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Preface

This manuscript is based on lectures given by Marshall Baker for a class
on Mathematical Methods in Physics at the University of Washington
in 1988. The subject of the lectures was Green’s function techniques in
Physics. All the members of the class had completed the equivalent of
the first three and a half years of the undergraduate physics program,
although some had significantly more background. The class was a
preparation for graduate study in physics.

These notes develop Green’s function techiques for both single and
multiple dimension problems, and then apply these techniques to solv-
ing the wave equation, the heat equation, and the scattering problem.
Many other mathematical techniques are also discussed.

To read this manuscript it is best to have Arfken’s book handy
for the mathematics details and Fetter and Walecka’s book handy for
the physics details. There are other good books on Green’s functions
available, but none of them are geared for same background as assumed
here. The two volume set by Stakgold is particularly useful. For a
strictly mathematical discussion, the book by Dennery is good.

Here are some notes and warnings about this revision:

e Text This text is an amplification of lecture notes taken of the
Physics 425-426 sequence. Some sections are still a bit rough. Be
alert for errors and omissions.

e List of Symbols A listing of mostly all the variables used is in-
cluded. Be warned that many symbols are created ad hoc, and
thus are only used in a particular section.

e Bibliography The bibliography includes those books which have
been useful to Steve Sutlief in creating this manuscript, and were
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not necessarily used for the development of the original lectures.
Books marked with an asterisk are are more supplemental. Com-
ments on the books listed are given above.

e /ndex The index was composed by skimming through the text
and picking out places where ideas were introduced or elaborated
upon. No attempt was made to locate all relevant discussions for
each idea.

A Note About Copying:

These notes are in a state of rapid transition and are provided so as
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Chapter 1

The Vibrating String

4 Jan pl
plprv.yr.

Chapter Goals:

e Construct the wave equation for a string by identi-
fying forces and using Newton’s second law.

e Determine boundary conditions appropriate for a
closed string, an open string, and an elastically
bound string.

e Determine the wave equation for a string subject to
an external force with harmonic time dependence.

The central topic under consideration is the branch of differential equa-

tion theory containing boundary value problems. First we look at an pr:bvpl
example of the application of Newton’s second law to small vibrations:
transverse vibrations on a string. Physical problems such as this and

those involving sound, surface waves, heat conduction, electromagnetic

waves, and gravitational waves, for example, can be solved using the
mathematical theory of boundary value problems.

Consider the problem of a string embedded in a medium with a pr:stringl
restoring force V' (z) and an external force F'(z,t). This problem covers pr:v1
most of the physical interpretations of small vibrations. In this chapter pr:F1
we will investigate the mathematics of this problem by determining the
equations of motion.
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2 CHAPTER 1. THE VIBRATING STRING

mMi+1
FTiJrl

Wit 1] iy
U; |
Ui—17
ki1
a a
Ti—1 X Tit1

Figure 1.1: A string with mass points attached to springs.

1.1 The String

We consider a massless string with equidistant mass points attached. In
the case of a string, we shall see (in chapter 3) that the Green’s function
corresponds to an impulsive force and is represented by a complete set
of functions. Consider N mass points of mass m; attached to a massless
string, which has a tension 7 between mass points. An elastic force at
each mass point is represented by a spring. This problem is illustrated
in figure 1.1 We want to find the equations of motion for transverse
vibrations of the string.

1.1.1 Forces on the String

For the massless vibrating string, there are three forces which are in-
cluded in the equation of motion. These forces are the tension force,
elastic force, and external force.

Tension Force

For each mass point there are two force contributions due to the tension
on the string. We call 7; the tension on the segment between m;_;
and m;, u; the vertical displacement of the 7th mass point, and a the
horizontal displacement between mass points. Since we are considering
transverse vibrations (in the u-direction) , we want to know the tension
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force in the u-direction, which is 7,41 sinf. From the figure we see that
0 ~ (u;y1 — u;)/a for small angles and we can thus write

F@ﬁﬂ = Tin1 (ui+1 - uz)
and ( )
. Ui — Uj—1

FzZ = _Ti%~

Note that the equations agree with dimensional analysis:
i =dim(m - 1/t%), 7 = dim(m - [/t?),

u; = dim(1), and  a=dim(l).

Elastic Force

We add an elastic force with spring constant k;:

elastic __
F; = —kiui,

where dim(k;) = (m/t?). This situation can be visualized by imagining
vertical springs attached to each mass point, as depicted in figure 1.1.
A small value of k; corresponds to an elastic spring, while a large value
of k; corresponds to a rigid spring.

External Force

We add the external force F**. This force depends on the nature of
the physical problem under consideration. For example, it may be a
transverse force at the end points.

1.1.2 Equations of Motion for a Massless String

The problem thus far has concerned a massless string with mass points
attached. By summing the above forces and applying Newton’s second
law, we have

Ui+l — Uy Ui — Uj—1 d
( +a )_7—1( - )_kiui+FieXt:midt2
This gives us N coupled inhomogeneous linear ordinary differential
equations where each w; is a function of time. In the case that F**
is zero we have free vibration, otherwise we have forced vibration.

2

Ftot = Ti+1 ;. (11)

pr:thetal

pr:Fiytl

Grif’s uses
Taylor exp
pr:ml

pr:11

pr:tl
pr:elasticl

pr:kil

pr:Fell

pr:ExtForcel
pr:Fext1

pr:Newtonl
pr:t2

eqlforce
pr:diffeql
pr:FreeVibl
pr:ForcedVibl
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1.1.3 Equations of Motion for a Massive String

For a string with continuous mass density, the equidistant mass points
on the string are replaced by a continuum. First we take a, the sep-
aration distance between mass points, to be small and redefine it as
a = Ax. We correspondingly write u; — u;—1 = Au. This allows us to

write ( ) A
Ui — Uj—1 u
— = . 1.2
a (A.T)z (1-2)
The equations of motion become (after dividing both sides by Ax)

S (2, @) e Tt o
Az | A it1 i\ Az Ar T Az T Az di? '

In the limit we take a — 0, N — 00, and define their product to be

liH(l) Na = L. (1.4)
N=oo

The limiting case allows us to redefine the terms of the equations of
motion as follows:

m;

m; — 0 A — o(x;)

— _mass

= mass density;

— length
ki — 0 £ — V(x;) = coefficient of elasticity of the media;
F =0 = () ol f(@)
(1.5)
where prext Lt
ex external force
flw:) = m; mass ' (1.6)
Since
r; = X
Tii1 = x— Az
Tig1 = x+Ax
we have A 5 .
(5),= o = (1.7
Azx);  x;—xi or
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so that
1 <A“> - <A“>
AIB Tit1 Aaj i+1 Ti Aﬂf 3
b ou(x + Ax) Ju(x)
= AL |j'(£L‘ + Aaz)iaa: —7(x) 5
0 ou
This allows us to write 1.3 as
0 ou 0%u
Ep lT(LL‘)ax] —V(z)u+o(z)f(x,t) = a(x)@. (1.9)

This is a partial differential equation. We will look at this problem in
detail in the following chapters. Note that the first term is net tension
force over dzx.

1.2 The Linear Operator Form

We define the linear operator Ly by the equation

Lo = _ai <T(x)aax> + V(). (1.10)

We can now write equation (1.9) as

82
[Lo + a(x)aﬁ] u(z,t) =o(x)f(z,t) ona<uz<bh. (1.11)
This is an inhomogeneous equation with an external force term. Note
that each term in this equation has units of m/t?. Integrating this
equation over the length of the string gives the total force on the string.

1.3 Boundary Conditions

To obtain a unique solution for the differential equation, we must place
restrictive conditions on it. In this case we place conditions on the ends
of the string. Either the string is tied together (i.e. closed), or its ends
are left apart (open).

4 Jan p4
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Figure 1.2: A closed string, where a and b are connected.

1.3.1 Case 1: A Closed String

A closed string has its endpoints a and b connected. This case is illus-
trated in figure 2. This is the periodic boundary condition for a closed
string. A closed string must satisfy the following equations:

u(a,t) = u(b,t) (1.12)
which is the condition that the ends meet, and

Ou(x,t) _ Ou(x,t)

1.1
aLC r=a ax z=b ( 3)

which is the condition that the ends have the same declination (i.e.,
the string must be smooth across the end points).

1.3.2 Case 2: An Open String

For an elastically bound open string we have the boundary condition
that the total force must vanish at the end points. Thus, by multiplying
equation 1.3 by Ax and setting the right hand side equal to zero, we
have the equation

ou(zx,t)
Ox

— kqu(a,t) + Fo(t) = 0.

Ta

The homogeneous terms of this equation are Ta%|x:a and k,u(a,t), and
the inhomogeneous term is F,(t). The term k,u(a) describes how the
string is bound. We now define
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A

* —» 1

b

N ~<~—
Figure 1.3: An open string, where the endpoints a and b are free.

The term h,(t) is the effective force and &, is the effective spring con-
stant.

0
S Kou(x) = hy(t) for x = a. (1.14)
ox
We also define the outward normal, n, as shown in figure 1.3. This eqlbound
allows us to write 1.14 as pr:OutNorm1

1.2
n - Vu(x) + kou(x) = hg(t) for x = a. g

The boundary condition at b can be similarly defined:

ou
p + rpu(z) = hy(t) for x = b,
where - "
ho(t) = =2 and Ky = —2.
Th Th

For a more compact notation, consider points a and b to be elements
of the “surface” of the one dimensional string, S = {a,b}. This gives pr:S1
us

nsVu(x) + ksu(z) = hg(t) for z on S, for all ¢. (1.15)
In this case n, = —l; and ny, = l; eqlosbc
pr:lhatl
1.3.3 Limiting Cases
6 Jan p2.1

It is also worthwhile to consider the limiting cases for an elastically

bound string. These cases may be arrived at by varying k., and k. The pr:ebc2
terms k, and k; signify how rigidly the string’s endpoints are bound.

The two limiting cases of equation 1.14 are as follows: pr:gal
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Kq — 0 —gz = ha(t) (1.16)
Kq — 00 w(z, )| pma = ha/Ka = Fu/ka. (1.17)

The boundary condition x, — 0 corresponds to an elastic media, and
is called the Neumann boundary condition. The case k, — oo corre-
sponds to a rigid medium, and is called the Dirichlet boundary condi-
tion.

If hg(t) = 0 in equation 1.15, so that

s -V + kglu(z,t) = hg(t) =0 for x on S, (1.18)
then the boundary conditions are called reqular boundary conditions.
Regular boundary conditions are either

1. u(a,t) = u(b,t), Lu(a,t) = Lu(b,t) (periodic), or
2. [ng -V + kglu(z,t) =0 for z on S.

Thus regular boundary conditions correspond to the case in which there

is no external force on the end points.

1.3.4 Initial Conditions

The complete description of the problem also requires information about
the string at some reference point in time:

u(z,t)|i=0 = uo(x) fora<x<b (1.19)
and

0
au(m, t)|t=0 = u1(x) for a < x <b. (1.20)
Here we claim that it is sufficient to know the position and velocity of
the string at some point in time.

1.4 Special Cases

We now consider two singular boundary conditions and a boundary
condition leading to the Helmholtz equation. The conditions first two
cases will ensure that the right-hand side of Green’s second identity
(introduced in chapter 2) vanishes. This is necessary for a physical
system.

pr:ElMed1
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1.4.1 No Tension at Boundary

For the case in which 7(a) = 0 and the regular boundary conditions
hold, the condition that u(a) be finite is necessary. This is enough to
ensure that the right hand side of Green’s second identity is zero.

1.4.2 Semi-infinite String

In the case that a — —oo, we require that u(z) have a finite limit as
x — —oo. Similarly, if b — oo, we require that u(z) have a finite limit
as © — oo. If both @ — —oc0 and b — oo, we require that u(z) have
finite limits as either x — —o0 or x — oo.

1.4.3 Oscillatory External Force

In the case in which there are no forces at the boundary we have
he = hy = 0. (1.21)

The terms h,, h; are extra forces on the boundaries. Thus the condition
of no forces on the boundary does not imply that the internal forces
are zero. We now treat the case where the interior force is oscillatory
and write

f(z,t) = f(z)e ™" (1.22)
In this case the physical solution will be
Re f(z,t) = f(z) coswt. (1.23)
We look for steady state solutions of the form
u(z,t) = e “hu(z) for all ¢. (1.24)
This gives us the equation
[LO + U(x)gél e “hu(x) = o(x) f(x)e ™. (1.25)

If u(x,w) satisfies the equation
[Lo — w?o(z)]u(z) = o(x) f(z) with R.B.C. on u(z) (1.26)

(the Helmholtz equation), then a solution exists. We will solve this
equation in chapter 3.

seclhelm

pr:omegal

pr:sssl

eqlhelm
pr:Helm1
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1.5 Summary

In this chapter the equations of motion have been derived for the small
oscillation problem. Appropriate forms of the boundary conditions and
initial conditions have been given.

The general string problem with external forces is mathematically
the same as the small oscillation (vibration) problem, which uses vectors
and matrices. Let u; = u(x;) be the amplitude of the string at the point
x;. For the discrete case we have N component vectors u; = u(z;), and
for the continuum case we have a continuous function wu(z). These
considerations outline the most general problem.

The main results for this chapter are:

1. The equation of motion for a string is

2

2. Regular boundary conditions refer to the boundary conditions for
either

(a) a closed string:

u(a,t) = u(b,t) (continuous)

(no bends)

or

(b) an open string:
[ns - V + kglu(x,t) = hg(t) =0 xon S, all t.
3. The initial conditions are given by the equations

wu(x,t)]i=0 = uo(x) fora<xz<b (1.27)
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and 5

—u(x,t)]  =u(x) for a <z <b. (1.28)
ot 0

4. The Helmholtz equation is

[Lo — wo(@)]u(z) = o(2)f ().

1.6 References

See any book which derives the wave equation, such as [Fetter80, p120ff],
[Griffiths81, p297], [Halliday78, pA5].

A more thorough definition of regular boundary conditions may be
found in [Stakgold67a, p268ft].
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Chapter 2

Green’s Identities

Chapter Goals:
e Derive Green’s first and second identities.

e Show that for regular boundary conditions, the lin-
ear operator is hermitian.

In this chapter, appropriate tools and relations are developed to solve
the equation of motion for a string developed in the previous chapter.
In order to solve the equations, we will want the function u(x) to take
on complex values. We also need the notion of an inner product. The
inner product of S and u is defined as

v STy for the discrete case

[2dzS*(x)u(z) for the continuous case. (2.1)

5.0 = {

In the uses of the inner product which will be encountered here, for the
continuum case, one of the variables S or u will be a length (amplitude
of the string), and the other will be a force per unit length. Thus the
inner product will have units of force times length, which is work.

13

note
pr:InProd1

pr:S2

eq2.2
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2.1 Green’s 1st and 2nd Identities
6 Jan p2.4

In the definition of the inner product we make the substitution of Lou
for u, where

Lou(z) = [—dx <T(x)dx> + v<x>] u(z). (2.2)

eq2.3 This substitution gives us

(S, Lou) = [ duS*(x) [—dw <T<:c)dx> + V(:c)] u()

We now integrate twice by parts ([ udv = uv — [vdu), letting

u=S5"(x) = du=dS*(z) = ddeC;Ex)
and
_ d d d ~ d
dv = dx% (T(x)dmu> =d (T(x)dxu> =0 = T(x)%u
so that
b d
(S, Louy = —| S*(z)7(x) (dxu(x)>

- /ab d””izi*wx) (Jiuu)) * /ab dzS* (2)V (z)u(z)

5 @)rl) (o)

v ' do [(is) () ) + S*(I)V(x)u(x)] |

Note that the final integrand is symmetric in terms of S*(z) and u(z).
pr:G1Id1 This is Green’s First Identity:
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(S, Lou) = —ZS*(x)T(a:)diu(x) (2.3)

+ / Yz | (L5} 7(2) L) + 5 (2)V (@)u(z)|
a dx dz
Now interchange S* and u to get

<U,L05>* = <LQS7U>
u(m)T(x)ij*(x) (2.4)

b d d ., .
+ [ dz deu> T(a:)%s () + u(z)V(z)S (93)] :
When the difference of equations 2.3 and 2.4 is taken, the symmetric

terms cancel. This is Green’s Second Identity:

<S, L0u> - <Los, U) = ’

d d
x) |u(z)—S*(x) — S*(x)—u(x)|. (2.5
10 [ue) 5" (@) - S0t 2
In the literature, the expressions for the Green’s identities take 7 = —1
and V = 0 in the operator Ly. Furthermore, the expressions here are
for one dimension, while the multidimensional generalization is given
in section 8.4.1.

2.2 Using G.I. #2 to Satisfy R.B.C.

The regular boundary conditions for a string (either equations 1.12 and
1.13 or equation 1.18) can simplify Green’s 2nd Identity. If S and u
correspond to physical quantities, they must satisfy RBC. We will
verify this statement for two special cases: the closed string and the
open string.

2.2.1 The Closed String

For a closed string we have (from equations 1.12 and 1.13)

u(a,t) = u(b,t), S*(a,t) = S*(b, 1),

eq2G1Id

eq2preG21d
pr:G2Id1

eq2G21d

6 Jan p2.5
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7(a) = 7(b), chS*

d
_ T g
u dx

d
—U
’ dx r=a

d

—%u

By plugging these equalities into Green’s second identity, we find that

<S, L0u> = <L05, U> (26)

2.2.2 The Open String

For an open string we have

-+ Ku = 0 for x = a,

+ K, 5" = 0 for z = a,

— 4+ Kyu = 0 for x = b,
xr

+K,S* = 0 for z = b. (2.7)

These are the conditions for RBC from equation 1.14. Plugging these
expressions into Green’s second identity gives

= r(a)[uk,S* — S"K,u] =0

ds* Ldu
aT(az) [u o - S dx]

and

b as* d
7(x) [u P S*dﬂ = 7(b)[ukS™ — S*Kyu| = 0.

Thus from equation 2.5 we find that
<Su LOU’> = <L057 U>, (28)

just as in equation 2.6 for a closed string.
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2.2.3 A Note on Hermitian Operators

The equation (S, Lou) = (LoS,u), which we have found to hold for
both a closed string and an open string, is the criterion for Ly to be a
Hermitian operator. By using the definition 2.1, this expression can be
rewritten as

<S, L0u> = (u, L()S>* (29)

Hermitian operators are generally generated by nondissipative phys-
ical problems. Thus Hermitian operators with Regular Boundary Con-
ditions are generated by nondissipative mechanical systems. In a dis-
sipative system, the acceleration cannot be completely specified by the
position and velocity, because of additional factors such as heat, fric-
tion, and/or other phenomena.

2.3 Another Boundary Condition

If the ends of an open string are free of horizontal forces, the tension
at the end points must be zero. Since

limbT(x) =0
we have p
xlirile(@u(x)%S () =0
and p
zli%br(:c)S (w)a—xu(x) =0.

In the preceding equations, the abbreviated notation lim is introduced

r—a,b

to represent either the limit as = approaches the endpoint a or the limit
as x approaches the endpoint b. These equations allow us to rewrite
Green’s second identity (equation 2.5) as

(S, Lou) = (LoS, u) (2.10)

6 Jan p2.6

for the case of zero tension on the end points This is another way of eq2G2Id

getting at the result in equation 2.8 for the special case of free ends.
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2.4 Physical Interpretations of the G.I.s

Certain qualities of the Green’s Identities correspond to physical situ-
ations and constraints.

2.4.1 The Physics of Green’s 2nd Identity

The right hand side of Green’s 2nd Identity will always vanish for phys-
ically realizable systems. Thus L is Hermitian for any physically real-
izable system.

We could extend the definition of regular boundary conditions by
letting them be those in which the right-hand side of Green’s second
identity vanishes. This would allow us to include a wider class of prob-
lems, including singular boundary conditions, domains, and operators.
This will be necessary to treat Bessel’s equation. For now, however, we
only consider problems whose boundary conditions are periodic or of
the form of equation 1.18.

2.4.2 A Note on Potential Energy

The potential energy of an element dx of the string has two contribu-
tions. One is the “spring” potential energy sV (z)(u(z))? (c.f., 3ka? in
U= —[Fdz = — [(—kz)dz = $kz? [Halliday76, pl41]). The other is
the “tension” potential energy, which comes from the tension force in

section 1.1.3, dF = %[T@)a%u(x)]dx, and thus Uiengion 1S

aw _ _d o 8“61__/8 Ou) (Ou) .
dt  dtJ) oz T@x T z 0T Tax ot o

and so the change in potential energy in a time interval dt is

b 9 ou\ [0u
Udt = —/a % (Taw> ([975) dtdl’

puts (0 (O 00w [ 0w\ Ou T
- A(Taa; oror " \\Taw) o |
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b Ju\ 0 Ou
= /a (7’833> a% dtd
9 1 [ou\’
- [81&/@ 2" (ax> df“]

The second term in the second equality vanishes. We may now sum
the differentials of U in time to obtain the potential energy:

t
t b1 (Ou)’ b1 (O0u)’
U = o Udt = I:/a §T (@1‘) d$] ) = /a 57— (%) dI

2.4.3 The Physics of Green’s 1st Identity
Let S = u. Then 2.3 becomes

(@) (o) ) 2.11)

+ / dz Kj > (x )ddxu(x)m*(x)vmu(x)].

For a closed string we have

t+dt

t

sec2.4.2
6 Jan p2

(u, Louy = —

(u, Lou) = /  d [T(@ (;l;b)? FV(@) (u@)?] =20 (2.12)

since each quantity is the same at a and b. For an open string we found eq2z

(equation 1.15) " 8 Jan p3.2
al = K,u (2.13)

and i
e —Kyu (2.14)

so that

(u, Lou) = 7(a)Ko|u(a)l* + 7(b) Kp|u(b)|*



pr:pdol

20 CHAPTER 2. GREEN’S IDENTITIES

twice the potential energy. The term 37(a)K,|u(a)|® + 57(b) Ky|u(D)[?

is the potential energy due to two discrete “springs” at the end points,

and is simply the spring constant times the displacement squared.
The term 7(z) (du/dz)? is the tension potential energy. Since du/dx

represents the string stretching in the transverse direction, 7(z) (du/dz)* pr:pel

is a potential due to the stretching of the string. V(z)(u(x))? is the
elastic potential energy.

For the case of the closed string, equation 2.12, and the open string,
equation 2.15, the right hand side is equal to twice the potential energy.
If K,, Ky, 7 and V are positive for the open string, the potential energy
U is also positive. Thus (u, Lou) > 0, which implies that L is a positive
definite operator.

2.5 Summary
1. The Green’s identities are:

(a) Green’s first identity:

(S, Lou) = —

(b) Green’s second identity:

<S, L0u> — <L()S, U,> = '

a

2. For a closed string and an open string (i.e., RBC) the linear op-
erator Lg is Hermitian:

<S, LOU> = (u, L()S>*

see FW p20
expl. pl0
pl26
eq2y
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2.6 References

Green’s formula is described in [Stakgold67, p70] and [Stakgold79,
p167].

The derivation of the potential energy of a string was inspired by
[Simon71,p390].
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Chapter 3

Green’s Functions

Chapter Goals:

e Show that an external force can be written as a
sum of /-functions.

e Find the Green’s function for an open string with
no external force on the endpoints.

In this chapter we want to solve the Helmholtz equation, which was

obtained in section 1.4.3. First we will develop some mathematical

principles which will facilitate the derivation. 8 Jan p3.4
Lagrangian
. . oy stuff com-
3.1 The Principle of Superposition mented out
Suppose that pr:al.l
f(2) = arfi(z) + as fo(@). (3.1)
If uy and wuy are solutions to the equations (c.f., 1.26)
Lo — o (2)]ur(z) = o(x) fi(z) (3:2)
[Lo — w0 (2)]uz(z) = o(2) fa(2) (3:3)
with RBC and such that (see equation 1.15) eq3q

(ﬁg-v-i-lﬁs)ul =0

(ﬁs'V—i-Fds)uQ:O} for x on S

23
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then their weighted sum satisfies the same equation of motion
[Lo — w?o(2)](arur (2) + agus(z))
= a1 [Lo — w*o(2)]uy(z) +ag [Lo — wo(x)]us(z)
o(z)fi(x) o (@) f2(x)

— o(2)f(x).

and boundary condition

s+ V + Kgllarur (x) + agus(2)]
= a1[ng - V + Kgluy + as[ng - V + Kglus
= a1(0) + a(0) = 0.

We have thus shown that
Lo[a1u1 + CLQUQ] = a1L0u1 + CLQL()UQ. (34)

This is called the principle of superposition, and it is the defining prop-
erty of a linear operator.

3.2 The Dirac Delta Function

We now develop a tool to solve the Helmholtz equation (which is also
called the steady state equation), equation 1.26:

[Lo — w?o(x)Ju(x) = o(2) f(2).
The delta function is defined by the equation

1 fe<a,<d
0 otherwise.

d
Fog = / drd(x — x1) = { (3.5)
where F,,; represents the total force over the interval [¢, d]. Thus we see
that the appearance of the delta function is equivalent to the application
of a unit force at x. The Dirac delta function has units of force/length.
On the right-hand side of equation 1.26 make the substitution

o(x)f(x) =d(xr — xx). (3.6)
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Integration gives us

/ " (@) f(2)dz = Fua, (3.7)

C

eq3fdc which is the total force applied over the domain. This allows us to write
[Lo — ow?|u(z,w) = §(z — 2}, a <z <bRBC (3.8)

where we have written RBC to indicate that the solution of this equa-
tion must also satisfy regular boundary conditions. We may now use
the principle of superposition to get an arbitrary force. We define an
element of such an arbitrary force as

F, = /:HAm dro(z)f(z) (3.9)

k

= the force on the interval Az. (3.10)

We now prove that

= g:Fké(x—x;) (3.11)

where x <z}, <z + Az. We first integrate both sides to get

/da:'a /deFk (x — ). (3.12)

k=1

By definition (equation 3.7), the left-hand side is the total force applied
over the domain, F,;. The right-hand side is

N
/dZFM(x—xfc)dm = Z dka (x — x},) (3.13)
¢ k=1 k=1"¢
= > (3.14)
c<xp<d e
- ¥ / dro(z)f(z) (3.15)
c<z<d Tk
d
Y= [ dao(2) f() 3.16)

C

= Fu (3.17)

11 Jan p2

eq3Fsubk

eq3sfd

' replaces =z

so 0-fn isn’t on
boundary
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In the first equality, 3.13, switching the sum and integration holds for eg3sumi-5
all well behaved Fj. Equality 3.14 follows from the definition of the

delta function in equation 3.5. Equality 3.15 follows from equation 3.9.

By taking the continuum limit, equality 3.16 completes the proof.

pr:Helm2 The Helmholtz equation 3.2 can now be rewritten (using 3.11) as
N
[Lo — o(z)w?|u(z,w) = > Fid(z — xy). (3.18)
k=1

By the principle of superposition we can write
N
u(z) =Y Fyu(x) (3.19)
k=1

where uy,(z) is the solution of [Ly— o (z)w?|ug(x, w?) = §(x — ;). Thus,
if we know the response of the system to a localized force, we can find
the response of the system to a general force as the sum of responses
11 Jan p3 to localized forces.
We now introduce the following notation

up(7) = G(x, 785 W?) (3.20)

pr:Gxxol where G is the Green’s function, xj signifies the location of the distur-
bance, and w corresponds to frequency. This allows us to write

= 3 [ o) )G, i)

k=1"%k
N—oo b / /.2 / /
— dr'G(z,2";w”)o(2") f(2).
We have defined the Green’s function by
[Lo — 0(2)w?|G(z,2; w?) = §(x — 2) a<xz,x <bRBC. (3.21)

11 Jan p4 The solution will explode for w? when w is a natural frequency of the
pr:NatFreql system, as will be seen later.

where will nat

freq be defined
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G(z,2';w?)

%Gh:z’fs %G‘xzzp’+e

a ¥ —ec 1 i +¢ b

Figure 3.1: The pointed string

Let A = w? be an arbitrary complex number. Since the squared
frequency w? cannot be complex, we relabel it A. So now we want to

pr:lambdal solve

fix this [_jx <7_(x)d(i> +V(z) - O'(I))\‘| G(z,7";w*) =6(x —2') (3.22)
a<xz,2 <bRBC

Note that G will have singularities when A\ is a natural frequency. To eg3.19a
obtain a condition which connects solutions on either side of the sin-
gularity, we integrate equation 3.22. Consider figure 3.1. In this case

fig3.1
[ |~ (2@ L) + V@) - o] Gl
| dr| = T(2) o x) —o(x x, 1’
' +e€
= §(x — a')dx
which becomes ,+ pr:epsilon1
d X €
—T(x)@G(ﬁ, i \) L =1 (3.23)

since the integrals over V(z) and o(x) vanish as ¢ — 0. Note that in
this last expression “1” has units of force.



11 Jan p5

eq3other
eq3b

eq3d
pr:ContCond1

pr:homogl

pr:efpl
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3.3 Two Conditions

3.3.1 Condition 1
The previous equation can be written as

d d
- - —a

1
= ——. 3.24
r=x'+€ dx ( )

/_¢ T

T=T

This makes sense after considering that a larger tension implies a smaller
kink (discontinuity of first derivative) in the string.

3.3.2 Condition 2
We also require that the string doesn’t break:

G(z,2")|smrrre = G2, 2" |pmsr e (3.25)

This is called the continuity condition.

3.3.3 Application

To find the Green’s function for equation 3.22 away from the point 2/,
we study the homogeneous equation

[Lo — o(x)Nu(z,\) =0  x #2',RBC. (3.26)

This is called the eigen function problem. Once we specify G(xg, z'; \)
and %G(mo, x’; A), we may use this equation to get all higher derivatives
and thus determine G(z,2"; \).

We know, from differential equation theory, that two fundamental
solutions must exist. Let u; and us be the solutions to

[Lo — o(z)Aur2(z,A) =0 (3.27)
where u; o denotes either solution. Thus
G(x,2'; N) = Ajug(z, N) + Aqua(z, N) for x < o, (3.28)

and



eq3ab2
11 Jan p6

3.4. OPEN STRING 29

G(z,2'; \) = Byug(x, ) + Baus(z,A)  for x > 2. (3.29)

We have now defined the Green’s function in terms of four constants.
We have two matching conditions and two R.B.C.s which determine
these four constants.

3.4 Open String

We will solve for an open string with no external force h(x), which was
first discussed in section 1.3.2. G(z,2'; \) must satisfy the boundary
condition 1.18. Choose u; such that it satisfies the boundary condition
for the left end

+ K,uy(a) = 0. (3.30)

r=a

This determines u; up to an arbitrary constant. Choose us such that
it satisfies the right end boundary condition

8u2

r=b

We find that in equations 3.28 and 3.29, A, = B; = 0. Thus we
have two remaining conditions to satisfy.
We now have

G(z,2"; \) = Ay (2 )uy(z, ) for x < . (3.32)

Note that only the boundary condition at a applies since the behavior
of uy(x) does not matter at b (since b > a’). This gives G determined
up to an arbitrary constant. We can also write

G(x,2"; \) = Ba(a')ug(z, \) for x > a'. (3.33)

We also note that A and B are constants determined by 2z’ only.
Thus we can write the previous expressions in a more symmetric form:

G(x,2'; N) = Cu(z, Nug(2', ) for x < o, (3.34)

G(z,2'; \) = Duy(x', Nua(z, \) for x > /. (3.35)

13 Jan p2
where is 13 Jan
pl

13 Jan pl

pr:CD
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eq3trione

eq3tritwo
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In one of the problem sets we prove that G(z,2";\) = G(2/, x; \).
This can also be stated as Green’s Reciprocity Principle: ‘The ampli-
tude of the string at x subject to a localized force applied at z’ is
equivalent to the amplitude of the string at a2’ subject to a localized
force applied at x.’

We now apply the continuity condition. Equation 3.25 implies that
C=D.

Now we have a function symmetric in z and 2/, which verifies the
Green’s Reciprocity Principle. By imposing the condition in equation
3.24 we will be able to determine C"

dG du1 ’

% e == E . UQ(JJ ) <336)
e ' dus

% e == CUl (.T )% . (337)

Combining equations (3.24), (3.36), and (3.37) gives us

dUQ du1 .
¢ ld i 1 e T @) (3:3%)
The Wronskian is defined as
du du
W(ul, Ug) = uld—; — UQT;. (339)
This allows us to write
1
C = ) 3.40
@)W (@, N, wa, V) (340)
Thus \ \
G(I,ZL’,; /\) _ U1(1'<, )UQ(:U>’ ) (341)

—7 ("YW (ug (2, N), ug(2', X))’

where we define

u(r<)

u(z) ifz<a
u(z') if2’ <z

and
uw(z) ifz>a
u(z’) if 2’ > x.

u(as) = {

pr:grpl
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The u’s are two different solutions to the differential equation:
[Lo — o(z)ANuy =0 [Lo — o(x)Aug = 0. (3.42)

Multiply the first equation by us and the second by u;. Subtract one
equation from the other to get —uq(7u)) + ui(7uy)’ = 0 (where we
have used equation 1.10, Ly = —2(72) + V). Rewriting this as a

oz
total derivative gives

j[T(SL’)W(Ul, ug)] = 0. (3.43)
x

This implies that the expression 7(x)W (uq(z, A), ug(z, X)) is indepen-
dent of x. Thus G is symmetric in z and z’.

The case in which the Wronskian is zero implies that u; = aus,
since then 0 = uyu), —ugu}, or uhy/us = uy/uy, which is only valid for all
x if uy is proportional to us. Thus if u; and us are linearly independent,
the Wronskian is non-zero.

3.5 The Forced Oscillation Problem

The general forced harmonic oscillation problem can be expanded into
equations having forces internally and on the boundary which are sim-
ple time harmonic functions. Consider the effect of a harmonic forcing
term

2
[LO + 05)521 u(z,t) = o(x) f(x)e ™" (3.44)
We apply the following boundary conditions:
—Ou(@,?) + Kqu(x,t) = hge ™" for z = a, (3.45)
Ox
and 3 .
ug;,) + kpu(w,t) = hye ™", for z = 0. (3.46)

We want to find the steady state solution. First, we assume a steady
state solution form, the time dependence of the solution being

u(z,t) = e “hu(z). (3.47)

FW p249

but isn’t
W'(xz) = 0 also
true?

pr:LinIndep1

13 Jan p5
pr:fhopl

€q3ss
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After making the substitution we get an ordinary differential equation
in x. Next determine G(z,2’; A = w?) to obtain the general steady state
solution. In the second problem set we use Green’s Second Identity to
solve this inhomogeneous boundary value problem. All the physics of
the exciting system is given by the Green’s function.

3.6 Free Oscillation

Another kind of problem is the free oscillation problem. In this case
f(z,t) = 0 and h, = hy = 0. The object of this problem is to find the
natural frequencies and normal modes. This problem is characterized
by the equation:

ot?
with the Regular Boundary Conditions:

[Lo + 0821 u(z,t) =0 (3.48)

e u is periodic. (Closed string)
o [n-V+ Kslu=0 for x in S. (Open string)

The goal is to find normal mode solutions u(x,t) = e~ “rty,(x). The
natural frequencies are the w,, and the natural modes are the wu, ().
We want to solve the eigenvalue equation

[Lo — ow?]u,(x) =0  with R.B.C. (3.49)

The variable w? is called the eigenvalue of Ly. The variable u,(z) is

called the eigenvector (or eigenfunction) of the operator L.

3.7 Summary
1. The Principle of superposition is
Lo[a1u1 + CLQUQ] = a1L0u1 + CLQL()UQ,

where L is a linear operator, u; and uy are functions, and a; and
a9 are constants.
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. The Dirac Delta Function is defined as

d 1 ife<ay<d
/c dzd(z — zx) = { 0 otherwise.

. Force contributions can be constructed by superposition.

o(z)f(x) = Z Fio(z — x},).

. The Green’s Function is the solution to to an equation whose

inhomogeneous term is a d-function. For the Helmholtz equation,
the Green’s function satisfies:

[Lo — o(2)w?)G(z,2"; w?) = 6(x — 2) a < x,x' < b RBC.

. At the source point 2/, the Green’s function satisfies d%G lo—a e —

%G‘x:x’—e = _% and G(CE, x/)|x:x’+e = G(.T, x,)lx:x’—e'

. Green’s Reciprocity Principle is ‘The amplitude of the string at

x subject to a localized force applied at z’ is equivalent to the
amplitude of the string at x’ subject to a localized force applied
at z.’

. The Green’s function for the 1-dimensional wave equation is given

by
ul(x<a )\)u2(:v>, )‘)

—7 ("YW (ug (2, N), ua(2', X))

G(z,2';\) =

. The forced oscillation problem is

82 —iwt
[Lo + 08152] u(z,t) = o(x)f(x)e ™",

with periodic boundary conditions or the elastic boundary condi-
tions with harmonic forcing.

. The free oscillation problem is

82
[Lo + UW] u(z,t) = 0.
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3.8 Reference

See [Fetter81, p249] for the derivation at the end of section 3.4.

A more complete understanding of the delta function requires knowl-
edge of the theory of distributions, which is described in [Stakgold67a,
p28ff] and [Stakgold79, p86ft].

The Green’s function for a string is derived in [Stakgold67a, p64ff].



Chapter 4

Properties of Eigen States

Chapter Goals:

Show that for the Helmholtz equation, w? > 0, w?
is real, and the eigen functions are orthogonal.

Derive the dispersion relation for a closed massless
string with discrete mass points.

Show that the Green’s function obeys Hermitian
analyticity.

Derive the form of the Green’s function for A\ near
an eigen value \,,.

Derive the Green’s function for the fixed string
problem.

By definition 2.1

In section 2.4 we saw (using Green’s first identity) for L, as defined
in equation 2.2, and for all v which satisfy equation 1.26, that V' > 0
implies (u, Lou) > 0 . We choose u = u,, and use equation 3.49 so that

(S,u) = /ab dzxS*(x)u(x).

2

n:

0 < (un, Lotp) = (Up, oUp)w

35

13 Jan p7
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Remember that o signifies the mass density, and thus ¢ > 0. So we

conclude I
= L Lottn) (4.3)
<u'rl7 O-u'n,>
This all came from Green’s first identity.

Next we apply Green’s second identity 2.5,

(S, Lou) = (LoS,u) for S, u satisfying RBC (4.4)
Let S = u = u,. This gives us
Wy, ouy) = (upn, Loty,) (4.5)
= (Loup, uy,) (4.6)
= (W) (Up, ouyp). (4.7)

We used equation 3.49 in the first equality, 2.5 in the second equality,
and both in the third equality. From this we can conclude that w? is
real.

Now let us choose u = u,, and S = u,,. This gives us

(U Lotn) = (Lo, n). (4.8)
Extracting w? gives (note that o(z) is real)
W2 (U, U Y = W2 AT Un, U ) = W2, (U, TU). (4.9)

So
(W2 — W2) (U, oup) = 0. (4.10)

Thus if w? # w2, then (u,,, ou,) = 0:

/ab dzuy, (z)o(x)u,(x) =0 if w? # w?. (4.11)

That is, two eigen vectors u,, and u, of Ly corresponding to different
eigenvalues are orthogonal with respect to the weight function o. If
the eigen vectors u,, and u, are normalized, then the orthonormality
condition is

b
/a daw) (2)o(x)un () = Omn if w2 # w2, (4.12)

where the Kronecker delta function is 1 if m = n and 0 otherwise.
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Figure 4.1: The closed string with discrete mass points.

4.1 Eigen Functions and Natural Modes

15 Jan pl
We now examine the natural mode problem given by equation 3.49. To

find the natural modes we must know the natural frequencies w, and pr:NatMode2

the normal modes u,,. This is equivalent to the problem pr:lambdan1
Lou,(z) = o(z) \yun(x), RBC. (4.13)
To illustrate this problem we look at a discrete problem. eq4A

4.1.1 A Closed String Problem
pr:desl

This problem is illustrated in figure 4.1'. In this problem the mass 15 Jan p2
density o and the tension 7 are constant, and the potential V' is zero.

The term wu(z;) represents the perpendicular displacement of the ith fighw
mass point. The string density is given by o = m/a where m is the
mass of each mass point and a is a unit of length. We also make the

definition ¢ = (/7 /0. Under these conditions equation 1.1 becomes

.. T
mi; = Fot = — (i1 + tim1 = 2ui).

Substituting the solution form wu; = e?®iei?

ika —ika
mw? =27 (—WH) — 9
a 2

into this equation gives

T ka
1 — coska) = 4— sin® —.
(1 — cos ka) s

Q[

,s0 e*Ne =1 or kNa = 2mn,

~—

But continuity implies u(z) = u(x + Na

so that 5
k:z(A;;)n, n=1,...,N.

1See FW pl15.
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The natural frequencies for this system are then

,  csin®(kya/2)
w; = 24 (4.14)
where k,, = Q%n and n can take on the values 0, +1, ..., j:% for odd
N,and 0,+1, ..., :I:% —1, —1—% for even N. The constant is ¢ = a7 /m.
Equation 4.14 is called the dispersion relation. If n is too large, the w,
take on duplicate values. The physical reason that we are restricted to a
finite number of natural modes is because we cannot have a wavelength
A < a. The corresponding normal modes are given by

¢n(fﬁia t) = e_iwntun($i) (415)
_ e—i[wnt—knﬂﬂi} (416)
—  pilwnt—3Ena] (4.17)

The normal modes correspond to traveling waves. Note that w, is
doubly degenerate in equation 4.14. Solutions ¢, (z) for n which are
larger than allowed give the same displacement of the mass points, but
with some nonphysical wavelength. Thus we are restricted to N modes
and a cutoff frequency.

4.1.2 The Continuum Limit

We now let a become increasingly small so that N becomes large for L

fixed. This gives us Ak, = 27 /L for L = Na. In the continuum limit,

the number of normal modes becomes infinite. Shorter and shorter

wavelengths become physically relevant and there is no cutoff frequency.
Letting a approach zero while L remains fixed gives

2 oin2 kna Na=L
c”sim- ——
wp = ———2- =8Pk (4.18)

n

4

and so
wn = clkn| (4.19)

2 (4.20)

Aw, = c|Ak,| =
Wn c]kn\cL
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2m
=y, 421
W = (4.21)
Equation (4.17) gives us the u,’s for all n.
We have found characteristics

e For a closed string, the two eigenvectors for every eigenvalue
(called degeneracy) correspond to the two directions in which a pr:degenl
wave can move. The eigenvalues are w?.

e The natural frequencies w,, are always discrete, with a separation
distance proportional to 1/L.

e For open strings there is no degeneracy. This is because the po-
sition and slope of the Green’s function at the ends is fixed by
the open string boundary conditions, whereas the closed string
boundary conditions do not determine the Green’s function at
any particular point.

For the discrete closed case, the w,,’s are discrete with double degeneracy, 15 Jan p4
giving uy. We also find the correspondence Aw, ~ ¢/L where ¢ ~

\/7/o. We also found that there is no degeneracy for the open discrete

case.

4.1.3 Schrodinger’s Equation
pr:Schrol
Consider again equation 4.13

Lou,(x) = o(x) A\un(x) RBC (4.22)
where p p
Ly = —%T(l‘>% + V(z). (4.23)

We now consider the case in which 7(x) = h*/2m and o = 1, both
quantities being numerical constants. The linear operator now becomes
—h* 2

Lo=—— ) 4.24
07 9m da? +Vi(z) ( )
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V(x)

Figure 4.2: Negative energy levels

This is the linear operator for the Schrodinger equation for a particle
of mass m in a potential V:

N v(x)] un(2) = Mttn(z)  + RBC (4.25)

In this case A\ gives the allowed energy values.

