an incident
plane wave, 214.

f̃(θ, r′, k) scattering amplitude, 214.

G(x, xk;ω
2) the Green’s function for the Helmholtz equation, 26.

GA the advances Green’s function, 87.

GS the scattered part of the steady state Green’s function, 184.

GR the retarded Green’s function, 86.

Gm(r, r′;λ) reduced Green’s function, 132.

G̃ the Fourier transform of the Green’s function, 88, the Laplace trans-
form of the Green’s function, 147.

gn(x, x′) asymptotic coefficient for Green’s function near an eigen value,
41.

γ angular difference between x and x′ used in scattering discussion,
185.

H the Hamiltonian, 195

H(1)
m (x), H(2)

m (x) the first and second Hankel functions, 79.

h(x) equilibrium height of a surface wave, 108.

hl(x) the spherical Hankel function, 178.

ha(t) the effective force exerted by the string: Fa/τa, 6.

hS(t) same as ha(t), generalized for both endpoints, 8.

h̄ the reduced Plank’s constant, 74.

I(ω) a general integral used in discussion of method of steepest descent,
265.

Im another Bessel function, 80.
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i the index of mass points on a string, 2.

î unit vector in the x-direction, 128.

J Jacobian function, 128.

j(r) the quantum mechanical current density, 227.

jinc the incident flux, 227.

jl(x) the spherical Bessel function, 178.

jn heat current, 144.

ĵ unit vector in the y-direction, 128.

Km another Bessel function, 80.

k the wave number, 38.

k2 a short hand for V/τ used in infinite string problem, 63.

ki the spring constant at the ith mass point, 3.

κ the thermal diffusity, 151.

κa the effective spring constant exerted by the string at endpoint a:
ka/τa, 6.

L0 linear operator, 5.

Lθϕ centrifugal linear operator, 162.

L the angular momentum vector, 207.

l dimension of length, 3.

l̂ the direction along the string in the positive x direction, 7.

λ an arbitrary complex number representing the square of the fre-
quency continued into the complex plane, 27; wavelength of sur-
face waves, 108.
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λn nth eigen value for the normal mode problem, 37.

λ(m)
n the nth eigenvalue of the reduced operator L

(µm)
0 , 133.

m dimension of mass, 3.

mi the mass of the particle at point i on the discrete string, 2.

µm eigenvalues for circular eigenfunctions, 131.

N the number of mass particles on the discrete string, 2; the number
of particles intercepted in a scattering experiment, 227.

nl(x) the spherical Neumann function, 178.

n̂ the outward normal, 7.

Ω solid angle, 161.

ω angular frequency, 9.

ωn the natural frequency of the nth normal mode, 32.

p momentum, 74, 207.

Φ solution of the Klein Gordon equation, 75; total response due to a
plane wave scattering on an obstacle, 185.

Φ0 incident plane wave used in scattering discussion, 185.

φ angular coordinate, 128, 160.

φn(xi, t) the normal modes, 38.

ψ quantum mechanical wave function, 195

R(r) function used to obtain Bessel’s equation, 178.

Re take real value of whatever term imediately follows.

r radial coordinate, 128.
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S the “surface” (i.e., endpoints) of a one dimensional string, 7; an
arbitrary function used in the derivation of the Green’s identities,
13.

S(x) cross sectional area of a surface wave, 108.

σ the cross section, 227.

σ(x) the mass density of the string at position x 4.

T (x,x′;E) transition operator, 298.

t time, dimension 3, variable, 3.

τi the tension on the segment between the (i−1)th and ith mass points
on a string, 2.

Θ parameter in RBC for the heat equation, 251.

θ the angle of the string between mass points on a discrete string, 3;
angle in parameterization of complex plane, 63.

u(x, t) transverse displacement of string, 5; displacement of a surface
wave from equilibrium height, 108.

u0(x) an arbitrary function used in the derivation of the Green’s iden-
tities, 13.

u0(x) value of the transverse amplitude at t = 0, 8.

u0(x, ω) steady state in free space due to a point source, 184.

u1(x) value of the derivative of the transverse amplitude at t = 0, 8.

u1, u2 functions used in discussion of superposition, 23.

u1 solution of the homogeneous fixed string problem, 46.

ui the vertical displacement of the ith mass particle on a string, 2.

u(m)
n (r) the nth eigenfunction of L

(µm)
0 , 133.

um
l (x) the normalized θ-part of the spherical harmonic, 164.
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uscat the scattered part of the steady state response, 198.

u1 modified solution of the homogeneous fixed string problem, 47.

V (x) the coefficient of elasticity of the string at position x, 1.

Veff the effective potential, 206.

W (u1, u2) the Wronskian, 30.

Xl coefficient of the scattered part of the wave relative to the incident
part, 187, 219.

x continuous position variable, 4.

x< the lower of the position point and source point, 30.

x> the higher of the position point and source point, 30.

x′ the location of the δ-function disturbance, 24.

xi discrete position variable, 4.

xk the location of the δ-function disturbance, 26.

