
Computational Foundations of Human Social Intelligence
by

Max Kleiman-Weiner

B.S., Stanford University (2009)
MSc, University of Oxford (2010)
MSc, University of Oxford (2012)

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c©Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Brain and Cognitive Sciences

May 4, 2018

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joshua B. Tenenbaum

Professor of Computational Cognitive Science
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matthew A. Wilson

Sherman Fairchild Professor of Neuroscience and Picower Scholar
Director of Graduate Education for Brain and Cognitive Sciences



2



Computational Foundations of Human Social Intelligence

by

Max Kleiman-Weiner

Submitted to the Department of Brain and Cognitive Sciences
on May 4, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
This thesis develops formal computational cognitive models of the social intelligence un-
derlying human cooperation and morality. Human social intelligence is uniquely powerful.
We collaborate with others to accomplish together what none of us could do on our own;
we share the benefits of collaboration fairly and trust others to do the same. Even young
children work and play collaboratively, guided by normative principles, and with a sophisti-
cation unparalleled in other animal species. Here, I seek to understand these everyday feats
of social intelligence in computational terms. What are the cognitive representations and
processes that underlie these abilities and what are their origins? How can we apply these
cognitive principles to build machines that have the capacity to understand, learn from, and
cooperate with people?

The overarching formal framework of this thesis is the integration of individually ratio-
nal, hierarchical Bayesian models of learning, together with socially rational multi-agent
and game-theoretic models of cooperation. I use this framework to probe cognitive ques-
tions across three time-scales: evolutionary, developmental, and in the moment. First, I
investigate the evolutionary origins of the cognitive structures that enable cooperation and
support social learning. I then describe how these structures are used to learn social and
moral knowledge rapidly during development, leading to the accumulation of knowledge
over generations. Finally I show how this knowledge is used and generalized in the mo-
ment, across an infinitude of possible situations.

This framework is applied to a variety of cognitively challenging social inferences: de-
termining the intentions of others, distinguishing who is friend or foe, and inferring the
reputation of others all from just a single observation of behavior. It also answers how
these inferences enable fair and reciprocal cooperation, the computation of moral permis-
sibility, and moral learning. This framework predicts and explains human judgment and
behavior measured in large-scale multi-person experiments. Together, these results shine
light on how the scale and scope of human social behavior is ultimately grounded in the
sophistication of our social intelligence.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Computational Cognitive Science
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Chapter 1

Introduction

Ten thousand years ago, Homo sapiens living as hunters and gatherers began developing

the first notions of what eventually would become agriculture and industry. Today, we have

cities, airplanes, computers, medicines, science, and supermarkets. How did we get so

much from so little so quickly? To summarize a few hundred millennia of human history in

a few sentences: we collectively accumulated knowledge and technology by sharing what

was learned with each succeeding generation (Boyd & Richerson, 1988; Deutsch, 2011;

Henrich, 2015). This feat is driven by the power of our social intelligence. We collaborate

with others to accomplish together what none of us could do on our own, share the benefits

of collaboration fairly, and trust others to do the same (Humphrey, 1976; Tomasello, 1999,

2014). Even young children work and play collaboratively guided by normative principles,

with a sophistication unparalleled in other animal species (Vygotsky, 1978; Warneken &

Tomasello, 2006; Herrmann, Call, Hernández-Lloreda, Hare, & Tomasello, 2007; Spelke

& Kinzler, 2007; Hamlin, 2013).

These successes aren’t limited to the economic or scientific. We also develop sophisti-

cated abstract entities such as political systems and organized institutions that can enhance

our collaborations and amplify our knowledge (Coase, 1960; Posner, 1973; H. P. Young,

2001; Friedman, 2001). Moral and ethical systems have on average accumulated rights and

rules that have trended towards greater equality, more freedom, and less conflict (Pinker,

2011). Even on a micro-scale these systems permeate human life. Hunters and gatherers

shared food according to complex rituals and rules and today we decide whose name goes
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where on a scientific manuscript according to norms no less arcane.