The potential V(x) can be either positive or negative. It needs to
be positive for Lg to be positive definite, in which case A\qg > 0. For
V' < 0 we can have a finite number of of eigenvalues A less that zero.

verify this On a physical string the condition that V' > 0 is necessary.
paragraph One can prove that negative energy levels are discrete and bounded
15 Jan p5 from below. The bound depends on the nature of V(z) (Rayleigh quo-
pr:RayQuol tient idea). Suppose that V' has a minimum, as shown in figure 4.2 for
figineg example. By Green’s first identity the quantity Lo — Vin, gives a new

operator which is positive definite.

4.2 Natural Frequencies and the Green’s

Function

We now look at a Green’s function problem in the second problem set.

pr:Fredl Under consideration is the Fredholm equation

[Lo — o(2)w?u(z) = o(x) f(), RBC. (4.26)

n
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In problem 2.2 one shows that the solution w, (z) for this equation only

exists if
/dqu(x)a(x)f(x) = 0.

This is the condition that the eigenvectors w,(x) are orthogonal to
the function f(x). We apply this to the Green’s function. We choose
A=\, = w? and evaluate the Green’s function at this point. Thus for
the equation

(4.27)

[Lo — o(2) MGz, 2; N) = 6(x — o) (4.28)
there will be a solution G(x,z'; \) only if (using 4.27)
G(z,z;\) = /dx'G(:v,x'; No(z —2') =0. (4.29)

The result G(z, z; A) = 0 implies that u’ (2') = 0 (using equation 3.41).
There will be no solution unless 2’ is a node. In physical terms, this
means that a natural frequency can only be excited at a node.

4.3 GF behavior near A\ = )\,

From the result of the previous section, we expect that if the driving
frequency w is not a natural frequency, everything will be well behaved.
So we show that G(x,2'; \) is good everywhere (in the finite interval
la,b]) except for a finite number of points. The value of G(z,2"; \)
becomes infinite near \,, that is, as A\ — \,. For A\ near )\, we can
write the Green’s function as
1
/.

Gz, 23 \) ~ W
where finite is a value always of finite magnitude. We want to find g,,
so we put [Ly — Ao (z)] in front of each side of the equation and then
add and subtract A\,o(z)G(x,2’; A) on the the right-hand side. This
gives us (using 4.28)

gn(z,2') + finite X — A, (4.30)

0x—1") = [Lo— A\o(x)] {)\1_)\%(% ')+ ﬁnite}
+ (A — No(x) [)\ 1_ /\gn(x, x') + ﬁnite} A— A,
1
= [Lo— \o(x)] {)\ — )\gn(x,x’)} + finite A — A\,

eq4.26

Isn’t this just
hitting a sta-
tionary point?
€q4.26p

clarify this.

eq4.26b
15 Jan p6

15 Jan p6

pr:gnxx1
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The left-hand side is also finite if we exclude x = z’. This can only
occur if

[Lo — Mo (2)]gn(z,2) =0 o #a. (4.31)
From this we can conclude that g, has the form
gz, 2") = u,(x) f(2), x # (4.32)

where f(z') is a finite term and wu, () satisfies [Ly — A,0(2)]u,(x) =0
with RBC. Note that here the eigen functions u,(x) are not yet nor-
malized. This is the relation between the natural frequency and the
Green’s function.

4.4 Relation between GF & Eig. Fn.

We continue developing the relation between the Green’s function and
spectral theory. So far we have discussed the one dimensional problem.
This problem was formulated as

[Lo — o(x)\G(z,2"; \) = 0(z — 2), RBC. (4.33)

To solve this problem we first solved the corresponding homogeneous
problem

[Lo — o(z)A\]un(z) =0, RBC. (4.34)

The eigenvalue )\, is called degenerate if there is more than one u,, per
An. We note the following properties in the Green’s function:

1. G*(z,2'; *) = G(x,2'; A). Recall that o, Ly, and the boundary
condition terms are real. First we take the complex conjugate of
equation 4.33,

(Lo — o(2) NG (x,2"; \) = 6(x — =), RBC (4.35)
and then we take the complex conjugate of A to get
(Lo — o(2)N|G* (x, 2'; \*) = 6(x — o), RBC (4.36)

which gives us
G*(z,2"; \*) = G(x, 2" \). (4.37)
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2. G is symmetric. In the second problem set it was seen that

G(z,2';\) = G2/, z; N). (4.38)

3. The Green’s function G has the property of Hermitian analyticity.
By combining the results of 1 and 2 we get

G*(z,2"; \) = G2/, x; \Y). (4.39)
This may be called the property of Hermitian analyticity.

In the last section we saw that

/
Gz, A)Ai;lgz“_’i) (4.40)
for g such that
[Lo — o(x)\n)gn(z,2") = 0. (4.41)

For the open string there is no degeneracy and for the closed string
there is double degeneracy. (There is also degeneracy for the 2- and
3-dimensional cases.)

4.4.1 Case 1: A Nondegenerate

Assume that )\, is non-degenerate. In this case we can write (using
equation 4.32)

ga(2,2') = (@) fu a'). (4.42)

Hermitian analyticity and the complex conjugate of equation 4.40 give
(note that A\, € R)

gn(@,2')  gn(a' @)

= 4.43
An — A An — A (4.43)

as A — A,. This implies that
gi(x,2") = gu(2', x). (4.44)

So now 4.42 becomes

18 Jan p3
pr:HermAn1

eq4ha

eqjcA
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eqjcC
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W (@) 1) = ful@)un (@) (4.45)

so that (since x and 2’ are independent) if u,(z) is normalized (accord-
ing to equation 4.12)

fo(x) = u(x). (4.46)
In the non-degenerate case we have (from 4.40 and 4.42)

G(z,2'; A)Ai;lung\x)?inix )

where u,(z) are normalized eigen functions.

(4.47)

4.4.2 Case 2: )\, Double Degenerate

In the second case, the eigenvalue A, has double degeneracy like the
closed string. The homogeneous closed string equation is

(Lo + A\o)ul®(z) = 0.

The eigenfunctions corresponding to A, are .\ (z) and u,, (z). By using
the same reasoning that lead to equation 4.47 we can write

1
An — A

G(z,2";\) — [ulH (2)ul* (2) + ul) (2)ul)* ()] (4.48)

n

for the equation

(Lo — o(z)\JulP(z) =0,  RBC. (4.49)

n

The eigenfunction u, may be written as u, = A,u™ + A_u~. Double
degeneracy is the maximum possible degeneracy in one dimension.
In the general case of a-fold degeneracy

- 1
Gl )7 S Sl () (o) (4.50)
where uf(x) solves the equation
[Lo — o(z)\]un(z) =0, RBC. (4.51)

The mathematical relation between the Green’s function and the
eigen functions is the following: The eigenvalues \,, are the poles of G.
The sum of bilinear products Y, u®(x)ul*(z') is the residue of the pole

A=A\,
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4.5 Solution for a Fixed String

We want to solve equation 3.22. Further, we take V = 0, ¢ and 7
constant, and a = 0,0 = L.

dz?

2
[—Td — /\a] G(x,2';\) =6(x — ) for 0 < x,2’ <L (4.52)

for the case of a fixed end string. Our boundary conditions are

G(z,2';\) =0 for x = a,b.

4.5.1 A Non-analytic Solution

We know from equation 3.41 the solution is 20 Jan p6

ul(x<a )‘)UQ(:U>7 )‘)

Gla, 25 A) = —7W (uq,uz)

(4.53)

This solution only applies to the one dimensional case. This is because eqj.54
the solution was obtained using the theory of ordinary differential equa-

tions. The corresponding homogeneous equations are given by pr:homog?2
d? A
In this equation we have used the definition 1/c¢* = o /7. The variables egqjlcu
uyp and uy also satisfy the conditions pricl
u1(0,A) =0 and ug(L, ) = 0. (4.55)

The solution to this homogeneous problem can be found to be

A . |A
uy = sin \/:237 and Ug = sin \/;(L —x). (4.56)

In these solutions v/\ appears. Since A can be complex, we must define
a branch cut?. pr:branchl
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Im A A\

0 Re A

Figure 4.3: The f-convention

4.5.2 The Branch Cut

Since G ~ ﬁ (see 4.40) it follows (from A, > 0) that G,, is analytic pr:analyticl
for Re (A\) < 0. As a convention, we choose # such that 0 < 6 < 2.
This is illustrated in figure 4.3.

Using this convention, v/A can be represented by

VA = /A€ (4.57)

o .. 0
= /|l lcos2 + isin 2] . (4.58)

Note that v/ has a discontinuity along the positive real axis. The
function G is analytic in the complex plane if the positive real axis is
removed. This can be expressed mathematically as the condition that

Imv/A > 0. (4.59)

4.5.3 Analytic Fundamental Solutions and GF
We now look back at the fixed string problem. We found that

A
ur(z, \) = sinq/g$
duy (% [
% = gCOS g&?

so that

but only if x = This gives us the boundary value

a=20.

2See also FW p485.
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du1 A
— =1/—. 4.60
dr | c? ( )
r=a
Because of the v/, this is not analytic over the positive real axis. We eq/fs
choose instead the solution pr:barul
U 1 A
u = g = —=siny G =, (4.61)
“dz lz=a o ¢

The function @; has the properties

du
uy(a) =0 and d—; i =1
This satisfies the differential equation. 18 Jan p8
d? A

So Wy is analytic for A with no branch cut. Similarly, for the substitution justify this
Uy = up/(%2],_,) we obtain

Ty = (A\/A) "V 2sin\/\/2(L — z).

One can always find u; and us as analytic functions of A with no branch
cut. Is this always
true?

4.5.4 Analytic GF for Fixed String
We have been considering the Green’s function equation
[Lo — Ao (z)]G(z,2"; \) = 0(z — o) for 0 < z,2’ <b (4.63)
with the open string RBC (1.18)
s -V + ks]G(x,2’;\) =0  for x on S (4.64)
and linear operator Ly defined as

Ly = _dde(x)ch + V(x). (4.65)



eq4cD
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We found that the solution to this equation can be written (3.41)

U (T<, ANug(z=, A)
—7(x)W (uy,us)

G(z,2"; \) = (4.66)

where u; and wuy are solutions to the homogeneous equation with the
same boundary conditions as (1.18)

[Lo — Ao (z)|ug2(x, A) =0 fora<xz<b (4.67)
0

—a—ul(x, A) + kouy(z,\) =0  forz=a (4.68)
x

—I—aaxm(x, A) + kyuo(z,A) =0 for x = b. (4.69)

We have been calculating the Green’s function for a string with
fixed tension (7 = constant) and fixed string density (0 = constant) in
the absence of a potential field (V' = 0) and fixed end points. This last
condition implies that the Green’s function is restricted to the boundary
condition that G =0 at x =a =0 and z = b = L. We saw that

A
up = siny 5z (4.70)
) A
ug = sin C—Q(L —x). (4.71)

We also assigned the convention that

VA = /A2, (4.72)

This is shown in figure 4.3.
The Wronskian in equation 4.53 for this problem can be simplified

and

as

8uQ 8u1

W(U17U2) = ulaix_l@i

Oz
= \/?2 [— sin \/ga; cos \/g(L — )
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— sin \/CTQ(L — ) cos \/?2:0]
AL A
= —\/;sm \/;L. (4.73)

Thus we can write the full solution for the fixed string problem as

) sin \/Cz2x< sin \/CXQ(L — )
Gz, 25 \) = ) (4.74)
T\/szsin \/CXQL

4.5.5 GF Properties
We may now summarize the properties of GG in the complex A plane.

e Branch Cut: G has no branch cut. It is analytic except at isolated
simple poles. The A\'/? branch vanishes if the eigen functions are
properly chosen. This is a general result for discrete spectrum.

o Asymptotic limit: G goes to zero as A\ goes to infinity. If X is
real and we do not go through the poles, this result can be seen
immediately from equation 4.74. For complex \, we let |A| — oo
and use the definition stated in equation 4.57 which is valid for
0 < 0 < 27. This definition gives Imy/A > 0. We can then write

e /N A A2z

siny/A/c2x = 5 (4.75)
i

A—oo e—i\/)\/CQx

% 7.

21 (4.76)
for 6 > 0. Thus from equation 3.44 we get
G( ! /\) Al =0 1 e_i v A/02x<@_i\/ A/ (L—z>) ( )
HEA T Ty —— 477
21 7.\/)\/?671 N 2L
1 €+i\/)\/02(r>—x<)
Y : (4.78)

% e

eq4.75b

€q4ss

pr:DiscSpecl
Justify
pr:asympl

23 Jan p3
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By convention z~ — x~ > 0, and thus we conclude

Al =00
—

G(z,z"; \) 0. (4.79)

e Poles: The Green’s function can have poles. The Green’s function
is a ratio of analytic functions. Thus the poles occur at the zeros
of the denominator.

We now look at sin ’E—QL = 0 from the denominator of equation

3.44. The poles are at A = \,,. We can write /), /c?L = nm or
enm\ 2
Ap = <L> forn=1,2,... (4.80)

We delete the case n = 0 since we have a removable singularity at
A = 0. Equation 4.80 occurs when the Wronskian vanishes. This
happens when u; = constant X uy (not linearly independent). Both
uy and wug satisfy the boundary conditions at both boundaries and are
therefore eigenfunctions. Thus the u,’s are eigenfunctions and the \,’s
are the eigenvalues. So

[Lo — Anoun(z) =0 RBC (4.81)

is satisfied for A\, by wu,,.

4.5.6 The GF Near an Eigenvalue

We now look at equation 4.74 near an eigenvalue. First we expand the
denominator in a power series about A = \,:

. A (A= /\n)% cos )\n% )
sin \/;L = S +O(N— M)~ (4.82)

So for A\ near an eigenvalue we have

)\ . )\ A=A 7L
T\/;sm \/;L — @(z\ — A\ COS . (4.83)
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Now we look at the numerator of 4.74. We can rewrite

sin\/A/c?(L — zs) = —sinnmws cos\/ A/ L. (4.84)

Note that f(z.)f(xs) = f(x)f(2). So, with o = 7/c?, and substitut-
ing 4.83 and 4.84, equation 4.74 becomes

nwx nmx’

AoA, 2SI TEEsin S

oL Ay — A

G(z,2'; \) (4.85)

So we conclude that

A=A un(x)un(x/)

\ T An Bt Bl )
A — A

as in 4.47 where the eigenfunction is

2
un(z) = HE sin n—zx, (4.87)

which satisfies the completeness relation [ w, (x)u’ (x)odz = §pp.

G (4.86)

4.6 Derivation of GF form near E.Val.

4.6.1 Reconsider the Gen. Self-Adjoint Problem

We now give an indirect proof of equation 4.86 based on the specific
Green’s function defined in equation 4.53,

ﬂ1(x<a )\)ﬂ2<$>, )‘)

Gz, 2" )\) = . 4.88
( ) —T($)W(ﬂ1,ﬂ2) ( )
The boundary conditions are (see 1.18)
—%—Hﬂﬂ—@ forx=a=0 (4.89)
oz o - '
o) _
+ai + kbu2 =0 forx =b=L. (490)
x

The function u; (respectively uy) may be any solution which is an
analytic function of A\, and independent of \ at z = a (respectively

eq4cC?2
22 Jan pd

eq4.91
pr:CompRell

eq4nt
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x = b). Thus both the numerator and the denominator of equation
4.88 are analytic functions of A, so there is no branch cut. Note that
G(z,2’; A) may only have poles when W (@ (z, \)uz(x, A)) = 0, which
only occurs when

where the d,, are constants.
Look at the Green’s function near A = \,,. Finding the residue will
give the correct normalization. We have (using 4.73 and 4.82)

7(2)W (T, ) =2 (A — An)en, (4.92)

where ¢, is some normalization constant. In this limit equation 4.88
becomes

Gz, 2'; )22 dizén(x<)un(x>)

e (4.93)

where d, is some constant. So u, = Ui,/ is the normalized eigen-
function. Equation 4.88 then implies

G, 25 )= “’E(A“"ZUXS) (4.94)

where u,, satisfies equation 4.81.

4.6.2 Summary, Interp. & Asymptotics

In the previous sections we looked at the eigenvalue problem
[Lo — Ao (x)]u,(z) =0 for a < x < b, RBC (4.95)
and the Green’s function problem
(Lo — Ao (2)|G(x, 25 \) = 6(x — o) for a < x, 2’ < b, RBC (4.96)
where

Lo = _CZE (T(Q})éi) +V (), (4.97)

which is a formally self-adjoint operator. The general problem requires

22 Jan p6
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finding an explicit expression for the Green’s function for a force local-
ized at x’.
For A — \,, we found

un () uy, (')

An — A

This equation shows the contribution of the nth eigenfunction. We saw
that G is an analytic function of A (with poles at \,) where G — 0 as
|A| — 0o. We can think of GG as the inverse operator of Ly — \,0:

1

G=—"—"—. 4.99
LO - )\nO' ( )

G(z,2';\) — (4.98)

Thus the poles are at Ly = \,0.

For large A the behavior of G is determined by the%G term since
it brings down the highest power of A. Thus for our simple example of
7 constant,

d2

and for A\ large
G ~exp(iv/A/x), G ~VAG, G~ (VNG  (4.101)

where the derivatives are taken with respect to x.

4.7 General Solution form of GF

In this section we obtain a general form (equation 4.108) for the Green’s
function which is constructed using the solutions to the corresponding
eigen value equation. This is done by evaluating a particular complex
integral. We have seen that G(z,2';\) is analytic in the complex A-
plane except for poles on the real axis at the eigen values \,,.

We consider the following complex integral

/ .\
/ NGz, 25 X) _ §axEw) (4.102)
c1tc2 N —=A cites

where we have defined F(\) = G(z,2"; ') /(N — A). Let the contour of
integration be the contour illustrated in figure 4.4. This equation has

eq4.102

25 Jan p2
fig4ff
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Im N\

N-plane

Figure 4.4: The contour of integration

a singularity only at A\. Thus we need only integrate on the contour pr:singularl

around A. This is accomplished by deforming the contour C + C5 to
the contour S (following Cauchy’s theorem)

fé L INF(X) = 72 AN F (V). (4.103)

See figure 4.5. Note that although F'()\’) blows up as A" approaches A,
G(z,2'; N) — G(z,2'; ) in this limit. Thus the integration about the
small circle around A can be written

N =X d>\/
fngF(X)—@(x,x’;A)
Now make the substitution
N — )= e (4.104)
dN = iee™da (4.105)
dN .
TS ido. (4.106)
This allows us to write
d)\’ 2
=7 lim do = 27i.

sAN —A e—0.Jo
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Figure 4.5: Circle around a singularity.

We conclude
édXFQUZQMG@JﬁM

and thus

: 'y HECRERY
ZWﬂ?@;x,A)—»%%+CQdA S (4.107)
eq4tpig
We now assume that G(z,z';\) — 0 as A — oo. We must check
this for each example we consider. An intuitive reason for this limit is
the following. The Green’s function is like the inverse of the differential
operator: G ~ 1/(Lg — Ao). Thus as A becomes large, G must vanish.
This assumption allows us to evaluate the integral around the large

circle C5. We parameterize A along this contour as

N — A = Re'®,
d\N — Re™ido as R — oo.
So
, G(x,z; N) ., 2 Re"da ' i
e S U N A
since G(z,2'; Re?’) — 0 as R — oo. fig4fof

We now only need to evaluate the integral for the contour Cf.

?{ dN'G(z,2"; N) _Z% dNG(x,2'; N)
o N—=X e N=X

In this equation we replaced the contour C; by a sum of contours around
the poles, as shown in figure 4.6. Recall that fig4.6

o Uy (2)ug” (2')

G,y Y)Y S
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L C1 Co C3 Cy
(3 3 a0 e = (N (N (W (Y -

Figure 4.6: Division of contour.

We note that

% dN B 1 dN
o V=N = XN) A=A Ay = N

B 1 j{ dXN
oM A M=),

1
= 271,

A — A

The first equality is valid since 1/(A\ — \) is well behaved as X' — A,,.
The last equality follows from the same change of variables performed
above. The integral along the small circle containing A, is thus

N 2mi ol o
72 T )\G(:c,x’; N) = 3 > ub(z)up ().

The integral along the contour C (and thus the closed contour C+C5)

is then

dN
N — A

o U ()1 (')

A — A

Gz, z"; N) =2mi )

Substituting equation 4.107 gives the result

Gl 20 = Y Anl_ - (Z (e (a:’)) | (4.108)

n

where the indices A\, sum n = 1,2, ... and a sums over the degeneracy.
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4.7.1 o-fn Representations & Completeness

Using the above result (equation 4.108) we can write

0(x—a) = [Lo—Ao(2)]G(z, 2" A) (4.109)
= [Lo— Ao(z)] 2_:1 W (4.110)
= i[(Lo —A0) + (A — A)U}W (4.111)
- > (o) o) (411)

In the last equality we used

i Lo — A\, )M — A0 up(x) =0

A — A

since Ly is a differential operator in terms of x, From this we get the
completeness relation

§(x — ') i o(z w) (') (4.113)

M — ) Z (@ . (4.114)

This is called the Completeness relatlon because it is only true if the
u, are a complete orthonormal set of eigenfunctions, which means that
any f(x) can be written as a sum of the w,,’s weighted by the projection
of f(x) onto them. This notion is expressed by the expansion theorem
(4.117 and 4.118).

We now derive the expansion theorem. Consider

flx) = bdx/f(x')é(x —a')  fora<axz<b  (4.115)

= bda; "fx Zun (4.116)

So

pr:CompRel2

eq).128b

pr:ExpThml
25 Jan pb6

eq4.129
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Z Un (2) fr, (4.117)

where ,
— / '/ (Yo (') f (z') (4.118)

is the generalized nth Fourier coefficient for f(z). Equation 4.117 rep-
resents the projection of f(z) onto the w,(z) normal modes. This was
obtained using the completeness relation.

Now we check normalization. The Green’s function G is normalized
because the u’s are normalized. We check the normalization of the u’s
by looking at the completeness relation

§(x — ) Zun . (4.119)

Integrate both sides by [ dz'u,,(z’). On the left hand side we immedi-
ately obtain [ dx'u,,(z")é(x — ') = u,,(x). On the right hand side

/dx’um( Zun Zun /dx (")t ()
where we used 4.11 in the equality. But
=Y u,(z)d

Thus we conclude that normalized eigen functions are used in the com-
pleteness relation:

/a ' dout (2)0/(@)un () = S, (4.120)

This is the condition for orthonormality.

4.8 Extension to Continuous Eigenvalues

As L (the length of the string) becomes large, the eigen values become
closer together. The normalized eigen functions u,(x) and eigen values
An for the fixed string problem, equation 4.54, can be written

1 iAo /2
Uy = ——=e 'V /T 4.121
— (4.121)

eq4fo32
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and i
Ao = (cky)? kn:%” n=012.... (4.122)

The separation between the eigen values is then

2

Ay = Ay — Apy ~ (25) (n? = (n—1)%) =0, (4.123)

We now consider the case of continuous eigen values. Let A be

complex (as before) and let A\, — 0. This limit exists as long as

A is not on the positive real axis, which means that the denominator

will not blow up as A\, — 0. In the continuum case equation 4.108
becomes

dA,
An — A

1\1520 G(x, 2’} ) = / zo;ui“n(x)uf\‘:(x) (4.124)

A

The completeness relation, equation 4.114, becomes
Sz — o) .
o = [ S, ) (4.125)

Now we take any function f(z) and express it as a superposition using
the d-function representation (in direct analogy with equations 4.115
and 4.118 in the discrete case)

fla) = / A S Fo S (). (4.126)

This is the generalized Fourier integral, with generalized Fourier coef-
ficients

13, = [ dees: (@) (@) f(2). (4.127)

The coefficients f{¥ may be interpreted as the projection of f(z) with
respect to o(x) onto the eigenfunction u§ ().

4.9 Orthogonality for Continuum

We now give the derivation of the orthogonality of the eigenfunctions
for the continuum case. The method of derivation is the same as we

eq4.124ab

eq4.175
pr:GenFourlnt1

eq4.176

27 Jan p3
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used in the discrete spectrum case. First we choose f(z) = ug (z) for

f(z) in equation 4.126. Equation 4.127 then becomes

ff;* = /dwuf\“;(x)aui‘m(x) (4.128)

The form of equation 4.126 corresponding to this is

0, (@) = 3 [ N us (a). (4.129)
This equation can only be true if
£ = Gaar(X, = An). (4.130)
So we conclude that
/ deu$) (x)ous, (x) = 15 = Saard(N, = An). (4.131)

This is the statement of orthogonality, analogous to equation 4.114. All
of these results come from manipulations on equation 4.108. We now
have both a Fourier sum theorem and a Fourier integral theorem.

We now investigate equation 4.124 in more detail

G(x,x';\) = /)\j)\_n)\ (%: uy (x)ui‘n(x')> :

(Generally, the integration is over the interval from zero to infinity.)
Where are the singularities? Consider \ approaching the positive real
axis. It can’t ever get there. The value approaching the negative side
may be different from the value approaching the positive side. There-
fore this line must be a branch cut corresponding to a continuous spec-
trum. Note that generally there is only a positive continuous spectrum,
although we may have a few negative bound states. So G(z,2';\) is
analytic on the entire complex cut A-plane. It is in the region of non-
analyticity that all the physics occurs. The singular difference of a
branch cut is the difference in the value of G above and below. See
figure 4.7.

We now examine the branch cut in more detail. Using equation
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./\’ + ie
A/
:/\’ — i

Figure 4.7: X near the branch cut.

4.108 we can write
lim G(z,2"; N + ie) — .G(a:, 'y N —ie)
e—0 27TZ

1 1 1
— — [ _
27m'/ Z“A Ty )<)\n—)\’—ie )\n—)\’+ie>

where

1 1 1 1 2i€
27m'<)\n—)\’—ie_)\n—)\’+ie> N %()\n—)\/)2+52
€ 1
(A —N)2+ e

In the first problem set we found that
lim ! SN = \) (4.132)
m—-———— = —\). :
—0m(A=N)2+¢€

So

VAT VA
lim G(z,z'; N + ie) 'G(x,x 3]
e—0 2m

— [, D uf, (r)us (33X = An)
= Z U}\/ U)\/

Therefore the discontinuity gives the product of the eigenfunctions. 27 Jan pb
We derived in the second problem set the property

G*(z,2"; \) = G(z, 2"; \¥). (4.133)
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Now take A = ) + ie. This allows us to write

G*(z, 2"y N +1€) = G(z,2; N — de) (4.134)
and
Gz, 2 N +ie) = Gz, a3 X — ie) (4.135)
21
_ G @i X tie) = G (w,a N +ie) (4.136)
211
1
T

So we can say that the sum over degeneracy of the bilinear product
of the eigen function u§ is proportional to the imaginary part of the
Green’s function.

4.10 Example: Infinite String

Consider the case of an infinite string. In this case we take the end
points a — —o0, b — oo and the density o, tension 7, and potential V'
as constants. The term V is the elastic constant of media.

4.10.1 The Green’s Function

In this case the Green’s function is defined as the solution to the equa-
tion

2
[_Td +V— )\g] G(z,z";\) = d(x — 1) for —oo <z, 2’ < .

dz?
(4.139)
To get the solution we must take A (= w?) to be imaginary. The solution
for the Green’s function can be written in terms of the normal modes
(3.41)
uy (7<)ug ()

G(x,z"; \) = W (ur, )

(4.140)
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Im A A\

Re A

k2

Figure 4.8: 6 specification.
where u; and usy satisfy the equation

d2
[—Tdm? +V - /\O"| U = 0. (4141)

The boundary conditions are that u; is bounded and converges as x — eq4.139
—o0 and that uy is bounded and converges as x — oo. Divide both <and converges’
sides of equation 4.141 by —7 and substitute the definitions ¢ /7 = 1/¢* - R. Horn

and V/7 = k?. This gives us the equation prik2.1
> - c*k?
|fl$2 + 072 u(x) = 0. (4.142)
The general solution to this equation can be written as eq4.132a
u(x) = AeVAR /e | pemivA=etkia/e (4.143)

We specify the root by the angle 6 extending around the point c2k? on eqf.132
the real axis, as shown in figure 4.8. This is valid for 0 < 6 < 27. The fi¢/ 64
correspondence of 6 is as follows:

A — k= |\ — AR, (4.144)
Thus
VA —ck2 = \/I\ — c2k2|e/? (4.145)

= /|A — 2k? (Cosg + isin g) . (4.146)
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So that
=0 < A=k (4.147)
0 —m <= i\/\—c2k? (4.148)
0 —2r = —\JA— k2. (4.149)

This is good everywhere except for values on the real line greater than
27.2
k.

4.10.2 Uniqueness

The Green’s function is unique since it was found using the theory of
ordinary differential equations. We identify the fundamental solutions
u1, ue by looking at the large x behavior of 4.143.

eVA=PRI[c 1200 —00  gnd miVASIRIB/e Tt (4 150)
VAP /e T2 do0 oo o iVA=CRIz/c $2290 —00 (4.151)

SO
w(z) = e VAR (4.152)
uy(z) = VAL (4.153)

The boundary condition has an explicit dependence on A so the solution
is not analytic. Notice that this time there is no way to get rid of the
branch cut. The branch cut that comes in the solution is unavoidable
because satisfaction of the boundary condition depends on the value of

A

4.10.3 Look at the Wronskian

In the problem we are considering we have
Wup,ug) = ugug — ugt) (4.154)
- e (—Z\/)\ - c2k2> (4.155)
c c
9;
VST (4.156)

C
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4.10.4 Solution

This gives the Greens’ function

. ice—i\/z\—c2k2az</cei\/A—02k2m>/c
G(z, 2} \) = S T (4.157)
ic ei\//\702k2|xfz/|/c

271 Vh_ ok
We now have a branch cut for Re () > ¢?k? with branch point at

A = c®k%. Outside of this, G is analytic with no poles. This is analytic
for A in the cut A-plane A > ¢?k?. Consider the special case of large \

(4.158)

iV Nz—a!| /e
oz Ty (4.159)
2T \/X

Notice that this is the same asymptotic form we obtained in the discrete
case when we looked at G as A — oo (see equation 4.79). Now consider

the case A < c?k? on the real axis. This corresponds to the case that

0 =m. So
c e—\/CQk—)\|JJ—a:’|

21 VAT
This function is real and exponentially decreasing. For A > c?k? this
function oscillates. If # = 0, it oscillates one way, and if § = 27 it

oscillates the other way, so the solution lacks uniqueness. The solutions
correspond to different directions of traveling waves.

G(x,2'; ) = (4.160)

4.10.5 Motivation, Origin of Problem

We want to understand the degeneracy in the Green’s function for an
infinite string. So we take a look at the physics behind the problem.
How did the problem arise? It came from the time dependent problem
with forced oscillation imposed by an impulsive force at z’:
2 92 .
—T—+V+o——|ulx,t)=dx—a2)e ™ where w? < k%

da? ot?
(4.161)

29 Jan p3
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We wanted the steady state solution:
u(z,t) = e Gz, 25 \). (4.162)
By substituting 4.160 this can be rewritten as

c e—iwte—m|ac—ac’|
u(z,t) = 2 oo (4.163)
We consider the cases w? < c?k? and w? > c?k? separately.

If w? < c?k?, then there is a unique solution and the exponential
dies off. This implies that there is no wave propagation. This agrees
with what the physics tells us intuitively: k%*c? > w? implies large k,
which corresponds to a large elastic constant V', which in turn means
there will not be any waves.

For w > ¢?k? there is propagation of waves. For w > ¢2k? we denote
the two solutions:

us(z,t) = e “'G(x, 2; N = w? £ de) as € — 0. (4.164)

As w increases, it approaches the branch point. We define the cutoff
frequency as being at the branch point, w? = ¢*k*. We have seen that
for w < w, there is no wave propagation, and for w > w,. there is
propagation, but we don’t know the direction of propagation, so there
is no unique solution.

The natural appearance of a branch cut with two solutions means
that all the physics has not yet been given. We may rewrite equation
4.163 as:

efiwt:l:i(\/m/cﬂzfm’\

ug(x,t) = T =

These solutions to the steady state problem can be interpreted as

follows. The solution u, represents a wave traveling to the right for

points to the right of (i.e. on the positive side of) the source and a

wave traveling to the left for points to the left of (i.e. on the negative
side of) the source. Mathematically this means

(4.165)

~ e iw(ttzy w2—c2k? /cw)

~ e—iw(t—x\/w2—c2k2/cw) for r > 1’
Uu =
* for z < 2'.
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Similarly, the solution u_ represents a wave traveling to the left for
points to the right of the source and a wave traveling to the right for
points to the left of the source. Mathematically this means

~ e—iw(t+r\/w2—02kz/cw) for r > 1’
U-= ~ e—iw(t—x\/w2—02k2/cw) for r < .

These results can be rephrased by saying that u, is a steady state
solution having only waves going out from the source, and u_ is a
steady state solution having only waves going inward from the outside
absorbed by the point. So the equation describes two situations, and
the branch cut corresponds to the ambiguity in the situation.

4.11 Summary of the Infinite String

We have considered the equation
(Lo — Xo)G = d(x — ') (4.166)

where »

We found that

1 iy ] 2 —k2|z—a'|
G(x,2'; \) = () eV (4.168)
21\/ 5 — k2

where we have introduced the substitutions V/7 = k? and o/7 = 1/
The time dependent response is

1 —iwt—iy [k2— X |z—a
we(,t) = —— TRkl (4.169)

27 c%—kz

If w? < ?k? = w? there is exponential decay, in which case there is no
singularity of G at A\ = w?.
The other case is that

us(x,t) = e “G(x, 2’y \ = w? £ ie). (4.170)

2 Feb pl
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This case occurs when w? > w?, for which there is a branch cut across
the real axis. In this case we have traveling waves.

Note that in the case that £ = 0 we always have traveling waves.
The relevance of the equation k* = V/7 is that the resistance of the
medium to propagation determines whether waves are produced. When
k = 0 there is no static solution — wave propagation always occurs. If
w? < w?, then the period of the external force is small with respect to
the response of the system, so that the media has no time to respond —
the system doesn’t know which way to go, so it exponentially decays.

Recall that the solution for the finite string (open or closed) allowed
incoming and outgoing waves corresponding to reflections (for the open
string) or different directions ( for the closed string). Recall the periodic
boundary condition problem:

u(z,t) = e “'G(x,a";\) (4.171)
fiwticos[%(% - |‘rf - l’/|)] (4172)
2w sin[* 3]

This is equal to the combination of incoming and outgoing waves, which
can be seen by expanding the cosine. We need the superposition to
satisfy the boundary conditions and physically correspond to reflections
at the boundaries. The sum of the two waves superimpose to satisfy
the boundary conditions.

4.12 The Eigen Function Problem Revis-
ited

We now return to the the connection with the eigen function problem.
We have seen before that the expression

GA =N +ie) — G(A= N —ie)

4.173
271 ( )

vanishes if M < ¢?k2. In the case that X > c?k? we have

G(A =N +ie) — G\ = N —ic

271

oS @y (@)
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/\//\/02—k2—>+\)\/02—k2\1/2
k2 \ ﬁ\/c2—k2—>—|)\/02—k2|1/2

Figure 4.9: Geometry in A-plane

eq4 177 The geometry of this on the A-plane is shown in figure 4.9. This gives
us
G\ =X +ie) — GA =N —ie)
2mi
_ ]_ ]_ ( i|c%fk2|1/2\xfx’\ . efi‘c%szp/%x*xl')

2mi 2 E — R

)\ 2
Sk

1 ,
B 7T2T]C%—k2]1/2sm c

1
= —ImG(\ =\ + ie).
m

1/2
|z — w’l)

For X' > c?k? we can write (using equation 4.138)

1 WY
e:I:Z\/)\ —c2k2z/c (4175)
47T7'1/% — k?

for X > c?k%. We now see that no eigen functions exist for N < c?k? eq4.188
since it exponentially increases as \' — oo and we must kill both terms.
The Green’s function is all right since A € C.

i (x) =

4.13 Summary

2

2 > 0, w? is real, and the eigen

1. For the Helmholtz equation, w
functions are real.

2. The dispersion relation for a closed massless string with discrete
mass points is
,  c2sin®(kya/2)
w =
" a?/4
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. The Green’s function obeys Hermitian analyticity:

G*(z,2; \) = G(2, z; \*).

. The form of the Green’s function for A near an eigen value A, is

A=A Un(x)UZ(xl)

Gz, 2" ; \) = S

. The Green’s function for the fixed string problem is

in /22 sin /A (L —
Gla.a/)) = sin \/6:9\77251:;?/%[/ JI>)'

. The completeness relation is

§(x — ') ila u ().

. The expansion theorem is

where

. The Green’s function near the branch cut is related to the eigen

functions by

1
~ImG(z,x"; N + ie) = Zu)\, z)us (x
m

. The Green’s function solution for an infinite string is

ic ei\/)\—CQk2\x—x’\/c
2r VA= k2

G(z,2';\) =
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4.14 References

The Rayleigh quotient is described in [Stakgold67a, p226ff] and [Stak-
gold79, p3391f].
For other ideas in this chapter, see Fetter and Stakgold.
A discussion of the discrete closed string is given in [Fetter80, p115].
The material in this chapter is also in [Fetter81, p245ff].
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Chapter 5

Steady State Problems

Chapter Goals:

Interpret the effect of an oscillating point source on
an infinite string.

Construct the Klein-Gordon equation and interpret
its steady state solutions.

Write the completeness relation for a continuous
eigenvalue spectrum and apply it to the Klein-
Gordon problem.

Show that the solutions for the string problem with
o =ux 7=z and V = m/z® on the interval
0 < x < oo are Bessel functions.

Construct the Green’s function for this problem.

Construct and interpret the steady state solutions
for this problem with a source point.

Derive the Fourier-Bessel transform.

5.1 Oscillating Point Source

We now look at the problem with an oscillating point source. In the

notation of the previous chapter this is

73

moved from
few pages later

pr:opsl

3 Feb pl
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02 ,
[Lo + O(SB)at?] u(x,t) = 6(x — a’)e ™" —o0 < z,2" < oo+ R.B.C.
(5.1)
and can be written in terms of the Green function G(x,z’; \) which
satisfies

[Lo—o(2)NG(x,2"; \) = §(x—2a') —00 < z,x’" < oo+ R.B.C. (5.2)

The steady state solution corresponding to energy radiated outward to
infinity is

u(z,t) = e Gz, 2, N = w? + ie). (5.3)
The solution for energy radiated inward from infinity is the same equa-
tion with X = w? — ig, but this is generally not a physical solution.

This contrasts with the case of a finite region. In that case there are
no branch cuts and there is no radiation.

5.2 The Klein-Gordon Equation

We now apply the results of the previous chapter to another physical
problem. Consider the equations of relativistic quantum mechanics. In
the theory of relativity we have the energy relation

E? = m*c* + p*c? (5.4)

In the theory of quantum mechanics we treat momentum and energy
as operators

p — —ihV (5.5)

E o mgt (5.6)
where

dim[h] = Action (5.7)

We want to derive the appropriate wave equation, so we start with

E?* — (m*c¢* + p*c®) =0 (5.8)
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Now substitute the operators into the above equation to get

(02 (4 ()

This is the Klein—-Gordon equation, which is a relativistic form of the
Schrodinger Equation. Note that |®]? still has a probability interpre-
tation, as it does in non-relativistic quantum mechanics.

=0 (5.9)

Now specialize this equation to one dimension.
2 o @ 2 4 , 07

This is like the equation of a string (c.f., 1.11). In the case of the
string the parameters were tension 7 = dim[F/t], coefficient of elasticity
V = dim[E/I?], and mass density o = [t?E/I%], where E is energy, t
is time, and [ is length. The overall equation has units of force over
length (since it is the derivative of Newton’s second law). By comparing
equation 1.11 with equation 5.10 we note the correspondence

V — m?ct o—h? T — R and f(z,t) — 0. (5.11)

Note that /V/7T = mc/h is a fundamental length known as the Comp-
ton wavelength, A.. It represents the intrinsic size of the particle.
The expression expression o/7 = 1/c* shows that particle inertia
corresponds to elasticity, which prevents the particle from responding
quickly. Equation 5.10 has dimensions of energy squared (since it came
from an energy equation).

We look again for steady state solutions

O(x,t) = e EVD g (1) (5.12)

to get the eigen value problem

2

d /
—hZCzﬁ + m204 —F 2 (I)E/(ZE) =0 (513)
X

Thus we quote the previous result (equation 4.175 which solves equation
4.142)
oL (7) = u*(2) (5.14)

pr:phil

1 Feb pb6

eqd.energy
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where we let k% — (<)% and ' — E”/h’. As a notational shorthand,

let p' = VE"? —m?2ct/c. Thus we write

el E'2—m2ct /he)x

\/47r7‘w\/ E? —m2ct

e:l:p’/h
T

The cut-off energy is mc?. We have the usual condition on the solution
that X > c?k%. This eigen value condition implies E? > m?ct.

In relativistic quantum mechanics, if £ < mc?, then no free particle
is emitted at large distances. In the case that E > mc? there is radia-
tion. Also note that m becomes inertia. For the case that m — 0 there
is always radiation. This corresponds to V' — 0 in the elastic string
analogy. The potential V' acts as an elastic resistance.

The Green’s function has the form

h(2) =

G(x,2'; E) ~ exp{(Vm2c* — E?/hc)|x — 2'|}.
So G(z,2; ) has a characteristic half-width of
| — 2| ~ he/vVm2ct — E2 = h/p.

This is a manifestation of the uncertainty principle. As x — oo, for
E < mc?, the Green’s function vanishes and no particle is radiated,
while for E > mc? the Green’s function remains finite at large distances
which corresponds to the radiation of a particle of mass m.

5.2.1 Continuous Completeness

Recall that the completeness condition in the discrete case is
d(x —a')

() ZuX z)uss (x'). (5.15)

R. Horn says The corresponding equation for the case of continuous eigenvalues is

no )\ in sum.

oz —2a')

()

/ dNuS (x)u§ (2). (5.16)

Na=+
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Recall that in this case the condition for an eigen function to exist is

N > w?. In this case
S \ ke
\/ 47T7'

into the continuous completeness relation gives

Substituting the u*
¢ [~ dX P10 R s v
_U(gj)élm' /wg (% — k2)1/2 ¢ Coe
(5.18)

where w? = k*c*. We now make a change of variables. We define the

wave number as
! 42
T AN — w?
c

(5.17)

uy () =

1/2

’
r—x
=)

d(x — )

(5.19)
It follows that the differential of the wave number is given by
dk = \/7 (5.20)
With this definition we can write
Sz —2') = i(;cj /O dk [ (z=a) 4 g=thle—z >] . (5.21)

Note the symmetry of the transformation k& — —k. This property

allows us to write
/ dke ik(z—az')
27r

This is a Fourier integral. In our problem this has a wave interpretation.
We now apply this to the quantum problem just studied. In this

§(x — ') (5.22)

case N = (E/h)? and we? = m?c* /h*. With these substitutions we can
write
E?2 _ m2ct\1/2
e a0 (5.23)
c
1 |E?
= > —m2e2 =t (5.24)

3 Feb p3



pr:FI1

3 Feb p4

eqd.29

78 CHAPTER 5. STEADY STATE PROBLEMS

SO
oz — ') 27?/ dpet@=='/n, (5.25)

This Fourier integral has a particle interpretation.

5.3 The Semi-infinite Problem

Consider the following linear operator in the semi-infinite region

d d m?2
Ly =—— — ) 2
0 dx(dx>+x 0<z<oo (5.26)

Here we have let the string tension be 7 = z and the potential be V' =
m?/xz. We will let the density be o(z) = x. This is like a centrifugal
potential. The region of consideration is 0 < z < oo.

This gives us the following Green’s function equation (from 3.22)

d d m? \
[ dx ( dx) + x v
defined on the interval 0 < z, 2’ < oc.