Y m
l (θ, ϕ) the spherical harmonics, 164.

z(x) hight of a surface wave, 108.
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Index

addition formula 212
advanced Green’s function 87
all-spce problem 117, 174
analytic 46, 266
angular momentum 207
associated Legendre polynomial

168
asymptotic limit 49
Babenet’s principle 194
Bessel’s equation 79
Born approximation 294
bound states 281
boundary conditions 5, 111, 116,

145, 173; of scattereing
283

boundary value problem 1
branch cut 45, 60
Bromwich integral 246
Cartesian coordinates 128
Cauchy’s theorem 54
Cauchy-Riemann equations 266
causality 87
characteristic range 83
classical mechanics (vs. quantum

mechanics) 202, 207
closed string 6, discrete 37
coefficient of elasticity 4
completeness relation 51, 57, 76,

131, 169

Condon-Shortley phase conven-
tion 170

conservation of energy 144, 213
continuity condition 28
Coulomb potential 208
cross section 227
cutoff frequency 38, 66
De Broglie relation 203
degeneracy 39
delta function 24, 129
differential cross section 292
differential equation 3
diffraction 191
Dirichlet boundary conditions 8
discrete spectrum 49
dispersion relation 38
divergence 129, 161
effective force 7
effective spring constant 7
eigen function 32
eigenfunction expansion 131
eigen value problem 28, 68, 121,

133, 134, 140
eigen vector 32
elastic boundary conditions 6, 116

limiting cases, 7
elastic force 3
elastic media 8
elastic membrane 109
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energy 74, 143
energy levels 196
even dimensions, Green’s func-

tion in, 260
equations of motion 2
expansion theorem 57, 172
experimental scattering 208, 226
exterior problem 117, 122, 174
external force 3
far-field limit 208, 235
Feynman rules 299
forced oscillation problem 31, 73,

118
forced vibration 3
Fourier coefficient 58
Fourier integral 78, see also ex-

pansion theorem
Fourier Inversion Theorem see in-

verse Fourier transform
Fourier-Bessel transform 83
Fourier transform 88
Fredholm equation 40
free oscillation problem 32
free space problem 151, 188
free vibration 3
fundamental integral equation of

scattering 285
Gamma function 273
Gaussian 153, 155
gradient 129, 161
general response problem 103, 117,

119
general solution, heat equation,

246
Generalized Fourier Integral 59
geometrical limit of scattering 230
Green’s first identity 14, 119

Green’s function for the Helmholtz
equation, 26

Green’s reciprocity principle 30,
Green’s second identity 15, 119
Hamiltonian 195
Hankel function 79; asymptotic

form, 276
hard sphere, scattering from a,

231
heat conduction 143
heat current 144
heat equation 146
Helmholtz equation 9, 26
Hermitian analyticity 43
Hermitian operator 17, 119
holomorphic see analytic
homogeneous equation 28, 45
Huygen’s principle 194
impulsive force 86
infinite string 62
initial conditions 8
initial value problem 92, 119
inner product 13
inverting a series 270
interior problem 116, 122, 174
inverse Fourier transform 91
Jacobian 128
Kirchhoff’s formula 191
Klein Gordon equation 74
Lagrangian 110
Laplace transform 147
Laplace’s equation 268
Legendre’s equation 166
Legendre polynomial 168
Leibnitz formula 167
linear operator 5, 24
linearly independent 31



INDEX 315

mass density 4
membrane problem 138
method of images 122, 191
momentum operator 207
natural frequency 26, 32, 37, 42
natural modes 32, 37
Neumann boundary conditions

8
Newton’s Second Law 3
normal modes 32, 37, 117, 134
normalization 44, 58, 135, 169
odd dimensions, Green’s function

in, 259
open string 6
operator formalism 285
optical theorem 231
orthogonal 36
orthonormality 36, 58, 164, 169,

171
oscillating point source see forced

oscillation problem
outward normal 7
partial expansion 131
partial differential equation 5
periodic boundary conditions 6,

111, 116
perturbation expansion 299
plane wave 199, 213, 239
polar coordinates 128
poles 44
positive definite operator 20
potential energy 20
potential theory 186
principle of superposition 24, 131
quantum mechanical scattering

197
quantum mechanics 195

radiation 81
Rayleigh quotient 40
recurrence relation 167
reduced linear operator 132
regular boundary conditions 8
residues 44
retarded Green’s function 86, 120,

136
Rodrigues formula 168
scattered Green’s function 210
scattering Amplitude 211
scattering from a sphere 223
scattering wave 209
Schrödinger equation 39, 195
self-adjoint operator 52, 119
singular boundary conditions 8
shallow water condition 108
singularity 54
sound waves, radiation of, 232
specific heat 143
spectral theory 42
spherical coordinates 160
spherical harmonics 170
steady state scattering 183
steady state solution 9, 135, 196,

234
steepest descent, method of, 265
string 1
superposition see principle of
surface waves 108
temperature 143
tension 2
transition operator 298
transverse vibrations 2
travelling wave 38
wave propagation 66
wedge problem 136
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