Yet even with these successes, cooperation is anything but inevitable. A well studied

challenge is the problem of conflicting incentives: cooperation requires individuals to bare

personal costs in order to create these collective benefits which can lead to a “tragedy of the

commons” (Hardin, 1968). Successful cooperation also poses hard cognitive challenges

(Cosmides & Tooby, 1992; Pinker, 1997). How to distinguish friend from foe? Who

should we learn moral principles from and how do we learn them so quickly? When is

someone’s action deserving of condemnation or praise? What are reputations, how do we

learn them, and when do we manage our own? Compared to the variety and complexity of

these decisions and judgments, our experiences are sparse. We rarely encounter the same

exact situation twice. Yet we solve these problems everyday, whether its our first day of

elementary school or out to dinner as part of a job interview. In the natural world, human

social cognition is the most sophisticated known solution to these problems. In contrast, our

best artificial intelligences are often exceeded by the social skills of even a kindergartner.

How do we learn so much from so little so quickly?

Economists and computer scientists have developed formal quantitative frameworks to

try to understand these abilities, game theory being a prominent example (Binmore, 1994;

Gintis, 2009). However, these frameworks do not capture some of the most interesting as-

pects of human cooperation. Compared to behavioral automata (such as Tit-For-Tat) that

are hand-designed for cooperation in a single task, or reinforcement learning algorithms

that require long periods of trial-and-error learning, people cooperate much more flexibly

with much less experience (Fudenberg & Levine, 1998; Sigmund, 2010). In real life (unlike

a repeated prisoners dilemma), each social interaction is unique and complex. Real world

cooperation requires coordination over extended actions that unfold in space and time, as

well as the ability to plan in an infinite range of novel environments with potentially uncer-

tain and unequal payoffs. Distinctively human cooperation also requires abstraction: we

learn and plan with abstract moral principles that determine how the benefits of cooperation

should be distributed and how those who fail to cooperate should be treated. In contrast to

existing formal frameworks, psychologists have identified rich cognitive capacities such as

“theory of mind,” “joint intentions,” or “moral grammar” that might underlie human coop-
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eration (Wellman, 1992; Tomasello, Carpenter, Call, Behne, & Moll, 2005; Mikhail, 2007).

But without quantitative precision, their theories leave open many different interpretations

and often fail to generate definite, testable predictions or explanations that could satisfy an

economist or computer scientist.

In this thesis I aim to combine the best features of these different disciplines by reverse-

engineering the cognitive capacities of social intelligence that psychologists have proposed.

I do so in terms sufficiently precise and rigorous that we can understand the functional role

of these capacities as an engineer would (Marr, 1982; Pinker, 1997; Tenenbaum, Kemp,

Griffiths, & Goodman, 2011). That is, I aim to explain how our social intelligence works

by asking what cognitive principles will be needed to recreate it in machines. The specific

tools I use integrate Bayesian models of learning and multi-agent planning algorithms from

artificial intelligence together with analytical frameworks from game theory and evolution-

ary dynamics. These models are both formally precise and make possible fine-grained

quantitative predictions about complex human behavior in diverse domains. I test these

predictions in large-scale multi-person experiments.

As philosophers going back to Hume have noted, “there can be no image of virtue, no

taste of goodness, and no smell of evil” (Hume, 1738; Prinz, 2007). How then can we learn

concepts like moral theories when there is no explicitly moral information in our perceptual

input? If human cooperation builds on moral and social concepts that are richer than the

relative poverty of the stimulus, then something else inside the mind must make up the

difference.

My thesis proposes that the human mind bridges this gap by recursively representing

mental models of other agents that have motivations and minds of their own (Dennett,

1989). These representations allow us to “read the minds” of other people by recovering

the latent causal factors such as the intentions, beliefs, and desires that drove the agent to

act (Heider, 1958; Wellman, 1992; C. L. Baker, Saxe, & Tenenbaum, 2009; C. L. Baker,

Jara-Ettinger, Saxe, & Tenenbaum, 2017). They also allow us to predict what an agent is

likely to do next through forward simulation, or even consider, counterfactually, what an

agent would have done differently had circumstances been different.

I use the computational structure of these abstract representations to study how they
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enable flexible social intelligence across three time-scales: evolutionary, developmental,

and in the moment. What are the evolutionary origins (biological or cultural) of our moral

and social knowledge and how do they enable distinctively human cooperation? How is

this knowledge rapidly learned with high fidelity during development, accumulating over

generations and giving rise to cumulative cultural? Finally, how is social and moral knowl-

edge generalized and deployed in the moment, across an infinitude of possible situations

and people, and how is this knowledge collectively created? To answer these questions,

I investigate the cognitive structures that span across these time-scales: they emerge from

evolution out of a world of non-social agents, support acquisition during development, and

enable flexible reasoning and planning in any particular situation.