We now discuss the boundary conditions appropriate for the semi-
infinite problem. We require that the solution be bounded at infinity,
as was required in the infinite string problem. Note that in the above
equation 7 = 0 at x = 0. Then at that point the right hand side of
Green’s second identity vanishes, as long as the amplitude at z = 0
is finite. Physically, 7 — 0 at x = 0 means that the string has a free
end. So there is a solution which becomes infinite at + = 0. This
non-physical solution is eliminated by the boundary condition that the
amplitude of that end is finite. Under these boundary conditions Ly is
hermitian for 0 < z < oo.

The solution can be written in the form (using 3.41)

G(z,2';\) =0(x — ) (5.27)

u1<x<7 )\)UQ((E>, )‘)

G(z,2';\) = — W (a, 1)

(5.28)

The function u; and uy are the solutions to the equation
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(LO — )\.CE)’LLLQ =0 (529)

where we restrict u; to be that function which is regular at x = 0, and
us to be that function which is bounded at infinity.

We note that the equations are Bessel’s equations of order m: pr:Bessell
o d? d
d g gt +(y? —m?)| Xm(y) =0 (5.30)

where y = v\ and X,,(y) is any solution. The solutions are then
uy () = Jo(zVN) (5.31)
and
uy(z) = HV (zvV/N). (5.32)

The function H()(zv/X) is known as the Hankel function. For large = 3 Feb p5
it may be approximated as

T—00 2 —mr_ 2
H (@A) \/mc\/— (VA5 ) (5.33)

and since Im(v/A) > 0, we have decay as well as out going waves.
Now we get the Wronskian: Justify this

W (ug,ug) = ( T (2VN), HD(zVN)) (5.34)

m

= iW( A ,Nm \/_ (5.35)

VS e

In the second equality we used the definition H(V(z) = J,,(X)+iN,,(z),
where

| |
—~
o
w
D
=

Ny () = I () cos m — J,m(x)'

sin mm
The third equality is verified in the problem set. So 7W is independent
of x, as expected.

Therefore (using equation 5.28)

1
Glz,z;)) = —;%Jm(&ﬁ)}lﬁ)(@ﬁ) (5.37)
T

= S Tu(eVNHD (V) (5.38)
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5.3.1 A Check on the Solution

Suppose that A < 0. In this case we should have G real, since there is
no branch cut. We have

VA=ilAY2  at 6= (5.39)
We can use the definitions

Ln(x) = e ™2 ] (ix), Kn(z) = (1i/2)e™ 2 HD (i)

to write
Gz, X) = i Jm(ilA[ %2 )Hr(i(wl/? >) (5.40)
= %sz (z<|A[M?) zm x>\)\]1/2) (5.41)
= Lu(e< A" K(a |>\\1/2)€R (5.42)

Note also that G — 0 as x* — o0, so we have decay, and therefore no
propagation. This is because asymptotically

In(2) = (22m) Y267 larg z| < 1/2,]z] — o0

Kon(2) = (22/7)12e* |arg z| < 37/2,|z| — 0.

5.4 Steady State Semi-infinite Problem

For the equation

d d m? , , ,
[_d:c< dx)—l—x—)\x](}’(:v,m,)\)—é(x—x) for 0 < z,2' < 00
(5.43)
the solution we obtained was
G(z, 2 \) = %Jm(ﬁx<)ﬂ,§;>(\/§x>). (5.44)

We now look at the steady state solution for the wave equation,

62 N ,—iw
[Lo + x(?t?] u(z,t) = 6(z — 2')e ™" (5.45)
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pr:rad2 We only consider outgoing radiation (w? — w? + ig). We take ¢ > 0,
since £ < 0 corresponds to incoming radiation. So §(z — z’) acts as a
point source, but not as a sink.

u(z,t) = e ™“'G(x,2; )\ =w? +ie) (5.46)
= e_i“t%Jm(waHS)(wa (5.47)
= e_i“’t%Jm(wx')Hml)(wx>) for x > a’.  (5.48)

Next let wx > 1, so

u(x,t) = %Jm(wx’)i for wx > 1.

The condition wx > 1 allows us to use the asymptotic form of the 5 Feb p2
Hankel function.

In this case we have outgoing (right moving) waves. These waves
are composed of radiation reflected from the boundary x = 0 and from
direct radiation. If in addition to wx > 1 we take wz’ — 0, then we Explain why?
have -
u(z,t) = Z—W(wx’)me

2 \WT

We now look at the case z < a2’ with w large. In this case we have

(5.49)

—iwtlj

u(z,t) = e 5 HWY (wa') I (wz)
_ it oy on Lo @)
= e 5 H (wz )2[Hm (wz) + H7 (wx)]
e ) (wz') No + N wr >

~ H,(r})(wx')[e_i“’(t_r) _’_e—iw(t—l-z)]‘

We now look at the Green’s function as a complete set of eigen
functions. First we consider 5 Feb p3

L,[G(SL’, s N +ie) — Gz, 2’ N —ig)]

271
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1
ﬁ[t]m(\/meHr(nl)(\/yﬂb) - Jm(—ﬁ$<)H7(r})(_\/ym>)]

™
1
= (VN HD (VAE) + HE (Vi)
= ;Jm(ﬁx)bfm(\/ygc/)

1
= —Im G(z,2"; N + ie).
m

5.4.1 The Fourier-Bessel Transform

The eigen functions uys satisfy
—_— xi
dr \ dx x

—d d 2
[ ( >+m—)\x]ux:0 for 0 < z < oo. (5.50)

In this case since there is a boundary at the origin, waves move only to
the right. There is no degeneracy, just one eigen function:

Uy = \/ng(ﬁm). (5.51)
We know from the general theory that if there is no degeneracy, then
U(lx)(s@ o) = [ duy (s () (5.52)

SO
ia@ _a) = ; [T g (NI A (5.53)
= /OOO W'dw' T (W'x) I (W), (5.54)

This is valid for 0 < z,2” < co. Thus for f(x) on 0 < < co we have
flz) = /OO dx' f(z")o(z — 2') (5.55)
0
= /OO dx' f(z")a' /OO Wdw' Ty (W'e) I (W) (5.56)
0 0

= /OOO wdw' J, (w'x) /OOO de's’ f(2') T (W'2’).  (5.57)
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Thus for a given f(z) on 0 < x < oo we can write

flz) = /OOO W'dw' Iy (w'e) Frp (W').

This is the inversion theorem.

Fo(w) = /Oo 'dx f(2) I (wz').

0

This is the Fourier-Bessel transform of order m.

5.5 Summary

83

(5.58)

(5.59)

1. The string equation of an oscillating point source on an infinite

string has solutions corresponding to energy radiated in from or
out to infinity.

. The Klein-Gordon equation is

—hchd—Q +m2ct + h28—2 O(x,t) =0
dx? ot? T

Steady-state solutions for a point source with |E| > mc? corre-

spond to a mass m particle radiated to (%) infinity, where as
solutions with |E| < mc? die off with a characteristic range of
x ~ h/p.

. The string problem with ¢ = x, 7 = z, and V = m/x? on the

interval 0 < x < oo corresponds the Bessel’s equation

2
d
2 2 2
— — — Xn(y) =0
ydy2+ydy+(y m”)| Xom(y)
where y = xvA. The linearly independent pairs of solutions

to this equation are the various Bessel functions: (i) J,,(y) and
Nun(y), and (ii) H)(y) and HD(y).

4. The Green’s function for this problem is

Gz, 2 \) = erm(\/Xx<)ng(\/Xx>).

Explain  why
this is useful?
pr:FBt1

pr:chRanl
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5. The steady state solutions for this problem with point source are

vin

5 Jm(wx<)Hr(r})<wx>)'

—iw

u(x,t) =e

The outgoing solutions consist of direct radiation and radiation
reflected from the x = 0 boundary.

6. The Fourier-Bessel transform is

Fo(w') = /OOO Z'dr f(2") I (wa').

The inversion theorem for this transform is

flz) = /OOO W dw' T (W) Frp(W').

5.6 References

The Green’s function related to Bessel’s equation is given in [Stak-
gold67a, p75].



Chapter 6

Dynamic Problems

Chapter Goals:

State the problem which the retarded Green’s func-
tion G solves, and the problem which the ad-
vanced Green’s function G 4 solves. Give a physical
interpretation for Gr and G 4.

Show how the retarded Green’s function can be
written in terms of the Green’s function which
solves the steady state problem.

Find the retarded Green’s function for an infinite
string with ¢ and 7 constant, and V' = 0.

Find the retarded Green’s function for a semi-
infinite string with a fixed end, ¢ and 7 constant,
and V = 0.

Find the retarded Green’s function for a semi-
infinite string with a free end, ¢ and 7 constant,
and V = 0.

85

8 Feb pl
4 Jan pl
plprv.yr.
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e Explain how to find the retarded Green’s function
for an elastically bound semi-infinite string with o
and 7 constant, and V' = 0.

e Find an expression for the retarded Green’s func-
tion in terms of the eigen functions.

e Show how the retarded boundary value problem
can be restated as an initial value problem.

6.1 Advanced and Retarded GF’s

Consider an impulsive force, a force applied at a point in space along
the string at an instant in time. This force is represented by

o(z)f(z,t) =d(x —2)o(t — ). (6.1)

As with the steady state problem we considered in chapter 5, we apply
no external forces on the boundary. If we can solve this problem, then
we can solve the problem for a general time dependent force density
fz, ).

We now examine this initial value problem (in contrast to the steady
state problems considered in the previous chapter). We begin with the
string at rest. Then we apply a blow at the point 2’ at the time ¢’. For
this physical situation we want to find the solution

u(z,t) = Gr(z, t; 2, 1) (6.2)

where Gi stands for the retarded Green’s function:

2

[Lo + 0862521 Gr(z,t;2',t') = o(z—a")o(t—1t)

for a < x,x’ < b; all t,t'.
Now we look at the form of the two possible Regular Boundary
Conditions. These two sets of conditions correspond to the case of an

open and closed string. In the case of an open string the boundary
condition is characterized by the equation

[0V + ks]Gr(z, t;2",8) =0  ze€8, a<a <b; Vit (6.3)
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eq6RBC where S is the set of end points {a,b}. In the case of a closed string
the boundary condition is characterized by the equations

Gr(z, t; 2" 1) p=a = Gr(z, t; 2", 1) | 2= for a < 2’ < b, Vt,t', (6.4)

0 0
%GR(x,t;a:’,t’) - = %GR(x,t; ' t) - for a < 2’ < b, Vt, 1.
(6.5)
We now apply the condition that the string begins at rest: 8 Feb p2
Gr(z, t;2,t)=0  fort<t. (6.6)

This is called the retarded Green’s function since the motionless string
becomes excited as a result of the impulse. This cause—effect relation-
ship is called causality. The RBC’s are the same as in previous chapters pr:causl
but now apply to all times.

Another Green’s function is G4, which satisfies the same differential
equation as G with RBC with the definition

Galz,t;2',t)y=0  fort >+t (6.7)

This is called the advanced Green’s function since the string is in an pr:AGF1
excited state until the impulse is applied, after which it is at rest. In

what follows we will usually be concerned with the retarded Green
function, and thus write G for Gg (suppressing the R) except when
contrasting the advanced and retarded Green functions.

6.2 Physics of a Blow

We now look at the physics of a blow. Consider a string which satisfies
the inhomogeneous wave equation with arbitrary force o(z)f(x). The
momentum applied to the string, over time At, is then pr:momch1

Ap = p(t2) — p(t1)
to dp
= dt—
t1 dt

= [Mar [" dwota)fa,0)
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eqbdel

pr:FTransl
8 Feb p4

eqbFtran
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The third equality holds because dp/dt is the force, which in this case
is [;2dvo(x)f(z,t). We now look at the special case where the force is

the 0 function. In this case
t x
Ap = ’ dt/ i §(t —t)o(x — 2")dx =1 (6.8)
t1 xr1

for x1 < 2’ < 19, t < t' < ty. Thus a delta force imparts one unit of
momentum. Therefore we find that G is the response of our system
to a localized blow at = = z’, t = ' which imparts a unit impulse of
momentum to the string.

6.3 Solution using Fourier Transform
We consider the Green’s function which solves the following problem
given by a differential equation and an initial condition:

2
[Lo—l—aaatz] Gz, t; 2 t')=0(t —t")o(x — ) +RBC, (6.9)

Gz, t;2',t') =0 for t <t

For fixed x we note that G(z,t;2',t') is a function of ¢ — ¢’ and not ¢
and t’ separately, since only 9%/0t* and t — t' appear in the equation.
Thus the transformation ¢ — t + a and ' — ' + a does not change
anything. This implies that the Green’s function can be written

Gz, t;2', ) = Gz, 2’5t —1t)
= G(x,2';7),

where we define 7 =t — t/. By this definition, G = 0 for 7 < 0.
This problem can be solved by taking the complex Fourier trans-
form:

G(x,2";w) = /OO dre™"G(x, ;7). (6.10)

Note that G’(m,x’ ;w) is convergent everywhere in the upper half w-
plane, which we now show. The complex frequency can be written as
w = wpr + twy. Thus

TWwT IWRT ,—WIT
e’ = eWRTem M,
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For é(x,a:’ ;w) to exist, the integral must converge. Thus we require
e — 0 as T — 00, which means we must have e™“I™ — 0 as 7 — 0.
This is only true when w is in the upper half plane, w; > 0. Thus G
exists for all w such that Im w > 0. Note that for G4 everything is
reversed and w is defined in the lower half plane.

By taking the derivative of both sides of G(z,2’;w) in the Fourier

transform, equation 6.10, we have

dié(x,x';w) = [m dT(;ieiWTG($,£L‘/;T) = z'/o drrG(z,x';7)e ™7,
which is finite. Therefore the derivative exists everywhere in the upper
half w-plane. Thus G is analytic in the upper half w-plane. We have
thus seen that the causality condition allows us to use the Fourier trans-
form to show analyticity and pick the correct solution. The condition
that G = 0 for 7 < 0 (causality) was only needed to show analyticity;
it is not needed anymore.

We now Fourier transform the boundary condition of an open string
6.3:

0 = / dre“™ ((hg - V + kg)G)
= (ng-V+ /15)/ dre™'G
= (fls -V + lfs)é.
Similarly, in the periodic case we regain the periodic boundary condi-
tions of continuity G, = G, and smoothness G, = G}. So G satisfies
the same boundary conditions as G since the boundary conditions do

not involve any time derivatives.
Consider equation 6.9 rewritten as

[Lo + ag;] Gz, 2';7) = 8(z — 2')3(7).

The Fourier transform of this equation is

5 2

LoG(z,2";w) + o(z) /_oo dTeiMaaTQG(x, 1) =0(x—1). (6.11)

but how do we
know
—i [drTG(T)

converges?

8 Feb pb
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Using the product rule for differentiation, we can “pull out a divergence
term”:

TWT 82 62 TWT 8 wT a a wT

Thus our equation 6.11 becomes

oz —a') = LoG(z,2";w) + o(z)(~w’G(z,2";w))
) 8 ]
+o(x) [e aG - Gae ]

t=—00

Now we evaluate the surface term. Note that G = 0 for 7 < 0 implies
OG0t = 0, and thus |_o, = 0. Similarly, as 7 — oo, ™™ — 0 since
Im w > 0, and thus |* = 0. So we can drop the boundary term.

We thus find that G satisfies the differential equation

(Lo — w0 (2)|G(z,2";w) = 6(x —2')  RBC, (6.12)

with Im w > 0. We now recognize that the Green function must be the
same as in the steady state case:

Gz, 2 w) = Gz, 2’} N = W?).

Recall that from our study of the steady state problem we know that
the function G(x,2; \) is analytic in the cut A-plane. Thus by analytic
continuation we know that G (x,2';w) is analytic in the whole cut plane.
The convention w = VA compresses the region of interest to the upper
half plane, where \ satisfies

[Lo — Ao (2)]G(z,2";\) = 0(z — 2')  + RBC, (6.13)

All that is left is to invert the Fourier transform.

6.4 Inverting the Fourier Transform

In the previous section we showed that for the Green’s function G we
have the Fourier Transform

G(x,2";w) = /OO dre ™ G(x,2';7)
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where 7 =t — t/, and we also found
G(x,2";w) = Gz, 2"; A = w?)

where w = wg + iwr with w; > 0, and G(z,2’; A = w?) is the solution

of the steady state problem. Now we only need to invert the Fourier but didn’t
Transform to get the retarded Green’s function. We write we use analytic
continuation to
eiw’r _ ein’re—wrr ge the whole \
plane.
so that

Gz, ' wp + iwy) = / dre™RT [e TG p(x, ;7).

F(wg) F(r)

This is a real Fourier Transform in terms of F(7). We now apply the
Fourier Inversion Theorem: pr:FIT1

1 foo o
F(T) = e*wITGR(x’x/;T) = 27/ dwReﬂwRTG(éC,x/;wR 4 z'wl)
T J—00
SO

1 00 ) ~
Gr(z,2';7) = 2—/ dwgpe ™R G(x, x';w)e*’ ™ (6.14)
T J—o0
fix w; = ¢ and integrate over wg (6.15)

1 —IWT /.
= %/dee G(z,2";w) (6.16)

where the contour L is a line in the upper half plane parallel to the wr 10 Feb p2
axis, as shown in figure 6.1.a. The contour is off the real axis because of fig6Lcont
the branch cut. We note that any line in the upper half plane parallel

to the real axis may be used as the contour of integration. This can

be seen by considering the rectangular integral shown in figure 6.1.b.

Because G = 0 as wp — 00, we know that the sides Lg; and Lg vanish.

And since ¢“” and G are analytic in the upper half plane, Cauchy’s

theorem tells use that the integral over the closed contour is zero. Thus

the integrals over path L; and path L, must be equal.
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wr
< Ly
. Ls . TLs>
#E Ll WR Ll
(a) The line L, (b) Closed contour with L,

Figure 6.1: The contour L in the A-plane.

6.4.1 Summary of the General IVP
pr:IVP1

We have considered the problem of a string hit with a blow of unit
momentum. This situation was described by the equation

2
[Lo + Ja] Gr(x, t;2', ) = 6(x — 2")d6(t — t') + RBC (6.17)

ot?
eq6GFat with the condition that Gg(z,t;2',t") = 0 for t < t’. The Green’s
function which satisfies this equation was found to be
Gr(z,t;2't) :/ d—we_i‘”(t_tl)@(x ' w) (6.18)
2 I 27_(_ ) Y * *
eq6GFT where G(z, 2';w) satisfies the steady state Green’s function problem.

6.5 Analyticity and Causality

To satisfy the physical constraints on the problem, we need to have
Gr =0 for t <. This condition is referred to as causality. This con-
dition is obtained due to the fact that the product e )G (z, 2/; w?)
Need to show appearing in equation 6.17 is analytic. In this way we see that the ana-
somewhere lyticity of the solution allows it to satisfy the causality condition. As a
that G 0. check, for the case t < t' we write e @(t—t) = e=iwr(t=t) ewi(t=t") and close
fig6Luhp the contour as shown in figure 6.2. The quantity e “t)G(z, 2/; w?)



6.6. THE INFINITE STRING PROBLEM 93
N-plane wr

LUHP

WR

Figure 6.2: Contour Loy = L+ Lygp closed in UH A-plane.

vanishes on the contour Loy = L + Lygp since e 1) — () as
w; — oo and |e”®r(=¥)| = 1 while we required |G(x,2";w?)| — 0

as |w| — oo.

6.6 The Infinite String Problem

pr:ISP1
We now consider an infinite string where we take o and 7 to be a
10 Feb p3

constant, and V' = 0. Thus our linear operator (cf 1.10) is given by

d2

Lo=—T—.
0 dez

6.6.1 Derivation of Green’s Function

We want to solve the equation

82 82 I, / /
[_TW + aaﬁ] Grlz,t;2' t') = o(z—a")o(t—t") for —oco < x, 2’ < 00
(6.19)

with the initial condition

Grlz,t;2't) =0  fort <t
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We write the Fourier transform of the Green’s function in terms of \:
Gz, 2 w) = Gz, 2’} A = W?).

From 6.13, we know that G(z,z; \) satisfies

d2
[_TdQ _ 0)\1 G(:z:,:c'; /\) = §(x — a:’) for —oo < x, 2’ < .
T

Actually since For the case of A largewe found the solution (4.159)

V=0 .
G = ¢ \/)\/02|z z’
2\/XT
or (A — w?)
c

- 7 L
Gz, 2";w) = ——elz=al/e,
2T

This gives us the retarded Green’s function
Gr(z,t; 2", t') /dwe_“"(t 0! E Clad) (6.20)

eq6 GRInfStr ~ Now consider the term

S [(tft’)f‘z%”,l} |

We treat this term in two cases:

ot —t' < @ In this case

—iw [(t t)— M}

e — 0 as wy — 00.

But the term (i/2w) — 400 as wr — 0 in equation 6.20. Thus
the integral vanishes along the contour Ly yp shown in figure 6.2
so (using Cauchy’s theorem) equation 6.20 becomes

Gr(z,t; 2’ 1) :jl{ 27{ =0
L L+Lynp
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N-plane wr

WR

LLHP

Figure 6.3: Contour closed in the lower half A-plane.

10 Feb p4 ot —t'> @ In this case
i f—t! 7\z71/|
ew[( i }—>0 as wy — —o0
fig6Llhp so we close the contour below as shown in figure 6.3. Since the
integral vanishes along Lpgp, we have Gp = [, = [; 1, ..

Cauchy’s theorem says that the integral around the closed con-
tour is —27¢ times the sum of the residues of the enclosed poles.

The only pole is at w = 0 and its residue is %% For this case
we obtain
1 ic c
G 7t7 lat/ =2 () = 5
r(@, 62, t) o 21 21 2T

which is constant.

From these two cases we conclude that
o
Grlz, t:2',t) = —0 (t e M) . (6.21)
2T c

The function 6 is defined by the equation

0 foru <0
0(u>_{1 for u > 0.
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Ggr(z, t; 2/, 1)
%7‘
_G=0 | L G=0_
2 — c(t—1t) ' ! —|—‘c(t —t)

Figure 6.4: An illustration of the retarded Green’s Function.

The situation is illustrated in figure 6.4. This solution displays some
interesting physical properties.

e The function is zero for z < 2’ —¢(t —t') and for x > 2’ +c(t —t'),
so it represents an expanding pulse.

e The amplitude of the string is ¢/27, which makes sense since for a
smaller string tension 7 we expect a larger transverse amplitude.

e The traveling pulse does not damp out since V' = 0.

6.6.2 Physical Derivation

We now explain how to get the solution from purely physical grounds.
Consider an impulse Ap applied at position =’ and time ¢'. Applying
symmetry, at the first instant Ap, = 1/2 for movement to the left and
Ap, = 1/2 for movement to the right. We may also write the velocity
Avy = Apy/Am = 3 /odx since Ap, = 1/2 and Am = odz. By substi-
tuting dr = cdt, we find that in the time dt a velocity Av, = 1/2codt
is imparted to the string. This Awv, is the velocity of the string portion
at dz. By conservation of momentum, the previous string portion must
now be stationary. In time dt the disturbance moves in the y direction
an amount Ay = v,dt = i = 5. In these equalities we have used
the identity 1/c¢> = ¢/7. Thus momentum is continually transferred
from point to point (which satisfies the condition of conservation of

momentum).
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6.7 Semi-Infinite String with Fixed End

We now consider the problem of an infinite string with one end fixed.
We will get the same form of Green’s function. The defining equation
is (c.f. 6.19)

0? 0?
[—TW + 0(97521 Gr(z,t;2' 1) = 6(z—2)o(t—1t) (6.22)
for —oo < t,t' < o00; 0 < x,2' < o0
with the further condition eqbqdblst

Gr(z, t;2',t') =0 for x = 0. (6.23)

This is called the Dirichlet boundary condition. We could use transform eq6qdblstbc
methods to solve this problem, but it is easier to use the method of
images and the solution 6.21 to the infinite string problem.

To solve this problem we consider an infinite string with sources at 12 Feb p2
2’ and —2’. This gives us a combined force

of(x,t)=[0(x — ') — d(x+2")]o(t — t')

and the principle of superposition allows us to write the solution of the
problem as the sum of the solutions for the forces separately:

GR(ZE,t;[E,,t,) = 2£ |é <t—t’—|x$|> _9<t_t/_w>]

T c c
(6.24)
where wu is the solution (c.f. 6.21) of the infinite string with sources at eq6gsst
x and 2. This solution is shown in figure 6.5. Since u satisfies 6.22 fig6LandG
and 6.23, we can identify G = u for £ > 0. The case of a finite string
leads to an infinite number of images to solve (c.f., section 8.7).

6.8 Semi-Infinite String with Free End

We now consider a new problem, that of a string with two free ends.
The free end Green’s function is

_ 7/ /
GR:Cl9<t—t,—|x x|>+9<t—t’—|x+x|>].
27 c c
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GR GR

eqbqdblst2

12 Feb p3

(a) Gg at time ¢ (a) Gg at time ¢

Figure 6.5: Gg at t; =t' + 12//c and at t, = ¢' + 32/ /c.

This satisfies the equation

0? 0?
l—TW + UW] GR(Qf,t; X >t ) = 5(3j - )5(t —1 ) (625)

for —co<t,t' <oo;a<x, ' <b

with the boundary condition

d
—Gp(z, t; 2, 1)

dx =0

=0

which corresponds to k, = 0 and h, = 0 is equation 6.3 (c.f., section
1.3.3).
The derivative of Gr(x = 0) is always zero. Note that

(6.26)

b d 1 fora<0<b
a %Q(x) =0(b) = 0(a) = { 0 otherwise.

which implies

d
@«9(1‘) = ().

But for any fixed ¢ —t’ we can chose an € such that the interval [0, €] is
is flat. Therefore

d _free end _
deR =0.
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Notes about the physics: For a string with a free end, the force on the

end point is F, = 799 — 0 at = 0 which implies ¢ = 0 at z = 0

der dx
if the tension 7 does not vanish. If the tension does vanish at x = 0,
then we have a singular point at the origin and do not restrict % =0

at £ = 0.

6.9 Elastically Bound Semi-Infinite String

We now consider the problem with boundary condition

[—d+m]GR:0 for x = 0.
dx

The solution can be found using the standard transform method. Do
an inverse Fourier transform of the Green’s function in eq. 6.13 for the

related problem [—d/dx + k]G = 0. The frequency space part of this
problem is done in problem 4.3.

6.10 Relation to the Eigen Fn Problem

We now look at the relation between the general problem and the eigen
function problem (normal modes and natural frequencies). The normal
mode problem is used in solving

[Lo — Ao]G(z,2';)) = §(xz — 2) + RBC

for which G(z,2’; \) has poles at the eigen values of Ly. We found in
chapter 4 that G(z,2’; \) can be written as a bilinear summation

un (1)t (')

G A=) Rl 6.27
(x’ T ) ) ; )\n _ )\ ( )

where the u,(x) solve the normal mode problem: eqbqA
(Lo — Auoun(z) =0 + RBC. (6.28)

Here we made the identification )\, = w? where the w,’s are the natural eq6gF
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eqbqC
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frequencies and the wu,,’s are the normal modes.

Recall also that the steady state solution for the force §(z —')e
is u(x,t) = G(z,2'; A = w? +ie)e . The non-steady state response is
Ggr(x,t; 2’ t') which is given by

—iwt

dw o ~
Grlz, t; 2, t') = /—we_“"(t_t)G(x,x’;w)
2m
where G(z,2';w) = G(z,2; A = w?). Plug G(z,2’;\) (from equation
6.27) into the Fourier transformed expression (equation 6.18). This
gives

Gr(z,t; 2’ t") /dwe’“”t ) un(x)u (') (6.29)

2
—~ Ay —w

In this equation w can be arbitrarily complex. (This equation is very
different (c.f. section 4.6) from the steady state problem G(z,2";\ =
w? +ig)e” ™! where w was real.) Note that we are only interested in
t > t', since we have shown already that Gr = 0 for ¢t < t'.

Now we add the lower contour since e~*(*~*) is small for ¢ > t and
wy < 0. This contour is shown in figure 6.3. The integral vanishes over
the curved path, so we can use Cauchy’s theorem to solve 6.29. The
poles are at \, = w?, or w = +/\,,.

We now perform an evaluation of the integral for one of the terms
of the summation in equation 6.29.

dw efiw(tft’) dw efiw(tft’)
[ = - = (6.30)
L+Lpup 2T )\n — w? L+Lpgp 2T (u} — v/ )\n)(w + \/)\n)

27 [e—iVAn(t—t) ei\/x(t—t')
27r[ 2N 2V
sin v, (t —t)

N .

By equation 6.29 we get

Z u sm VAt —1)
Un

VA
where /A, = w, and t > t’. This general solution gives the relationship

between the retarded Green’s function problem (equation 6.17) and the
eigen function problem (eq. 6.28).

Gr(z,t; 2’ 1)

(6.31)
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6.10.1 Alternative form of the GGy Problem

For t — ¢’ small, eq. 6.31 becomes

Gr(z, t; 2/, 1) ~ ZW@@—I&’)
= (t—1) > up(w)uy(a’)
= (t — t’)w.

Where we used the completeness relation 4.113. Thus for ¢ — ¢’ small, 12 Feb 6
the G has the form

Sz —a)
G ta oy ~ (t —t)——~2.
R(‘r7 ’:L‘7 )|t t ( ) O'(.Z')
Differentiating, this equation gives
0 o — o
—GR(x,t;x’,t') — M
at i+ O'(.I)

Also, as t approaches ¢’ from the right hand side
Gr(z, t;2',t) =0 for t — ¢~

These results allow us to formulate an alternative statement of the Gg
problem in terms of an initial value problem. The G is specified by
the following three equations:

2

0
[Lo + U(I)aﬁ] Gr(x,t;2',t')=0  fort >t +RBC

Gr(z,t;2', ¢y =0 fort =1+
9]

a(x)§GR =6(x—2) fort="1

Here a(t)%G r(z,t; 2’ t') represents a localized unit of impulse at 2/, ¢’
(like Ap = 1). Thus we have the solution to the initial value problem
for which the string is at rest and given a unit of momentum at ¢'.
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We have now cast the statement of the Gz problem in two forms,
as a retarded boundary value problem (RBVP) and as an initial value
problem (IVP):

RBVP — Lo+ 05| Grlw, t;2/,#') = 6(x — 2/)6(t — ') +RBC,
Ggr(z,t; 2, ) =0 for t <t/
[Lo + a(m)g—;} Gr(z,t; 2, t) =0 for t > ¢/, RBC,
IVP =< Gg(z,t;2/,¢) =0 fort =1t
o(2) 2GR =0(z— 1) for t =t'.

6.11 Comments on Green’s Function

6.11.1 Continuous Spectra

In the previous section we obtained the spectral expansion for discrete
eigenvalues:

o Un (2)u (7).
Gr(z, t; 2/ 1) =) —Z 2 2sin\/ A\, (t — 1) (6.32)
S
This gives us an expansion of the Green’s function in terms of the
natural frequencies.
For continuous spectra the sum is replaced by an integral

sin v/ A\, (t — ¢/
Gr= [ 3w us \/;AL )

where we have included a sum over degeneracy index « (c.f. 4.108).
Note that this result follows directly because the derivation in the pre-
vious section did not refer to whether we had a discrete or continuous
spectrum.

6.11.2 Neumann BC

Recall that the RBC for an open string, equation 1.18; is

[—d—kﬁa] Gr=0 for z = a.
dx
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If kK, — 0 (Neumann boundary condition) then the boundary condition

for the normal mode problem will be (d/dz)u(x) = 0 which will have

a constant solution, i.e., A\; = 0. We cannot substitute \; = 0 into
equation 6.32, but instead must take the limit as A\; approaches zero.
Physically, this corresponds to taking the elasticity x, as a small quan-

tity, and then letting it go to zero. In this case we can write equation

6.32 with the \; eigen value separated out:

uy (z)us (2"t =) (6.33)
+> un(x\}q);\_n(x ) sin \/E(t —t')

== w(x)ui()(t ).

Gr(z, t; 7't M)

The last limit is true because the sum oscillates in t. The Green’s
function represents the response to a unit momentum, but x, = 0
which means there is no restoring force. Thus a change in momentum
Ap = 1 is completely imparted to the string, which causes the string
to acquire a constant velocity, so its amplitude increases linearly with
time.

Note that equation 6.33 would still be valid if we had taken A\; = 0
in our derivation of the Green’s function as a bilinear sum. In this
case equation 6.30 would have a double pole for A\; = 0, so the residue
would involve the derivative of the numerator, which would give the
linear factor of ¢t — t'.

Consider a string subject to an arbitrary force o(z) f(x,t). Remember17 Feb p2
that o(z) f(x,t) = 0(t—t')0(x — ') gives Gr(x,t;2',t'). A general force
o(x)f(z,t) gives a response u(x,t) which is a superposition of Green’s pr:GenRespl
functions:

(e, t) = | " / L dwGla ! o () (o 1)

with no boundary terms (u(z,0) = 0 = Zu(z,0)). Now plug in the
Green’s function expansion 6.33 to get

¢ b
u(z,t) = ul(x)/o dt'(t —t') | da'ui(x)o(z") f(2', 1)
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Note that again the summation terms oscillate with frequency w,,. The
spatial dependence is given by the w,(z). The coefficients give the
projection of o(x)f(x,t) onto u’ (). In the A\; = 0 case the u;(x) term
is constant.

6.11.3 Zero Net Force

Now let
F(t) = (const.) /dt’a(:c’)f(x/,t’)

where F'(t') represents the total applied force at time t'. If F'(t) = 0,
then there are no terms which are linearly increasing in time contribut-
ing to the response u(x,t). This is a meaningful situation, correspond-
ing to a disturbance which sums to zero. The response is purely oscil-
latory; there is no growth or decay.

6.12 Summary

1. The retarded Green’s function Gi solves

2

[Lg + Jgﬁ] Gr(z, t;2',t) = d(x — 2ot —t) + RBC

for a < x, 2’ < b; all t,t'.
with the condition
Gr(z,t;2',t) =0 fort <t

The advanced Green’s function GG 4 solves the same equation, but
with the condition

Ga(z,t; 2/, ¢y =0 fort>t.

The retarded Green’s function gives the response of the string
(initially at rest) to a unit of momentum applied to the string at
a point in time ¢ at a point 2’ along the string. The advanced
Green’s function gives the initial motion of the string such that
a unit of momentum applied at 2’,¢ causes it to come to rest.
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. The retarded Green’s function can be written in terms of the

steady state Green’s function:
Gr(x, t; 2t :/ d—we’i‘“(t’tl)@(x ' w)
» by L on D) .

The retarded Green’s function for an infinite string with ¢ and 7
constant, and V' =0 is

_ /
GR(x,t;x’,t’):ie <t—t’— |2 x‘).
2T c

The retarded Green’s function for a semi-infinite string with a
fixed end, o and 7 constant, and V = 0 is

Gr(z, t:2/, ) = — |9 T et A Y PR A AT
2T c c

The retarded Green’s function for a semi-infinite string with a
free end, o and 7 constant, and V' =0 is

GR:C[0(15—15’—|x_x|>+9<t—t’—w>].
2T c c

The retarded Green’s function can be written in terms of the eigen
functions as

sm\/_(t—t’)
VA,

Gr(z,t; 2’ 1) Zun ur (

6.13 References

A good reference is [Stakgold67b, p246ft].
This material is developed in three dimensions in [Fetter80, p311ff].
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Chapter 7

Surface Waves and
Membranes

Chapter Goals:

e Show how the equation describing shallow water
surface waves is related to our most general differ-
ential equation.

e Derive the equation of motion for a 2-dimensional
membrane and state the corresponding regular
boundary conditions.

7.1 Introduction

In this chapter we formulate physical problems which correspond to
equations involving more than one dimension. This serves to moti-
vate the mathematical study of N-dimensional equations in the next
chapter.

107
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" h(z)

x b(x)

Figure 7.1: Water waves moving in channels.

7.2 One Dimensional Surface Waves on
Fluids

7.2.1 The Physical Situation

Consider the physical situation of a surface wave moving in a channel.
This situation is represented in figure 7.1. The height of equilibrium
is h(x) and the width of the channel is b(z). The height of the wave
z(x,t) can then be written as

z(z,t) = h(x) + u(z, t)

where wu(z,t) is the deviation from equilibrium. We now assume the
shallow wave case u(z,t) < h(x). This will allow us to linearize the
Navier—Stokes equation.

7.2.2 Shallow Water Case

This is the case in which the height satisfies the condition h(x) <
A where A is the wavelength. In this case the motion of the water
is approximately horizontal. Let S(x) = h(z)b(z). The equation of
continuity and Newton’s law (i.e., the Navier-Stokes equation) then
give

0 b 02

~ <gS(a:)ax> U+ (x)@u(x,t) =0,

!This material corresponds to FW p. 357-363.

17 Feb p3
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which is equivalent to the 1-dimensional string, where o(z) = b(z) and
7(x) = gS(x).
Consider the case in which b(z) is independent of x:

—(,i (glh(a:)(i) u—+ gﬁu(%t) =0. (7.1)

This corresponds to ¢ = 1 and 7 = gh(x).

Propagation of shallow water waves looks identical to waves on a
string. For example, in problem 3.5, h(x) = x gives the Bessel’s equa-
tion, with the identification 7(x) = z and V(z) = m?/x.

As another example, take h(x) to be constant. This gives us wave
propagation with ¢ = \/7/70, T = gh, and ¢ = 1. So the velocity of a
water wave is ¢ = v/gh. The deeper the channel, the faster the velocity.
This partially explains wave breaking: The crest sees more depth than
the trough.

7.3 Two Dimensional Problems

We now look at the 2-dimensional problem, that of an elastic membrane?.

We denote the region of the membrane by R and the perimeter (1-
dimensional “surface”) by S. The potential energy differential for an
element of a 1-dimensional string is

1 du\’
dU = 57’(1’) <dm> dx.

In the case of a 2-dimensional membrane we replace u(x) with u(x,y) =
u(x). In this case the potential energy difference is (see section 2.4.2)

dU = ;T(z,y) ((ZZ)Z @ZY) drdy (7.2)

= ;T(X)(VU)QCZX (7.3)

2This is discussed on p. 271-288 of FW.

17 Feb p4

eq7shallow

17 Feb p5

pr:elmem1
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where 7 is the tension of the membrane. Note that there is no mixed

term %diu since the medium is homogeneous. The total potential
Y

energy is given by the equation

1 2
U= /RdxiT(x)(Vu) :

where 7(x) is the surface tension. In this equation dx = drdy and
(Vu)? = (Vu) - (Vu). The total kinetic energy is

1, 1 ou\”

Now think of the membrane as inserted in an elastic media. We then
get an addition to the U(x) energy due to elasticity, 3V (x)u(x, t)2. We
also add an additional force which will add to the potential energy:

force mass )
f(x,t)o(x)dxu(x,t) = (mass) (length) (length) (displacement) .

The Lagrangian is thus

1
L:f/dxx
2Jr

|:O'X (gtu> —7(x)(Vu)? — V(x)u(x)* — f(x,t)o(x)dxu(x,t)] .

Notice the resemblance of this Lagrangian to the one for a one dimen-
sional string (see section 2.4.2).
We apply Hamiltonian Dynamics to get the equation of motion:

ooty o

where Ly = —V(7(x)V) — V(x). This is identical to the equation of
motion for a string except now in two dimensions. It is valid everywhere
for x inside the region R.
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(0, ) (a,b)
(0,9)] Ja,y)
(0,0) (a,0)

Figure 7.2: The rectangular membrane.

7.3.1 Boundary Conditions
Elastically Bound Surface

The most general statement of the boundary condition for an elastically
bound surface is

-V 4+ k(x)|u(x,t) = h(x,t) for z on S. (7.4)

In this equation the “surface” S is the perimeter of the membrane, n is sone
the outward normal for a point on the perimeter, x(x) = k(x)/7(x) is

the effective spring constant at a point on the boundary, and h(x,t) =
f(x,t)/7(x) is an external force acting on the boundary S.

Periodic Boundary Conditions

19 Feb p3
We now consider the case of a rectangular membrane, illustrated in pripbe2
figure 7.2, with periodic boundary conditions: fig:1.2

u(0,y) = u(a,y) for 0 <y <b, (7.5)

u(z,0) = u(x,b) for 0 <z <a,

and 52
= 7@&(.@, y)
o0 0x?

82

@u(x, Y) for 0 <y <b,

r=a
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82

82
@U(% Y)

= ule.y)
2 )

y=0 ox y=b
In this case we can consider the region R to be a torus.

for0 <z <a.

7.4 Example: 2D Surface Waves

We now give one last 2-dimensional example®. We consider a tank of
water whose bottom has arbitrary height h(x) and look at the surface
waves. This example connects the 1-dimensional surface wave problem
and the 2-dimensional membrane problem.

For this problem the vertical displacement is given by

2(61) = h(x) + u(x,1),
with A > h(x) for the shallow water case and u < h(x). Thus (using

7.1) our equation of motion is

—V - (gh(x)V) + 88152 u(x,t) = f(x,1).

Note that in this equation we have ¢ = 1. For this problem we take
the Neumann natural boundary condition:

n-Vu(x,t) =0
and

—u; =—gV_ ulg

ot
for x on S. This is the case of rigid walls. The latter equation just
means that there is no perpendicular velocity at the surface.
The case of membranes for a small displacement is the same as for
surface waves. We took ¢ = 1 and 7(x) = gh(x).
The formula for all these problems is just

[LO + a(x)?] u(x,t) = o(x)f(x,t)  forxin R

2
t2

where Ly = —V(7(x)V) + V(x). (Note that 7(x) is not necessarily

tension.) We let x = (21,...,2,) and V = (9/0xy,...,0/0x,). The

boundary conditions can be elastic or periodic.

3This one comes from FWp. 363-366.
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7.5 Summary

1. The equation for shallow water surface waves and the equation
for string motion are the same if we identify gravity times the
cross-sectional area with “tension”, and the width of the channel
with “mass density”.

2. The two-dimensional membrane problem is characterized by the
wave equation

[LO + 03;] u(x,t) = o(x)f(x, 1)

where Ly = —V(7(x)V) — V(x), subject to either an elastic
boundary condition,

-V + k(x)]u(x,t) = h(x,t) for x on S,

or a periodic boundary condition.

7.6 References

The material on surface waves is covered in greater depth in [Fetter80,
p357ff], while the material on membranes can be found in [Fetter80,
p271].
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Chapter 8

Extension to /N-dimensions

Chapter Goals:

e Describe the different sorts of boundaries and
boundary conditions which can occur for the N-
dimensional problem.

e Derive the Green’s identities for the N-dimensional
case.

e Write the solution for the N-dimensional problem
in terms of the Green’s function.

e Describe the method of images.
8.1 Introduction

In the previous chapter we obtained the general equation in two dimen-
sions:

2

[Lg + U(X)aatzl u(x,t) = o(x)f(x,1) for x in R (8.1)

where

Ly=—-V - -7(x)V+V(z).

This is immediately generalizable to N-dimensions. We simply let

x = (z1,...,2,) and V = (9/0xy,...,0/0z,). and we introduce the

115
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notation n - Vu = du/0n. R is now a region in N-dimensional space
and S is the (N — 1)-dimensional surface of R.
The boundary conditions can either be elastic or periodic:

1. FElastic: The equation for this boundary condition is
n -V 4+ K(x)]u(x,t) = h(x,t) for x on S. (8.2)

The term K (x) is like a spring constant which determines the
properties of the medium on the surface, and h(x,t) is an exter-
nal force on the boundary. These terms determine the outward
gradient of u(x, ).

2. Periodic: For the two dimensional case the region looks like 7.2
and the periodic boundary conditions are 7.5 and following. In
the N-dimensional case the region R is an N-cube. Connecting
matching periodic boundaries of S yields an N-torus in (N + 1)-
dimensional space.

To uniquely specify the time dependence of u(x,t) we must specify the
initial conditions

u(X,t)]i=0 = uo(x) for x in R (8.3)
aat(x, t)]i=0 = u1(x) for x in R. (8.4)

For the 1-dimensional case we solved this problem using Green’s Identi-
ties. In section 8.3 we will derive the Green’s Identities for N-dimensions.

8.2 Regions of Interest

There are three types of regions of interest: the Interior problem, the
Exterior problem, and the All-space problem.

1. Interior problem: Here R is enclosed in a finite region bounded by
S. In this case we expect a discrete spectrum of eigenvalues, like
one would expect for a quantum mechanical bound state problem
or for pressure modes in a cavity.
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pr:extprobl 2. Eaterior problem: Here R extend to infinity in all directions but is
excluded by a finite region bounded by S. In this case we expect
a continuum spectrum if V' > 0 and a mixed spectrum is V' < 0.
This is similar to what one would expect for quantum mechanical
scattering.

3. All-space problem: Here R extends to infinity in all directions pr:allprobl
and is not excluded from any region. This can be considered a
degenerate case of the Exterior problem.

8.3 Examples of N-dimensional Problems

8.3.1 General Response
pr:GenResp2

In the following sections we will show that the N-dimensional general
response problem can be solved using the Green’s function solution to
the steady state problem. The steps are identical to those for the single
dimension case covered in chapter 6.

Gx,x;A=w?) = G(x,x;))
—  Gr(x, t;x',t) retarded
-

u(x,t) General Response.

8.3.2 Normal Mode Problem
pr:NormMode3

The normal mode problem is given by the homogeneous differential

equation
2

<LO + 0(X)§t2> u(x,t) = 0.

Look for solutions of the form

”"”"tun(x).

u(x,t) =e
The natural frequencies are w,, = \/\,, where )\, is an eigen value. The
normal modes are eigen functions of L. Note: we need RBC to ensure
that Ly is Hermitian.
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8.3.3 Forced Oscillation Problem

The basic problem of steady state oscillation is given by the equation

(LO + aaa;) u(x,t) = e “o(x)f(x) forx e R

and (for example) the elastic boundary condition
(A -V + K)u=h(x)e ™  forxes.

We look for steady state solutions of the form

—iwt

u(x,t) = e "“u(x,w).

The value of w is chosen, so this is not an eigen value problem. We
assert

u(x,w) = /X/GR dx'G(x,x"; A = w +ie)o(x) f(X)

+ dx'T(x')G(x,x'; A = w +ig)o(x)h(X).
x'eS

The first term gives the contribution due to forces on the volume and
the second term gives the contribution due to forces on the surface.
In the special case that o(x)f(x) = §(x — x’), we have

u(x,t) = e “'G(x,x; A = w?).

8.4 Green’s Identities

In this section we will derive Green’s 1st and 2nd identities for the
N-dimensional case. We will use the general linear operator for N-
dimensions

Ly=-V-(1(x)V)+V(x)

and the inner product for N-dimensions

(S, Lou) = / dx5* (%) Lou(x). (8.5)
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8.4.1 Green’s First Identity
pr:G11d2
The derivation here generalizes the derivation given in section 2.1.

(5, Lou) = [ dxS" (=Y - (r(x) ) + V (x)Ju(x) (8.6)
integrate 1st term by parts
= /Rdx[—V (ST (x)Vu) + (VS)1(x)Vu + S* V|
integrate 1st term using Gauss’ Theorem
- /S dSi - (S*7(x)Vu) + /R (S Vu + (V - §°7(x) V)| dx
This is Green’s First Identity generalized to N-dimensions:

(S, Lou) = — /S dSA-(S*(x) V) + /R 5"V u-+(V-5*r(x)Vu)|dx. (8.7)

Compare this with 2.3.

8.4.2 Green’s Second Identity

We now interchange S and u. In the quantity (S, Lou) — (LoS,u) the
symmetric terms will drop out, i.e., the second integral in 8.7 is can-
celled. We are left with

pr:G21d2
22 Feb p3

(S, Lou) — (LoS, u) = /S dSh - [~ ST (x)Vu + ur(x) V.S,

8.4.3 Criterion for Hermitian L

pr:HermOp2
If u,S* satisfy the RBC, then the surface integral in Green’s second
identity vanishes. This leaves (S, Lou) — (LoS, u), which means that L

is a hermitian (or self-adjoint) operator: L = L.

8.5 The Retarded Problem

8.5.1 General Solution of Retarded Problem

We now reduce 8.1 to a simpler problem. If this is an initial value
problem, then wu(x,t) is completely determined by equations 8.1, 8.2, pr:IVP2
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8.3, and 8.4. We look again at Gr which is the response of a system to

a unit force:
82
[Lo + O(X)aﬁ] Gr(x,t;x', ) =d(x—x")o(t —t')  for x,x in R.
(8.8)
We also require the retarded Green’s function to satisfy RBC and the

initial condition Gz = 0 for t < t. We now use the result from problem
4.2:

t
u(x,t) = /x R /0 dt'Gr(x, t: %, ") (x) f(x', 1))

t
+ dx’r(x’)/ dt'Gr(x,t;x', t (X', 1)
0

x'eS

+ /x'eR dx'o(x') {GR(X, t;x', 0)uy (x)

a ! ! !
— %GR(X, t;x' ) ug(x )] (8.9)

The first line gives the volume sources, the second gives the surface
sources, and the third and fourth gives the contribution from the initial
conditions. Since the defining equations for G are linear in volume,
surface, and initial condition terms, we were able to write down the
solution u(x,t) as a linear superposition of the Gp.

Note that we recover the initial value of u(x,t) in the limit ¢ — #'.
This is true since in the above equation we can substitute

}ir?l Gr(x,t;x', ) =0
and

; Y =
}E?, GR<X7 tx 7t) — O'(X/)

8.5.2 The Retarded Green’s Function in N-Dim.

By using 8.9 we need only solve 8.8 to solve 8.1. In section 6.3 we found
that Gr could by determined by using a Fourier Transform. Here we
follow the same procedure generalized to N-dimensions. The Fourier
transform of Gi in N-dimensions is

d , "~
Gr(x,t;x',t) :/ —we_w(t_t)G(x,x’;w)
L2m
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where L is a line in the upper half plane parallel to the real axis (c.f., 22 Feb p5
section 6.4), since G is analytic in the upper half plane (which is due
to the criterion G = 0 for t < t/).
Now the problem is simply to evaluate the Fourier Transform. By
the same reasoning in section 6.3 the Fourier transform of G is iden-
tical to the Green’s function for the steady state case:

G(x,x';w) = G(x,x; A = w?).
Recall that the Green’s function for the steady state problem satisfies
(Lo — \o]G(x,x"; \) = §(x — X') for x,x" € R,RBC (8.10)

We have reduced the general problem in N dimensions (equation8.1)
to the steady state Green’s function problem in N-dimensions. 22 Feb p6

8.5.3 Reduction to Eigenvalue Problem

pr:efp3
The eigenvalue problem (i.e., the homogeneous equation) in N-dimensions
1s

Lou,(x) = Ao, (x) x € R,RBC (8.11)

The A,’s are the eigen values of Lj. Since L is hermitian, the \,’s

are real. The u,(x)’s are the corresponding eigenfunctions of Ly. We
can also prove orthonormality (using the same method as in the single
dimension case)

/Rdxzug*(x)u;;(x) = 0if Ay # A

This follows from the hermiticity of L. Note that because we are now

in N-dimensions, the degeneracy may now be infinite. 22 Feb p7
By using the same procedure as in chapter 4, we can write a solution

of eq. 8.8 expanded in terms of a solution of 8.11:

G(x,x;\) = Z Un()z)?i:/(\xl)

n

Note that the sum would become an integral for a continuous spectrum.
The methods of chapter 4 also allow us to construct the J-function 22 Feb p8
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representation
(x = x') = o(x') Y un(x)uy (x'),

which is also called the completeness relation. All we have left is to
discuss the physical interpretation of G.

8.6 Region R

8.6.1 Interior

In the interior problem the Green’s function can be written as a discrete
spectrum of eigenvalues. In the case of a discrete spectrum we have

*

G, 5 2 = w?) = 3 n)U(X)

— Ay — w?

8.6.2 Exterior

For the exterior problem the sums become integrals and we have a
continuous spectrum:

Y 2o Un(X)uy (X)
G(x, X3 ) _/And/\n o
In this case we take A = w? 4+ ie. G now has a branch cut for all real
A’s, which means that there will be two linearly independent solutions
which correspond to whether we approach the real A axis from above or
below. We choose € > 0 to correspond to the physical out going wave
solution.

8.7 The Method of Images

We now present an alternative method for solving N-dimensional prob-
lem which is sometimes useful when the problem exhibits sufficient
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symmetry. It is called the Method of Images. For simplicity we con-
sider a one dimensional problem. Consider the G'g problem for periodic
boundary conditions with constant coefficients.

82

(LO—)\O'W> Gr=d(x—2)o(t —t) 0<z<I.

8.7.1 Eigenfunction Method

We have previously solved this problem by using an eigen function
expansion solution (equation 6.31)

Gr=)_ Wsin \/E(t —t).

n

For this problem the eigen functions and eigen values are

1 1/2 )
U (1) = <z> errinz/l =0, 41,42, ...

A =

(2m'n

2
; ) n=0,+1,+2,...

8.7.2 Method of Images

The method of images solution uses the uniqueness theorem. Put im-
ages over —oo to oo in region of length A.

C ! |JI—ZE’|
o= (— —y =)
(27’)9<t t c )

This is not periodic over 0 to [. Rather, it is over all space. Our G is
c & |z — 2" — nl|
Gr=— o(t—t — ——— .
=5 50 )

Notice that this solution satisfies

n=—oo

2 oo
<L0+Ugt2>GR: > b(x—a’ —nl) — oo <z, 2’ < oc.
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However, we only care about 0 < z <[

2 00
(Lo—l—aaat?)GR: > (z—a' —nl) 0<za <l

n=—oo

Since the other sources are outside the region of interest they do not
affect this equation. Our Green’s function is obviously periodic.
The relation between these solution forms is a Fourier series.

8.8 Summary

1. For the exterior problem, the region is outside the boundary and
extends to the boundary. The the interior problem, the boundary
is inside the boundary and has finite extent. For the all-space
problem, there is no boundary. The boundary conditions can be
either elastic or periodic, or in the case that there is no boundary;,
the function must be regular at large and/or small values of its
parameter.

2. The Green’s identities for the N-dimensional case are

(S, Lou) = — /S dSh- (ST (x)Vu)+ /R [S*Vut (V-5*7(x) V)] dx,

(S, Lou) — (LoS, u) = / dSh - [~S*7(x)Vu + ur(z) VS,

3. The solution for the N-dimensional problem in terms of the Green’s
function is

t
u(x,t) = /x’eRdX//O dt'Gr(x,t;x", o (x) f (X', 1)
¢
n / dx'7(x') / ' Gr(x, ;% 1')h(x', 1)
x'eS 0
—I—/ dx'o(x') {GR(X,t;X’,O)ul(X’)
x'€ER

0 !yl
- %GR()Q t7 X, t )UO(X/)] .
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4. The method of images is applicable if the original problem ex-
hibits enough symmetry. The method is to replace the original
problem, which has a boundary limiting region of the solution,
with a new problem in which the boundary is taken away and
sources are placed in the region which was excluded by the bound-
ary such that the solution will satisfy the boundary conditions of
the original problem.

8.9 References

The method of images is covered in most electromagnetism books, for
example [Jackson75, p54ff], [Griffiths81, pl06ff]; a Green’s function
application is given in [Fetter80, p317]. The other material in this
chapter is a generalization of the results from the previous chapters.
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Chapter 9

Cylindrical Problems

Chapter Goals:

e Define the coordinates for cylindrical symmetry
and obtain the appropriate d-function.

e Write down the Green’s function equation for the

case of circular symmetry. 29 Feb pl

e Use a partial expansion for the Green’s function to
obtain the radial Green’s function equation for the
case of cylindrical symmetry.

e Find the Green’s function for the case of a circular
wedge and for a circular membrane.

9.1 Introduction

In the previous chapter we considered the Green’s function equation
(Lo — Ao (x))G(x,x"; \) = §(x — X') for x,x' € R

where

Ly=-V-(r(x)V) + V(x)

subject to RBC, which are either for the elastic case
(n-V+k(9)G(x,x;A)=0 forxeS (9.1)

127
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or the periodic case. In this chapter we want to systematically solve this
problem for 2-dimensional cases which exhibit cylindrical symmetry.

9.1.1 Coordinates

A point in space can be represented in cartesian coordinates as
X =12 + Jy.

Instead of the coordinate pair (z,y) we may choose polar coordinates
(r,¢). The transformation to cartesian coordinates is
T =1TCosP Yy = rsin ¢

while the transformation to polar coordinates is (for tan ¢ defined on
the interval —7/2 < ¢ < 7/2)

N

tan~!(y/x) for z >0,y >0
tan~!(y/x) + 7 forz <0
tan'(y/z) + 27 forx >0,y <0

o=

A differential of area for polar coordinates is related by that for carte-
sian coordinates by a Jacobian (see Boas, p220):

dedy =
_ Y
- ()
_ (0(xjy)>
o(r, ¢)
_ | (0x/Or) (0x/0¢)
(0y/0r) (0y/00) |de¢
| cosp —rsing
| sing rcoso drd¢

= rdrdeo

drdé

drde




9.1. INTRODUCTION 129

By expanding dx and dy in terms of dr and d¢, we can write the
differential of arc length in polar coordinates (see Boas, p224)

ds = \/d:v2 +dy? = \/er + r2d¢?.

The differential operator becomes (see Boas, p252,431) pr:gradl
0 ~10
gradient ~ Vu = fg—g + (braz,
10 10
divergence  V-B = ;E(TBT) + ;a—(b(ng)

Let B = 7(x)Vz, then

9.1.2 Delta Function

29 Feb p2
The N-dimensional é-function is defined by the property pr:DeltaFn2
f(x) = /dzxf(x)é(x —x').

In polar form we have (since dzdy = rdrde)

Jx) = f(r,6) = [ v'dr'ad 7', ¢)o(x X))
By comparing this with

fr0) = [ dr'dd £’ 600 = 1")5(6 — )
we identify that the delta function can be written in polar coordinates
in the form pr:deltal

Slr — o
6 —x) = 6 — o),
r

29  February
1988
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Figure 9.1: The region R as a circle with radius a.

9.2 GF Problem for Cylindrical Sym.

The analysis in the previous chapters may be carried into cylindrical
coordinates. For simplicity we consider cylindrical symmetry: 7(x) =
7(r), o(x) = o(r), and V(x) = V(r). Thus 9.2 becomes

Virlvu) =+ (i 3t) + T O

The equation for the Green’s function

(Lo — A\o)G(r, 1" ) — ié(r — (6 — &)

becomes (for r, ¢ € R)

1 2 1

l_raar (M’(T)ST> - Tg)aiﬁ +V(r)— )\cr(r)l G = ;5(r—r')5(gb—¢’).

(9.3)
Here R may be the interior or the exterior of a circle. It could also
be a wedge of a circle, or an annulus, or anything else with circular
symmetry.

For definiteness, take the region R to be the interior of a circle of
radius a (see figure 9.1) and apply the elastic boundary condition 9.1.
We now define the elasticity on the boundary S, x(S) = k(¢). We
must further specify x(¢) = &, a constant, since if kK = k(¢), then we

might not have cylindrical symmetry. Cylindrical symmetry implies
n -V = 0/0r so that the boundary condition

(n-V+£k(9)G(r,p;r",¢') =0  forr=a

1S now

0 o o
<8T—|—/£>G(T,gz§,r,gb)—0 for r = a.
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We also need to have GG periodic under ¢ — ¢ + 2m. So 29 Feb p3
G(r,0;7",¢") = G(r,2m; 1", @)

and
0G| _oc
96|,, 99
We have now completely respecified the Green’s function for the case
of cylindrical symmetry.

¢=27

9.3 Expansion in Terms of Eigenfunctions

Since the Green’s function is periodic in ¢ and since ¢ only appears in

the operator as 0? / 0¢?, we use an eigenfunction expansion to separate

out the ¢-dependence. Thus we look for a complete set of eigenfunctions pr:efexpl
which solve

82

—@Um(gb) = HmUm () (9.4)
for u,,(¢) periodic. The solutions of this equation are
1 .
U () = ——=€™? for m =0,+1,£2,...

V271

and the eigenvalues are
pm =m?  form=0,£14+2,....

(Other types of regions would give different eigenvalues p,,). Since pr:CompRel4
this set of eigenfunctions is complete it satisfies the expansion

06— @) =D um(d)up(¢).

9.3.1 Partial Expansion

We now want to find G,,(r,7’; \) which satisfies the partial expansion
(using the principle of superposition) pr:partExpl

G(r.d;1,¢) = D um()Gm(r, 7 Nur, (&) (9.5)
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We plug this and 9.4 into the partial differential equation 9.3:

; U () [—M (Hi) + % +V(r) - /\U(T)] G (¢)

rdr

1 *
= 3 = 1) X ()5 (9)
We now define the reduced linear operator

Ly =rLy = _da;l" (TT(T);?) +r [,um;(r) + V(T)] (9.6)

50 G (7,75 A) must satisfy
(L™ — Mro(r)Gp(r,r's X) = 0(r — 1), for 0 <7 r' <a

and the boundary condition

(;—FH)Gm(T’,?‘/;)\):O forr =a,0 <71’ <a.

Comments on the eigenvalues p,,,: The RBC will always lead to
pn > 0. If i, < 0 then the term j,,7(r)/r? in 9.6 would act like an
attractive sink and there would be no stable solution. Since p,, > 0,
this term instead looks like a centrifugal barrier at the origin.

Note that the effective “tension” in this case is r7(r), so r = 0 is
a singular point. Thus we must impose regularity at r = 0: |G(r =
0,7 \)] < 0.

9.3.2 Summary of GF for Cyl. Sym.

We have reduced the Green’s function for cylindrical symmetry to the
1-dimensional problem:

(L™ — Aro(r) G (r,r's X) = 0(r — 1), for 0 <r,r' <a,
0 :
(a—i—/ﬁ)Gm(r,r;)\):O forr =a,0 <1’ <a,
-

|G(0,7"; \)] < oo.

where th:
comes from

29 Feb pd
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9.4 Eigen Value Problem for L

To solve the reduced Green’s function problem which we have just ob-
tained, we must solve the reduced eigen value problem

LEmul™ (1) = Ao (1) u™ (1) for 0 < r < a,

n

du(m)
i + rul™(r) =0 for r = a,

dr "
[ul™ ()] < oo at r = 0.

n

In these equation A(™ is the nth eigenvalue of the reduced operator

L% and ul™ (r) is the nth eigenfunction of L™ . From the general
theory of 1-dimensional problems (c.f., chapter 4) we know that

ug™ (r)us™ (1)

Gu(r, s X) =

form=0,4+1,4£2 ...
A =

It follows that (using 9.5)

G(r o1, ¢ A)

W EEmE) L
S (o) (X 0 ) o)

_ Z ugm) (7, ¢)u;§(m)(7”7 ¢')
n,m )\ng) - A

where u(™ (7, ¢) = Uy (¢)ul™ (r). Recall that G satisfies (Ly — Ao)G =
d(x —x'). with RBC. Thus we can conclude

Lou™ (7, ¢) = X\ (r)ul™(r,¢)  RBC.

n

These u{™ (r, ¢) also satisfy a completeness relation

S () = )
| S =16(6— )
r'o(r')

The radial part of the Green’s function, GG,,,, may also be constructed
directly if solutions satisfying the homogeneous equation are known,

pr:efp4

29 Feb p6

figure this part
out
29 Feb p7

2 Mar pl
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where one of them also satisfies the » = 0 boundary condition and the
other also satisfies the » = a boundary condition. The method from
chapter 3 (which is valid for 1-dimensional problems) gives

u (1< )ua(r>)

(T A) = = Wty 119)

where
(Ly™ — Aor)ui o =0
lug] < o0 atr =0

0
ﬂ—l—/ﬁug:() for r = a.

or

The effective mass density is ro(7), the effective tension is r7(r), and
the effective potential is 7(u,7/r* + V(r)).

9.5 Uses of the GF G,,(r,7"; \)

9.5.1 Eigenfunction Problem

Once G, (r,7'; A) is known, the eigenvalues and normalized eigenfunc-
tions can be found using the relation

oA ul™ (r)ulm (1)

G175 X\
( ) AT

The eigen values come from the poles, the eigen functions come from
the residues.

9.5.2 Normal Modes/Normal Frequencies

In the general problem with no external forces the equation of motion
is homogeneous

82
<L0 + U@ﬁ) u(x,t) =0 + RBC.

We look for natural mode solutions:
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(

u(x,t) = e”"""mtugm) (r, ).

The natural frequencies are given by

wlm™ =y A,

The eigen functions (natural modes) are (cf section 9.4)

ul™ (r, @) = ul™ (1)t (9).
The normal modes are

u,(lm) (x,t) = e_i“’glm)tug”) (r, ).

The normalization of the factored eigenfunctions u™ (1) and u,,(¢) is

/ drro(r)u™ (r)u ™ (') = 6, forn=1,2,. ..
0

2
0 dqbum((b)urn’((b) = 5m,m"

The overall normalization of the (r, ¢) eigen functions is

/27r d¢ /a d?“(?”a’(?“))ug_bm) (7’, ¢)U:L(’m/)<7n7 ¢) = (5n,n’5m,m’
0 0

/02” /Oa rdrdgo (ryul™ (r, o)uis™ (r,¢) = /Rd?’xa (x)u” (x)u(x)

- 5n,n/5m,m/ .

9.5.3 The Steady State Problem

This is the case of a periodic driving force:

0? .
(1002 ot = o

a —iwt
(87“ + /<a> u(r, ¢,t) = h(p)e

pr:normal3
2 Mar p4

pr:sss2
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Note: As long as the normal mode solution has circular symmetry, we
may perturb it with forces f(r, ¢) and h(¢). It is not necessary to have
circularly symmetric forces.

The solution is (using 9.5)

u(r, @) = Y um(9)
X (/Oa o (r)dr' G (r, 7' A = w* + i) /027r do'ul () f(r', @)
+G(r, a; X = W? + ig) /O27r add'T(a)u;, (@) f(r, ¢')> )

In this equation [7™ d¢/u’,(¢/)f(r',¢') is the mth Fourier coefficient of
the interior force f(r',¢') and [™ ad¢'(a)u’ (¢')f(r',¢') is the mth
Fourier coefficient of the surface force 7(a)h(¢’).

9.5.4 Full Time Dependence

For the retarded Green’s function we have
Gr(r, o, 67", ¢, 1) =D () Grr(r, t,r' ¢ )ur,(¢)

where

d ) /
G’H’LR<TJ t? T/, t/) - . %eilw(tit )Gm<7", 7"/; A= u_)2)
1 U1(7’<)U2(7’>)

rr(r) Wi(up,uz)

Note: In the exterior case, the poles coalesce to a branch cut. All space
has circular symmetry. All the normal limits (3> — [, 0, — d(n—n'),

etc.,) hold.

Go(r, 7 A =w?) = —

9.6 The Wedge Problem

We now consider the case of a wedge. The equations are similar for the
internal and external region problems. We consider the internal region
problem. The region R is now 0 < r < a, 0 < ¢ < 7 and its boundary
is formed by ¢ =0, ¢ — 27, and r = a.
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Figure 9.2: The wedge.

9.6.1 General Case
See the figure 9.2. The angular eigenfunction equation is again 9.4: fig10.3
82
o

Note that the operator 92/9¢? is positive definite by Green’s 1st iden-
tity. The angular eigenvalues are completely determined by the angular
boundary conditions. For RBC it is always true the u,, > 0. This is
physically important since if it were negative, the solutions to 9.4 would
be real exponentials, which would not satisfy the case of periodic bound-
ary conditions.

The boundary condition is now

(¢) = Mmum(¢) RBC.

(h-V+r)G=0 x€S8.

This is satisfied if we choose k1(r) = K1/r, ka(r) = ko /r, and k3(¢) =
K3, with k1, k9 > 0. The boundary condition (7 -V 4 k)G = 0 becomes

(—(;;—F/{l)G:O for p =0

<aa¢+/<a2)G:0 for p =~

0
(—i—/-ig)G—O forr=a,0 < ¢ <.
or

We now choose the wu,,(¢) to satisfy the first two boundary conditions.
The rest of the problem is the same, except that Lj™ gives different f,,
eigenvalues.



2 Mar p6

why not v —
27?
2 Mar p7

pr:membranel
4 Mar pl

4 Mar p2

138 CHAPTER 9. CYLINDRICAL PROBLEMS

9.6.2 Special Case: Fixed Sides

The case k1 — 00 and ks — oo corresponds to fixed sides. We thus
have G = 0 for ¢ =0 and ¢ = 7. So the u,, eigenvalues must satisfy

82

= HUmUm

and
U, =0 for ¢ = 0,7.

The solution to this problem is

with

The case m = 0 is excluded because its eigenfunction is trivial. As
v — 21 we recover the full circle case.

9.7 The Homogeneous Membrane

Recall the general Green’s function problem for circular symmetry. By
substituting the completeness relation for w,,(¢), our differential equa-
tion becomes

o(r—1")

(Lo — \o)G(z,2;)) = d(x — x') = .

> tm(9)ur,(¢)

m

where

Ly = —;i <r7’(r)jr> +r <Hm:2(?") + V(r)) )

We now consider the problem of a complete circle and a wedge.
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We look at the case of a circular membrane or wedge with V' = 0, 0=
constant, 7 = constant. This corresponds to a homogeneous membrane.
We separate the problem into radial and angular parts.

First we consider the radial part. To find G,,(r,7’; \), we want to
solve the problem

d d i AT U ST
l_dr (Tdr> +— - ] Gu(r,r'sX) = =6(r — 1)

T

with G = 0 and r = a, which corresponds to fixed ends. This problem
was solved in problem set 3:

s J\/m(r<\/)‘/7)
= _ J m, (T> A/02)1\[ Hm (a )\/62)
27 J (@A) (ermte- PN o)

— W(CL)\/CQ)N\/W(T>\/W>> : (9.7)

Using 9.5, this provides an explicit solution of the full Green’s function

problem. Now we consider the angular part, where we have v = 27, so 4 Mar p3
that \/ft,, = £m which means the angular eigenfunctions are the same

as for the circular membrane problem considered before:

e™  for py, =m2m=0,+1,4+2,.. ..

The total answer is thus a sum over both positive and negative m

[e.9]

G(r, ¢, ¢ A) = Z U (9) G (T, r'; A)uq*n((ﬁ/)

m=—0o0

We now redo this with Kk — oo and arbitrary . This implies that
the eigen functions are the same as the wedge problem considered before

() = |2 sin <m”¢> |

v

2
mm
v
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We now get Jpr/y(ry/A/c?) and Nppr/o(r1/A/c?). We also get the orig- Show wh

inal expansion for G: (new Bessel og

G(r, g1, ¢ A) = D ()G, 7's Ny, (¢)

m=1

9.7.1 The Radial Eigenvalues

The poles of 9.7 occur when

J i (ay/A/c?) = 0.

We denote the nth zero of J g by @ / This gives us

T —nC\ 2
/\mn:<“m> forn=1,2,...
a

where J (2 /5 n) = 0 is the nth root of the p, Bessel function. To
find the normalized eigenfunctions, we look at the residues of

A U () ul™ ()

G, —=

Um(r) _ 2 J\/ﬁ(x an£>
" \ oa? J&W(KL’ umn) ’

Thus the normalized eigen functions of the overall operator

We find

Louflm) (r,0) = a)\gm)un (r, )
are
ul™ (7, ¢) = ul™ (r)un (¢)

where the the form of w,,(¢) depends on whether we are considering a
wedge or circular membrane.
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9.7.2 The Physics

The normal mode frequencies are given by the radial eigenvalues

_ (m) _ €
)\n = al’\/ﬁm

The eigen values increase in two ways: as n increases and as m increases.
For small z (i.e., z < 1), J g, ~ (z)V#*" which implies that for larger
I the rise is slower.
As m increases, u,, increases, so the first root occurs at larger x. As
we increase m, we also increase the number of angular nodes in ¢ or
sin(mn¢/v). This also increases the centrifugal potential. Thus wy,o is this true?
increases with m. The more angular modes that are present, the more
angular kinetic energy contributes to the potential barrier in the radial
equation.
Now consider behavior with varying ~ for a fixed m. pu, increases 4 Mar p5
as we decrease v, so that wy,, increases. Thus the smaller the wedge,
the larger the first frequency. The case v — 0 means the angular eigen-
functions oscillate very quickly and this angular energy gets thrown
into the radial operator and adds to the centrifugal barrier.

9.8 Summary

1. Whereas cartesian coordinates measure the perpendicular dis-
tance from two lines, cylindrical coordinates measure the length
of a line from some reference point in its angle from some reference
line.

2. The d-function for circular coordinates is
5 !
sx—x) = 56— ),
r
3. The Green’s function equation for circular coordinates is

10 0 7(r) 0%u B ,
[_rar (rT(r)aT> "% 08 +V(r)—Xo(r)| G =0(x—x).
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4. The partial expansion of the Green’s function for the circular
problem is

G(r,¢;7",¢") Zum m(r s Nk (8.

5. The radial Green’s function for circular coordinates satisfies
(L™ — Mro(r)Gp(r, s N) = 0(r — 1), for 0 <77’ <a,

where the reduced linear operator is

Ly =rLy = d (TT(T);;) +7r leT(T) + V(T)] ,

Cdr 72

and the boundary condition

(aa—i—/i)Gm(r,r/;)\)—O forr =a,0 <71’ <a.
-

9.9 Reference

The material in this chapter can be also found in various parts of [Fet-
ter80] and [Stakgold67].

The preferred special functions reference for physicists seems to be
[JacksonT75].



Chapter 10

Heat Conduction

Chapter Goals:

e Derive the conservation law and boundary condi-
tions appropriate for heat conduction.

e Construct the heat equation and the Green’s func-
tion equation for heat conduction.

e Solve the heat equation and interpret the solution.

10.1 Introduction

We now turn to the problem of heat conduction.! The following physi-
cal parameters will be used: mass density p, specific heat per unit mass
¢p, temperature 7', and energy E. Again we consider a region R with
boundary S and outward normal n.

10.1.1 Conservation of Energy

The specific heat, c,, gives the additional amount of thermal energy
which is stored in a unit of mass of a particular material when it’s
temperature is raised by one unit: AE = ¢,AT. Thus the total energy
can be expressed as

Eiotar = Eo + / d*zpc,T.
R

!The corresponding material in FW begins on page 408

143
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Differentiating with respect to time gives

oT
R 3 JEE—
/Rdxpcp(at)

There are two types of energy flow: from across the boundary S
and from sources/sinks in R.

1. Energy flow into R across S. This gives

dE
() :—/ﬁ-jndS:—/de-jn
dt )1 ound R
oundary

pr:heatcurl where the heat current is defined
Jn — —]{?TVT

k7 is the thermal conductivity. Note that since VT points toward
the hot regions, the minus sign in the equation defining heat flow
indicates that heat flows from hot to cold regions.

2. Energy production in R due to sources or sinks,

dE
- — — | dProd
( dt >SOUI‘CGS /]% qu

where ¢ is the rate of energy production per unit mass by sources
inside S.

Thus the total energy is given by

dE
&P - @
/ TP Cp at dt

“ (), ()
dt boundary dt sources

- / Pr(pg—V - jn)-
R
By taking an arbitrary volume, we get the relation

orT :
P gy = V- (krVT) + pg. (10.1)
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10.1.2 Boundary Conditions
pr:bcd
7 Mar p2 There are three types of boundary conditions which we will encounter:

1. T given on S. This is the case of a region surrounded by a heat
bath.

2. n-VT for x € S given. This means that the heat current normal
to the boundary, 7 - j,, is specified. In particular, if the boundary
is insulated, then n - VT = 0.

3. —kp(x)n - VT = a(T — Toytorpa)) for v € S.

In the first case the temperature is specified on the boundary. In the

second case the temperature flux is specified on the boundary. The

third case is a radiation condition, which is a generalization of the first

two cases. The limiting value of «a give

a>1 = T=Teterpal — #1
a1l = n-VT =0 — #2 with insulated boundary.

We now rewrite the general boundary condition (3) as
[n- VT +0(S)|T(x,t) = h(x,t) forxe S (10.2)

where 0(5) = a/kr(S) and h(S,t) = (a/kr(S))Texternar- In the limit
6 > 1, T is given. In this case we recover boundary condition #1.
The radiation is essentially perfect, which says that the temperature
of the surface is equal to the temperature of the environment, which
corresponds to o — oco. In the other limit, for 6 < 1, n - VT is given.
Thus we recover boundary condition # 2 which corresponds to a — 0.

By comparing the general boundary conditions for the heat equation
with the general N-dimensional elastic boundary condition,

-V 4+ k(x)|u(x,t) = h(x,t)

we identify u(x,t) — T'(x,t) and k(x) — 0(x).
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10.2 The Standard form of the Heat Eq.

10.2.1 Correspondence with the Wave Equation

We can make the conservation of energy equation 10.1 look more fa-
miliar by writing it in our standard differential equation form

0
(LO + pcpat> T = pg(x,t) forxe G (10.3)
where the linear operator is
Ly=-=V - (kr(x)V).
The correspondence with the wave equation is as follows:

Wave Equation  Heat Equation

7(x)  kr(x)
o(x)  p(x)e

o) f(xt)  p(x)d(x,t)
V(x)  no potential

For the initial condition, we only need T'(x,0) to fully specify the solu-
tion for all time.

10.2.2 Green’s Function Problem

We know that because equation 10.3 is linear, it is sufficient to con-
sider only the Green’s function problem (which is related to the above
problem by pg(x,t) = d(x — x')d(t —t') and h(S,t) = 0):

<L0 + pcpaat> G(x, t;x' ') = §(x — x")o(t —t'),

-V +60(9)G(x,t;x',t') =0 for x € S,

G(x, t:x' ') =0 fort <t'.
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We lose symmetry in time since only the first time derivative appears.
We evaluate the retarded Green’s functions by applying the standard
Fourier transform technique from chapter 6:

dw
e

G(x,t;x',t') = _i“’(t_t/)é(x, x';w).

L2m
We know by G = 0 for ¢ < ' that G is analytic in the Im w > 0 plane.
Thus we take L to be a line parallel to the real w-axis in the upper half
plane. The Fourier Transform of the Green’s function is the solution of
the problem
(Lo — pcyiw)G(x,x;w) = 0(x — X',
(- V+0(x))G(x,x;w)=0 forxes,

which is obtained by Fourier transforming the above Green’s function
problem.

10.2.3 Laplace Transform

We note that this problem is identical to the forced oscillation Green’s
function problem with the substitutions o — pc, and 7 — kr. Thus
we identify
G(x,x;w) = G(x,x'; A = iw).

The single time derivative causes the eigenvalues to be A = iw. To
evaluate this problem we thus make the substitution s = —iw. This
substitution results in the Laplace Transformation. Under this trans-
formation the Green’s function in transform space is related by

G(x,x;w=1s) = G(x,x; A = —s).

G is now analytic in the right hand side plane: Re (s) > 0. This variable
substitution is depicted in figure 10.1. The transformed contour is

pr:LapTransl

7 Mar p4

labeled L’. The Laplace transform of the Green’s function satisfies fig10a

the relation

G(x,t;x',t') = 2L/ dsG(x,x; A = _S/>es(t7t’)
"l

(e
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Figure 10.1: Rotation of contour in complex plane.

or, by changing the direction of the path, we have

1 ~ /
G(x,t;x,t') = i Jun dsG(x,x"; A = §')e* 1), (10.4)

In the following we will denote L’ T as L.
The inversion formula

~ oo .
G(w) = / dre™"G(x,x', 7=t —t)
0
is also rotated to become

G(s) = /OOO dre " G(x,x'; 7).

G(s) is analytic for all Re (s) > 0. Note that the retarded condition
allows us start the lower limit at 7 = 0 rather than 7 = —o0.

10.2.4 Eigen Function Expansions

We now solve the Green’s function by writing it as a bilinear sum of
eigenfunctions:
Un (X) 5, (X')

G(z,z';\) = ZT_”)\ (10.5)

n

The eigenfunctions w,(x) solve the problem

Louy, (x) = Appcpun () forx € R
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s-plane Im s

C

&

<
Y,

Re s

Lo

Figure 10.2: Contour closed in left half s-plane.

where Ly = =V - (kr(x)V) with the elastic boundary condition
(n-V+0(s)u, =0 forx e S.
Because of the identification
G(x,x';5) = G(x,x; A = —s)

we can substitute 10.5 into the transform integral 10.4 to get

ds U (X)) (X)) ,
G tx ) = n n s(t—t")
SRESLY L2m’§n: An + S c
1 dS /
2 : s(t—t")
Un(X 27m LA, + 50 '

This vanishes for ¢ < t’. Close the contour in the left half s-plane
for t — ¢’ > 0, as shown in figure 10.2. This integral consists of fig10al
contributions from the residues of the poles at —\,,, wheren =1,2,.. ..

So | J
7]{ S oSt — p=An(t—t)
21w Jo, A\, + s

G(x,t;x',t) Zun Je Ant=t), (10.6)

Thus
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We now consider the two limiting cases for ¢.
Suppose that ¢ — ¢’. Then 10.6 becomes

t—t/

G—) up(x)ul(x') = M

n pCp

Thus we see that another interpretation of G is as the solution of an
initial value problem with the initial temperature

d(x —x')

PCp

T(x,0) =

and no forcing term.

Now suppose we have the other case, t — ¢’ > 1. We know A,, > 0
for all n since Ly is positive definite (physically, entropy requires k > 0
so that heat flows from hot to cold). Thus the dominant term is the
one for the lowest eigenvalue:

G~ up(x)ui(x)e ™M () > 1

In particular, this formula is valid when (¢ — ') > 1/A\;. We may thus
interpret 1/\, = 7, as the lifetime of these states. After (t —t') > 7y,
all contributions to G from eigen values with n > N are exponentially
small.

This is the physical meaning for the eigen values. The reason that
the lowest eigen function contribution is the only one that contributes
for t —t' > 1 is because for higher N there are more nodes in the
eigenfunction, so it has a larger spatial second derivative. This means
(using the heat equation) that the time derivative of temperature is
large, so the temperature is able to equilize quickly. This smoothing
or diffusing process is due to the term with a first derivative in time,
which gives the non-reversible nature of the problem.

10.3 Explicit One Dimensional Calculation

We now consider the heat equation in one dimension.



10.3. EXPLICIT ONE DIMENSIONAL CALCULATION 151

10.3.1 Application of Transform Method
pr:fspl
Recall that the 1-dimensional Green’s function for the free space wave
equation is defined by 9 Mar p2

(Lo — oAN)G =6d(x —2')  for —co < < 0.
We found that the solution for this wave equation is
1 eiﬁ|xfx’|/c

2\/X oc

Transferring from the wave equation to the heat equation as discussed
above, we substitute 7 — kr, 0 — p, ¢ = \/T/0 — /K where k =

Kr/pcy is the thermal diffusivity, and VA — iy/s which means Im A > pr:kappal
0 becomes Re s > 0. The substitutions yield kr — Kp and

G(z,2';\) =

c—cp?

Glz,2';s) = (2\1/§pcp\/ﬁ> eiﬁ(‘mﬁl‘)

~ 1
c,G(x,2';8) = ——e~
We see that 1/k plays the role of a velocity. Now invert the transform 9 Mar p3
to obtain the free space Green’s function for the heat equation:

or

s/klz—z'|

dS s(t—t ~
pCpG(CE,t;LC,,t/) = L%e « t)pCpG(l',x/;S)

ds 6s(tft’)f\ /s/k|lz—x|
L 2mi 2\/sk '

10.3.2 Solution of the Transform Integral

Our result has a branch on /s. We parameterize the s-plane:
5 = |s]e? for —-m <O <7

This gives us Re /s = |s|'/2cos(#/2) > 0. We choose the contour of
integration based on t. 9 Mar pb
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Im s

Ly \/Ezi\/ﬁ‘ /’
N

L Vs = —iy/]s]
§ Ly Re s

N
./

\
N

Figure 10.3: A contour with Branch cut.

For t < t' we have the condition G = 0. Thus we close the contour
in the right half plane so that

exp [s(t = #) = V5l — 2l/Vi] =30

since both terms are increasingly negative. Since the contour encloses
no poles, we recover G = 0 as required.

For t—t' > 0, close contour in the left half plane. See figure 10.3. We
know by Cauchy’s theorem that the integral around the closed contour
L+ L+ Ly+ L3+ Ly+ Ly vanishes. We perform the usual Branch
cut evaluation, by treating the different segments separately. For Lj it
is convenient to use the parameterization s = ce? for —7 < 0 < 7 as
shown in figure 10.3. In this case the integral becomes

g | VAL + O(e(t = ) + O e — o /)=,

In this equation we assert that it is permissible to take the limit ¢ — 0
before the other quantities are taken arbitrarily large.

For the contour L, above the branch cut we have /s = iy/|s|,

and for the contour L4 below the branch cut we have /s = —iy/|s|
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Combining the integrals for these two cases gives

—& tt)QCOS\/ H$—33
lim ds e 5174
e0) o0 21 2\/K0 H

For L; and L; the integral vanishes. By letting s = Re® where
—m < 0 < we have

oxp [—v/sle — 2’|/ k]| _
NE <

Our final result is

pe,G(a, t; 2! 1) 27r\/_ =) cos\/s/k(x — ).

Substituting s = u? gives

exp {—%}? cos %(b]
VR

R=oeq.

/00 2udu u / 2(4—t!)
cos —=|r — z'|e”
2nu\/k VK

pcp,G (x,t; 2", )

or

.//_i _/_/
pesGla, 1) = It =1 o= |/ VF)

where (since the integrand is even)

1 > du —uttiuy
W=y e

This can be made into a simple Gaussian by completing the square:
o duy 1y 2
I(t. ) = e—¥2/(41) et(u—58)7
( 7y) € 27T
By shifting uw — u + iy/2t, the result is
e~ v/ (41)

I(t,y) = T

The free space Green function in 1-dimension is thus

!yt 1 —(a—a)?
pc,Gx, b2 1) = [ ——=] e (=" (10.7)

ATkt — |

pr:gausl

9 Mar p6
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10.3.3 The Physics of the Fundamental Solution

This solution corresponds to a pure initial value problem where, if 2’ =
t' =0, we have

6—382/4/615

Varrkt

pc,G(x,t) =

At the initial time we have

pe,GEB6(x — o) = 6(x).

. For 22 > 4kt, the amplitude is very small. Since G is small for

x > +v/4xt, diffusion proceeds at rate proportional to v/¢, not t
as in wave equation. The average propagation is proportional to
t1/2. This is indicative of a statistical process (Random walk). It
is non-dynamical in that it does not come from Newton’s laws.
Rather it comes from the dissipative-conduction nature of ther-
modynamics.

For any ¢t > 0 we have a non-zero effect for all space. This corre-
sponds to propagation with infinite velocity. Again, this indicates
the non-dynamical nature of the problem. This is quite different
from the case of wave propagation, where an event at the origin
does not affect the position z until time z/c.

Another non-dynamical aspect of this problem is that it smoothes
the singularity in the initial distribution, whereas the wave equa-
tion propagates all singularities in the initial distribution forward
in time.

k is a fundamental parameter whose role for the heat equation
is analogous to the role of ¢ for the wave equation. It deter-
mines the rate of diffusion. s (= kr/pc,) has the dimensions of
(distance)?/time, whereas c has the dimensions of distance/time.