1.1 Evolutionary Origins

Natural selection does not forbid cooperation and generosity; it just makes

them difficult engineering problems.

– Steve Pinker, How the Mind Works

Explaining the evolution of cooperation – where individuals pay costs to benefit others

– has been a central focus of research across the natural and social sciences for decades

(Hardin, 1968; Ostron, 1990; Axelrod, 1985; M. A. Nowak, 2006; Rand & Nowak, 2013).

A key conclusion that has emerged from this work is the centrality of reciprocity: evolu-

tionary game theoretic models have robustly demonstrated how repeated interactions be-

tween individuals (direct reciprocity) and within groups (indirect reciprocity) can facilitate

the evolutionary success of cooperation. Although these models can provide fundamental

insights due to their simplicity, this simplicity also imposes stark limits.

In particular, the winning cooperative strategies identified by these models, such as tit-

for-tat (M. A. Nowak & Sigmund, 1992) or win-stay-lose-shift (M. Nowak & Sigmund,

1993), can rarely be applied to actual human interactions. This is because these strate-

gies are defined within the context of one specific game (typically a particular Prisoner’s
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Dilemma). If confronted with an even slightly different game representing a slightly differ-

ent decision, nothing that agents in a typical evolutionary simulation have learned general-

izes at all. For example, agents who cooperate in a prisoner’s dilemma – that is, to choose

the C row or column in a 2×2 (or [C,D]× [C,D]) matrix – haven’t learned to be altruistic

in dictator games or to be trusting in public goods games, even though these are all very

similar. This is because what these automata have learned is just a policy of how to act in

a particular setting without any abstract knowledge of reciprocity.

Human interactions, in contrast, are almost infinitely varied. Even when the same two

people interact in the same context, no two interactions have exactly the same payoff struc-

ture; and, more broadly, we engage in all manner of different interactions where the num-

ber of participants, the options available to each participant, and the resulting payoffs differ

markedly (and often unpredictably). Because of this variation, it is implausible (and im-

practical) to imagine that people learn a specific strategy for every possible game. Rather

than a specific strategy specifying how to play a specific game, humans need a general strat-

egy which can be applied to cooperate across contexts. That is, sophisticated cooperators

need an abstract theory of reciprocity.

In Chapter 2 I introduce a new approach to the evolution of cooperation which solves

this challenge. I do so by leveraging the key insight that people use others’ actions to

make inferences about their beliefs, intentions, and desires (i.e. humans have theory of

mind). This stands in marked contrast to the standard game theoretic strategies, which re-

spond only to other agents’ actions, without making inferences about why a given agent

chose a given action. Instead endowing agents with theory of mind allows them to have

a general utility function which they can apply across all possible interactions. I show

that such a strategy – specifically, a conditional cooperator that uses Bayesian inference to

preferentially cooperate with others who have the same strategy – enables the evolution of

cooperation in a world where every interaction is unique. Furthermore, even in the context

of repeated play of one specific iterated Prisoner’s Dilemma, natural selection favors our

cognitively endowed strategy over all of the standard behavioral strategies even in specific

contexts those strategies were designed for. And finally, the framework seamlessly inte-

grates direct and indirect reciprocity, with our cognitively endowed agent leading to the
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evolution of cooperation when pairs of players interact repeatedly, when pairs play one-

shot games that are observed by others, or any combination of the two. Thus, I show that

cognitive complexity enables the evolution of cooperation more effectively than purely be-

haviorist strategies explaining in part the scale and scope of human cooperation. These

results are also suggestive of how the challenge of cooperation can drive the evolution of

cognitive complexity – a defining feature of humankind.

1.2 Learning and Development

A recipe book written for great chefs might include the phrase “poach the

fish in a suitable wine until almost done,” but an algorithm for the same pro-

cess might begin “choose a white wine that says ‘dry’ on the label; take a

corkscrew and open the bottle; pour an inch of wine in the bottom of a pan;

turn the burner under the pan on high;...” – a tedious breakdown of the process

into dead-simple steps, requiring no wise decisions or delicate judgments or

intuitions on the part of the recipe-reader.