10.3.4 Solution of the General IVP

We now use the Green’s function to solve the initial value problem:

2
<_kT§x2 + pcp;i) T(x,t) =0 for —oo < x, 2, 00
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T(x,0) = To(x)
T—0 for |x| — o0

The method of the solution is to use superposition and 10.8:

T(x,t) = /OO dz'Ty(2") pe, G (2, 05 2, t)

1 o0 N2
= i /_ dale T o) (10.8)

10.3.5 Special Cases

Initial /-function

Suppose To(z) = §(x — 2’). Then we have T'(z,t) = pc,G(2",0;z,1).
Thus we see that G is the solution to the IVP with the -function as
the initial condition and no forcing term.

Initial Gaussian Function

We now consider the special case of an initial Gaussian temperature
distribution. Let Ty(z) = (a/7)"/2¢7%". The width of the initial dis-
tribution is (Az)y = 1/4/a. Plugging this form of Ty(x) into 10.8 gives

1 o0 "2 "o
T %,t — 7/ dx ef(xfm) /(4kt)—ax
(z,¢) TV4kta J -
22
T(l’, t) = 1 6_ (1/a)+4kt

T/ (1/a) + 4kt

1 2
— = ) o(z/Az)
T <Ax> ¢

where Az = /(Az)? + 4xt. The packet is spreading as (Az)? =
4kt + (Axo)?. Again, Ar ~ t'/2 like a random walk, (again non-
dynamical). Suppose t > 7 = (Azg)/4k. This is the simplest quantity
with dimensions of time, so 7 is the characteristic time of the system.

We rewrite Ax = (Axg)\/1+t/7. Thus for t > 7,

5= 5

Ax ~\t/T(Axg).

pr:gaus2
11 Mar p3
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7 = (Awg)?/4k is a fundamental unit of time in the problem. Since
the region is infinite, there does not exist any characteristic distance about omittec

11 Mar p4 for the problem.
11 Mar pb

10.4 Summary

1. Conservation of energy for heat conduction is given by the equa-
tion

oT .
P gy = V- (krVT) + pq,

where p is the mass density, ¢, is the specific heat, T" is the temper-
ature, kr is the thermal conductivity, and ¢ is the rate of energy
production per unit mass by sources inside the region.

2. The general boundary condition for heat conduction is

- VT +60(9)|T(x,t) = h(x,t) forx € S.

3. The heat equation is

0
<L0 + pcpat> T = pg(x,t) for x € G,

where the linear operator is
LQ =-V- (k’T(X)V)

4. The Green’s function equation for the heat conduction problem
is

(Lo + pCP;ﬁ) G(x, t;x',t') = §(x — x")o(t — t').

5. The solution of the heat equation for the initial value problem in
one dimension is

1
VAarkt

which is a weighted integration over point sources which individ-
ually diffuse with a gaussian shape.

T(z,t) =

/ dxle—(;r—m’)Q/MHt)To(x/)’
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10.5 References

A similar treatment (though more thorough) is given in [Stakgold67b,
pl94ff]. See also [Fetter80, p406ff].
The definitive reference on heat conduction is [Carslaw86].
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Chapter 11

Spherical Symmetry

Chapter Goals:

e Derive the form of the linear operator in spherical
coordinates.

e Show that the angular part of the linear operator

Ly is hermitian.
28 Mar pl (17)
e Write the eigenvalue equations for Y;™.

e Write the partial wave expansion for the Green’s
function.

e Find the Green’s function for the free space prob-

lem.
Our object of study is the Green’s function for the problem
[Lo — Mo(x)]G(x,x;\) = 0(x — X)) (11.1)
with the regular boundary condition (RBC) eqll.1

-V + K(9)|G(x,x;2) =0

for X in a region R and x in the regions boundary S. The term x is a
field point, and x’ is a source point. The unit vector n is the outward
normal of the surface S. The operator L is defined by the equation

Ly=-V-(1(x)V) + V(x).

159
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Figure 11.1: Spherical Coordinates.

We have solved this problem for the one and two dimensional cases in
which there was a certain degree of symmetry.

11.1 Spherical Coordinates

We now treat the problem in three dimensions. For this we use spherical
coordinates (since we will later assume angular independence). A point
in spherical coordinates is denoted (r,6, ), where the range of each
variable is

r < 00,
0 <m,
Y < 2.

o
IN A A

We use the following transformation of coordinate systems:

= rcosé,

rsin 6 cos ¢,

= rsinfsine.

This relationship is illustrated in figure 11.1 For an arbitrary volume
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element we have

d*x = (dr)(rdf)(rsinfdy)
r2dQdr

where (2 is the solid angle, and an infinitesimal of solid angle is d{2 = pr:Omegal

sin 0dOdp.
We further define the delta function

f(?“, 0, (p) = f(X)
- / &' f(x) §(x — X')
= /dr’ r? sin® do' dyg' (.0, ¢) §(x —x').

From this we can extract the form of the d-function for spherical coor-
dinates:

1

Ix—x') = TQSme(S(r—r)(S(H—H)(S(go—gp)
o(r—1r' ,
where the solid angle J-function is 28 Mar p3
_ ) pr:delta2
sin ¢

We want to rewrite equation 11.1 in spherical coordinates. First we
define the gradient pr:grad2
o 009 50
Vet g2
or  rdf rsinfdp

See [Boas| for derivations of identities involving V. The divergence is 87’ notes have
w Gauss’ law,

1 0 1 0
2A, —(sinfA A, pl8
7’28r(r )+rsin989(smg 6)+rsin96g0 v

V.A:

When we apply this to the case

A =71(x)V.
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the result is
10 ) 1 0 )
VATV = ae ( T@r>+rsin€89<smerﬁe>
! a( T @> (11.2)

rsinf dp \ rsinf dp

where 7 = 7(x) = 7(r, 6, p).

Now we can write Ly. We assume that 7, o, and V' are spherically
symmetric, i.e., they are only a function of r: 7(x) = 7(r), o(x) = o(r),
V(x) = V(r). In this case the linear operator is

10 o\  T(r)
Lo=———(r? ) 11,
0 r2 or (TT( )37,>+ oo + V(1) (11.3)
where L s 5 L
Lo, = .
%= " 5in6 00 (Smeae> sin? 0 9%’

which is the centrifugal term from equation 11.2. In the next few sec-
tions we will study the properties of Lj.

11.2 Discussion of Ly,

Note that Lg, is a hermitian operator on the surface of the sphere, as
shown by the following argument. In an earlier chapter we derived the
Green’s Identity

/ d%2.5* (x) Lou(x / &z 0S(x))" (11.4)

where v and S satisfy RBC. We use this fact to show the hermiticity
of Lg,. Consider the functions

S(x) = S(r)S(0, ) and u(x) = u(r)u(d, @)

where u and S satisfy RBC. Such functions are a subset of the functions
which satisfy equation 11.4. Choose u(d,¢) and S(6, ) to be periodic
in the azimuthal angle ¢

u(f, p) = u(d, o+ 2m), S(0,0) =5(0,p+ 2m).
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Now substitute d®z = r?drdS2 and L (as defined in equation 11.3) into
equation 11.4. The term

in Lg is hermitian so it cancels out in 11.4. All that is left is

/ r2drS*(r / dQS* (0, @) Loyu(0, ) =
/ 2d7~5* / dQ (u* (0, 9) Lo, S (0, )"
This can be rewritten as 28 Mar p6
/7“2(17’5*( r)dS) [/ S*(0, ) Lo,u(f, ¢)

- / 49 (u* (6, ©) Lo, S0, @)*} —0.
The bracket must then be zero. So
/dQ (S*(0, ) Lo,u(0), /dQ 0,0)L6,5(0,9)) . (11.5)

This is the same as equation 11.4 with d®z — dQ and Ly — Lg,. Thus eqi1.4
Lg, is hermitian. If the region did not include the whole sphere, we
just integrate the region of physical interest and apply the appropriate
boundary conditions. Equation 11.5 can also be obtained directly from 28 Mar p7
the form of Ly, by applying integration by parts on Ly, twice, but
using Ly = L§ is much more elegant

Note that the operators 3 2 and Ly, commute:

82
[W’ LGW] - 0

Thus we can reduce equation 11.1 to a one dimensional case and expand
the Green’s function G in terms of a single set of eigenfunctions which
are valid for both —9?/9¢? and Lg,. We know that Ly and Ly, are
hermitian operators, and thus the eigenfunctions form a complete set.
For this reason this method is valid.
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11.3 Spherical Eigenfunctions

We want to find a common set of eigenfunctions valid for both Ly, and
—0?/0p*. Note that

82 eimga eimtp
JEE— — m2
09?27 V2T

So (27)~ /2" are normalized eigen functions of —9?/9p?. We define
the functions Y, (0, ¢) as the set of solutions to the equation

m=0,41,+2 ...

Lo Y (0,) = UL+ 1)Y;"(0,9) (11.6)

for eigen values [(I 4+ 1) and periodic boundary conditions, and the
equation

—a—gszlm(Q,gp) =m?Y," (0, p) m=0,x1,%+2,.... (11.7)
We can immediately write down the orthogonality condition (due to
the hermiticity of the operator Ly,):

/dQY}m*(Q, QO)YE/m/(a (p) = 5l,l/c5m,m/.

(If there are degeneracies, we may use Gram-Schmidt techniques to
arrive at this result). We can choose the normalization coefficient to
be one. There is also a completeness relation which will be given later.

11.3.1 Reduced Eigenvalue Equation

We now separate the eigenfunction into the product of a -part and a
f-part:
0 " 0
Y"(0,p) = ——u;"(cos 11.8
(6.0 = i (cont) (118)
(which explicitly solves equation 11.7, the differential equation involv-
ing ¢) so that we may write equation 11.6 as

1 9(. 0 m?* | .. .
[_SinQ@Q(Sln@@Q)—l_sinQO] u*(cos ) = 1(1 + 1)u;"(cos 6).

28 Mar p8
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All we have left to do is solve this eigenvalue equation. The original
region was the surface of the sphere because the solid angle represents
area on the surface. We make a change of variables:

T = cosf.

The derivative operator becomes

d dr d .
@:@%:—smeﬁ
SO
1 d d
Csinfdf - dx

The eigen value equation for u becomes

d d m?
l_dx ((1 - Iz)dx) + 1—x2] u(z) =11+ Du*(x) (11.9)
defined on the interval —1 < < 1. Thus z = 1 corresponds to 6 = 0,
and ¢ = —1 corresponds to § = w. Note that 7, which represents
the effective tension, is proportional to 1 — 22, so both end points are
singular points. On account of this we get both regular and irregular
solutions. A solution occurs only if the eigen value [ takes on a special
value. Requiring regularity at z = 1 implies [ is an integer. Note also
that equation 11.9 represents an infinite number of one dimensional
eigenvalue problems (indexed by m), which makes sense because we
started with a partial differential equation eigenvalue problem.

The way to solve the equation near a singular point is to look for
solutions of the form z?-[power series|, as in the solutions to Bessel’s
equation.

11.3.2 Determination of u;"(x)

We now determine the function uj*(z) which is regular at = +1.
Suppose that it is of the form

u™(z) = (1 — 2%)? (power series). (11.10)

We want to determine the power term (. First we compute

eql1.7

28 Mar pl0

Verify this

change this
30 Mar pl

30 Mar p2

eql1.8
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(1-a%) (1~ 2% = B(-22)(1 ~ 47",

and then

Flamerta-ey| - -y

dz x
+ B(=2z)(1 — )P + ...
For the case x — 1 we can drop all but the leading term:

Elamfa-ay|saeea -t ee aa

dx x
Plugging equations 11.10 and 11.11 into equation 11.9 gives
(1 =2 PA[48% +m?) =~ (1 + 1)IAQ —2?)?, = — 1.

where A is the leading constant from the power series. Note however
that (1 — 22)? approaches zero faster that (1 — 22)°~t as x — 1. So we
get m? = 432, or
m
=+
g 2

We thus look for a solution of the form
u(x) = (1 — 22)™2C,, (z), (11.12)

where C,(z) is a power series in x with implicit [ dependence. We
expect regular and irregular solutions for C,,(z). We plug this equation
into equation 11.9 to get an equation for C,(x). The result is

—(1—2))C" +22(m+1)C — (I —m)(I +m+ 1)C,,(x) = 0. (11.13)

We still have the boundary condition that «]"(z) is finite. In the case
that m = 0 we have

—(1 —2*)CY +22CH — (1 +1)Cy = 0. (11.14)

This is called Legendre’s equation. We want to find the solution of
this equation which is regular at x = 1. We define F,(z) to be such
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a solution. The irregular solution at z = 1, called Q(z), is of interest
if the region R in our problem excludes # = 1 (which corresponds to
cosf =1 or § = 0). Note that we consider [ to be an arbitrary complex
number. (From the “general theory”, however, we know that the eigen
values are real.) By convention we normalize: P(1) = 1. We know
Co(x) = Py(z), because we defined Cy(x) to be regular at = 1. But
z = —1 is also a singular point. We define R;(z) to be the regular
solution and I;(x) to be the irregular solution at z = —1 We can write

Co(z) = P(x) = A()Ri(z) + B(1)Li(=). (11.15)

But if we further require that P, must be finite (regular) at © = —1, we
then have B(l) =0 for [ =0,1,2,....

We now take Legendre’s equation, 11.14, with Cy(z) replaced by
P,(z) (the regular solution), and differentiate it m times using Leibnitz
formula

dm B m o m dzf dm—ig
o V@) =22 () G
This yields
d [ dm d (d"
—(1-— xz)@ (MPl(x)> +2(m + 1)1:% <dmel(ZE)>
—(l—m)(l+m+1)$npl(x):0. (11.16)

Thus (d™/dx™)P,(z) is also a solution of equation 11.13. We thus see
that g
Cn(z) = Ozdx—mPl(x), (11.17)
where « still needs to be determined. Once we find out how to chose [
so P(x)is 0 at I, Py for I # [ will also be zero. So we see that once we
determine constraints on [ such that the Pj(x) which solves the m =0
equation is zero at zero at x = +1, we can generate a solution for the
case m # 0.
We now calculate a recurrence relation for Fj(x). Set z = 1 in

equation 11.16. This gives

m+1

2mwﬂlwmﬂﬂwﬁ

m

— (@) | R g

r=1 =1

30 Mar p4

pr:LeibForm1

eqll.11

eql1.11b

pr:recrell
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30 Mar pb

30 Mar p6

yet to be veri-
fied

eql1.13
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This tells us the (m + 1)th derivative of Fj(z) in terms of the mth
derivative. We can differentiate [ times if [ is an integer. Take [ to be
an integer. The case m = [ yields

ldci;lla(g;)] — 0. (11.19)

r=1

So all derivatives are zero for m > [ at x = 1. This means that P(x)
is an [th order polynomial, since all of its Taylor coefficients vanish for
m > [. Since P, is regular at z = 1 and is a polynomial of degree [,
it must be regular at x = —1 also. If [ were not an integer, we would
obtain a series which diverges at x = 1. Thus we conclude that [ must
be an integer. Note that even for the solution which is not regular at
x = £1, for which [ is not an integer, equation 11.18 is still valid for
calculating the series.

For a general m, we substitute equation 11.17 into equation 11.12
to get

dm
u'(z) = a(l — xQ)m/zd—Pl(:c). (11.20)
xm
This equation holds for m = 0,1,2,.... Furthermore this equation

solves equation 11.13. Note that because == P,(z) is regular at = 1
and z = —1, u"(z) is also.

We now compute the derivative. Using equation 11.18, for m = 0
we get

d
2= Pi() o= = (1 + 1)P(1) = 1(1 +1).
By repeating this process for m = 1,2, ... and using induction, we find

that the following polynomial satisfies equation 11.18

1 d
P(z) = ﬁ@(ﬁ — 1)L (11.21)

This is called Rodrigues formula for the Legrendre function.
We define the associated Legendre polynomial

@) = ()" -2 Py om0

(1 _ x2>m/2 JHm ) l
U R

m>0. (11.22)

eqll.12
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eql1.13b For m > I, P/"(x) = 0. So the allowed range of m is —{ < m < [. Thus
the value of m affects what the lowest eigenvalue, I(I + 1), can be.

11.3.3 Orthogonality and Completeness of u;"(x)

We want to choose u]"(x) to be normalized. We define the normalized prinormal4
eigen functions as the set of eigen functions which satisfies the condition
(with 0 = 1)

E/de (" (2)) () = 1. (11.23)

We need to evaluate [', dz|P/"(z)|>. Using integration by parts and eql1.13c
equation 11.22 we get (a short exercise)

1 1 2 (I+m)!

P 2:1/ P (@) P (x) = 11.24

[ @ = [ de () B ) = g e (020
so the normalized eigenfunctions are 30 Mar p7

2 (I+m)!
M) = P"(x). 11.2
e sz(l_m)! () (11.25)
The condition for orthonormality is eqll.14

1 pr:orthon4

@W%$LUTC@>=:/¥dx (" ()" wi () = dur, (11.26)

The corresponding completeness relation is (as usual, with o = 1)
S u (@) (') = 6(z — 2'). (11.27)
l=m

The problem we wanted to solve was equation 11.6, so we substitute
back in & = cos 6 into the completeness relation, which gives

S tcost (cost) = dlcost — cost)
— §((f —0')(—sin®))
)

sin
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170 CHAPTER 11. SPHERICAL SYMMETRY

In the second equality we used a Taylor expansion for § near #’, which
yields

cos —cosf' = —(0 — ') sinb.
In the third equality we used the d-function property é(az) = |a|~'d(z).
The completeness condition for u)"(cos ) is thus

50— )

g (11.28)

> u(cos O)u) (cos 0') =
l=m

Similarly, the orthogonality condition becomes (since [';d(cosf) =
Jo sin0do)

/7r df sin Ouy;* (cos O)u;" (cos ) = oy (11.29)
0

11.4 Spherical Harmonics

We want to determine the properties of the functions Y™, such as
completeness and orthogonality, and to determine their explicit form.
We postulated that the solution of equations 11.6 and 11.7 has the form
(c.f., equation 11.8)

eimtp
Y™ (0, ) = ——u;"(cos 0
l ( 30) \/% l ( )
for integer | = m,m + 1,m + 2,... and m > 0, where we have found

(equation 11.25)

. = my20+1, o d \"
uy" (cos 9)4 i) 5 (sin0) ( ) Py(cosb).

We define the Y,7™(6, ), for m > 0, as
im0,0) = (=D)"Y"0, )

e~ tme

V271

The term (—1)™ is a phase convention and ¢ is an eigen function.
This is often called the Condon-Shortley phase convention.

= (-

uy"(cos 0).

e—ime
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11.4.1 Othonormality and Completeness of Y,

We saw that the functions u;" satisfy the following completeness con-
dition:

> o0 —0
> " (cosO)up" (cos0') = g for all m
= sin
where m is fixed and positive. We know that
) eimap/ e~ ime
=d(p—¢). 11.30
Multiply sm05(0 — @) into equation 11.30, so that
5(p — )0 — 0) >l jm]* e me
= u; ' (cos@)u cos
- P l>§|;nl [coso)ul " (cost) | < —
— Y S W06,
m=—00 [>|m)]|
since 4
Y = (—1)™ emwulml(cos ) form <0
[ \/ﬁ l )
and .
Y, = (—l)me_mupuml(cos g) form <0
= fom 1 :

Thus we have the completeness relation

5(Q— Q) Z Z Ym0, 0)Ym (0, o). (11.31)

=0 m=—1

/

eqll.15
1 GApr 1b

We also note that Ly, has (2 4+ 1)-fold degenerate eigenvalues [({ + 1) eq11.16

in
Leap}/}m(ea 90) = l(l + 1)}/7”(97 gp).

Thus m is like a degeneracy index in this equation.

Next we look at the orthogonality of the spherical harmonics. The pr:orthon5
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orthogonality relation becomes

27
S05mm/ d cos Oul™ (cos B)ul (cos §)
0
= 5ll’5mma

[ aovi(0,¢)v7(6,¢)

where d2 = dpdfsinf on the right hand side, Because the u’s are
orthogonal and the e™%’s are orthogonal, the right hand side is zero
when [ # 1" or m # m/.

11.5 GF’s for Spherical Symmetry

1 Apr 2a
We now want to solve the Green’s function problem for spherical sym-

metry.

11.5.1 GPF Differential Equation

The first step is to convert the differential equation into spherical co-
ordinates. The equation we are considering is

(Lo — Ao (x)]G(x,x'; A) = d(x — X'). (11.32)

eql1.16a By substituting the Ly for spherically symmetric problems, which we
I don’t know found in equation 11.3, we have

how to fix this. 1 d d ()
[_r?dr (7’27'( )dr> + —ng +V(r) = Ao | Gun(x,x'; X)
o(r—1")
= Z Z Y0, 0)Y,™ (0, ).
=0 m=l
eql1.17 where the second equality follows from the completeness relation, equa-

pr:ExpThm2  tion 11.31. Thus we try the solution form

G(x,x’; \) izl:Ylm ©)Gim (r, ;s \YY™(0, ). (11.34)

1=0 m=l



eql1.17b
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Note that the symmetry of 6, ¢ and ¢, ¢’ in this solution form means
that Green’s reciprocity principle is satisfied, as required. Substituting
this into equation 11.33 and using equation 11.6 results in Lyg being
replaced by the eigenvalue of ¥;, which is (I 4+ 1). Superposition says
that we can look at just one term in the series. Since the linear operator
no longer involves 6, ¢, we may divide out the ¥;™’s from both sides to
get the following radial equation

5(r—1")
rz
(11.35)

The linear operator for this equation has no m dependence. That is, m

is just a degeneracy index for the 2/ 4 1 different solutions of the Ly

equation for fixed [. Thus we can rewrite our radial Green’s function

G as GG; and define the radial operator as

[—;Ci <r2r(r);i> + Tg)za +1)+ V('r)] Gim(r,7's N) =

=2 (%miﬁ) 4r2 [Tg)za 1)+ vm] o (11.36)

We have reduced the three dimensional Green’s function to the standard
single dimensional case with effective tension 727(r), effective potential
energy V(r), and a centripetal kinetic energy term (7(r)/r?)I(l + 1).

11.5.2 Boundary Conditions

What about the boundary conditions? If the boundary conditions are
not spherically symmetric, we need to take account of the angles, i.e.,

-V + K(S)]G(x X, \) = 0,

for x on S and X’ in R.
Consider a spherical region as shown in figure 11.2. For spherically

symmetric boundary conditions, we can set ki, (S) = k, and ke (S) =
ky. Thus
0
—— +k,|G=0 forr=a,
or

[a—i-k:b]G:O for r =b.
or

eqll.18

eql1.18b

pr:bcd
1 Apr 2b

figl1b
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So

Sy "
a

b

Figure 11.2: The general boundary for spherical symmetry.

If we insert G from equation 11.34 into these conditions, we find the
following conditions on how G; behaves:

[—8%—]{7&1 G;=0 forr=a,
or

0
l+kb] Gy =0 forr=b,
or
for all . These equations, together with equation 11.35, uniquely de-
termine Gj.

With these definitions we can examine three interesting cases:

(1) the internal problem  a — oo,
(2) the external problem b — 0, and
(3) the all space problem  a — 0 and b — oc.

These cases correspond to bound state, scattering, and free space prob-
lems respectively.

11.5.3 GPF for the Exterior Problem

We will now look at how to determine the radial part of the Green’s
function for the exterior problem. essential idea is that we have taken
a single partial differential equation and broken it into several ordinary
differential equations. For the spherical exterior problem the region R
of interest is the region outside a sphere of radius a, and the boundary S
is the surface of the sphere. The physical parameters are all spherically
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symmetric: 7(r), o(r), V(r), and x(S) = k,. Our boundary condition
is

[_887” + ka] G(x,x';\) =0,

where 7 = a for all 0, ¢ (that is, |x’| > |x| = a). This implies 4 Apr p2,3

[_3 + kal Gy(r,”’;\) =0 forr' >r=a.
or
The other boundary condition is that G; is bounded as r — oo.

We now want to solve G;(r,r’; A). Recall that we have seen two
ways of expressing the Green’s function in terms of solutions of the
homogeneous equation. One way is to write the Green’s functions as
a product of the solution satisfying the upper boundary condition and
the solution satisfying the lower boundary condition, and then divide
by the Wronskian to ensure continuity. Thus we write

]' ull (7”<7 A)UZQ(T>7 )\>

G = ) W)

(11.37)

where u} and v}, satisfy the equations eql1.18c
[Lo = Aa(r)r?Juy (r, ) = 0,

[Lo = Ao (r)r?Juy(r, A) = 0,

and the boundary conditions

ul =0 forr=a,

0
E

ub(r, \) < oo when 7 — o0.

The other way of expressing the Green’s function is to look at how
it behaves near its poles (or branch cut) and consider it as a sum of
residues. This analysis was performed in chapter 4 where we obtained
the following bilinear sum of eigenfunctions: 4 April p4

O] Ore
Gl(T, 7”,, )\) _ Z M

= (11.38)
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Note that what is meant here is really a generic sum which can mean eq11.19
either a sum or an integral depending on the spectrum of eigenvalues.
For the external problem we are considering, the spectrum is a pure
continuum and sums over n should be replaced by integrals over A,.

The u{Y (1) solve the corresponding eigen value problem

L(()l)u(l)(r) = \9226 (1) ulD (r)

n

with the boundary conditions that

0
[— + k:a] ul) =0 for r =a,
or

and u{) is finite as 7 — oo. The interior problem, with u! finite as
r — 0, has a discrete spectrum.
The normalization of the u{!)(r) is given by the completeness relation

o(r—r1")
(0 O (" =

;un (T)un (T) 7’20'(7“) :
4 Apr p5 We insert equation 11.38 into 11.34 to get

ult™ (x)ul ™ (x')
ctetin = LR

(11.39)

eq11.20 where
™ () = V"0, )ui) (r).

and A\ is the position of the nth pole of G;. So the eigenvalues ), are
the A) determined from the r-space eigenvalue problem. The corre-
sponding eigenfunctions u(:™ (x) satisfy

L(()l)ugf’m) (x) = A2 (r)ubm™ (x).
The completeness relation for u(:™ (x) is found by substituting equation
11.39 into 11.32 and performing the same analysis as in chapter 4. The
result is
d(x —x')

a(x)

Do) (ruy (') =
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11.6 Example: Constant Parameters

We now look at a problem from the homework. We apply the above
analysis to the case where V' = 0 and 7 and o are constant. Our
operator for L becomes (c.f., equation 11.36)

d d
0 =r|-L (228 1)) .
0 =T l . <7° dr) +1(l + )]

The equation for the Green’s function becomes (after dividing by 7):

l—d (7"2;:”) +I(l+1) - k:27‘21 Gi(r,r'; \) = 16(7" — '),

T

where k* = Ao /T = \/c%.

11.6.1 Exterior Problem

We again have the boundary conditions

a /. —
[_&a + ka‘| Gl(rv s /\) =0, (1140)

where 7 = a, ' > a, and G; bounded as r — oco. As usual, we assume (eql1.21d
the solution form

1 Ugl) (r<, A)Ug) (r>, )

Gi(r,7",\) = — 11.41
3 ) r27(r) W(ugl), ud) ( )
We solve for u; and wus: eql1.21a
4 Apr p7
d d
l_dr <r2dr> +I(+1) - k%ﬂ] ul'y =0,

where u; and us satisfy the boundary conditions as r = a and r — oo

respectively and k = w/c = y/A/c?. This is the spherical Bessel equa-
tion from the third assignment of last quarter. We found the solution

R(r)

ur) = 2.
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4 Apr p9

178 CHAPTER 11. SPHERICAL SYMMETRY
where R(r) satisfies the regular Bessel equation

() 2 ) o

The solutions for this equation are:

R~ Jl+%7Nz+§-

i) = ooy @),
() = /5o Vi @),
WO @) = o Hi (),

where j;(kr) is a spherical Bessel function, n;(kr) is a spherical Neu-

By definition

mann function, and h{" (kr) is a spherical Hankel function. So we can

write
uy = Ajy(kro) + Bny(kro),

U = hll(kr>))

Note that the us solution is valid because it is bounded for large 7:

lim h{"(z) = —iem(—i)l.

T—00 T

11.6.2 Free Space Problem

We now take the special case where a = 0. The boundary condition
becomes the regularity condition at r = 0, which kills the n;(kr.)
solution.

The solutions ul(l)

and ul@) are then
ufl) = ji(kr),

u® = hO(kr).

Let A be an arbitrary complex number. Note that since hl(l)(x) =
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Ji(z) + ing(x), we have
W (i), b (@) = iW (), mi(x)) = —

x?’

The last equality follows immediately if we evaluate the Wronskian for
large r using

Ji(z) ~ cos(z — (I + 1)7w/2) & — oo,

ny(x) =~ sin(x — (I + 1) /2) T — 00,

and recall that 71V is a constant (for the general theory, c.f., problem
1, set 3) where “7” is 727 for this problem. In particular we have

7

(kr)?

W (i, V) =

We then get from equation 11.41

1 jl(kr<)h§1><kr>)

G = - ;
riT e
_ ik M
(eql1.21c
We have thus found the solution of
A d(x —x')
VvVi_|g=2"_=7 11.4
-v- 4 = (1.4
which is the fundamental three-space Green’s function. We found (eq11.22
ik 4 Apr pl0
G(Xv x', )‘) = - Z Yzm(e? @)jl(kk)hl(’f%)yzm*, (11'44)
Im

which is a simple combination of equation 11.34 and 11.42. In the first eq11.22a
homework assignment we solve this by a different method to find an
explicit form for equation 11.43. Here we show something related. In
equation 11.43 we have G = G(|x — x/|) since V. = 0 and ¢ and 7
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constant. This gives translational and rotational invariance, which cor-
responds to isotropy and homogeneity of space. We solve by choosing
x = 0 so that

Jilkro) = jo(kr) +0's

as ' — 0. Only the [ = 0 term survives, since as ' — 0 we have 4 Apr pll

=0 — 51(0) =1,

l#0 — 51(0) =0.

Thus we have
/ ik 02
G(x,x"; \) = —|Yy |“ho(kr).
T
Since [ = 0 implies m = 0, we get Yy = const. = 1/47 since it satisfies
the normalization [dQ|Y|? = 1. We also know that
7

1 iz
h(() )(33) =—_e”

This gives us

1 .
G /; )\ — ’Lk"l‘.
(xx52) T47T7"6

We may thus conclude that
G / e 11.45
(’X—XD—m- (11.45)
eql1.25
stuff omitted

11.7 Summary

1. The form of the linear operator in spherical coordinates is

L—_ L0 <r27(7«)a> T, v,

72 Or or r

where

Ly e -0 (g 2) - L&
% sing o 90)  sin260%p
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2. Lyy is hermitian.

3. The eigenvalue equations for Y™ are
LQ@Ylm(ea 90) = l(l + 1)Yzm(07 (,0),

2
—;Y’”(Q ©)=m?Y"(0,0) m=0,4+1,42 ...
©?

4. The partial wave expansion for the Green’s function is

oo 1
Gx,x50) =D V™0, 0)Gin(r,r'; N)Y™ (6, ¢).

=0 m=l

5. The Green’s function for the free spce problem is

. .
ezk|x x|

G(jx— ) =

drlx — X/ |1

11.8 References

The preferred special functions reference for physicists seems to be
[Jackson75]. Another good source is [Arfken85].
This material is developed by example in [Fetter81].
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Chapter 12

Steady State Scattering

Chapter Goals:

e Find the free space Green’s function outside a circle
of radius a due to point source.

e Find the free space Green’s function in one, two,
and three dimensions.

e Describe scattering from a cylinder.

12.1 Spherical Waves

6 Apr pl
We now look at the important problem of steady state scattering.
Consider a point source at X’ with sinusoidal time dependence pr:ssscl

f(x ) =8(x —x)e ™",

whose radiated wave encounters an obstacle, as shown in figure 12.1  fig11.3
We saw in chapter 1 that the steady state response for free space
with a point source at x’ satisfies

82 N, —iwt
LO—U@ up(x,t) = 0(x —x")e ™",

and was solved in terms of the Green’s function,

up(x,w) = Go(x,%x,\ = w? +ie)e ™ (12.1)

183
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EN (Y
2

N

Figure 12.1: Waves scattering from an obstacle.

eik\x—x’|—iwt
= — (12.2)

ArT|x — X/
where the Green’s function (G satisfies the equation 11.43 and the
second equality follows from 11.45. The equation for Gy can be written

[—V? — K|Go(x, x5 \) = 71_(5()( —x') (12.3)

with the definition k& = /A/c? = w/c (Remember that A\ = w? + i¢).
We combine these observations to get

1
up(x, x;w) = ————¢

—iw(t—(x—x")/c) )
ArT|x — X/

If there is an obstacle (i.e., interaction), then we have a new steady
state response

u(x, X w) = G(x,x'; A = w? +ie)e ™,
where
[Lo — \o]G(x,x"; \) = §(x — X') RBC. (12.4)
This is the steady state solution for all time. We used ug and Gy for
the free space problem, and u and G for the case with a boundary.

Note that equation 12.4 reduces to 12.2 if there is no interaction. The
scattered part of the wave is

Gsefiwt — (G _ Go)efiwt'
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12.2 Plane Waves

We now look at the special case of an incident plane wave instead of
an incident spherical wave. This case is more common. Note that once
we solve the point source problem, we can also solve the plane wave
problem, since plane waves may be decomposed into spherical waves.
An incident plane wave has the form

CI)[) — ei(wtfk-x)

where k = (w/c)n. This is a solution of the homogeneous wave equation

So @ is the solution to the equation without scattering.
Let @ be the wave when an obstacle is present,

which solves the homogeneous wave equation and the regular boundary
condition at the surface of the obstacle.

To obtain this plane wave problem, we let x’ go to —oo. We now
describe this process. To obtain the situation of a plane wave approach-
ing the origin from —o0z, we let X’ = —rz, as ' — oo. We want to find
out what effect this limit has on the plane wave solution we obtained

in equation 11.45,
6ilc|xfx’|

Go

- drr|x — x|
We define the angles v and 6 as shown in figure 12.2. From the figure
we see that

'| = .

|x —x'| ="+ rcosf =r' —rcosy, x

We further recall that the dot product of unit vectors is equal to the
cosine of the separation angle,

/

cosy = = —cos¥f.

rr!

pr:Phi0

pr:gammal
fig12a
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r origin 7 cosf
Figure 12.2: Definition of v and 6..

So the solution is

; _~!
6'Lk|x x|

G ) = —
0(x, X5 ) A7 |x — x|
1

Arrr!

1 eikr’eikx-(fi’)

Arrr!
eikzr’

eik(r—r cos7y)

ik-x

Arrr!

where k = %(—1'). Note that we have used the first two terms of the
approximation in the exponent, but only the first term in the denomi-
nator. Thus we see that in this limit the spherical wave ug in free space
due to a point source is

|lli:m uy = Goe ™!
x/|—o0
- !
ezkr
4mr'T

where

12.3 Relation to Potential Theory

Consider the problem of finding the steady state response due to a
point source with frequency w located at x" outside a circular region of
radius a. The steady state response must satisfy the regular boundary
condition

0
[—arG + KQG] =0 forr=a. (12.5)
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In particular we want to find this free space Green’s function outside a
circle of radius a, where V' =0 and ¢ and 7 are constant.

The Green’s function G satisfies the inhomogeneous wave equation
I(x —x)
T

[-V? - B*|G(x, %) =

where k* = Ao /7 = \/c?. The solution was found to be (from problem
1 of the final exam of last quarter)

1 = /
S e (ko) + X HY (kr )| HD (krs). (12.6)

m=—0oQ

G

~ dnr

with k. (ka) — Kook
_ (717;( @) = K "El() Jl (12.7)
[kHm' (ka) — K,Hw' (ka))
Note that H(krs) comes from taking Imyv/A > 0. If we consider
Imv/A < 0, we would have H? instead. All the physics is in the
functions X,,. Note that from this solution we can obtain the solution
to the free space problem (having no boundary circle). Our boundary
condition is then then G must be regular at |x| = 0:

G regular, |x| = 0. (12.8)

(That is, equation 12.5 becomes 12.8.) How do we get this full space
solution? From our solution, let a go to zero. So X,, in equation 12.6
goes the zero as a goes to zero, and by definition G — G,. The free
space Green’s function is then

S e g (ke ) HD (). (12.9)

m=—0oQ

Go = AmT
This is the 2-dimensional analog of what we did in three dimensions.
We use this to derive the plane wave expression in 3-dimensions.

We may now obtain an alternative expression for the free space
Green’s function in two dimensions by shifting the origin. In particular,
we place the origin at x’. This gives us 7' = 0, for which

H(gl)(kr) m=0

/ (1) R
o (kr"YH S (k1) | =0 { 0 else.

eql1A1

eql1A3
pr:Xml

(Eq.BE)

8 Apr p2

eql1A2

eql1A/
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Thus equation 12.9 reduces to

Golr) = —— H{(kr).

At

which can also be written as
i
Go(jx — x'|) = Hﬂg”(mx' —x|). (12.10)

This is the expression for the two dimensional free space Green’s func-
tion. In the process of obtaining it, we have proven the Hankel function
addition formula

o0

HPY kX —x)) = S €™ g (kr ) HD (krs).

m=—0o0

We now have the free space Green’s functions for one, two, and
three dimensions:

?

1D R _ ik|lz—a'|
O
20(1x — ') = ¢ W (klx! —
D (x—x]) = £ H (ki — x),
G (x—x]) = o (12.11)
x—-x) = ——. .
0 dr7|x — X/|

We can interpret these free space Green’s functions physically as fol-
lows. The one dimensional Green’s function is the response due to a
plane source, for which waves go off in both directions. The two dimen-
sional Green’s function is the cylindrical wave from a line source. The
three dimensional Green’s functions is the spherical wave from a point
source. Note that if we let & — 0 in each case, we have

ekl — 1 4 ik|x — x|,

and thus we recover the correct potential respectively for a sheet of
charge, a line charge, and a point charge.
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12.4 Scattering from a Cylinder

We consider again the Green’s function for scattering from a cylinder,
equation 12.6
1 & /
G=— Y ™[], (kro) + X HO (kr ) HP (krs). (12.12)

drr =

What is the physical meaning of [J,,(kr.) + X,, H{Y (kr.)] in this equa-
tion? This is gives the field due to a point source exterior to the cylin-

der:

u = G(x,xX,\=w+ic)e ™
= Goe ™4 (G —Gple ™ (12.13)
—_— —,—,—

uo Us
Note that X,, contains the physics of the boundary condition,

l_@G + /ﬁaG] =0 for r = a.
or

From equations 12.12 and 12.13 we identify the scattered part of the
solution, ug, as

67iwt o]

Uy = ST eme= X, Y (kr)HD (kr'). (12.14)

 4nr

m=0

So we have expanded the total scattered wave in terms of H(), where
X, gives the mth amplitude. Why are the r~ and r~ in equation 12.11
but not in equation 12.147 Because there is a singular point at x = x’
in equation 12.11, but ug will never have a singularity at x = x’.

Now consider the more general case of spherical symmetry: V(r),
7(r), o(r). If these parameters are constant at large distances,

V(ir) =0

T = constant,

7(r)

o(r) = o = constant,

eql1A6b

eql1A6¢

eql1A7

(Eq.5)
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then at large distances G' must have the form of equation 12.11,

ik|x—x/|

, e
Go([x =x'|) =

drr|x — x'|
We shall see that this formula is basic solution form of quantum me-
chanical scattering.

12.5 Summary

1. The free space Green’s function outside a circle of radius a due
to point source is

1 & /
G = R Z 6lm(4p—<p )[Jm(kr<) + Xer(r})<kT<)]Hr(;) (k?”>).
with
v _ kT (ka) = Kody(ka)

(kHY (ka) — K, HSY (ka)]

2. The free space Green’s function in one, two, and three dimensions
is

l

GlD R ik|a:—a:’|’
Plx=x) = 5
2D ' o G 1) /
Gy (Ix—x'|) = —Hy (klx' —x]),
At
GP(x X)) = o
X —X = —
0 AnT|x — X/|

3. For the problem of scattering from a cylinder, the total response
u is easily decomposed into an incident part a scattered part wu,
where u, contains the coefficient X].

12.6 References

See any old nuclear of high energy physics text, such as [Perkins87].



Chapter 13

Kirchhoft’s Formula

As a further application of Green’s functions to steady state problems,

let us derive Kirchhoff’s formula for diffraction through an aperture. pr:Kirchl
Suppose we have a point source of sound waves of frequency w at some

point xg in the left half plane and at x = 0 we have a plane with a hole.

We want to find the diffracted wave at a point x in the right-half plane. fig19a

If we look at the screen directly, we see the aperture is the yz-plane

at x = 0 with a hole of shape ¢’ as shown in the figure. The solution

G (x,x0; w) satisfies the equations

—[V? + K)G(x, x0;w) = 6(x — Xq),
sl I

We will reformulate this problem as an integral equation. This
integral equation will have as a kernel the solution in the absence of
the hole due to a point source at X' in the R.H.P. This kernal is the
free space Green’s function, Gy(x,x’;w), which satisfies the equations

—[V? 4+ k)G (x, %X ;w) = §(x — X'),

This we solve by the method of images. The boundary condition is pr:MethIm2

191
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Figure 13.1: A screen with a hole in it.

satisfied by adding an image source at x™*, as shown in figure 13.2 Thus
the Green’s function for this boundary value problem is

. / ; !
/) _ 1 [ezk|x—x \ 6—zk|x—x ]

T dr | [x — x| * |x — x/|

Now by taking Ly = —(V? + k?) we may apply Green’s second identity

/ (S"Lou—uLeS") = [ _dSi-[uVS* — 5"V
xXE

xES

with u = G(x,x) and S* = Gy(x,x’) where R is the region z > 0 and
S is the yz-plane. This gives us

Lou =0 for x > 0,

ou
hatind -0
(91; =0 ’
o
and
LyS* = d§(x — X'),
0S5*
=0.
Ox 0
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Figure 13.2: The source and image source.

These identities allow us to rewrite Green’s second identity as
0
—/dXG(X, X0)d(x —x') = /dy dzGyo(x,x) <—8G(X,X0)>
x
=0

and therefore

G(x',xq) = —/dy dzGo(x,x") ;xG(x, Xo) (13.1)

=0

Thus the knowledge of the disturbance, i.e., the normal component of eql9a
the velocity at the aperture, determines the disturbance at an arbitrary
point x in the right half plane. We have then only to know %G at the
aperture to know G everywhere.

Furthermore, if xo approaches the aperture, equation 13.1 becomes
an integral equation for G for which we can develop approximation
methods.

G(x',x9) = — /XGO" dy deo(x,X’);;G(x, Xo). (13.2)
The configurations for the different G’s are shown in figure 13.3. Note eq19b
1 eiklx—x| fig19b
Go(x,X')|x=0 = Dy v——L

and equation 13.2 becomes

1

' xo) = —— [ dydii—m— L
G(X7X0) o AEU’ Y ZlX—X,| axG(va())
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X : :
o x/ o / o
Py : :

Go(x, %) G(x0, %) G(x,x%p)

Figure 13.3: Configurations for the G’s.

Now suppose that the size a of the aperture is much larger than
the wavelength A = 27/k of the disturbance which determines the
distance scale. In this case we expect that the wave in the aperture
does not differ much from the undisturbed wave except for within a
few wavelengths near the aperture. Thus for ka < 1 we can write

1 eik\x—x’| ) 0 eik’\x—x’|
G(x,x %——/ dydz—— —G(x,x —|—— ,
(x, %o) o Jxeor ™! |x — x/| Oz (3%, %o) o O |4m|x —X'|| __,
where we have used the substitution
o o eik\x—x’|
—G(x,x = —|— )
Ox (3, %o) o O |Amlx —xX||__,

This equation then gives us an explicit expression for G(x’, X¢) in terms

of propagation from the source at x to the field point x’ of the velocity
o eik\xfx/\

disturbance at x of the velocity distribution #- ] produced by free
propagation to x from the point xq of the disturbance. This yields Huy-
gen’s principle and other results of physical optics (Babenet’s principle,
etc.).

13.1 References

See [Fetter80, pp327-332] for a discussion of these results.



Chapter 14

Quantum Mechanics

Chapter Goals:

e State the Green’s function equation for the inho-
mogeneous Schrodinger equation.

e State the Green’s function for a bound-state spec-
tra in terms of eigen wave functions.

e State the correspondence between classical wave
theory and quantum particle theory.
The Schrodinger equation is

L0
[H — zhat] Y(x,t) =0

where the Hamiltonian H is given by

h2
H=——V"+V(x).
Sy (x)
This is identical to our original equation, with the substitutions 7 =
h2/2m, Lo = H, and in the steady state case \o = E. For the free space
problem, we require that the wave function @ be a regular function.
The expression [1)(x,t)|? is the probability given by the probability
amplitude ¥ (x,t). For the time dependent Schrédinger equation, we
have the same form as the heat equation, with pc, — th. In making the

195

8 Apr p8
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V(x)

\ E>0

E <0

X

Figure 14.1: An attractive potential.

transition from classical mechanics to quantum mechanics, we use H =
p?/2m + V(x) with the substitution p — (%/i)V; this correspondence
for momentum means that the better we know the position, and thus
the more sharply the wave function falls off, the worse we know the
subsequent position. This is the essence of the uncertainty principle.

We now look at the steady state form. Steady state solutions will
be of the form

¢(X7 t) = e_iwt¢w (X)v

where 1),(x) satisfies the equation
[H — hw],(x) = 0.
The allowed energy levels for hw are the eigen values E of H:
Hy = Ev. (14.1)

So the allowed frequencies are w = E/h, for energy eigenvalues E. The
energy spectrum can be either discrete or continuous. Consider the
potential shown in figure 14.1. For E = E,, < V(0), the energy levels
are discrete and there are a finite number of such levels; for £ > V(0),
the energy spectrum is continuous: any energy above V(0) is allowed.
A plot of the complex energy plane for this potential is shown in figure
14.2. The important features are that the discrete energies appear as
poles on the negative real axis, and the continuous energies appear as a
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E-plane Im £

Re F

Figure 14.2: The complex energy plane.

branch cut on the positive real axis. Note that where as in this problem
there are a finite number of discrete levels, for the coulomb potential
there are instead an infinite number of discrete levels. If, on the other
hand, we had a repulsive potential, then there would be no discrete
spectrum.

The Green’s function solves the Schrodinger equation with an inho-
mogeneous J-function term: 8 Apr pl0

(H— E)G(x,x; E) = §(x — x') (14.2)

where F is a complex variable. The boundary condition of the Green’s eq13.2
function for the free space problem is that it be a regular solution. Un-

like previously considered problems, in the quantum mechanical prob-

lems, the effect of a boundary, (e.g., the surface of a hard sphere) is
enforced by an appropriate choice of the potential (e.g., V = oo for

r > a). Once we have obtained the Green’s function, we can look at its
energy spectrum to obtain the ¢’s and F,,’s, using the formula obtained

in chapter 4:

Un (%) (X')

Gx,x;E) =) T E

n

This formula relates the solution of equation 14.1 to the solution of

equation 14.2. fig13.2
11 Apr pl
. . 11 Apr p2
14.1 Quantum Mechanical Scattering 1 Aor o
pr p

We now look at the continuum case. This corresponds to the prob- pr:QMS1
lem of scattering. We use the Green’s function to solve the problem of
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quantum mechanical scattering. In the process of doing this, we will
see that the quantum mechanics is mathematically equivalent to the
classical mechanics of waves. Both situations involve scattering. The
solution u for the classical wave problem is interpreted as a velocity
potential, whereas the solution 1 for the quantum mechanical problem
is interpreted as the probability amplitude. For the classical wave prob-
lem, u? is interpreted as intensity, while for quantum mechanics, ||? is
interpreted as probability density. Thus, although the mathematics for
these problems is similar, the general difference is in the interpretation.

The case of quantum mechanical scattering is similar to classical
scattering, so we consider classical scattering first. We use the Green’s
function in classical wave theory,

[Lo — A\o]G(x,x;\) = d(x — X'),

with A = w? + ie for causality, to obtain the steady state response due
to a point source,

u=e "“'G(x,x;\ = w? +ie).

This steady state solution solves the time dependent classical wave

equation,
0? ,

We may decompose the solution u into two parts,
U = Uy + Uscat,

where
e—i(wt—k:R)

—twt
u =e “'Gp=——"—-—
ArTR
where R = |x — x|, and

Ugear = € 1[G — Go).

Note that ug is the steady state solution for a point source at x = x/,
solution for a point source at x, Gy is the solution for the free case,
and wu, is the solution for outgoing scattered waves. Note also that the
outgoing scattered waves have no singularity at x = x’.
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14.2 Plane Wave Approximation

If one solves the problem of the scattering of the spherical wave from
a point source, that is, for the Green’s function problem, then we also
have the solution for scattering from a plane wave, merely by letting
|x'| — co. We now define ®(x,t) as the solution of equation 14.3 for
the special case in which x’ — —o002Z,

62
[LO + 05%2] O(x,t) = 0. (14.4)

For the steady state solution
d(x,t) = e “'P(x,w),
we get the equation
[Lo — 0w?]®(x,w) = 0.

How is this equation solved for positive w? There isn’t a unique solution
for this, just like there wasn’t a unique solution for the Green’s function.
We have already found a solution to this equation by considering the
Green’s function with the source point going to infinity in the above
method, but it does not satisfy the boundary condition appropriate for
scattering.

In order to determine the unique scattering solution, we must in-
troduce a new boundary condition appropriate for scattering. This is
necessary because although our previous equation

[Lo — oAn]u, =0 (14.5)

with RBC gave the eigenfunctions, it does not give unique physical
solutions for the case of scattering.

To find the w,’s in equation 14.5 we would extract them from the
Green’s function using, for the discrete case,

/ Un Uy,
Goex5A) =2

n

pr:PIWv1
11 Apr p4

eql3.4
11 Apr pb

11 Apr p6

eql3abc



11 Apr p7

11 Apr p9

11 Apr p9

200 CHAPTER 14. QUANTUM MECHANICS

or for the continuum case,

1

- /. _ . - /. _ o
Un = 5 G(x,X'; A=\, +ie) — G(x,X; A = A, — ig)]
1
= —Im [G(x,x;\ =\, +ig)].
7r

But these wu,’s are not solutions corresponding to the scattering bound-
ary condition, since they contain both incoming and outgoing waves.

14.3 Quantum Mechanics

We now apply what we have said for particles to the case of quantum
mechanics. In this case the steady state solutions are of the form

'l/) — e*i(E/h)twO.

We want the total wave to be a superposition of an incident plane wave
and a scattered wave.

w — eik-xfiwt + ws

where w = E/h. Note that e®* corresponds to an incident plane wave,
and 1, corresponds to outgoing waves. To get this form, we use the
Green’s function for the free space problem (no potential)

ik R m e

T AnRr 27k R

kR

Go

where

12 Ao _ E _ 2mE _ pj .
T R*2m  A* R
Take the limit |x'| — oo, the free space Green’s function becomes

ikr
e LB — m €
€ 0(X7X7 ) Tﬂozﬂhz r’

where 1y = e~ Hkx—HE/R)
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14.4 Review

13 Apr pl We have been considering the steady state response problem

62 1 ,—iw
[Lo + Jaﬁ] u(x,t) = §(x — x)e ™"

The steady state response for outgoing waves (i.e., that which satisfies
the boundary condition for scattering) is

u(x,t) = e “'G(x, X', N = w? + i¢) (14.6)
where G solves eqls.qg
[Lo — o N|G(x,X'; A) = §(x — X').

We want to get the response ®(x,t) for scattering from a plane
wave. We only need to let |x/| go to infinity:

ikr!

lim wu(x',t) = D (x,1).

|x/|—00 47y’

This gives scattering from a plane wave. ® is the solution of
2

0
Lo+ o0—|P(x,t) =0
Lo+ o518, 1)
which satisfies the boundary condition of scattering. For the case of
steady state response we can write
P(x,t) = e “'P(x,w)
where ®(x,w) solves the equation
[Lo — 0w?’]®(x,w) = 0.
This equation satisfies the boundary condition of scattering: 13 Apr p2
P(x,w) = e** + d,(x),

where ®,(x) has only outgoing waves. Note that

u)20' w2

kQ——zjandk:kﬁ,
T c

where 0 = lim, . o(r) and 7 = lim, o, 7(7).
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14.5 Spherical Symmetry Degeneracy

We now compare the mathematics of the plane wave solution ® with
that of the eigen function u. The eigenvalue equation can be written

[Lo — 0w?|ua(x,w?®) = 0.

In this equation u, is a positive frequency eigen function with degener-
acy number « and eigen value w?. The eigen functions can be obtained
directly from the Green’s function by using

1
—Im G(x,x; A = w? +i€) = Y _ ua(x,w?)ul(x',w?).
™ (63

For the case of spherical symmetry we have

ua(x,wQ) = ulm(x,uﬂ)
- Ylm<97(p)ul(r7w2)

where [ = 0,1,... and m = —[,...,0,...,l. The eigenvalues w? are

continuous: 0 < w? < co. Because of the degeneracy, a solution of the
differential equation may be any linear combination of the degenerate

eigen functions:
d(x,w) = anua,

where the c,’s are arbitrary coefficients. This relates the eigen function
to the plane wave scattering solution. In the next chapter we will see
how the ¢,’s are to be chosen.

14.6 Comparison of Classical and Quan-
tum

Mathematically we have seen that classical mechanics and quantum

mechanics are similar. Here we summarize the correspondences between
their interpretations.

classical wave theory quantum particle theory
u = wave amplitude 1) = probability amplitude
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u? = energy density |4)|* = probability density
w, = natural frequencies FE,, = energy eigenvalues
Normal modes: Stationary states

Up (x)e™rt = u, (x,t) U (x)e U/ — o)y (x,1)
Lou,, = ow?u, H,(x) = By, (x)
Ly is positive definite: Ht = H:

w2 >0 E,€R

13 Apr p4
The scattering problem is like the eigen value problem but we look

at the region of continuous spectrum. For scattering, we require that
FE,, > 0. In this continuum case, look at the eigen values from:

(H — E)ja(x, E) =0, (14.7)

where «a labels wave functions with degenerate eigenvalues. Rather eq13.25
than a wave we have a beam of particles characterized by some energy

E. The substitution from classical mechanics to quantum mechanics is

as follows:

2 2
w20—>E, T—>h—, 2 £ ZZmE:(p> .
2m h?/2m h? h
This last equation is the De Broglie relation. pr:DeBrl

Now we want to look at the solution for quantum mechanical scat- 13 Apr p5

tering using Green’s functions. Suppose we have a beam of particles
coming in. This incident free wave has the form e®*~*#¥/" which solve
the free space hamiltonian

h2

Hy=—V~.

2m
We want the solution to equation 14.7 which corresponds to scattering.
That is, we want the solution for

(H — E)®(x,E) =0

which is of the form
d(x,E) = e ** + @,

where Uy has only outgoing waves.
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To solve this we look at the Green’s function.
(H — E)G(x,x'; E) = §(x — x') for ImE > 0,
with the appropriate boundary conditions. We make the substitution
Y(x,t) = e EMQ(x,x'; E + ic).

This corresponds not to a beam of particles but rather to a source of
13 Apr p6 particles.

Stuff omitted

14.7 Summary

1. The Green’s function equation for the inhomogeneous Schrodinger
equation is
(H — E)G(x,x; F) = §(x — X'),
where

h2
H=—-"V*1V(x).
QmV + V(x)

2. The Green’s function for a bound-state spectra in terms of eigen
wave functions is

Gx,x;E) =) %

3. There is a close connection between classical and quantum me-
chanics which is discussed in section 14.6.

14.8 References

See your favorite quantum mechanics text.



Chapter 15

Scattering in 3-Dim

Chapter Goals:

State the asymptotic form of the response function
due to scattering from a localized potential.

Derive the scattering amplitude for a far-field ob-
server due to an incident plane wave.

Derive the far-field form of the scattering ampli-
tude.

Define the differential cross section and write it in
terms of the scattering amplitude.

Derive and interpret the optical theorem.

Derive the total cross section for scattering from a
hard sphere in the high energy limit.

Describe the scattering of sound waves from an os-
cillating sphere.

We have seen that the steady state case reduces the Green’s function

problem to the equation

[Lo — A\o]G(x,x"; \) = §(x — X')

205
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with RBC, where the linear operator is given by
Ly=-V - -7(x)V + V(x).

In the spherically symmetric case we have V(r), o(r), and 7(r). In
chapter 11 we saw that the Green’s function can be written as an ex-
pansion in terms of spherical harmonics,
G(x,x50) = D Y0, 0)Gi(r, s VY™ (0, ¢).
Ilm

In the last chapter we saw how to solve for scattering from a point
source and scattering from a plane wave. We did this for a particular
case in the problem set. This all had nothing to due with spherical
symmetry.

Now consider the case of spherical symmetry. From chapter 3 we
know that the radial Green’s function can be written
_ull <T<a )\)UIQ(T>7 A)

r27(r)W (g, uh) -

The u’s solve the same radial eigenvalue equation

i (Proge ) + T v - xo)] =0, 152

Gy(r,r"; \) = (15.1)

r2dr 72

but different boundary conditions. The eigenfunction u; satisfies the
boundary condition

—ul —kul =0forr=a

or

and as a — 0 we replace this with the boundary condition u!(r) finite
at r = 0. The eigenfunction uy satisfies the boundary condition us
finite as r — oc.

By comparing equation 15.2 with previous one-dimensional equa-
tions we have encountered, we identify the second and third terms as
an effective potential,

T(r)l(l+ 1)

Vg = 2 + V(T)
In quantum mechanics we have
R+ 1
Vet = mil+1) + V(r).

2mr?
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15.1 Angular Momentum

The above spherical harmonic expansion for the Green’s function was
obtained by solving the corresponding eigenfunction equation for the
angular part,

R? Ly, Y™ = RAI(1 + 1)Y,™,

The differential operator Ly, can be related to angular momentum by
recalling that the square of the angular momentum operator satisfies
the equation
2 m 2 m
L,Y" = R7l(l + 1)y

Thus we identify h2L9<p as Lﬁp, the square of the angular momentum
operator.
2 _ 72
h*Le, = L,

In the central potential problem of classical mechanics it was found
that

L2
‘/e = V 5
= omr? V()
where pr:bfLL1
L=xxp
and
L?=L-L.

In quantum mechanics the momentum operator is p = (h/i)V, so that

h
L=xxp—Ly,=-xxV
i

L = (hx X V) : (hx X V)
i i

= h’Lg,.

and thus

This gives the relation between angular momentum in classical mechan-
ics and quantum mechanics.
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EN (Y
%)

N

Figure 15.1: The schematic representation of a scattering experiment.

15.2 Far-Field Limit

We now take the far field limit, in which » — oo, meaning the field
is measured far from the obstacle. This situation is accurate for ex-
perimental scattering measurements and is shown in figure 15.1. We
assume that in this 7 — oo limit, we have o(r) — o, 7(r) — 7, and
rV(r) — 0. If instead the potential went as V(r) = 7/r, e.g., the
Coulomb potential, then our analysis would change somewhat. We will
also use the wave number k = (/o\/7, where A = w? + ie classically,
and A\ = E + ie for the quantum case. In classical mechanics we then
have k = w/c and in quantum mechanics we have k = p/h.

Our incident wave is from a point source, but by taking the source-
to-target separation r’ big, we have a plane wave approximation. After
making these approximations, equation 15.2 becomes

[_1‘1 (ﬂi) L) kQ] ity =0, (15.3)

r2dr 72

If we neglect the term [(I 4 1)/r?, compared to k% we would need kr >
[, which we don’t want. Instead we keep this term in order to keep
conventional solutions. In fact, it will prove easier to keep it, even
though it may vanish faster than V(r) as r — oo, and since we also
have to consider [ large, we don’t want to kill it. In this limit the
Green’s function is proportional to a product of the u’s,

lim Gi(r,r's N) = Au (7', by (r, N). (15.4)
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We assume the the point source is not in the region where things are
really happening, but far away. In this case V(r') = 0, o(r') = o, and
7(r") = 7, for large 7. Thus we are looking at the far field solution
where the point source is outside the region of interaction.

We already know the explicit asymptotic solution to the radial equa-
tion:

ub(rs) = hl(l)(kr>) for kr- > 1, (15.5)
ull(r<) ~ jl(l)(kr<) + thl(l)(lm“<) for kro > 1. (15.6)

X contains all the physics, which arises due to the boundary condition.
In general, X; must be evaluated numerically. For specific cases such as
in the problem set, V(r) = 0 so equation 15.3 is valid everywhere, and
thus we may obtain X; explicitly. For our present situation we have
assumed the far field approximation and an interaction-free source, for
which the asymptotic form of the Green’s function may be written in
terms of equation 15.5 and 15.6 as
Tim Gi(r, 15 A) = Alju(kr’) + Xihy? (k') hf" (kr).

We have not yet specified r > 7/, only that r > 1 and ' > 1.

To obtain the scattered wave at large r, we look at G — Gy. In
particular we will evaluate Gj — Gj. So we look at GL(r,r’; \) for
r > r’. Recall that Gjg has the form

oy ik (1
Guo(r, " \) = 7jl(kr<)hl (krs).

This is for the free problem; it solves all the way to the origin. Now
take the difference.

ik\
G — G = (A - T) Gikr R (krs) + AXRE (kr )R (k).

This equation assumes only that we are out of the range of of interac-
tion. The term hl(l)(kr>) gives the discontinuity on dG/dr at r = 1.
We now assert that A must equal ik/7 because the scattering wave
G; — Gjp has to be nonsingular. Now look at the case r > r':

eql4.3

15 Apr p4

eql4.5

15 Apr pb
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ik
Gy — G = —Xihy (k') (kr ).

All that is left to see is what the scattered wave looks like. We take kr
to be large, as in the problem set.

To solve this equation not using Green’s function, we first look for
a solution of the homogeneous problem which at large distances gives
scattered plus incident waves.

d = Z Cr ™ (1, p).

m=—o0
At large distances we have

® — ™ 4 outgoing waves.

15.3 Relation to the (General Propagation
Problem

We could instead consider the general problem of propagation, but at
this time we are just considering the case of scattering, for which the
source lies in a homogeneous region where V(r) = 0 and o and 7 are
constant. The propagation problem is more general because it allows
the source to be anywhere.

15.4 Simplification of Scattering Problem

For the scattering problem, we are considering a beam of particles from
a distant (' > 1) point source in a homogeneous medium incident on
a target, which scatter and are detected by detectors far away (r > 1).
This latter condition is called the far field condition. In this case we
have seen that the problem can be simplified, and that we may explicitly
calculate the scattered Green’s function Gys(r,7’; \):
ik
Gis = Gi(r, 1", \) — Gio(r, 1, \) = ;X;hll(k;r)hll(kr’),
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with & = \/Ao/7 = VA/c, where ¢ is the speed. The value of X

depends on k and is obtained from the behavior of u; at large r = |x|.
We already know that u}(r) must be of the form

lim uh (r) = jilkr) + Xy(k)hy (kr),

since this is the asymptotic form of the solution of the differential equa-
tion. Thus scattering reduces to this form. All we need is X;, which
is obtained from the behavior of ! (7). In particular, we don’t need to
know anything about ub(r) if we are only interested in the scattering
problem, because at large distances it cancels out.

The large distance behavior of the function which satisfies the bound-
ary condition at small distances is what determines the scattering so-
lution. In this case r and r’ are both large enough that we are in
essentially a homogeneous region.

15.5 Scattering Amplitude

Consider the special problem where V' = 0, o = const., and 7 = const.,
with the boundary condition
8u1

ﬁ—kkul:Oforr:a.

In the problem set we found X; by satisfying this condition. The result

was
[kji(ka) — Kji(ka)]
[kh} (ka) — kh}(ka)]’
This equation is valid for r > a.
Given X, we can calculate the difference, G;— G so we can calculate
(G15. Thus we can determine the scattered wave, which we now do.
We calculate the scattered piece by recalling the expansion in terms
of spherical harmonics,

1= =

Gs=G—-Gy= ZY}m(H, oG (r,r"; N) = Gio(r, r"; N)]Y,™ (6, ).
lm

(15.7)
We substitute into this the radial part of the the scattered Green’s
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X

r origin 7 cosf
Figure 15.2: The geometry defining v and 6.

function,
G(r,r"; \) — Go(r,7"; N) Z Xl (1) kr)hl(l)(lm“'), (15.8)

and the spherical harmonics addition formula

o 20 + 1
ZY’” Y0 ¢) = ——Ficos)

m=—I

_ (4713 (21 + 1)Pcost)  (15.9)

where cosy = & - /. The geometry is shown in figure 15.2. The result
of plugging equations 15.8 and 15.9 into equation 15.7 is

Gs=G—Gy= Z Xl Yhi ( k:r)hl(k:r)(41)lPl(0059)(2l+1).

™

15.6 Kinematics of Scattered Waves

We take the limit kr — oo to get the far field behavior. In the asymp-
totic limit, the spherical Hankel function becomes

R ()22 — 1(—@')161'””.
x

Thus in the far field limit the scattered Green’s function becomes

ik@ikr (_
G—=Go— T kr 4rx

Zthl (kr") (i) (21 + 1) Py(cos 6).

This in the case for a detector very far away. We can write also this as
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G = Go= (0., F)
where
10,7 k) Z (20 + 1)(3)' P(cos 0) Xy (k) b} (kr'). (15.10)
=0

This is an independent proof that the scattered Green’s function, G' —
Gy, is precisely an outgoing wave with amplitude f.
The scattered part of the solution for the steady state problem is
given by
us, = e "G — Gy).
The energy scattered per unit time per unit solid angle will be propor-
tional to the energy per unit area, which is the energy flux u?. This in
turn is proportional to the scattering amplitude f. Thus
dE 5
dtdQ) ~ I
We know the radial differential ds = r2dr of the volume dV = dsd)
for a spherical shell, so that we get
dE dE ds
dtdQ — dtds dr

Note that dimensionally we have dcfjs = %2 and g—i =12, so that dctlfﬂ is

dimensionless. Thus it is the 1/r term in the scattered spherical wave
which assures conservation of energy.

15.7 Plane Wave Scattering

We now look at scattering from a plane wave. Let ' = |x| go to
infinity. This gives us

h(l) (krl)r’—>_o>o(_z.)l+1 elkr’l
! kr!

In this limit equation 15.10 becomes

f(,r k) —

eql4.9
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where
ekr’ 0o

—f(0,k) = —2 > (20 + 1) P(cos 6) X;. (15.11)
r 1=0

f(6,k) is called the scattering amplitude for a field observer from an
incident plane wave. We can now compute the total wave for the far
field limit with incident plane wave. It is

u = e G =e "G~ Gy+ Gy

ikr’ ikr
) et . e
—iwt ik-x
c ( 4Ty’ ) (e r f)

k-x

In this equation the term e’** corresponds to a plane wave and the
ikr .
term < f corresponds to an outgoing scattered wave. So

dE
2 [
] dtds?

This is a problem in the problem set.

15.8 Special Cases

So far we have considered the case in which all the physics occurs within
some region of space, outside of which we have essentially free space.
We thus require that in the area exterior to the region, V) = 0, 7 =
constant, and ¢ = constant. The source emits waves at x’, and we want
to find the wave amplitude at x. Note that for the Coulomb potential,
we have no free space, but we may instead establish a distance after
which we may ignore the potential.

15.8.1 Homogeneous Source; Inhomogeneous Ob-
server

In this case X’ is in a region where V(1) =~ 0, and ¢ and 7 are constant.
We define ug to be the steady state solution to the point source problem
without a scatterer present, i.e., ug is the free space solution.

Uy = G_WtGo,

18 Apr p8
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where —_—
e’L X—X
Go

- drr|x — x|

Further we define the scattered solution
Us = U — Ug.

To find us we use equation 15.1 to get the spherical wave expansion

ik
GOl = ?jl(l{?’f’<)hl(1)<k7”>).

Thus
us = e “HG — Gy).

For the case of a homogeneous source and an inhomogeneous observer
rv =1,r.=r=0. We take

u$) (1) = VY (kr').

Remember that ' is outside the region of scattering, so u), solves the 20 Apr p4
free space equation, 15.3,

[ ld (rz d) +l(l+1)—k:2] Uy = 0, (15.12)

rZdr dr 72

where k% = Ao /7 with the condition u}(r) finite as 7 — oo. The general eq14.10
solution to equation 15.12 is

u$) (') = hD (kr').

We still need to solve the full problem for u; with the total effective
potential V' (r) # 0.

15.8.2 Homogeneous Observer; Inhomogeneous Source

In this case the source point is in the interior region. We want to find 20 Apr p5
u for x inside the medium, but we cannot use the u, method as we did

in case 1. The reason why it is not reasonable to separate uy and ug in

this case is because the source is still inside the scattering region.



216 CHAPTER 15. SCATTERING IN 3-DIM

We replace r~ — r and r~ — 7’ so that
uy (r) — by (kr)

and u’ (r) satisfies the full potential problem So once again we only
need to solve for ugl)(r). The physics looks the same in case 1 and
case 2, and the solutions in these two cases are reciprocal. This is a
manifestation of Green’s reciprocity principle. The case of a field inside
due to a source outside looks like the case of a field outside due to a

source inside.

15.8.3 Homogeneous Source; Homogeneous Observer

For this case both points are in exterior region. By explicitly taking
|x| > |x| we make this a special case of the previous case. Thus we
have r~ — r and r- — r’. Now both u; and wuy satisfy the reduced
ordinary differential equation

1d{(,d I(l+1) 9
[_ﬂm“ (T d?") + 7”2 —k Ur2 = 07 (1513)
eql4rad where u; satisfies the lower boundary condition and wus satisfies the

upper boundary condition. As we have seen, the asymptotic solutions
to this equation are

Y = k) + X (k). (15.14)
WPy = O (kr). (15.15)
eql4.11,12 To obtain X; we must solve
20 Apr p6 1 d d I(1+1
[—rgdr (7"27(7")6”> + < : 2 : +V(7”)> 7(r) — )\0] uy =0,

and then take r > 1. We can then get X;(k) simply by comparing
equations 15.14 and 15.15. The scattered wave is then
us = e NG — Gy),
where ,
G —GY — ZTke_lehl(l)(kr)hgl)(kr').

We see that the field at x is due to source waves uy and scattered waves
us.
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Homogeneous Source and Observer, Far Field

For this case the source and the field point are out of the region of
interaction. We take r > 7’ and ' — oo.
For these values of r and ' we have V = 0 and 7 and o constant.

In this case
eik\x—x’|—iwt

—iwt —iwt — 15.1
e G — TG e (15.16)
< (20 + 1 (Fel)
Z o 1)!P(cos 0)G? (15.17)
=0
where . (Eq.q)
G = Zjulkr)h{" (kr.) (15.18)
‘ ‘ (Eq.h)
u=e "“'G =e Gy + u, (15.19)
where (Eq.i)

A 22 Apr p3
us = e_Wt(G Go)

- —zthXl

(20 + 1)( Dl Py(cos H)hl(l)(kr)hl(l)(krl)

where for large r,
up — jilkr) + Xh\" (kr) (15.20)

This is the large r behavior of the solution satisfying the small » bound- (Eq.k)
ary condition.

15.8.4 Both Points in Interior Region

We put x very far away, next to a detector. The assumption that x lies
in the vicinity of a detector implies kr > 1. This allows us to make
the following simplification from case 2:

Y (kr) — (—i)l(;:)eik’". (15.21)

Thus we can rewrite u;. We have (Eq.m)
20 Apr p7
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us = e (G — Gy) (15.22)

and the simplification (Eq.n)

Gl — ji(kr R (k). (15.23)

15.8.5 Summary

Here is a summary of the cases we have looked at

case 4 need to know uq, us everywhere
cases 1, 2 mneed to know u; everywhere
case 3 need to know wu; at large r only

We now look at two more special cases.

15.8.6 Far Field Observation

Make a large r expansion (r — o00):

—1

B (k) = (=)' (e (15.24)
r

e—i(wt—k\x—x’D e—i(wt—kr) 5 0k 15 95

U= 47TT‘X—X/| + r f(7r7 ) ( . )

The term =" f(0,7' k) is explicitly just the outgoing wave. We

found

1 o0

FO,7" k) = —S"(20 + 1)(i) By(cos ) X, h™ (k) (15.26)
it

The term f(6, 7', k) is called the scattering amplitude for a point source
at 7. The flux of energy is proportional to f2.
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15.8.7 Distant Source: ' — oo

Let the distance of thee source go to infinity. Define
k = k(—12") (15.27)

and in f, let 7’ — oo. This gives us

ikr’ —i(wt—kr)

€ €

—i(wt—k-x)
u— e + — f(0,k) (15.28)
We can then get
f= % S (20 + 1) Py(cos 6) X, (15.29)
1=0

This equation is seen in quantum mechanics. f is called the scattering

amplitude at angle 6, and does not depend on ¢ due to symmetry. The

basic idea is that plane waves come in, and a scattered wave goes out.
The wave number k comes from the incident plane wave.

15.9 The Physical significance of X;

Recall that X; is determined by the large distance behavior of the solu-
tion which satisfies the short distance boundary condition. X is defined
by

ut? (kr) — u(ker) + Xi(k)hy" (kr). (15.30)

This equation holds for large r with V' = 0 and o, 7 constant. By using
the identity

, 1
gilkr) = 5 (h (kr) + h? (kr))
we can rewrite equation 15.30 as
1
u (kr) = 5 [ (kr) + (1 + 2X0R(" (k)] (15.31)

We now define §,(k) by

142X, = e2ok),

(Eq.p)
22 Apr pb6

(Eq.q)

22 Apr p7
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We will prove that ¢;(k) is real. This definition allows us to rewrite
equation 15.31 as

1 )
ut (kr) — 5 (1 (k) + OB ()]

or
1 . . )
u (kr) = e [emMh? 4 eMnt] . (15.32)

The solution u} satisfies a real differential equation. The boundary
condition at r — 0 gives real coefficients. Thus ! is real up to an
overall constant factor. This implies §; real. Another way of seeing this
is to note that by the definition of hl(l) and hl@) we have

W (kr) = [hf? (k)]

Thus the bracketed expression in equation 15.32 is an element plus
its complex conjugate, which is therefore real. If u\(kr) € R, then

5l(]<7’l“) € R.
We now look at the second term in equation 15.32 for far fields,

?

ei‘slhl(l)(kr)ﬂei‘sl(m_—r(—i)leikr.

Note that
(_Z)l — e*iﬂ'l/2.
This gives
o0 hl(l)(k;r) _ Y itkr—ml/245)
r

So

1

b (kr) ~ e sin(kr — 7wl /2 + §,(k)) r— 00. (15.33)

Thus &;(k) is the phase shift of the Ith partial wave at wave number k.
In the case that V = 0 we have

ull(k‘r) — ullyo(kr).
If there is no potential, then we have

Xl(k’) — 0,
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u
RO
R, r
Figure 15.3: Phase shift due to potential.
22 Apr p9 and by using the asymptotic expansion of j, we see that equation 15.30
becomes l
1
ulLO(r) ~ sin (k‘r — 7;) . (15.34)
Thus the phase shift §;(k) is zero if the potential is zero. eql4.2/

Consider the values of r for which the waves u; and u; g are zero in 25 Apr pl
the far field limit. For equation 15.33 and equation 15.34 respectively, o Apr p2
the zeros occur when 25 Apr p3

I
kRn—%+(5l:n7r,

and l
kRY — % = nm.
By taking the difference of these equations we have
k(R, — RY) = —6,(k). (15.35)

Thus 0;(k) gives the large distance difference of phase between solutions (eq14.25
with interaction and without interaction. This situation is shown in fig-

ure 15.3. For the case shown in the figure, we have R® > R,, which figl/c
means 0; > 0. Note that turning on the interaction “pulls in” the scat-

tered wave. Thus we identify two situations. §; > 0 corresponds to an
attractive potential, which pulls in the wave, while §; < 0 corresponds

to a repulsive potential, which pushes out the wave.
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We now verify this behavior by looking at the differential equation
for the quantum mechanical case. We now turn to the quantum me-

chanical case. In this case we set 7(r) = h*/2m and k?(x) = Z2E in

h2
the equation
1d{,d V()  Xo(r)]
- — £ — =0.

l 2 dr ( dr)* RO R

So for the radial equation with no interaction potential we have Ao /7 =
2mE/ 7%, while for the radial equation with an interaction potential we
have Ao /7 = 2m(E — V)/h®. Thus the effect of the interaction is to
change the wave number from

2mE
o=
to an effective wave number
2m(E -V
K2 (r) = m(hQ) (15.36)

Suppose we have an attractive potential, V(r) > 0. Then from
equation 15.36 we see k*(r) > k2, which means momentum is increasing.
Also, since k*(r) > 0, increasing k? increases the curvature of u, which
means the wavelength \(r) decreases and the kinetic energy increases.
Thus the case k%(r) > [2 corresponds to an attractive potential pulling
in a wave, which means &;(k) > 0. The phase shift ¢;(k) > 0 is a
measure of how much the wave is pulled in. Note that this situation is
essentially that of a wave equation for a wave moving through a region
of variable index of refraction.

Now consider a repulsive potential with [ = 0, as shown in figure
15.4. We have V(r) = E for r = rg, and V(r) > E for r > 5. In
this latter case equation 15.36 indicates that k%(r) > 0, which means
the wave will be attenuated. Thus, as the wave penetrates the barrier,
there will be exponential decay rather than propagation.

15.9.1 Calculating d;(k)

It is possible to calculate d;(k) directly from u} without calculating
X;(k) as an intermediate step. To do this, let r — oo and then compare
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To T

Figure 15.4: A repulsive potential.

this u! with the general asymptotic form from equation 15.33, u ~
sin(kr — In/2 4+ 0;(k))/r. A different method for calculating §;(k) is
presented in a later section.

15.10 Scattering from a Sphere

pr:ScSphl
We now look at the example of scattering from a sphere, which was

already solved in the homework.
We have the boundary conditions

V=0atr=a

—ul 4+ Kkuy =0 at r = a.

or
We found in problem set 2, that X; for this problem is 25 Apr p7
[kji(ka) — Kji(ka)]

A= kb (ka) — kh® (ka)] (15.37)

by solving the radial equation. Stuff missing
Now look at the long wavelength limit, which is also the low energy
limit. In this case ka < 1 where k = 27/X. We know asymptotically
that
jilka) ~ (ka)',
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and
1

(ka>l+1 ’

" (ka) ~

Thus we have

a [ —
Xi(k) "= (ka)? ! (z . ZD <1

since l
2+1 _ (ka)
(ka) (o)1

Again, k = \/2mE/h*. We now look at the phase shift for low energy
scattering. We use the fact

Xy(k) ~ (ka)**!
to write

14+2X(k) = 20
= 14206+

Thus we have

S1(k) ~ (ka)* .

15.10.1 A Related Problem

We now turn to a related problem. Take an arbitrary potential, for
example

V = Vpe /e,

In this case the shape of Vg is similar, except that is has a potential
barrier for low values of r. V and Vg for this example are shown in
figure 15.5. The centrifugal barrier increases as [ increases, that is, it
gets steeper. Thus, as [ increases, the scattering phase shift gets smaller
and smaller since the centrifugal barrier gets steeper.

Recall that a represents the range of the potential and 2/ + 1 rep-
resents the effect of a potential barrier. We assert that in the long
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Vi(r) Verr (1)

To

Figure 15.5: The potential V and V.g for a particular example.

wave length limit, that is, low energy scattering, the phases shift goes
generally as

§1(k) ~ (ka)*™  for ka > 1.

This is a great simplification for low energy scattering. It means that
as long as ka < 1, we need only consider the first few [ in the infinite
series for the scattering amplitude f(6). In particular, the dominant
contribution will usually come from the [ = 0 term. For the case [ = 0,
the radial equation is easier to solve, and Xj(k) is easier to obtain.
Thus the partial wave expansion is very useful in the long wavelength,
or low energy, limit. This limit is the opposite of the geometrical or
physical optics limit.

The low energy limit is useful, for example, in the study of the
nuclear force, where the range of the potential is a ~ 10~*¥cm, which
gives ka < 1. Note that in the geometrical optics limit, ka > 1, it is
also possible to sum the series accurately. The summation is difficult in
the middle region, ka ~ 1. In this case many terms of the series must
be retained.

15.11 Calculation of Phase for a Hard Sph

We use the “special case” from above. Take k — oo (very high elastic
constant, very rigid media, a hard sphere). In this case u — 0 when

27 Apr pl
27 Apr p2
27 Apr p3

ere
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r = a. Thus we get from equation 15.37

__sinka
— ka
XO(k) - jetka
" ka
_Z'elka _ e*lka
25 etka

— _7[1 o 672ika]'

So

62i50 —1— [1 o e—Zik’a] — 6—22'/4:@’

and thus
do(k) = —ka. (15.38)

In terms of quantum mechanics, this is like having
V(r) = oo for r < a,

V(r) =0 for r > a.

Outside we get the asymptotic solution form given in equation 15.33.
For [ = 0 and substituting equation 15.38, this becomes

1
W\ = Zsin(kr — ka).
r

By substituting this into equation 15.13 it is easy to verify that this
is an exact solution for u{=. This is exactly what we would expect:
a free space spherical wave which satisfies the boundary condition at
r = a. The wave is pushed out by an amount ka. We thus see that
01(k) is determined by the boundary condition. This situation is shown

in figure 15.6.

15.12 Experimental Measurement

We now look at the experimental consequences. Assume that we have
solved for w; and know X;(k) and thus know §;(k). By writing the
scattering amplitude from equation 15.11 in terms of the phase shift

9i(k), we have
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V(r)

a r a r

Figure 15.6: An infinite potential wall.

62161 -1
21

Z (21 +1)P(cos )
ks

To get 9; for the solution for u;, we look at large r. Note that

€2i51 _ 1 eiél [eiél _ e—iél]
2i N 2i
= ¥ ging,.
So
=7 Z (21 + 1)e™ sin 6;P;(cos ). (15.39)

=0

15.12.1 Cross Section

This scattering amplitude is the quantity from which we determine the
energy or probability of the scattered wave. However, the scattering
amplitude is not a directly measurable experimental quantity.

Recall our original configuration of a source, an obstacle, and a
detector. The detector measures the number of particles intercepted
per unit time, dN/dt. (It may also distinguish energy of the intercepted
particle.) This number will be proportional to the solid angle covered
by the detector and the incident flux of particles. If we denote the
proportionality factor as o(6,¢), then this relationship says that the
rate at which particles are scattered into an element of solid angle is is
AN/dt = jincdo = jine(do/dQ)dS). Note that an element of solid angle
is related to an element of area by r2dQ) = dA. The scattered current

through area dA is then dN/dt = jinc(0(6, ¢)/d2)dA/r?. From this we

eqlq4.55

pr:CrSecl

pr:N2

pr:jincl
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eql4cs2

eql4.57
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identify the scattered current density

L obo) 1,
Jscat = Jinc dQ 7’2 .

Now the quantum mechanical current density j is defined in terms of
the wave function:

(15.40)

. h
i) = e |o! 5]
m
where in the far-field limit the boundary condition of scattering tells us
that the wave function goes as

ikr
Voot —S N (ezkz + 67]”(9, ¢)) )

The wave function has an incident plane wave part and a scattered
spherical wave part. The current density for the incident wave is then

hk
Jll’lC |N|272 - jlnCZ

and the current density for the scattered wave is

2 2
BEFOP ot x5, SO

scat - |N|2 7“2 (1541)

By comparing equations 15.40 and 15.41, we identify the differential
cross section as

do

- = e R (15.42)

This relationship between cross section and scattering amplitude
agrees with dimensional analysis. Note that the only dimensionful
quantity appear in equation 15.39 for f is k:

dim(f(6)) = dim(k™") = dim(length).
On the other hand, the dimension of the differential cross section is
dim[do /dS)] = dim[i?/1] and dim[|f(6, k)|?] = dim[[?].

Thus equation 15.42 is dimensionally valid. Note also that, because the
differential cross section is an area per solid angle, it must be real and
positive, which also agrees with | f|?. The total cross section is

/dQ /dQ|f0k|
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15.12.2 Notes on Cross Section

By using equation 15.39 we can calculate the differential cross section:

do 1

i Z (21 +1)(2" + 1)ei‘sl sin 6, sin Oy Pi(cos ) Py (cos )

1LI'=0

(15.43)
In this equation we get interference terms (cross terms). These interfer- eq14.60
ence terms prevent us from being able to think of the differential cross 27 Apr p6
section as a sum of contributions from each partial wave individually.
If we are measuring just o, we can integrate equation 15.43 to get

do
o = /de—Q (15.44)

- /kolQ

We can simplify this by using the orthogonality of the Legendre poly- eq14.61
nomials:

(20 + 1)(20' + 1)e™ sin 6,e = sin 6 P, (cos 0) Py (cos 0)
w=o

4
2041

In equation 15.44 the terms e’ cancel. So we now have

/dQB(cos 0) Py (cost) = oy

o(k) = /dQ|f(9,k:)|2

4 o
- ki; S (2 + 1) sin? 6. (15.45)
=0

From this we can conclude that eql4.6/
oo
g = Z ay,
1=0

where
4

= ﬁ(Ql + 1) sin? 4. (15.46)

g

Note that o; is the contribution of the total cross section of scattering eq14.65
from the 2] + 1 partial waves which have angular momentum [. There
are no interference effects, which is because of spherical symmetry. 27 Apr p7



eql4.67

pr:GeoLim1

27 Apr p8
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Another way to think about this point is that the measuring appa-
ratus has introduced an asymmetry in the field, and the we have inter-
ference effects in do/d€2. On the other hand, in the whole measurement
of o, there is still spherical symmetry, and thus no interference effects.
A measurement of o(k) is much more crude than a measurement of
do [dSQ.

Because sine is bounded by one, the total cross section of the partial
waves are also bounded:

max 47T
o S 0‘[ = ﬁ(Ql‘i‘l),
or, by using A = 27 /k,
L\ 2
A=A | — 20+ 1). 154
o —ar (5) @+ (15.47)

Note that the reality of ¢;(k) puts a maximum value on the contribution
o,(k) of the [th partial wave on the total cross section.

15.12.3 Geometrical Limit

In the geometrical limit we have ka > 1, which is the long wavelength
limit, A > a. Recall that in this limit

51 ~ (]{CL)2I+1.
Thus the dominant contribution to the cross section will come from
4 4
00 =1y sin? 6y = ﬁ(ka)Q = 47a®. (15.48)

From equation 15.47 we have

2
A
oy~ Am (27T> ,

and from equation 15.48 we have

2
— 47 \2 <“> .
o) ™ b\

Comparing these gives us o¢/of™ < 1 for a/\ < 1, which is the
fraction of the incident beam seen by an observer.