– Daniel Dennett, Intuition Pumps And Other Tools for Thinking

That which is hateful to you, do not do to your neighbor. That is the whole

Torah; the rest is the explanation.

– Hillel the Elder

Scaling cooperation across the full range of social life confronts us with the need to

tradeoff the interests and welfare of different people: between our own interests and those

of others, between our friends, family or group members versus the larger society, people

we know who have been good to us or good to others, and people we have never met

before or never will meet. These trade-offs encoded as a system of values are basic to any

commonsense notion of human morality. While some societies view preferential treatment

of kin as a kind of corruption (nepotism), others view it as a moral obligation (what kind of

monster hires a stranger instead of his own brother?). Large differences both between and
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within cultures pose a key learning challenge: how to infer and acquire appropriate values,

for moral trade-offs of this kind? Can we build moral machines that learn human values

like young children and apply them to novel situations?

In Chapter 3 I develop a computational framework for understanding the structure and

dynamics of moral learning, with a focus on how people learn to trade off the interests

and welfare of different individuals in their social groups and the larger society. We posit

a minimal set of cognitive capacities that together can solve this learning problem: (1)

an abstract and recursive utility calculus to quantitatively represent welfare trade-offs; (2)

hierarchical Bayesian inference to understand the actions and judgments of others; and (3)

meta-values for learning by value alignment both externally to the values of others and

internally to make moral theories consistent with one’s own attachments and feelings. Our

model explains how children can build from sparse noisy observations of how a small set of

individuals make moral decisions to a broad moral competence, able to support an infinite

range of judgments and decisions that generalizes even to people they have never met and

situations they have not been in or observed. It also provides insight into the causes and

dynamics of moral change across time, including cases when moral change can be rapidly

progressive, changing values significantly in just a few generations, and cases when it is

likely to move more slowly.

1.3 Planning and Reasoning In-the-Moment

Any social transaction is by its a nature a developing process and the devel-

opment is bound to have a degree of indeterminacy to it. Neither of the social

agents involved in the transaction can be certain of the future behavior of the

others; as in Alice’s game of croquet with the Queen of Hearts, both balls and

hoops are always on the move. Someone embarking on such a transaction

must therefore be prepared for the problem itself to alter as a consequence

of his attempt to solve it – in the very act of interpreting the social world he

changes it. Like Alice he may well be tempted to complain “You’ve no idea

how confusing it is, all the things being alive”; that is not the way the game
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is played at Hurlingham – and that is not the way that non-social material

typically typically behaves.

– Nicholas Humphrey, The Social Function of Intellect

Think how hard physics would be if particles could think.

– Murray Gell-Mann

To reverse-engineer human cooperation, we need new tasks that highlight the flexibility

of human cognition. Inspired by stochastic games studied in multi-agent computer science

literature, in Chapter 4 I develop a new class of multi-agent games which aim to incorpo-

rate some of the complexity and diversity of real life with the formal precision of traditional

economic games. These games can be played intuitively by people.

Empirically, I find that anonymously matched people robustly reciprocate even when

the game changes after each interaction. People can infer whether others intend to cooper-

ate or compete after observing just a single ambiguous movement and quickly reciprocate

the inferred intention. In new environments, people generalize abstract intentions like co-

operation and competition by executing a novel set of low-level movements needed to re-

alize those goals. Finally, many dyads develop roles and norms after a few interactions that

increase the efficiency of cooperation by coordinating their actions. These novel empirical

findings both demonstrate the power of human social cognition and are the challenge for

computational models to explain and replicate.

To understand and predict human behavior in these games I develop a novel model that

treats cooperation and competition as probabilistic planning programs. To realize coopera-

tion algorithmically, I formalize, for the first time, an influential psychological account of

collaboration known as “joint intentionality.” In our model, each agent simulates a mental

model of the group (oneself included) from an impartial view. From this view the group

itself is treated as a single agent with joint control of each individual and with the aim of

optimizing a shared goal. An agent then plays its role in this joint plan leading to the emer-

gence of roles. Competition is realized by iterating a best response to the inferred intention

of the other player.
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These models of abstract cooperation and competition serve a dual role: they are ab-

stract models of cooperative and competitive action and also the likelihood in a hierarchical

Bayesian model that infers whether or not other agents are cooperating. This inference re-

alizes a sophisticated form of theory of mind. With these pieces of cognitive machinery

in place, reciprocity is realized by mirroring the inferred intentions of the other players.