15.13. OPTICAL THEOREM 231

15.13 Optical Theorem

pr:OptThm1
We now take the imaginary part of equation 15.46:
1 o0
Im f (6 =7 > (21 + 1) sin® §;P(cos 6).
1=0
In the case that 6 = 0 we get
1 o0
Imf(0) = — > (20 + 1)sin® 4.
k=
By comparing this with equation 15.45 we obtain
k
Imf(0) =o0—.
47
This is called the optical theorem. The meaning of this is that the
imaginary part of the energy taken out of the forward beam goes into
scattering. This principle is called unitarity or conservation of momen-
tum. The quantity Im f(0)]g—o represents the radiation of the intensity
in the incident beam due to interference with the forward scattered
beam. This is just conservation of energy: energy removed from the
incident beam goes into the scattered wave. 29 Apr pl
15.14 Conservation of Probability Inter-
pretation:
29 Apr p2
15.14.1 Hard Sphere ok /4m as
For the case of a hard sphere of radius a we found that a proportional-
ity factor
0o = —ka. pr:HardSph1

In the case of (ka) < 1, only the lower terms of equation 15.39 matter.
Exact scattering amplitude from a hard sphere kK = 07 So for a sphere
of radius a, we have

(51 ~ (ka)Ql“.
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ra? ra?

strong forward peak

Figure 15.7: Scattering with a strong forward peak.

In the case that k — 0, we get (noting that e — 0):

?

k(—k’a) = —ia, as k — 0.

f(0) = %eidz sin 6y (k) Py(cos 0) = %eiéz(_ka) _

29 Apr p3 Thus
do 9
0= a“, as k — 0.
Note that the hard sphere differential cross section is spherically sym-
metric at low energy (that is, when ka < 1). In this case the total
cross section is

do
o | —= = 4mwad®.
ds?
For the geometrical optics limit, ka > 1, corresponding to short
wavelength and high energy, we would expect o ~ wa? since the sphere

looks like a circle, but instead we get
o~ 2(ma?).

The factor of two comes from contributions from all partial waves and

has a strong forward peak. The situation has the geometry shown in
figl4g figure 15.7. The figure is composed of a spherically symmetric part and

a forward peak, which each contribute wa? to the total cross section o.
29 Apr p4

15.15 Radiation of Sound Waves

pr:soundWv1l
We consider a non-viscous medium characterized by a sound velocity
v. In this medium is a hard sphere oscillating about the origin along
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the z-axis. The motion of the center of the sphere is given by

X, = cae” “'z,

where € < 1, and the velocity of the center of the sphere is then given
by

Vv, = —iwae “'3.
Note that the normal component of the velocity at the surface of the
sphere is

T+ Vephere = —iewae ™t cos f. (15.49)

where we have used n - Z = cos  with 6 measures from the Z-axis. The
minus sign appears because we choose n to point into the sphere. For
the velocity of the fluid outside of the hard sphere we have

Viuid = V(Pa

where ® is the velocity potential. Thus near the surface of the sphere
we have, up to first order in ¢,

87@
or

- V‘r:a =

r=a

We want to find the velocity potential where the velocity potential
satisfies the equation

, 107
\Y —I—Cj@ d(x,t) =0, r>a,

with the hard sphere boundary condition that the fluid and the sphere
move at the same radial velocity near the surface of the sphere,

N * Vgphere = TV * Vfuid-

The velocity of the fluid is then given by (using equation 15.49)

—0d
or

| = —icwae™" cos 6. (15.50)

eql4.88

eq14.93
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15.15.1 Steady State Solution
pr:sssd
The steady state solution is of the form
P(x,t) = e “'P(x,w),

where ®(x,w) satisfies

(V2 + 1?0 (x,w), r>a,

29 Apr p5 with the outgoing wave boundary condition (from equation 15.50)

0o

— = —1 6 = a.

ar iewa cos(f), r=a

Our boundary condition is of the form

0P
o= — a(f
or | _ =9:9),

where for our specific case

g(0,p) = —icwa cos 6. (15.51)
eq14.98 We want to solve the steady state equation subject to the boundary
condition. A more general form of the boundary condition is
0P
o + kD = g(0,p). (15.52)
,

eq14.99 We write
[-V? — K*|G(x,x; \) = §(x — x)/c,
where k? = \/c?. This is the standard form of the Green’s function in

the case that 7 = ¢, Ly = 7V?, and |x'||x| > 0. The solution of this
equation, which we found previously, is

2(kr R (krs)

khV (ka) — kB (ka)

(15.53)
(eq14.101 The general solution is given by a superposition of the Green’s function
29 Apr p6 solution for source points on the surface of the sphere,

CZG(X, x';\) =ik Z Yim (0, 0)Y (6, ¢)
Ilm
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Ox) = [ Gxx3A = w? +ie)g(0, p)atds. (15.54)

x'eS

By setting A = w? + ie, we have automatically incorporated the out-
going wave condition. Physically, g(6, p)a?dSY’ is the strength of the
disturbance.

We use equation 15.53 with r~ = 0 and r- = a. Thus z; is

akr) = [k (ka) — kB (ka)]ji(kr)

~[wji(ka) — ji(ka) A (k)
= —kW(i(ka)h" (ka)).

Recall that we have evaluated this Wronskian before, and plugging in
the result gives

i 7
ka) = —k =—— 15.55
a(ka) (ka)? ka? ( )
By combining equations 15.55 and 15.53 into equation 15.54, we obtain (eq14.106
29 Apr p7

TR Vi (0, )i (k)
) = @) R o o A (k)

Yim (8, @)V (k)

/dQWﬁxﬁ#ﬂQWCwﬁ

B % wh{D (ka) — kD (ka) ™ (15.56)
This is called the multipole expansion, where we also have defined eql4.108
9 = [ AVY5(0.6)9(0 2. (15.57)
Gim s the (I, m)th multipole moment of (6, ¢). eql14.109
2 May p2

15.15.2 Far Field Behavior
pr:farFld1

At distances far from the origin (r — oo) the spherical Hankel functions
can be approximated by
n (k) =~

k#ﬂﬁm, r> 1.
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In this limit the velocity potential can be written

where the amplitude factor f is given by

i G Y7 (0, ) (i)
f Q,QD = -7 7 7 .
0e) =5 %; kb (k,a) — kh{Y' (k, a)

This amplitude may be further decomposed into components of partic-
ular [ and m:

f = Z fl,mYEmOga 90)7
Im

where
(_Z‘)l—l-l gl,m
ko kb, a) — kY (K a)

The interpretation of the s is

fl,m =

=1 dipole radiation m=0,=%1
=2 quadrapole radiation m = 0,41, 42
=3 octopole radiation m=0,+1,+2,+£3

For the case [ = 1, the 3 possible m’s correspond to different polariza-
tions.

15.15.3 Special Case

We now return to the specific case of the general boundary condition,
equation 15.52, which applies to a hard sphere executing small oscilla-
tions. In this case the hard surface implies k = 0 and the oscillatory
motion implies that g is given by equation 15.51, which can be rewritten
in terms of the spherical harmonic Y:

, 3
9(0, ) = —iwaz,| @Yzo(@w)-
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By plugging this into equation 15.57, we have obtained the (I, m) com-
ponents of g(0, ¢),

= /dQ(—iwas)Ylm(@,qb)\/EYlo(&@)
= —iwas\/gémoéll.

This shows that the oscillating sphere only excites the Y;° mode.

1  —iwat 3
[ L S VTR
k—khY (ka) V 4m ! (6. ¢)
_ —iagwcos b
k2h\Y (ka)
Thus we have pure dipole radiation for this type of oscillation. This
final equation gives the radiation and shows the dependence on k. omitted
stuff
15.15.4 Energy Flux 2 May p4

Consider a sound wave with velocity
v =—-Vo(x,t),

where in the far field limit the velocity potential is

ikr
f(0,9)e ™", x— oo0.
r

d(x,t) —

We now obtain the rate dE/dt at which energy flows through a
surface. This is given by the energy flux through the surface,

dFE .
E E/dS.JEa

where jg is the energy flux vector. For sound waves the energy flux
vector can be expressed as a product of velocity and pressure,

jg = vp. (15.58)

gqm
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ask Baker
about this.
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This can be intuited as follows. The first law of thermodynamics says eq1/jup
that for an ideal fluid undergoing a reversible isentropic process, the Fw p299
change in internal energy dE matches the work done on the element,

—pdV'. The total energy flowingout of through the surface S is

dE dE dr
ds - ip = s:/d—:/dV:/d- ay .
/SS E= "0 T Js®ar ~ Js? P (pdt>

By comparing integrands we obtain equation 15.58, as desired. Note
that jg = vp has the correct dimensions for flux — that is, velocity
times pressure gives the correct dimensions for energy.

The velocity and pressure are defined in terms of the velocity po-
tential and density,

0P
x = -V, P=prg

We now look at the real parts of the velocity and the pressure for the
steady state solution,

1 . ,
Re v = §V€ iwt +V*€ZWt,

1 . .
Re p= §(pe—zwt +p*e—zwt>‘
The flux is then

j = RewvgRepgr
— 1 Vp* —|—V*p 4 efinth_i_ €2iwtv*p*'
4

The time averaged flux is then
. 1 * * 1 *
() = 7 (vp" +v'p) = JRe (xp"),
where we have used

<€—2iwt> + <e+2iwt> =0.
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The angled brackets represents the average over time. Note that x and
p* are still complex, but with their time dependence factored out. To
obtain p we use

wt

p(t) = e ™'p = —pwde ™",

from which we obtain

p=—pwd.
Thus the time averaged flux is
1
(jr) = §Re(—VCI>)(+iwe)¢*. (15.59)
The radial derivative of ® is
—Vd = o2 = —ik®.
or
Thus in this case the time averaged energy rate is
dE 23005 . /3 2 o lf
<dt> =rdQr - (jg) =r dﬁﬁwpk.
Therefore IE
1
— ) = —pkw|f|? 1. 15.60
<dt> SPkelfI > (15.60)

Plane Wave Approximation

Now suppose that instead of a spherical wave, we have a plane wave,
D(x, 1) = ekx—it,
In this special case the velocity and pressure are given by
v=-Vd=1:kd r>1,

p = p(—iw)®.
Using equation 15.59, the energy flux is

1 1

eql4.149

eql4.152

pr:PIWv2



240 CHAPTER 15. SCATTERING IN 3-DIM

The power radiated through the area element dA is then 2 May p&
dE k
—A_ | ds-j= PR 4 A,
dt dA 2
and we have 1 dB "
o = Incident flux = %. (15.61)

(eq14.158
15.15.5 Scattering From Plane Waves
The far field response to scattering from an incident plane wave is

) eikr
d(x) = > 4 f—.
r
Note that in the limit 7 — oo, the scattered wave ®g is fe*" /r. So
dE, 1
= —pk 2,
atdq ~ 2"

2 May p5 By definition, the differential cross section is given by the amount of
energy per unit solid angle per unit time divided by the incident energy
flux,

do _ G
dQY Incident flux
spkw '

In the second equality we have used equation 15.60 and 15.61. This
duplicates our earlier result, equation 15.42.
If we are just interested in the radiated wave and not the incident

flux, the angular distribution of power is
dpP dFE 1 9
Q" qan 2

Now expand f in terms of spherical harmonics,

f = Z Yi,mfl,m-
Iym
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The radiated differential power can then be written

apP 1 1 m ik g
OB ikpw|f|2 = ikpw (ZYZ fl,m) (Z v fl’,m’) '

I,m I'm’

where we have interference terms. The total power is
dP
P=[a0% = lfiml
dO o |fl7 |

In this case there is no interference. This is the analogue for sound
wave of the differential cross section we studied earlier. For the case of
a sphere

Ji0 # 0.

15.15.6 Spherical Symmetry

We now consider the situation where the properties of the medium
surrounding the fluid exhibit spherical symmetry. In this case the scat-
tering amplitude can be expanded in terms of spherical harmonics,

f(9> 90) = Z fl,mYlm(9> 90)'
Iym

This is called the multipole expansion. The term f;,, corresponds to
the mode of angular momentum radiation. Spherical symmetry here
means that the dynamic terms are spherically symmetric: o(r), 7(r),
and V(r). However, any initial condition or disturbance, such as g,
may have asymmetry. We now look at the external distance problem.

G = [ A (0,2)9(6. ).

For the general boundary condition the scattering amplitude is related
to g by
(_Z')H-l gl,m

f,m = 7 .
: ko kh®(ka) — kh(" (ka)

2 May p6

4 May pl
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For our case of small oscillations of a hard sphere, we have k =0 and 4 May p2

/3
Gim = —01.10m.0 4—25@@0

In this case the scattering amplitude becomes

0,0) = FinY" (0)
l,m

—laew —taeccos 0

= ——————cos = —————.
k2h\Y, (ka) kh" (ka)

Thus the differential power radiated is

ap 1,0 5 |acc cosQ
ds? 2 ko h (/{;a)
1 2,22
= %00829.
2 |nf (ka)

Notice that this cos? § dependence is opposite that of dipole radiation,
which goes like sin? 6. The total power radiated is in general given by

dP 1
P:/ 0% = L 2
W30 = 3ok L im

4 May p3 Note that there are no interference terms. It is simply a sum of power
from each partial wave.

15.16 Summary
1. The asymptotic form of the response function is

lim o} (r) = ji(kr) + Xy(k)h; (kr).

T—00

2. The scattering amplitude for a far-field observer due to an inci-
dent plane wave is

E’T‘

—Z (21 4+ 1)P,(cos0) X,
1=0
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3. The phase shift ¢;(k) is defined by the relation
1+2X; = k),
which results in a scattered wave solution of the form
1
ul (kr) ~ o sin(kr — wl/2 + 0,(k)) r — 00,
r

where J;(k) appears as a simple shift in the phase of the sine wave.
4. The scattering amplitude is given by

1 (e o]
= > (20 + 1)e™ sin ;P (cos b).
1=0

5. The differential cross section represents the effective area of the
scatterer for those particle which are deflected into the solid angle
dS?, and can be written in terms of the scattering amplitude as

do

— =f(0, k)|
= 15(0.)
6. The optical theorem is
k
Im f(6)]o=0 = UE'

It relates forward wave to the scattered wave.

7. The total cross section for scattering from a hard sphere in the
high energy limit is
o ~ 2(ma?).

15.17 References

See any old nuclear or high energy physics text, such as [Perkins87].
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Chapter 16

Heat Conduction in 3D

Chapter Goals:

e State the general response to the time-dependent
inhomogeneous heat equation.

e Describe the physical significance of the boundary
condition.

e Derive the temperature exterior to a fixed temper-
ature circle.

16.1 General Boundary Value Problem

We saw in an earlier chapter that the heat equation is

Lot )7 | T050) = a1

for x in R, with the linear operator
Ly = —Vkp(x)V.

For the time dependent problem need both an initial condition and a
boundary condition to determine a unique solution. The initial condi-
tion is

T(x,t) =To(x) for t=0.

245
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For our boundary condition we take the radiation condition,
krn - VT = a|Tux (s, t) — T(x,1)] for x on s.

Recall the the radiation condition came from the equilibrium condition
for radiation conduction balance. As an example of this sort of problem,
consider the boundary to be the surface of the earth. In the evening
time the temperature of the surface is determined by radiation. This is
a faster method of transfer than heat conduction. The above radiation
condition says that there exists a radiation conduction balance. Note
that when we consider convection, we must keep the velocity dependent
term x - V and the problem becomes non-linear. In this context v is
the motion of the medium due to convection.

The solution in terms of the Green’s function is given by the prin-

pr:GenSolHeat1 ciple of superposition

eql5.0
4 May p4

eqld.1

pr:Brom1

t
T(x,t) = /0 dt’ /R dx'G(x, t; %', ) p(x)§(x', 1)
t
—1—/ dt’ ds'G(x, t; %', 1) aTox (8, 1)
0 xes

+ /R G(x, 1%, 0)p(x )y (x) T ().

The integral containing p(x’)¢(x’,t") represents contributions due to
volume sources; the integral containing aTe (', t') represents contribu-
tions due to surface sources; and the integral containing p(x')c,(x’)To(x')
represents contributions due to the initial conditions. The integrations
over time and space can be done in either order, which ever is easiest.
The Green’s function is given by

o~ ) — ﬁ s(t—t") oy

G(x,t;x',t") = 57¢ G(x,x; A= —s), (16.1)
where L is the upward directed line along any constant Re s > 0. This
choice of contour is necessary since Lg is positive definite, which means
that all the singularities of G(x,x; A\ = —s) lie on the negative real
s axis. This integral, which gives the inverse Laplace transform, is
sometimes called the Bromwich integral. The Laplace space Green’s
function satisfies the differential equation

[Lo — Apcp]G(x,x;0) =0(x —x')  x,X €R,
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and the boundary condition
[krn -V +a]G(x,x',\)=0 xeRx €8S

If the dynamical variables c¢,(x), p(x), and xr(x) are spherically sym-
metric, then the Green’s function can be written as bilinear product of
spherical harmonics,

G(x,x;A) =Y V™0, 0)Gi(r, 7, Y™ (0, ¢).
By plugging this into equation 16.1, we obtain

G(x,t,x' 1) ZY ©)Gy(r, t;r' 1YY, (0, ")

where

d
G(r,t;r' t') = 2—726 OGN = —s).
7 May pl

16.2 Time Dependent Problem

We now consider the case in which the temperature is initially zero, and
the volume and surface sources undergo harmonic time dependence:

To(X, ) = O
pi(x,t) = pg(x)e ™
aTe(s',t) = aTu (s’)e‘i”t.

9

We want to find T'(x,t) for ¢t > 0. Note that if To(x) # 0 instead,

then in the following analysis we would also evaluate the third integral

in equation 16.1. For the conditions stated above, the temperature 7 May p2
response is

t )
T(x,t) = /0 dt’ /R dx'G(x, ;% ) p(x)G(x')e "

¢ o
—I—/ dt’ ds'G(x, t;x', t') Ty (s")e ™"
0 xeSs
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eqld. 15
7 May p3
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We are looking for the complete time response of the temperature rather
than the steady state response. The time integration is of the form

t ] / d t ! . !
/ dtG(X, t; X/, t/)efuut — / ieStG(X, X/; A= —S)/ efst —twt dt/
0 L 2 0
d 1 — e~ (stiw)t
— 78.@StG(X7 X/; A\ = _8)6—.
d G & )\ = — X
- [ = (x, . ) [e" — e "].(16.2)
L 271 S+ 1w

The contour of integration, L, is any upward-directed line parallel to
the imaginary axis in the left half plane. We got the first equality by
substituting in equation 16.1 and interchanging the s and ¢ integrations.
The second equality we got by noting

/t e—st’—iwt’dt _ /t e—(s—i—iw)t’dt/
0 0

1 —(s+iw
B s—i—iw(l_e o )t)'

If we allow Ty(z) # 0, then in evaluating the third integral of equation
16.1 we would also need to calculate the free space Green’s function, as
was done in chapter 10.
ds
G(x,t;x',0) = —eG A= —
(x,t;x',0) 57¢ (x,x; s)
ef(xfx’)2/4/<t 63
S — 16.
VATKkt ( )

This applies to the special case of radiation in the infinite one-dimensional
plane.

16.3 Evaluation of the Integrals

Recall that the Green’s function can also be written as a bilinear ex-
pansion of the eigenfunctions. The general form of solution for equation
16.3 is

>, e Mt (x)ud (X)) interior

I d)\’e_)‘/t%ImG(x, x', N +1ig) exterior. (16.4)

G(x,t;x',0) = {



eqlb.16
7 May p4
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In the case when there is explicit time dependence, it may prove useful
to integrate over ¢ first, and then integrate over s. The expressions in
equation 16.4 are particularly useful for large times. In this limit only
a small range of A\, must be used in the evaluation. In contrast, for
short times, an expression like equation 16.3 is more useful.

If the functions Ty, T, ¢ and p are spherically symmetric, then we
only need the spherically symmetric part of the Green’s function, Gj.
This was done in the second problem set. In contrast, for the problem
presently being considered, the boundary conditions are arbitrary, but
the sources are oscillating in time.

Now we will simplify the integral expression in equation 16.2.

To evaluate equation 16.2, we will use the fact from chapter 10 that
G(z,2'; s) has the form

e~ Vs

7

Note that the second term in equation 16.2 is
ds G(x,x'; A = —s)6

271 S + 1w

G(x,x,s) x

—iwt O

I

because the integrand decays in the right-hand plane as e V*. Thus
the fact that we have oscillating sources merely amounts to a change
in denominator,

e . (16.5)

/. —_
/zdsG(x,x’;/\ = —5)e St ds G(x, XA = =s)

) 271 S + 1w

We thus need to evaluate the first term in equation 16.2. We close
the contour in the left-hand s-plane, omitting the branch along the
negative real axis, as shown in figure 16.1. By Cauchy’s theorem, the
closed contour gives zero:

ds G(x,x'; A = —s)

— - e st =0.
L 2m S + 1w

The integrand vanishes exponentially along L, Ls. Over the small
circle around the origin we have
ds G(x,x'; A\ = —s)

, , e = e TG (x, X, N = iw).
271 S+ tw

Ask Baker
about rotating.

7 May pb

eqlbosc

figlba
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Im s

Ly \/EZZ'\/Q‘ /,
VERVF

N
./

Lo I
3 Re s
- A
)
Ly
Ls
Figure 16.1: Closed contour around branch cut.
7 May p6 This looks like a steady state piece. We can use equation 16.4 to write
7 May p7 .
ds G(x,x', A= —s) I =20 67’\’""/7“”(5}’(_)1;’:;) discrete,
P . e = A\t B
2mi s+ iw JedN < * t?I“;wG_(;‘,’x X %) ontinuum.
ds G ' A= —s)est 1 0 ds
s Glex A= —s)en 1 / TGx, XA = + i)
271 s+ w 21 |0 8 + 1w
—o0o g
+/ - ° G(x,x; A =45 —ig)].
0 s+ w
7 May p8 Change variables
N=—5
to obtain
ds G(x,x', A= —s) o d\N o1
— S o= ——|G '"A+ig) -G "N -1
27 S+ iw c /o iw— N 27m'[ (¢, %, A+ de) (x,x, i)
-\tl ARV .
oo e M'=Im G(x,x, N —ie
— d)\, T : ( ? ? )
0 tw— N

9 May pl
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16.4 Physics of the Heat Problem

We have been looking at how to evaluate the general solution of the
heat equation,

¢
T(x,t) = /0dt’/Rdx’G(x,t,x',t)p(x’)@(x’,t')
t
+/ dt'/ ds'G(x,t, %', t")aToxi (8, 1)
0 x in R
v / G(x,t, %, 0)p(x), ¢y (x') T (x).
X in R

We now look at the physics. We require the solution to satisfy the
initial condition

T(x,t) =Ty(x)=0 fort =0,
and the general regular boundary condition
[kr(x)n -V + a|T(x,t) = aTwxi (X, 1) xesS.
This boundary condition represents the balance between conduction

and radiation.

16.4.1 The Parameter ©
pr:Thetal

We can rewrite the regular boundary condition as

R (6
n- VT|X on S = —— [Text(su t) - T<X7 t)]x on S
KTh
= 0 [Text(3> t) - T(X’ zf)]x on S

where © = «/ky. The expression on the left had side is the conduction
in the body, while the expression on the right hand side is the radiation
into the body. Thus, this equation is a statement of energy balance.
The dynamic characteristic parameter in this equation is ©, which has
the dimensions of inverse distance:

o > 1

krn  distance’

We now consider large and small values of ©. 9 May p2
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HW comments
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Case 1: radiation important

In this region we have

o
O=—>1
Rth

For this case we have radiation at large s and conduction is small, which

means
T(x,t) ~ Texi(s,t) forxz € S.

Case 2: heat flux occurs

This applies to the case

o
O=—<x1.
Rth

Thus we take
lim aTiy = F(s,t),

Tipt— o0
a—0

where F'(s,t) is some particular heat flux at position s and time ¢. The
boundary condition then becomes a fixed flux condition,

R - VT(X,1)|x on s = F(s,1).

16.5 Example: Sphere

The region is the exterior region to a sphere with
Text(ea @, t) = Text(t)-

So we can write
1
G(x,t,x,t') = —Go(r, t,r" t).
(x,t,x',t") yym o(r,t,r' 1)

So we just need to evaluate equation 16.1. We will get the typical
functions of the theory of the heat equation.

We take the temperature T, on the surface of the sphere to be
uniform in space and constant in time:

7—;5(97 ®, t) = Text-
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In this case plugging equation 16.3 into 16.1 yields

T(r,t) = /dt/d:rG’ X, t; %', 0) Tyt

)2 /4Kt

/ dt / des— T,

a r—a
= T.—erfc ,
“r (\/41115)

where we define ask Baker

2 T
erf x = \/E/o dze*ZQ,
and
2 0 2
erfcx =1—erf x = ﬁ/x dze *. (16.6)

For short times, z is large, and for small times x is small and (Eq.14) eq15.32
is easy to evaluate. For large x we use integration by parts, Mysterious
equation omit-

erfc x = 2/00 zdze_z2l ted
\/_
At L))
2 29
. dZ 2
B 21: zQe

\/7?2 (2:(: 4x3+>

Thus we have a rapidly converging expansion for large x. For x < 1, 9 May pb
we can directly place the Taylor series of e~* inside the integral.

S\N

3\

16.5.1 Long Times

We have standard diffusion phenomena. As t — oo, the solution goes
T(r, t)H—o?%Tem. This is the steady state solution. It satisfies the con-
ditions

VT (x,t) = 0, x| > a,

T(x,t) = Texs, x| = a.
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If ( ¢
9 r—a
rr=—>—>1
4kt >

then we satisfy the steady state condition, and we can define 7 by

— )2 N2

7(7” %) zlandSOT:L %) .
AKkT 4kt

The variable 7 is the characteristic time which determines the rate of
diffusion. So for ¢ > 7, the temperature 7T is if the form of the steady
state solution.

16.5.2 Interior Case

Having considered the region exterior to the sphere, we now consider
the problem for the interior of the sphere. In particular, we take the
surface source T, to have harmonic time dependence and arbitrary
spatial independence:

Toi(t,5) = €“'Tii(5).

We further assume that there are no volume source and that the internal
temperature is initially zero:

pd(x,t) =0,T(x,t =0) =0.

In this case equation 16.2 reduces to

T(x,t) = /

X on s

t .
ds’ / dt'G(x, t; %', ¥ )ae™ To(t, s),
0

or

T(x,t) = /

ds’ [ozText(s’)/ dt'G(x,t,x’,t/)e_i”t/} :
X on s 0
This equation was computed previously for an external region. The

solution was

T(x,t) = /

X

/ ds' AT (") [e_mG(x, X3\ = iw)

3 )]

w— A\,
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This holds for the discrete case, which occurs when the region is the
interior of a sphere. For the continuous case, which is valid for the
external problem, we have

T(x,t) = ds' aTe(s") [ei”tG(x, X\ = iw)

1 [ SIm G(x, x5 A= N 4w
+ 7/ d)\/ef)\t ( : ) )
m Jo w— N
The first term in the bracketed expression is the steady state part of 9 May p7
the response. The second term is the transient part of the response.
These transient terms do not always vanish, as is the case in the fixed

flux problem, in which there is a zero eigenvalue. Many
HW comments
omitted
16.6 Summary 11 May pl
11 May p2

1. The general response to the time-dependent inhomogeneous heat

equation is 11 May p3
. 11 May p4
T(x,t) = / dt’/ dx'G(x,t; %', t") p(x)q(x', t') 11 May p5

0 R

t

+/ dt’ ds'G(x, t; X', t" ) aTox (8, 1)
0 x€ES

+ /R G(x, 1%, 0)p(x )y (x) T ().

2. The boundary condition for the heat equation can be written

- VT)x on 5 = O [Text(s,t) — T(x,1)]

x on S

where © = /Ky, If © > 1, then radiation is dominant, other-
wise if © < 1, then heat flux is dominant.

3. The temperature exterior to a fixed temperature circle is

T(r,t) = Textgerfc <i/;_/:;> ,

where

22

9 40
erfcle—erfx:ﬁ/x dze™



256 CHAPTER 16. HEAT CONDUCTION IN 3D

16.7 References

See the references of chapter 10.



Chapter 17

The Wave Equation

Chapter Goals:

e State the free space Green’s function in n-
dimensions.

e Describe the connection between the even— and
odd-dimensional Green’s functions.

17.1 introduction

The Retarded Green’s function for the wave equation satisfies

2
l—TV2 + J(‘?t?] G(x,t;x,t') = d(x —x)(t —t')

with the retarded boundary condition that Gg = 0 for ¢ < t’. The
solution to this equation is

dw

— e EG(x, %\ = w?), (17.1)
JL 2w

Gr(x, t;x' ") =

where the integration path L is any line in the upper half plane parallel eq16ft1
to the real axis and R = |x — x/| and where G(x,x’; \) satisfies

[-7V? — oA]G(x,X; \) = 6(x — X). (17.2)
We denote the solution of equation 17.2 in n-dimensions as G,,. We eq16B

257
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then have

C ( )\) 7;6“/)\/02}% ( - )
x,x'; = — 17.3
' 21\/ A/ 2

KT

47_H0 (k, R) (17.4)

in/A/c2R

Ga(x, X' A)

e

/-
G3(X7X 7)‘) 47T7'R )

(17.5)

where k = (/A/c2. Tt is readily verified that these three equations can
be written in the more general form

ko
21 R

@ww:i<

LR
e ) H (k. R).

The Fourier transform, equation 17.1, for the 3-dimensional case can be
reduced to the Fourier transform for the one dimensional case, which
we have already solved. The trick to do this is to rewrite the integral
as a derivative with respect to the constant parameter R, and then pull
the differential outside the integral.

d—we_i“(t_t/)Gg(x, X'\ = w?)

Gr(x,t,x',t') = /
L

27
dw i)
L 2T 4R

Lpaey (L 1Y 0 5
L 27 2rR/) OR 27
1 0 dw el

2rROR Ji 21 27¢
1 0

o s Y
- 27TR8RG1<X’t’X7t)

_ 19 E:
2rROR 121
where the f-function satisfies df(x/dx = d(x). Note that

(iw/c)R

. —iw(t—t")

ewpw—ﬂ
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11 May p6 Thus we can write
oy = L9y
Gs(x,t;x',t') = 5 R OR 27_9(6(15 t') — R)
1 /
= 47‘(’R7’5<C(t —t')— R/c)
1 /
= 47TR7'5(t —t'— R/c).
Our result is then
1 0 5(t—t —R/c)
/ /
_ - - — = . 17.
Gs(R,t —t') TWRGRGI(R’t t') o (17.6)
eqlb.4
13 May pl
17.2 Dimensionality
17.2.1 0Odd Dimensions _
pr:oddDim1
Note that H (%111(/’{:, R) is a trigonometric function for any odd integer.
Thus for n odd, we get 13 May p2
1 o\T
A S gy
Gn(R,t —1") < 5ROk Gi1(R,t —1t)
and -
1 0\
AN=|——==— A
Gn(F,N) ( wror) N
Thus o
i\
Go(RN) = (—27T R) GL(R,\)

for n odd. We also have

Gn.(R,t—1t) = (—1(9) 2 Gs(R,t —t') (17.7)
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17.2.2 Even Dimensions

Recall that the steady state Green’s function for 2-dimensions is
At

If we insert this into equation 17.1 we obtain the retarded Green’s
function,

¢ O(c(t—1t)—R)
2nT \/02(15 — )2 — R

Go(R,t —t') =

17.3 Physics

There are two ways to define electrostatics. The first is by Guass’s law
and the second is by it’s solution, Coulomb’s law. The same relationship
is true here.

17.3.1 0Odd Dimensions

We consider the n = 3-dimensional case,
(t—t —R/c)
dw Rt '

At time t the disturbance is zero everywhere except at the radius R =
c(t —t') from x’. We only see a disturbance on the spherical shell.

Gg(R,t - t/> -

17.3.2 Even Dimensions

In two dimensions the disturbance is felt at locations other than the
surface of the expanding spherical shell. In two dimensions we have

o, - ¢ Ot —t)— R _{_0 R>c(t—t),
2_27\/02(,5_75/)2_32_ #0 R<c(t—1).

The case G = 0 for R > ¢(t —t') makes sense since the disturbance has
not yet had time to reach the observer. We also have

_ ¢ ble(t=1) - R
27 o7 \/02(75 — )2 — R

(17.9)

— 00 as R — c(t —t).

pr:evDim1
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G

ct—t)R

Figure 17.1: Radial part of the 2-dimensional Green’s function.

Thus the maximum disturbance occurs at R — ¢(t—t'). Finally, G # 0
for R < ¢(t —t'). Thus we have propagation at speed ¢, as well as all
smaller velocities. This is called a wake. The disturbance is shown in
figure 17.1. We have not yet given a motivation for why G # 0 for
R > c(t —t'). This will be done in the next section, where we will also
give an alternative derivation of this result.

17.3.3 Connection between GF’s in 2 & 3-dim

We now calculate the Green’s function in 2-dimensions using the Green’s
function in 3-dimensions. This will help us to understand the difference
between even and odd dimensions. Consider the general inhomogeneous
wave equation in three dimensions,

2
[_Tvg n o;] u(,t) = o f(x,1). (17.10)

From our general theory we know that the solution of this equation can
be written in terms of the Green’s function as

t
u(x,t) = / dt’ / dx'Ga(x, t: %, )0 (X, 1). (17.11)
0
We now consider a particular source,

o f(X ) = 5(a")5(y)5(t — to).

This corresponds to a line source along the z-axis acting at time ¢t = t.
What equation does wu satisfy for this case? The solution will be
completely independent of z: u(x,t) = u(z,y,t) = u(z*+y* t) = u(p, t)

figl6a

eqlb.1

eql6.2

13 May p6



eql6.6
13 May p7

eql6.7

fig16b
16 May pl

16 May p2
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where p = 22 + 2, and the second equality follows from rotational
invariance. For this case equation 17.10 becomes

[—V% + Z@at?} u(z,y,t) = j_é(x)é(y)é(t — to).

Thus
U(.Qf, Y, t) = G2(P>t - to),
where GG was given in equation 17.9. We should be able to get the same

result by plugging the expression for (3, equation 17.6, in equation
17.11. Thus we have

t 1
u(x,t) :/0 dt'/dm’dy'dz'4

™

Ré(t —t'—=R/c)6(x)o(y)o(t — to)
(17.12)

Now let u(x,t) = u(z,y,0,t) = Ga(p,t —t') on the left hand side of

equation 17.12 and partially evaluate the right hand side to get

t oo 1 6(t—ty— R/c
Galpt=to) = [t [ ' (\/ﬁ”'

The disturbance at time t at the field point will be due to contributions
at z = 0 from p = ¢(t —t'). We also have disturbances at farther
distances which were emanated at an earlier time. This is shown in
figure 17.2.

Note that only the terms at 2’ contribute, where 22+ p? = c?(t—tg)?.
So we define

(17.13)

2 =2y = i\/CQ(t —t0)% — p?
We now consider the value of Gy using equation 17.13 for three
different regions.

o Gy =0if p> c(t—tp) for a signal emitted at z. This is true since
a signal emitted at any z will not have time to arrive at p since
in travels at velocity c.

o If p = ¢(t — ty), then the signal emitted from the point z = 0 at
time ty arrives at p at time t. Thus z4+ = 0.

e Finally if p < ¢(t — tp), then the signals emitted at time ¢ = tg
from the points z = z4 arrive at time t¢.

This is the origin of the wake.
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Y field p

line source
on z-axis

Figure 17.2: A line source in 3-dimensions.

17.4 Evaluation of Gy

We make a change of variables in equation 17.9,

R =\/p?+22

and thus /
zdz
AR =5
SO
dz' dR'
ﬁ = RZ — ,02.

The Green’s function G — 2 is then

1 o) [ dR'/c

=), VR

5(t—to — R'/c)

so the answer is
¢ Oc(t —ty) —p)

2nT \/CQ(t —t0)? — o2
We would get the same result if we took the inverse Fourier transform 16 May p3

of Hél). For heat equation, the character of the Green’s function is
independent of dimension; it is always Gaussian.

Go
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17.5 Summary

1. The free space Green’s function in n-dimensions is

. n_y
O G = ()
Gu(B3 ) = (27TR> HyZy(k R).

2. The connection between the fact that the 3-dimensional Green’s
function response propagates on the surface of a sphere and the
fact the the 2-dimensional Green’s function response propagates
inside of a cylinder is illustrated.

17.6 References

See [Fetter80] and [Stakgold67]. This chapter is mostly just an explo-
ration of how the number of dimensions affects the solution form.



Chapter 18

The Method of Steepest
Descent

pr:StDescl

Chapter Goals:

e Find the solution to the integral [I(w) =
[ dzetFg(2).

e Find the asymptotic form of the Gamma function.

e Find the asymptotic behavior of the Hankel func-

tion.
Suppose that we integrate over a contour C such as that shown in figure

18.1:

I(w) :/Cdze“’f(z)g(z). (18.1)

We want to find an expression for I(w) for large w. Without loss of eqi7.a
generality, we take w to be real and positive. This simply reflects the pr:Tint1
choice of what we call f(z). The first step will be to take the indefinite
integral. The second step will will then be to deform the contour C'

into a contour Cj such that

af

=0
Az 2=z

where z lies on the contour Cj.
In order to perform these operations we will first digress to a review

265
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20

C Co

Figure 18.1: Contour C' & deformation Cy with point zg.

of the methods of complex analysis which are needed to compute this
integral. Then we shall explicitly solve the integral.

18.1 Review of Complex Variables

Let z = z + iy and f(z,y) = u(z,y) + w(z,y) where f(z) is analytic
on the region which we are considering. In general a function f of
the complex variable z is analytic (or holomorphic) at a point zy if
its derivative exists not only at zg but also at each point z in some
neighborhood of 2y, and a function f is said to be analytic in a region
R if it is analytic at each point in R. In this case we have:

af d (u + iv) du n dv
—=—(u+w)=—+i—.
dz dz dz dz
Since the function is analytic, its derivative is independent of the path
of approach.

If we differentiate with respect to an infinitesimal change dz = dx,

we get

df du .dv

and if we differentiate with respect to an infinitesimal change dz = idy,
we get

df du . dv du dv
=t =i+ .
dz  d(iy)  d(iy) dy  dy
By comparing equations 18.2 and 18.3 and separating the resulting
equation into real and imaginary parts we get the Cauchy-Riemann

equations:

(18.3)
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Vv

Im =z

v constant

u constant

Re 2
Figure 18.2: Gradients of u and v.

du  dv dv  du
de  dy a de ~  dy’
These facts allow us to make the following four observations about
differentiation on the complex plane:
Observation 1. The gradient of a complex valued function is de-
picted in figure 18.2 for an integral curve of an analytic function. fig17.2

The product of gradients is given by the equation

dudv dudv
Vu-Vo=——+ ——=0
WV T U da + dy dy
The last equality follows from the Cauchy-Riemann equations. This
means that the lines for which w is constant are perpendicular (i.e.,
orthogonal) to the lines for which v is constant.
Observation 2. For the second derivatives we have the following

relations: » 4l g
u u v
e i [ 18.4
dz?  dx (dw) dx dy ( )
and » Py p p eql7.3
Gu_ a4 fduy 4 av) (18.5)
dy?  dy \dy dy \ dx

The differentials commute, so by combining equations 18.4 and 18.5 eq17.4

we get
P Pu_
dz?  dy?
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eql7.5

fig17.3
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u=Re f(z)

z=Re z

y=Imy

Figure 18.3: f(2) near a saddle-point.

and similarly
LGN
dz?  dy?
This means that analytic functions satisfy Laplace’s equation.
Observation 3. From Observation 2 we find that:
2 2

d“u d“u
If — >0 then — <0. 18.6
dax? dy? ( )
Thus we cannot have a maximum or a minimum of both u and v occur
anywhere in the complex plane. The point zy = x¢ + iy for which

du

du
=0 d —|, =0
dx|20 an dy’ZO

is called a saddle point. The Cauchy—Riemann equations and equation
18.6 imply that if df /dz = 0 at zp, then 2 is a saddle point of both
u(z,y) and v(z,y). This is illustrated in figure 18.3.

Observation 4. For an analytic function f = u+i4v and a differential
dl we have

df = dl-Vf
= dl-Vu+idl- V.

Note that |df /dz| is independent of the direction of dl due to analyticity.
Suppose that we chose dl to be perpendicular to Vu. In this case
dl-Vv=0,so

df =dl-Vu for dl||Vu.
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As the magnitude of f changes, the change dl - Vu is purely real, since
u(z,y) is real. Thus the real part of f has maximum change in the
direction where dl- Vv = 0, since |df /dz| is independent of direction.
Therefore dl-Vv = 0 gives the path of either steepest descent or steepest
ascent. The information given so far is insufficient to determine which.

18.2 Specification of Steepest Descent

We want to evaluate the integral from equation 18.1,

1w) = [ dze/Dg()

for w large. We take w to be real and positive. In the previous section
we wrote f(z) = u(z)+iv(z). Thus we want to know Re (f(z)) in order
to determine the leading order behavior of I(w) for w > 1.

To solve for I(w) we deform C' — Cj such that most of the contribu-
tion of the integral when w > 1 comes from a small region on Cjy. Thus
we need to make an optimal choice of contour. We want df /dz = 0 at
some point z = zg on the deformed contour Cy. We parameterize C
with the line

2(1) = a(7) +iy(7).

We want the region of the curve where u(7 = Re (f(7)) to be as lo-
calized as possible. Thus we want the contour to run in the direction
where u(7) has maximal change. As we saw at the end of the previ-
ous section, this occurs when v(z(7)) = v(7) remains constant. So our
deformed contour C has the property that

v(7) = a constant on Cj. (18.7)

This will uniquely determine the contour.

Note that we assume there is only one point where df /dz = 0. If
there were more than one such point, then we would merely repeat this
process at the new point and add its contribution.

Equation 18.7 is equivalent to the condition

Im[f(2(7)) = f(20)] = 0.

eql7.6
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The path for which this condition is satisfied is also the one for which

Re[f(2) = f(20)] = u(2) — u(z0)

changes most rapidly.

We want to evaluate /(w) for w large. Recalling the condition for a
local maximum or minimum that df /dz = 0, we note that it is useful
to rewrite the integral defined in equation 18.1 as

[(w) = / dzeT@ g (2) = 210 [ ool =G0 g (),

C Co
Note that since f(z) is an analytic function, the integral over Cj is equal
to the integral over C'. The main contribution is at the maximum of the
difference f(z) — f(20). We want to find the curve with the maximum
change, which has a local maximum at z;, which means we want the
quantity f(z) — f(z0) to be negative. Thus we want the curve along
which

Re[f(z) = f(20)] = u(z) — u(z0)
changes most rapidly and is negative. This is called the curve of steepest
descent. This condition specifies which of the two curves specified by

Im[f(z(7)) — f(z0)] = 0 we choose: we choose the path of steepest
descent.

18.3 Inverting a Series

We choose the parameterization

f(z) = f(z) = =7

so we get
2(1 =0) = z.

Note that 7 is real since Av(7) = 0 along the curve and f(z) < f(uy).
We need to invert the integral. Expand f(z) — f(z0) in a power
series about zg:

f(z) = f(20) = fﬂéfo) (z — 20)* + fm?E!ZO) (z—20)*+...=—72. (18.8)
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We also get
Z—Zg= ) apT" =T+ apT + a7 (18.9)
n=1

Note that there is no constant term in this series. This is because 7 = 0
implies z — zg = 0. Thus, if we had an n = 0 term, we couldn’t satisfy
this stipulation.