This model explains the key empirical findings and is a first step towards understanding

the cognitive microstructure of cooperation in terms of rational inference and multi-agent

planning.

In Chapter 5 I develop a novel scheme for probabilistic inference over an infinite space

of possible strategies. Inferring underlying cooperative and competitive strategies from hu-

man behavior in repeated games is important for accurately characterizing human behavior

and understanding how people reason strategically. Finite automata, a bounded model of

computation, have been extensively used to compactly represent strategies for these games

and are a standard tool in game theoretic analyses. However, inference over these strategies

in repeated games is challenging since the number of possible strategies grows exponen-

tially with the number of repetitions yet behavioral data is often sparse and noisy. As a re-

sult, previous approaches start by specifying an finite hypothesis space of automata which

does not allow for flexibility. This limitation hinders the discovery of novel strategies which

may be used by humans but are not anticipated a priori by current theory.

I present a new probabilistic model for strategy inference in repeated games by exploit-

ing non-parametric Bayesian modeling. With simulated data, I show the model is effective

at inferring the true strategy rapidly and from limited data which leads to accurate pre-

dictions of future behavior. When applied to experimental data of human behavior in a

repeated prisoners dilemma, I uncover new strategies of varying complexity and diversity.

In Chapter 6 I study how humans allocate the spoils of a cooperative endeavor ex-

panding the scope of cooperation to cases where benefits are unequally distributed. Lasting

cooperation depends on allocating those benefits fairly according to normative principles.

Empirically I show that in addition to preferences over outcomes such as the efficiency

and equitability of a distribution, we are also sensitive to the attributions others might make

about us as a result of our distribution decisions. We care about our reputations and whether
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we will be seen as trustworthy and impartial partners in the future.

Preferences of this type require reasoning about and anticipating the beliefs others will

form as a result of one’s action. To explain these results I develop a model which integrates

theory of mind into a utility calculus. By turning the cognitive capacity to infer latent de-

sires and beliefs from behavior towards oneself, agents anticipate the judgments others will

make about them and incorporate those anticipated judgments as a weighted component

of an agent’s utility function. Across many scenarios tested with behavioral experiments

my model quantitatively explains both how people make hypothetical resource allocation

decisions and the degree to which they judge that others who made decisions in the same

contexts as impartial. These empirical results understood through our model, shed light

on the ways in which our cooperative behavior is shaped by the desire to signal prosocial

orientations.

Finally, in Chapter 7 I study the computational structure of moral judgment. One puz-

zle of moral judgment is that while moral theories are often described in terms of absolute

rules (e.g., the greatest amount of good for the greatest number, or the doctrine of double

effect), our moral judgments are graded. Since moral judgments are particularly sensitive to

the agent’s mental states, uncertainty in these inferred mental states might partially underlie

these graded responses. I develop a novel computational representation for reasoning about

other people’s intentions based on counterfactual contrasts over influence diagrams. This

model captures the future-oriented aspect of intentional plans and distinguishes between

intended outcomes and unintended side effects a key feature needed for moral judgment.

I give a probabilistic account of moral permissibility which produces graded judgments

by integrating uncertainty about inferred intentions (deontology) with welfare maximiza-

tion (utilitarian). By grounding moral permissibility in an intuitive theory of planning, I

quantitatively predict the fine-grained structure of both intention and moral permissibility

judgments in classic and novel moral dilemmas. In an era of autonomous vehicles and,

more generally, autonomous AI agents that interact with or on behalf of people, the issue

has now become relevant to AI as well. My models point towards ways to imbue AI agents

with some means for evaluating the moral responsibility of their own actions as well as the

actions of others.
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I conclude in Chapter 8 and discuss the implications of this work for understanding

the social mind.
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Chapter 2

The Evolution of Cooperation in

Cognitively Flexible Agents

Despite great advances in our understanding of the evolution of cooperation through reci-

procity (Axelrod, 1985; M. A. Nowak, 2006; Rand & Nowak, 2013), a central aspect of

human cooperation has not been explained: our flexibility. In real life (unlike a repeated

prisoner’s dilemma), each social interaction is unique and complex; we never play the same

game twice. Our social cognition allows us to cooperate (or withhold cooperation) in an

infinitude of environments with known and unknown partners in novel situations where we

must trade-off our own interests with the interests of others.