Plug equation 18.9 into 18.8:

1 oo 2 " o0 3
o L) (zwn) + L) <Zan7"> .

n=1 n=1

To calculate ay, forget the terms (f”(z9)/3!)(z — 20)*® on. The calcu-
lation of ay includes this term and the calculation of as includes the
following term. Thus

- f”;"zo)a%TQ + 0(73). (18'10)

Now let .,
f"(20)
21

Plugging this into equation 18.10 and canceling 72 yields

= Ret"

—1 = a?Re”
SO .
a2 _ 627'(' 2
! R
where —1 = €. So .
ay = ——c'"2EE), (18.11)

VR

The calculation of the a’s is the only messy part involved in finding
subsequent terms of the inverted series. For our purposes, it is sufficient
to have calculated a;. The + in equation 18.11 gives us two curves for
the first term:

T

Z— 20 " aiT = — e (=0Em/2

eql7.8

eql7.9

eq17.10
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We now assume that we have calculated the whole series, and use
the series to rewrite I(w). We now take our integral

I(w) = 160 [ dzelT Tz,
0

and make a variable substitution

dz
dz = —d
z I T
to obtain i
T+
I(w) = ewf(ZO)/T dTe_W2d—7Z_g(z(T)),

where 7, and 7_ are on the curve Cj on opposite sides of 7 = 0. We
expand the z(7) in the function g(z(7)) as

z:a17+a272+...

and thus p .
L) =3 e, (18.12)
dr oyr

where the ¢, can be determined from the a,, and g(z(7)). Thus we can
write

I(w) = e¥/0) Z/ T drem eyt

Thus, with no approximations being made so far, we can assert

T+

[(w) = e/ 3 cn/ dre=m 7"

n T—
Now let 7= — oo and 7, — oo. Our integral becomes
o0 [e's) 5

I(w) = ewf(z0) Z cn/ dre VT 1",

n=0 >

This is an elementary integral. We know

[o¢] 2 s
—wT® __
/ dre =4/,
—00 w
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d o0 2 d T ﬁ
2 —wr? _ —wrs _ [T
/ drre C dw /_oo dre dw \/; 2uw3/2’
(this is called differentiating with respect to a parameter), and similarly
o0 om  —wt? __ dn/oo —wr? 135(2771-1)
/_OO drt"e = (dw) n dre =7 S @t/ .

Since odd n gives zero by symmetry, we have

I(w) = e®f=0) Z cn/ dre T ",

n=0,2,4,.

All this gives

_wf(=0) e VT = . 1-3-5---(2m —1)
[(w)—e 0 lco\/;+ 3/2+\/_262m omy 2mi1)/2

The term cq4/7/w corresponds to Sterling’s formula and the term 2 \é/i

is the first correction to Sterling’s formula. The only Computatlon re-
maining is the dz/dr in equation 18.12.

18.4 Example 1: Expansion of [—function

pr:Gammal
We want to evaluate the integral

I(w) = /oo e 't dt.
0

18.4.1 Transforming the Integral

We want to get this equation into the standard form. We make an
elementary transformation to get it into the form

/ dze®!®) g(2)

We substitute ¢t = zw to get
/ dze " (zw)" (18.13)
0

= ww+1/ dze®los===], (18.14)
0
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For g = 1 we have

f(z) =logz—=z
and we have
daf 1
S _1=0at z=1.
dz =z

This is a saddle point. We chose to define ¢ on the interval
—T<p<T
so that ‘
z =re'’, log z = logr + ip.

This is analytic everywhere except the negative real axis, which we
don’t need.

18.4.2 The Curve of Steepest Descent

Since we know the saddle point, we can write

f(z) = f(z0) =logz — z+ 1.

So we just need to calculate

0 = Inlf(z) — f(x0) (18.15)
= p—rsine. (18.16)

We expect the lines of steepest assent and descent passing through z
to be perpendicular to each other. The two solutions of this equation
correspond to these curves. The solution ¢ = 0 gives a line on the
positive real axis. The other solution is

®

= 18.1
r - (18.17)

2
~ 1+% for o < 1. (18.18)

We haven’t yet formally shown which one is the line of steepest ascent
and descent. This is determined by looking at the behavior of f(z) on
each line.
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By looking at log z — z + 1 we see that f(z) — f(zp) can be written

f(z) = f(z0) = logz—(2—1) (18.19)

= Y culz—1)"

We have to invert this in order to get the asymptotic expansion of
the gamma function. We expand equation 18.19 in a power series, after
noting that logz = log[(z — 1) + 1]:

1 1 1
e (=12 (2= 1P = (=1
R VGRS VAL (GRS VAR
We plug in
2(1) — 1= At + Br* 4+ C1 + O(t%)
2 1 2 3\2 1 2\3 1 4 5
-7 = —§<AT+BT +C17) —|—§(AT+BT) —Z(AT) + O(1°)
1 A2 B? Al
:_éﬁﬁ—A<B—3>ﬁ—<2+AC—%B+4>#+OUW

Comparing coefficients on the left and right hand side, we get

. A?=2
™. AB-A?/3)=0

B? At
T 7+AC’—AQB+Z:0.

This method is called inverting the power series. We find

A=2,
C=v2/8.

The positive roots were chosen for convenience. Now we calculate what
the ¢,,’s are from

o) = 3 e
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Since g(z) =1 and

d—Z:A+2BT+3CTQ+...,
dr

we know that

OOZ\/§7

2
(Y

Finally, we plug in these values:

/Ooe_ttwdt = I(w)
0

T Co T
o [co w+22;}é:2+...1

21 \ 2T

w 12w3/2

+ ...

which agrees with Abramowitz & Stegun, formula 6.1.37.

18.5 Example 2: Asymptotic Hankel Func-

tion
pr:Hankell
We want to find the asymptotic form of the Hankel function, starting
with the integral representation
1 oo+t X
ngl) (Z) — / 6zsmhwfuwd,w
™ J—0
fig17.4 The contour of integration is the figure 18.4. The high index and argu-

ment behavior of the Hankel function
HM(z)

are important in high energy scattering. The index v is related to the
effect of an angular momentum barrier, and z to an energy barrier. In
this equation v is an arbitrary complex number and z is an arbitrary
complex number in a certain strip of the plane.
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Im w

Re w

Figure 18.4: Defining Contour for the Hankel function.

We now relabel the Hankel function as H{V(z), where

p
— = CoSWyp.
z

Note that p/z is real and 0 < p/z < 1, which implies 0 < wy < 7/2. So

1
H,(z) = m,/cdzezf(w)g(w)

where g(w) = 1, with
f(w) = sinhw — pw/z = sinh w — w cos wy.

To examine asymptotic values |z| > 1 with wy fixed, we want to deform
the contour so that it goes through a saddle point. Using the usual
method, we have

d
M = coshw — coswy = 0.
dw
We define
Wy = in
so that
cosh wq cosh iwy = coswy.
Thus

f(w = iw) = sinhiwy — iwg coswy = i[sin wy — wp cos wy)
so that

fw) — f(wy) = sinhw — w cos wy — i[sinwy — wy cos wy.
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I
Ascent mw

/4
Descent

Re w

Figure 18.5: Deformed contour for the Hankel function.

We want to find out what the curves are. Note that

d? f(w ) ..
f(2 ) = sinhw = ¢ sinwy
dw wW=iwo w=iwo

So we can write
1
—7% = f(w) — f(iwg) = ii(sinwo)(w —dwp)® ...,
To invert this series, we write

w—iwyg = AT+ BT 4+ O3 + ...

For now, we are just interested in the leading order term. So

1
—7% = §A27'2i(sin wo)

which implies
21

sinwg

A? =

Recall that we are looking for the tangent of Cy at wy. Thus we have

: [ 2
A= j:ewr/4 -
sin wy
2 ,
W —iwy = 44| —— /A1,
\ sin wo

The deformed curve Cy has the form shown in figure 18.5. The picture
neglects to take into account higher order terms. We choose the plus

SO
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sign to get the direction correct. Note that the curve of steepest ascent
is obtained by a rotation of /2 of the tangent, not the whole curve.
In the power series

o) T =Y e

n=0

where g(z(7)) = 1, we have

d
o ag higher order terms,

dr
SO
, 2
co=A=¢e"™ [~
\ sin wp
Note that
2 1
sinwy = 1—]9—227 22 —p?
z

The equation for Cy comes from
Im [f(w) = f(wo)] =0
where w = u + iv. So in the equation
Im [f(w) — f(wp)] = coshu sinv — v coswy — (sinwy — wp coswp) = 0.
Thus,
u — +00 implies coshu — +o00 SO v=0,m,

U — —00 implies coshu — —o0 SO v=0,m,

This gives the line of steepest assent and descent. The orientation of
the curves of ascent and descent are shown in figure 18.6 fig17.6
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Im w

Descent
Re w

Figure 18.6: Hankel function contours.

18.6 Summary

1. The asymptotic solution of the integral
I(w) = / dzeT @ g(2)
c
is

©  1.3.5---(2m—1
I(w) — ewf(ZO) [CO\/7+ Co ﬁ + ﬁ Z Com ( m )‘| ]
w m=2

9 w3/2 omq(2m+1)/2

2. The asymptotic expansion for the Gamma function is

00 2 V2
/e_tt“’dt:e_w[ 7T—1— 7T—I— ]

0 w o 12w3/2 T

3. The asymptotic behavior of the Hankel function is discussed in
section 17.4.

18.7 References

See [Dennery], as well as [Arfken85].



Chapter 19

High Energy Scattering

Chapter Goals:

e Derive the fundamental integral equation of scat-

tering.
25 May pl
e Derive the Born approximation.

e Derive the integral equation for the transition op-
erator.
The study of scattering involves the same equation (Schrodinger’s) as

before, but subject to specific boundary conditions. We want solutions
for the Schrodinger equation,

ihgtllf(x, t) = HU(x, 1), (19.1)

where the Hamiltonian is eql8.1
h2
H=—-—V*+V(x)=Hy+V.
2m
We look for steady state solutions of the form

U(x,t) = e EMNY (%), (19.2)

using the association E' = hw. In particular we want F > 0 solutions, eq18.3
since the solutions for ' < () are bound states. By substituting equation pr:hound1

281
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19.2 into 19.1 we find that Wx satisfies
(E—H)Vg(x)=0. (19.3)

The boundary condition of scattering requires that the wave function
be of the form
Up(x) = ™™ 4 Wg(x) (19.4)

where the incident wave number k; is

omE
k,;:,/z; 2.

We interpret equation 19.4 as meaning that the total wave function is
the sum of an incident plane wave e’*i* with wavelength \ = 27 /k;,
and a wave function due to scattering. This solution is illustrated by
the following picture:

T (Y
ez’k-x wS(X)

At distances far from the scatterer (r > 1), the scattered wave
function becomes!
ikr

U,(x) = er flkikp B)  forr>>1 (19.5)

where the final wave number k; is

omE
_Pr_ g A=

B K2

ky

The unit vector & simply indicates some arbitrary direction of interest.
Equation 19.5 is the correct equation for the scattered wave function.
The angular function f(k;, ky; E) is called the form factor and contains
the physical information of the interaction.

L Again, see most any quantum mechanics text.
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For the case of spherical symmetry
f(ky ki E) = f(ky-ki; E).

where ky - k; = kyk; cos .

We now would like to formulate the scattering problem for an arbi-
trary interaction. Thus we look at the relation of the above formulation
to Green’s functions. The form of equation 19.3 appropriate for Green’s
functions is

(E— H)G(x,x'; F) = 6(x — x').
Note the minus sign (used by convention) on the left hand side of this G 5/25/88
equation. We solved equation 19.3 by writing (for the asymptotic limit
x| — o)

m eikr’ m eikr’

G— ——" = _
- onh? ! B(x) onh? 1

[ + W (x)]

where U (x) satisfies
(E—H)Vg(x)=0.

The Green’s function holds asymptotically since §(x—x") — 0 as |x/| —

o0o. This is the solution of the Schrodinger equation which has the This needs
boundary condition of scattering. fixin’
pr:bcosl

19.1 Fundamental Integral Equation of Scat-

tering

‘ o G 5/25/88
The equation for a general Green’s function is 25 May p3
(E— H)G(x,x'; F) = 6(x — x'). (19.6)

Since H = Hy + V', where Hy = —h®V?/2m, the free space Green’s eql8.13
function satisfies

(E — Hy)Go(x,x'; F) = §(x — x).

As we have seen, the solution to this equation is See also Jack-
son, p.224.
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ikR
m e
Go=——5—5, 19.7
"7 2mh® R (19-7)
where R = |x — x/|. We now convert equation 19.6 into an integral eq18.15

equation. The general Green’s function equation can be written

(E— Hy)G =d(x—x')+V(x)G. (19.8)
eql8.16 We can now use Green’s second identity. We define an operator
Lo = FE — H,.

The operator Lg is hermitian, since both E and H, are. Recall that
25 May p4 Green’s second identity is

(8" Lou) = [ (uLo$),
where we now choose

S* = Gx,xE),
u = Go(X,X”;E),

with the Ly from above. We now have (using equation 19.8)
/de(X, X E)o(x' —x") =
/ drGo(x, x"; E)[6(x — x') + V(x)G(x, x"; E)],

SO
G(x",x") = Go(x',x") + /dZEGO(X,X”)V(X)G(X, x').

We can use the fact that G is symmetric (see equation 19.7) to write
G(x",x;F) = Gy(x",x"; E) + /deO(X”,x; E)V(x)G(x,x; E).
So, for x” — x and x — x1, we have

G(x,x; E) = Go(x,x'; E) + /dleO(x, x1; B)V(x1)G(x1,x; E).
(19.9)
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This is called the fundamental integral equation of scattering. This
integral is completely equivalent to equation 19.6. We now describe a
way to write equation 19.9 diagrammatically. We establish the following
correspondences.

G(x,x;}E) = 4_@47
X x/

Go(x,x';E) = ____

/dleo(x,xl;E)V(xl)G(xl,x’;E) = «—@

Thus a line indicates a free Green’s function}.(A di)ct1 indicates a po>t<en—
tial, and a GG in a circle represents the Green’s function in the presence
of the potential. The point x; represents the position of the last inter-
action. Thus equation 19.9 can be written

= <+ _<_.<_@47
X x  x x  x X1 x/

The arrowheads indicate the line of causality. This helps us to
remember the ordering of x’; x; and x.

/

19.2 Formal Scattering Theory

Now we want to derive this equation again more formally. We will
use the operator formalism, which we now introduce. The free Green’s
function equation is

h2 2 / /
lE—FQmV ] Go(x,x; E) = §(x — x'),

25 May pb

pr:OpForm1
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where the right hand side is just the identity matrix,
(x|1x") = 0(x — x'),
and (1);; = 6;;. We also write

h2

Go(x,x; E) [E + o

Vﬂzé@—x%

where the operator V'2 operates to the right. From these equations we

can write symbolically

and

This uses the symmetry of G operating on x or x’. Thus our manipula-
tions are essentially based on hermiticity. Because G is also symmetric,
we may also write

[E - H|G =1,

and

GIE — H] = 1.

We now want to rederive equation 19.9. We write
[E—H|G=1

and

[E— Hy— V]G =1.
We now multiply on the left by G to get

GolF — Hy — V]G =Gy - 1 = Gy.
With the aid of equation 19.11 this becomes
G - GoVG = GQ,

or

G =Gy + GyVG, (19.12)



eql8.31

19.2. FORMAL SCATTERING THEORY 287

where the term GyV' G symbolizes matrix multiplication, which is thus
as integral. This is equivalent to equation 19.9, which is what we wanted
to derive.
Note that
(x|GX) = G(x,X)
and

x|V|x) = V(x)d(x — x).

19.2.1 A short digression on operators

If an integral of the form
C(x1,%x3) = /dX/A(X]_,X/>BX,,X2)

were written as a discrete sum, we would let x; — 7, xo — 7, and
x' — k. We could then express it as

Cij — Z Aszk]
k

But now A, B, and C are just matrices, so we can express C' as a
matrix product C = AB. This can also be viewed as an operator
equation. Quantum mechanically, this can be represented as a product
of expectation values, either for a discrete spectrum,

(i|Cl5) = ;(ilAlkMleU%

or for a continuous spectrum,
GalClxa) = [ dx! (1] AJx) (X Blxca).
We now show that the form of the fundamental integral of scattering

expressed in equation 19.12 is equivalent to that in equation 19.9. If
we reexpress equation 19.12 in terms of expectation values, we have

(x|G|x") = (x|Go|x') + (x|GoVG|X').
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By comparing with equation 19.10, we see that the last term can be
written as

(x|GVGIx) = /dxldX2<X\G0\X1><X1|V’X2><X2|G|X/>
= [ dxudxa(x|Golxi)V (x1)d(x1 — x2) (xal GIX')
= [ dxax|Golxi)V (x1) x| GIx).
So by identifying

xGX) = G(xX)
(x|Golx') = Go(x,X)

we have our final result, identical to equation 19.9,
G(x,x) = Go(x,X') + /dleo(X,xl)V(xl)G(xl,x’)

27 May pl which we obtained using equation 19.12.

19.3 Summary of Operator Method

We started with

H - HO + V
and the algebraic formulas
(E—H)G =1,
(Ey — H)Gy = 1.

We then found that G satisfies the integral equation
G+ Gy + GV,

By noting that G(E — H) = 1, we also got
G =Gy + GVGy.

27 May p2
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19.3.1 Derivation of G = (F — H)™!

The trick is to multiply by Gy. Thus
G(E—Hy—V)=1-G,,

and so
G - GVGy = G.

Operators are nothing more than matrices. By inverting the equa-
tion, we get
1
CE-H

G

So G is the inverse operator of [E — H]. In this context it is useful to
define G in terms of its matrix elements:

G(x,x; E) = (x|G(E)[x)
where Im £ = 0. This arithmetic summarizes the arithmetic of Greens

Second Identity. We also found that the Green’s function solves the 27 May p3
following integral equation

G(x,x'; E) = Go(x,x'; E) + /d:z:GO(x, x1; E)V (21)G(x1,x; E).

We were able to express this graphically as well. The other equation
gives

G(x,x; F) = Go(x,x'; E) + /dasG(X,xl;E)V(xl)Go(xl,x’;E).

19.3.2 Born Approximation

Suppose the V(z) is small. Then in the first approximation G ~ Gy.
We originally used this to calculate the scattering amplitude f. We 27 May p4
now use perturbation methods to obtain a power series in V.
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19.4 Physical Interest

We now want to look at £ = E + ie. We place the source point at
2’ — —1r'Z, where r’ — oco. We can then write the free space Green’s

function as
kr!

. _ m ei ikz
Go(x,x; E) = QSR
where
2mE
k - %

In this limit the full Green’s function becomes, for the fundamental
integral equation of scattering, equation 19.9,

. m e o
xl;rr% G(x,x;FE) = —5 i {em + /da:lG(x, x1; B)V (2)e™>| .
(19.13)
Note that since
n?_,
H=—-—V
2m
we have ‘
[E — Hgle™™ = 0.
We define
WD (2) = e 4 / 1 G(x, x1; E)V (x1) e (19.14)
Then what we have shown is
ikr’
) m e
Jim Gl B) = =5 = W)

where [E — H]¥} = 0, and ¥} satisfies outgoing wave boundary condi-

tion for scattering. We can get \Ilfj) to any order in perturbation since
we have an explicit expression for it and G.
Now consider the case in which " — oo with

1. G=Go+G)VG
2. G=Gy+GVGy
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Case 2 implies that

ikr!

G = —2:;2 67,/ TH(x)  asr — oo. (19.15)
By inserting Eq. (19.15) into 1., we get eq:twoseva
moeF moer "
o 0 = = e [ Gl BV () 0 (1)
This implies that \Ifl(:r) (x) satisfies 27 May p6
U (x) = ekx / Go(x, x1; E)V (x0) 0L (1) (19.16)

This is the fundamental integral expression for ¥. Compare with Eq. twosevst
(19.14).

We now prove that \111(:“) satisfies scattering equation with the scat-
tering condition. We use the form of W) in Eq. (19.14).

(E—H)W = (E—Hy—V)e*=
+ /dxl(E — Hy — V)G (x,x1; B)V (1 )e™™
= —V(x)e®r* + /dxlé(x — XV (x;)e®™
= —V(x)e®* 4 V(x)ek™
= 0.

27 May p7

19.4.1 Satisfying the Scattering Condition

We use the form of equation (19.16) to prove that it does satisfy the
scattering condition. Let x = é,r where r — co. We use the result

ikr
. m e .
lim Go(x,x1; F) = ——5— iy
x=reéy 2nhe

T—00
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where ky = ké,. There is a minus in the exponent since we are taking
the limit as x approaches é,00 rather than —é,.00 as in equation (19.15).
Thus the limiting case is

ikr
W0 =t [ [axie oy () u x)|
r 2mh

We further define
eikr
— (k, ky; E)

lim W) (x) = e +

where f is the scattering amplitude to scatter a particle of incident wave
k to outgoing k; with energy F. This is the outgoing wave boundary
condition.

19.5 Physical Interpretation

We defined the wave function \Ifl(j) (x) using equation 19.13 whose com-
ponents have the following interpretation.

v (x) = ex oy / dx, Go(x, x15 E)V ()WL (%))
= qjincident (X) + \Ilscattered (X)

where "
lim  W,(x) = — f(k ky; E).
r

|x|=r—o0

The physical interpretation of this is shown graphically as follows.

— 7
Wx - —+ @

S

\Ilincident (X) ‘Pscattered (X>

19.6 Probability Amplitude

The differential cross section is given by
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do
@(k —ky) = |f(k, ky; E)|?

where f is the scattering amplitude for scattering with initial momen-
tum p = hk and final amplitude p; = hk; from a potential V' (x). The
scattering amplitude f is sometimes written

m
Pl s ) = = (kg [V L),

19.7 Review

1 Jun pl
We have obtained the integral equation for the Green’s function,

C(x,xX; E) = Go(x,X; E) + /deo(x, x1; E)V (21)G(x1,X; E).

For the case of a distant source we have seen

ikr’
; By = M g
X’Eljlooé G<X7 X/’ E) N _27Th2 r’ E

(%),
where
Ui (x) = > 4 /XmGO(X,X/; E)V(x1) ¥ (x1).

The first term is a plane wave. The integral represents a distorted wave.
Note that \Dg) (x) automatically satisfies the outgoing wave boundary
condition. (This is the advantage of the integral equation approach
over the differential equation approach.) To verify this, we took the
limit x — oco. We also obtained

\I/Sr) (x) = kx4 /dle(xl,x'; E)V(Xl)eik'xl.

We let E — E + ie to get a scattering solution,

eik-\x—x’| m
G ’ /; E ) - <_ ) )
(X B+ ie) |x — x/| omh?

where |k| = \/2mFE/h*. We also have shown that \1155) (x) satisfies

[E — HV' P (x) = 0.
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The wave function q}ﬁ;)(x) can also be written in the form

. ikr
\I](EJF)(X)XiO)ne/Lk.X—i_f(k’ kl;E)er 7

where we have obtained the following unique expression for f,
m
2rh?
where the integral represents a distorted wave. In particular, the term
e~ki% ig a free wave with the final momentum, V (x) is the interaction

f(k, ki3 B) = =Ty [ dxe 2V ()0 (x),

potential, and \Ifgr) (x) is the distorted wave. So the integral expression
for f is the overlap of ¥ and V with the outgoing final wave. Note
that we have made no use of spherical symmetry. All x contribute, so
we still need short distance behavior even for far distance results. The
differential cross section can be written in terms of f as

do

o — 2

k—ky

19.8 The Born Approximation

We now study a particular approximation technique to evaluate \I/gr) (x)
in

\I/Sr) (x) = kx4 /XmGO(X,X/; E)V(xl)\llg)(xl).

We assume that the potential is weak so that the distortion, as repre-
sented by the integral, is small. The condition that the distortion is
small is

small distortion = U (x) — ™| < 1.
In this case the potential must be sufficiently small, such that
/ dx,Go(x, x5 B (x1) 0 (x) < 1.

We now introduce the short hand of representing this integral by Vg,
the Born parameter:

Ve = /dleo(x, X' E)V(x1) 0 (x1) < 1.
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For Vp < 1 we may let \Ilgr) (x1) be replaced by e®** in f(k, k; F). In
this case f becomes fpom(k, ky; E), defined by

m —ix-(k—x
f(k,kf;E):—ﬁ/dxe (k=x/) Y (x).

In this approximation the cross section becomes
do Born dUB

2
a0 - a0 - |fB]"
This is called the first Born approximation. This approximation is valid
in certain high energy physics domains.
We now introduce the matrix notation

/dxe_ix'ka(X)\Ifl(j)(X) = <Xf|v|\1/£<+)>'

So in terms of this matrix element the differential cross section is

do 9
m - |f(kka7E)| )

where the scattering amplitude is given by

m (+
1 ke B) = = (x| VI 0).
We also define the “wave number” transfer q,

q=k; —k=(p;—pi)/h

Thus q is the same as (momentum transfer)/h. This allows us to write

f5=

m
—V

where the fourier transformed potential, V(q), is given by

V(q) = /da:e_iq'xV(x).

So in the first Born approximation, fp depends only on q.
Suppose that q — 0. In this case the potential simplifies to

V(q)ﬂ / dxV (x).

So the first Born approximation just gives us the f dependence on
the average of the potential. Notice that the first Born approximation
looses the imaginary part of f(k, ky; E) for fp in R, the real numbers.
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-k

Figure 19.1: Geometry of the scattered wave vectors.

19.8.1 Geometry

The relationship between k, k¢, q and 6 is shown in figure 19.1. For
the special case of elastic scattering we have

kf =k = 2mE /h? (elastic scattering).
In this case ¢? is given by

¢ = (kf—k) (k;—k)
= 2k* — 2k*cosf
= 2k*(1 — cosf)
= 4k*sin*(0/2).
Thus we have ¢ = 27sin(6/2). We thus know that ¢ will be small for

either £ — 0 (the low energy limit) or sin(6/2) — 0 (forward scatter-
ing).

19.8.2 Spherically Symmetric Case

In this case the potential V(x) is replaced by V(r). We choose the
z-axis along q and use spherical coordinates. The fourier transform of
the potential then becomes

f/(q) = /rzdrdcﬁd(cosG)e’iq”OSHV(r)

00 1 .
= 27T/ r2drV(r)/ d(cos@)e’“”cose
0 -1
4 00
- 7 rdrV (r)singr.
q Jo

This is a 1-dimensional fourier sine transform.
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19.8.3 Coulomb Case

We now choose a specific V(r) so that we can do the integral. We
choose the shielded Coulomb potential,

Vo
V(r) = —2e "l
(r) = e

In the problem set set we use « instead of V{;. The parameter « char-
acterizes the charge. The fourier sine transform of this potential is

(q)

B Aoy

——/ drsinrge™"®,
q Jo

and the differential cross section is then

do
0 = ’fB’Q
dQ Born
m -~ 2
= |—V
’ 2mh? (a)

5 (ama)\? 1 ?
= 4da ( 5 ) <> .
h q?a® +1
This is the shielded Coulomb scattering differential cros section in the
first Born approximation, where ¢ = 2k sin(6/2). Notice that as « — oo
this reduces to Rutherford scattering, which is a lucky accident.

We now look at characteristics of the differential cross section we
have obtained. Most of the cross section contribution comes from
qa = 2ksin(f/2) < 1. Now if ka > 1, then we must require § < 1,
which means that we can use the small angle approximation. In this
case out dominant cross section condition becomes qa =~ 2ka(0/2) < 1,
or < 1/ka. This gives a quantitative estimation of how strongly for-
ward peaked the scattered wave is. The condition ka > 1 corresponds
to the small A, or high energy, limit. In this case the wavelength is
much smaller that the particle, which means that most of the scatter-
ing will be in the forward direction. We can see how good the first Born
approximation is by evaluating the Born parameter in this limit. We

find
ma® 1
— K 1.

Vi = Vi
5=V 5
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In this equation Vj is the strength of the potential and a is the range of
the potential. Notice that ka > 1 can make Vp < 1 even if 1} is large.
Thus we have a dimensionless measure of the strength of the potential.

19.9 Scattering Approximation

We now want to look at the perturbation expansion for the differential
cross section,

do

Sl = lrkP

k—)kf

where the scattering amplitude f(k,ky) is

m
onh?

where the incident wave function is

Flk ki E) = — / dxe~*r =y ()0 (x), (19.17)

W) = e [ dxiGlxa, X5 B)V (xi)e™, (19.18)

\Ilg) (x) satisfies the outgoing wave condition. By combining equation
19.17 into 19.18 be obtain

fkki; E) = —% {/dxe_kf'x\/(x)e_k'x
[ dxdx'e™ =V (x)Glx, X E)V(x’)ek’x} .

The first integral represents a single interaction, while the second inte-
gral represents two or more interactions. By introducing the transition
operator, we can simplify the expression for the scattering amplitude,

f(k, ki3 E) = —%/dxdx/e*kf'x(}(x, x'; B)ek™,
2mh
We now define the transition operator 7. In function notation it is
T(x,x;E)=V(x)d(x—x)+V(x)G(x,x; E)V(X).
In operator notation, we can rewrite this equation as

T=V+VGV.
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Thus in matrix notation, our old equation for f,

1 kg3 B) = = (V[ 9),
is replaced by
kK) = —— (x,|T|k
f( ’ ) 27T7:L2<Xf’ | >7

Thus we now have two equivalent forms for expressing f.
In the first Born approximation we approximate 7' = V. T plays the
role in the exact theory what V plays in the first Born approximation.

19.10 Perturbation Expansion

pr:pertExpl
We now look at how the transition operator 7' can be used in dia-

gramatic perturbation theory. We make the following correspondences
between terms in the formulas and the graphical counterparts (these
are the “Feynman rules”): pr:FeynRull

An incoming line: k
X ik-x
represents "™ .

k
X ik
represents e~ ",

An outgoing line:

A vertex point:

X

e represents V(x).
A free propagator:

E,_X fepresents Go(xz, X1 ).

A circled G: ,

i,@_f represents G(x,x’).

Thus we can write the transition operator matrix element as

kk k k
KT = e+ N

The first diagram represents the first Born approximation, which cor-
responds to a single scatterer. The second diagram represents two or
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more scatterer, where the propagation occurs via any number of inter-
actions through G.
The integral equation for the full Green’s function,

G(x,x; E) = Go(x,x'; E) + /dle(x, x1; E)V(x1)G(x1,X; E),

has the following symbolic representation:

x X

xX x X x X
—>@—> = — +—>—0—>@—>
where x’ is the source point, x is the field point, and x; is one of the
interaction points.

19.10.1 Perturbation Expansion

In matrix language the integral equation for the full Green’s function
is

G = Gy + GV Gy,

which implies

G = Go(1—VGy)™.

Thus the following geometric series gives the solution to the integral
equation,

G = Go(1 + VG + (VGo)(VGo) + (VGo)(VGo)(VGy) + - ).

In symbolic notation, this expansion corresponds to

xX x X x X x x X x5 x9 x

—>@—> = » t_» ¢ +t_» o> ¢ »

We could also write the series expansion in integral notation. In this
case the third order in V' term, (VGo)(V Gy)(V Gy), is (writing right to
left)

/ dXﬂiXQngGO (X, X3)V(X3)G0<X3, XQ)V(XQ)G()(XQ, X1>V(X1)G0(X1, X/>,
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where, for example,

m 6ik-|xzfX3\

Go(x3,%g) = T orn2 X2 — X3|

Think of these terms as multiply scattered terms.
Now we can use this series to get a perturbation expansion for the
scattering amplitude f, that is, for the matrix element (x;|7k). In
symbolic language it is is this correct?

k., k k k
AT = NG 4 N @

To convert this to integral language we note that, for example, the
fourth Born approximation term is

k k

X X1 X9 X

In integral notation this is expressed as
[ dxaxdxyd, [V (x)Gox, x2)V (x3) Go ka2, x0)V (1) Go(x1, %)

We must integrate over all space since each of the interaction points
may occur at any place.

19.10.2 Use of the T-Matrix

An alternative approach is to eliminate all direct reference to G with-
out perturbation theory. We then obtain an integral equation for the
transition matrix. By using

G =Go(l—VGy) ™,

we have

VG =VGo(l —VGy) ™,
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so we can write the transition matrix as

T = V4+VG(1-VGy) 'V
= [1+VGy(1—-VGy) |V
= [(1-VGy) +VG(1-VGy) 'V
= (1-VGy) V.

This provides us with a new solution for T
T=(1-VGy) V.

We can write this as an integral equation, which would have the oper-
ator form

or

T=V +VGT.

This gives us another Lippman/Schwinger equation. Notice that T =
(1 -V Gy)™'V may be expanded in a power series in V just as was the
previous expression for G.

19.11 Summary

1. The fundamental integral equation of scattering is

G(x,x'; E) = Go(x,x'; E) + /dleo(x, x1; )V (x1)G(x1,%'; E).

19.12 References

See [Neyfeh, p360ff] for perturbation theory.



Appendix A
Symbols Used

(S,u) the brackets denote an inner product, 13.
* as a superscript, represents complex conjugation, 13.

V nabla, the differential operator in an arbitrary number of dimen-
sions, 7.

Ay, Ay constants used in determining the Green’s function, 28.

a the horizontal displacement between mass points on a string; an ar-
bitrary position on the string, 2, the left endpoint of a string,
6.

a1, as constants used in discussion of superposition, 23.

By, By constants used in determining the Green’s function, 28.
b the right endpoint of a string 6.

b(x) width of a water channel, 108.

C a constant used in determining the Green’s function, 29.

¢ left endpoint used in the discussion of the d-function, 24; constant
characterizing velocity, 39, 45.

D a constant used in determining the Green’s function, 29.

303
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d the differential operator; right endpoint used in the discussion of the
o-function, 24.

Ap change in momentum, 87.

Au; the transverse distance between adjacent points (u; — u;_1) on a
discrete string, 4.

Ax the longitudinal distance between adjacent points on a discrete
string, 4.

d(z — ') the delta function, 24, 129, 161.

Omn the Kroneker delta function, 36.

E energy, 74, 143.

e =2.7T1---.

e a small distance along the string, 27.

F(z,t) the external force on a continuous string, 1.

F.; the force over the interval [c,d], used in the discussion of the 4-
function, 24.

Feastic the elastic force on the ith mass point of a discrete string, 3.
F* the external force on the ith mass point of a discrete string, 3.

F}, the transverse force at the ith mass point on a string due to tension,
3.

Fiot the total force on the ith mass point of the string.

f(z) is the external force density divided by the mass density at posi-
tion z, 4.

f(2') a finite term used in discussion of asymptotic Green’s function,
42.

f1, fo force terms used in discussion of superposition, 23.
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f(6,k) the scattering amplitude for a field observer from an incident
plane wave, 214.

f(0,7', k) scattering amplitude, 214.

G(x, y;w?) the Green’s function for the Helmholtz equation, 26.
G 4 the advances Green’s function, 87.

G the scattered part of the steady state Green’s function, 184.
Ggr the retarded Green’s function, 86.

G (r,r'; A) reduced Green’s function, 132.

G the Fourier transform of the Green’s function, 88, the Laplace trans-
form of the Green’s function, 147.

gn(z, 2") asymptotic coefficient for Green’s function near an eigen value,
41.

~ angular difference between x and x’ used in scattering discussion,
185.

H the Hamiltonian, 195

H(M(z), H?(x) the first and second Hankel functions, 79.
h(z) equilibrium height of a surface wave, 108.

hi(z) the spherical Hankel function, 178.

hq(t) the effective force exerted by the string: F,/7,, 6.
hs(t) same as h,(t), generalized for both endpoints, 8.

h the reduced Plank’s constant, 74.

I(w) a general integral used in discussion of method of steepest descent,
265.

I,,, another Bessel function, 80.
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1 the index of mass points on a string, 2.

7 unit vector in the z-direction, 128.

J Jacobian function, 128.

j(r) the quantum mechanical current density, 227.
Jine the incident flux, 227.

Ji(x) the spherical Bessel function, 178.

jn heat current, 144.

J unit vector in the y-direction, 128.

K, another Bessel function, 80.

k the wave number, 38.

k% a short hand for V/7 used in infinite string problem, 63.
k; the spring constant at the ith mass point, 3.

t the thermal diffusity, 151.

kq the effective spring constant exerted by the string at endpoint a:
ka/Ta, 6.

L linear operator, 5.

Ly, centrifugal linear operator, 162.

L the angular momentum vector, 207.

[ dimension of length, 3.

[ the direction along the string in the positive x direction, 7.

A an arbitrary complex number representing the square of the fre-
quency continued into the complex plane, 27; wavelength of sur-
face waves, 108.
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A, nth eigen value for the normal mode problem, 37.

A the nth eigenvalue of the reduced operator Lé“ ’"), 133.

m dimension of mass, 3.

m; the mass of the particle at point ¢ on the discrete string, 2.
I eigenvalues for circular eigenfunctions, 131.

N the number of mass particles on the discrete string, 2; the number
of particles intercepted in a scattering experiment, 227.

ny(z) the spherical Neumann function, 178.

n the outward normal, 7.

) solid angle, 161.

w angular frequency, 9.

w, the natural frequency of the nth normal mode, 32.
p momentum, 74, 207.

® solution of the Klein Gordon equation, 75; total response due to a
plane wave scattering on an obstacle, 185.

®( incident plane wave used in scattering discussion, 185.
¢ angular coordinate, 128, 160.

¢n(x;,t) the normal modes, 38.

1 quantum mechanical wave function, 195

R(r) function used to obtain Bessel’s equation, 178.

Re take real value of whatever term imediately follows.

r radial coordinate, 128.
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S the “surface” (i.e., endpoints) of a one dimensional string, 7; an
arbitrary function used in the derivation of the Green’s identities,
13.

S(x) cross sectional area of a surface wave, 108.

o the cross section, 227.

o(x) the mass density of the string at position = 4.
T(x,x'; F) transition operator, 298.

t time, dimension 3, variable, 3.

7; the tension on the segment between the (i —1)th and ith mass points
on a string, 2.

© parameter in RBC for the heat equation, 251.

6 the angle of the string between mass points on a discrete string, 3;
angle in parameterization of complex plane, 63.

u(z,t) transverse displacement of string, 5; displacement of a surface
wave from equilibrium height, 108.

up(z) an arbitrary function used in the derivation of the Green’s iden-
tities, 13.

up(z) value of the transverse amplitude at ¢ = 0, 8.

up(x,w) steady state in free space due to a point source, 184.

uy(z) value of the derivative of the transverse amplitude at ¢ = 0, 8.
uy, usy functions used in discussion of superposition, 23.

uy solution of the homogeneous fixed string problem, 46.

u; the vertical displacement of the ith mass particle on a string, 2.
u™(r) the nth eigenfunction of Ly, 133.

uj(z) the normalized #-part of the spherical harmonic, 164.
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Ugeat the scattered part of the steady state response, 198.

u; modified solution of the homogeneous fixed string problem, 47.
V(z) the coefficient of elasticity of the string at position x, 1.

Vog the effective potential, 206.

W (uy,us) the Wronskian, 30.

X, coefficient of the scattered part of the wave relative to the incident
part, 187, 219.

x continuous position variable, 4.

r. the lower of the position point and source point, 30.
2~ the higher of the position point and source point, 30.
2’ the location of the d-function disturbance, 24.

x; discrete position variable, 4.

x;, the location of the d-function disturbance, 26.
Y;™(0,¢) the spherical harmonics, 164.

z(z) hight of a surface wave, 108.
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Index

addition formula 212

advanced Green’s function 87

all-spce problem 117, 174

analytic 46, 266

angular momentum 207

associated Legendre polynomial
168

asymptotic limit 49

Babenet’s principle 194

Bessel’s equation 79

Born approximation 294

bound states 281

boundary conditions 5, 111, 116,
145, 173; of scattereing
283

boundary value problem 1

branch cut 45, 60

Bromwich integral 246

Cartesian coordinates 128

Cauchy’s theorem 54

Cauchy-Riemann equations 266

causality 87

characteristic range 83

classical mechanics (vs. quantum
mechanics) 202, 207

closed string 6, discrete 37

coefficient of elasticity 4

completeness relation 51, 57, 76,
131, 169

313

Condon-Shortley phase conven-
tion 170

conservation of energy 144, 213

continuity condition 28

Coulomb potential 208

cross section 227

cutoff frequency 38, 66

De Broglie relation 203

degeneracy 39

delta function 24, 129

differential cross section 292

differential equation 3

diffraction 191

Dirichlet boundary conditions 8

discrete spectrum 49

dispersion relation 38

divergence 129, 161

effective force 7

effective spring constant 7

eigen function 32

eigenfunction expansion 131

eigen value problem 28, 68, 121,
133, 134, 140

eigen vector 32

elastic boundary conditions 6, 116

limiting cases, 7

elastic force 3

elastic media 8

elastic membrane 109
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energy 74, 143

energy levels 196

even dimensions, Green’s func-
tion in, 260

equations of motion 2

expansion theorem 57, 172

experimental scattering 208, 226

exterior problem 117, 122, 174

external force 3

far-field limit 208, 235

Feynman rules 299

forced oscillation problem 31, 73,
118

forced vibration 3

Fourier coefficient 58

Fourier integral 78, see also ezx-
pansion theorem

Fourier Inversion Theorem see in-
verse Fourier transform

Fourier-Bessel transform 83

Fourier transform 88

Fredholm equation 40

free oscillation problem 32

free space problem 151, 188

free vibration 3

fundamental integral equation of
scattering 285

Gamma function 273

Gaussian 153, 155

gradient 129, 161

general response problem 103, 117,
119

general solution, heat equation,
246

Generalized Fourier Integral 59

geometrical limit of scattering 230

Green’s first identity 14, 119

INDEX

Green’s function for the Helmholtz
equation, 26

Green’s reciprocity principle 30,

Green’s second identity 15, 119

Hamiltonian 195

Hankel function 79; asymptotic
form, 276

hard sphere, scattering from a,
231

heat conduction 143

heat current 144

heat equation 146

Helmholtz equation 9, 26

Hermitian analyticity 43

Hermitian operator 17, 119

holomorphic see analytic

homogeneous equation 28, 45

Huygen’s principle 194

impulsive force 86

infinite string 62

initial conditions 8

initial value problem 92, 119

inner product 13

inverting a series 270

interior problem 116, 122, 174

inverse Fourier transform 91

Jacobian 128

Kirchhoff’s formula 191

Klein Gordon equation 74

Lagrangian 110

Laplace transform 147

Laplace’s equation 268

Legendre’s equation 166

Legendre polynomial 168

Leibnitz formula 167

linear operator 5, 24

linearly independent 31
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mass density 4

membrane problem 138

method of images 122, 191

momentum operator 207

natural frequency 26, 32, 37, 42

natural modes 32, 37

Neumann boundary conditions
8

Newton’s Second Law 3

normal modes 32, 37, 117, 134

normalization 44, 58, 135, 169

odd dimensions, Green’s function
in, 259

open string 6

operator formalism 285

optical theorem 231

orthogonal 36

orthonormality 36, 58, 164, 169,
171

oscillating point source see forced
oscillation problem

outward normal 7

partial expansion 131

partial differential equation 5

periodic boundary conditions 6,
111, 116

perturbation expansion 299

plane wave 199, 213, 239

polar coordinates 128

poles 44

positive definite operator 20

potential energy 20

potential theory 186

principle of superposition 24, 131

quantum mechanical scattering
197

quantum mechanics 195

315

radiation 81

Rayleigh quotient 40

recurrence relation 167

reduced linear operator 132

regular boundary conditions 8

residues 44

retarded Green’s function 86, 120,
136

Rodrigues formula 168

scattered Green’s function 210

scattering Amplitude 211

scattering from a sphere 223

scattering wave 209

Schrodinger equation 39, 195

self-adjoint operator 52, 119

singular boundary conditions 8

shallow water condition 108

singularity 54

sound waves, radiation of, 232

specific heat 143

spectral theory 42

spherical coordinates 160

spherical harmonics 170

steady state scattering 183

steady state solution 9, 135, 196,
234

steepest descent, method of, 265

string 1

superposition see principle of

surface waves 108

temperature 143

tension 2

transition operator 298

transverse vibrations 2

travelling wave 38

wave propagation 66

wedge problem 136
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Wronskian 30