This intelligence also lets us act in situations where we have nothing directly at stake,

such as allocating finite or scarce resources among several others, or even judge hypothet-

ical moral dilemma, such as whether to save the life of many at the cost of sacrificing

one. Distinctively human cooperation also requires abstraction: we learn and plan with

abstract moral principles that determine how the benefits of cooperation should be dis-

tributed and how those who fail to cooperate should be treated (Kleiman-Weiner, Saxe, &

Tenenbaum, 2017). These theories enable us to generalize from sparse noisy behavior in

specific situations to abstract knowledge of who we should cooperate with and how. Even

young children rapidly evaluate and abstractly reciprocate based on the actions of others

(Warneken & Tomasello, 2006; Hamlin, Wynn, & Bloom, 2007; Kiley Hamlin, Ullman,

Tenenbaum, Goodman, & Baker, 2013; Choi & Luo, 2015).
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Computer scientists and economists have developed formal quantitative frameworks

to try to understand cooperation, game theory being a prominent example (C. Camerer,

2003; Rand & Nowak, 2013). However, these frameworks do not capture some of the

most interesting aspects of human cooperation. Compared to behavioral automata (such

as Tit-For-Tat) that are hand-designed for cooperation in a single task, or reinforcement

learning algorithms that require long periods of trial-and-error learning, people cooperate

much more flexibly with much less experience.

For example, in prisoner’s dilemma two players each choose one of two actions, Coop-

erate (C) or Defect (D) with consequences such that if both players make the same choice,

they are better off cooperating, but either player can individually gain most in a given in-

teraction by defecting when the other cooperates. If players play each other many times

repeatedly then a stable strategy under evolutionary dynamics is Tit-for-Tat (Axelrod, 1985;

M. A. Nowak, 2006), in which a player always begins any new interaction by cooperating,

and on subsequent rounds play whatever the other player played last: cooperating if the

other player last cooperated, otherwise defecting. This starts to look like reciprocity: trust-

ing strangers and being altruistic towards them, inviting cooperation but exposing them-

selves to exploitation; punishing any betrayal of that trust in an eye-for-an-eye fashion; but

being forgiving if the other player returns to cooperative behavior.

While our goal here is similar to these evolutionary models which we feel have much

to offer, our approach to learning – both what is learned, and how it can be learned – is

importantly different, and begins where these behavioral models typically leave off. The

sense in which agents in typical evolutionary simulations actually express any principles

of genuine cooperation, is very limited and strictly dependent on our own human intuitions

for interpreting strategies such as Tit-for-Tat. They look cooperative chiefly because that

is how we humans most naturally explain their behavior. What agents in those simulations

have actually learned is merely to choose a particular row or column in a single matrix

representing a particular game’s payoff structure.

If confronted with an even slightly different game representing a slightly different de-

cision, nothing that agents in a typical evolutionary simulation have learned generalizes at

all. For example, agents who cooperate in prisoner’s dilemma – that is, to choose the C
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row or column in a 2×2 (or [C,D]× [C,D]) matrix – haven’t learned to be altruistic in dic-

tator games or to be trusting in public goods games, even though these are all very similar

(Peysakhovich & Rand, 2015).

In this work, we address these shortcomings head-on and develop a new cognitive

model of agency that captures the flexibility of distinctively human cooperation. Our model

is based on an abstract and reciprocal utility calculus where agents value the welfare of

others who they believe share their “values” i.e., behave under the same reciprocal utility

calculus. Since “values” cannot be observed directly they must be inferred from observa-

tions of behavior. This is particularly complicated in these social games because attributing

intentions to an agent’s actions is highly overdetermined. When we observe another agent

defect it might have the intention to retaliate for a previous defection, on accident, or be-

cause that agent is simply selfish. To handle this uncertainty we develop a novel variant of

Bayesian theory-of-mind that allows agents to reason directly about “joint-belief,” or what

groups of agents know together.

To test these models we develop a new challenge task for evolutionary games the-

ory called dynamic dilemmas where each social interaction is uniquely generated from

a probabilistic distribution. Within this space of games are familiar stage games such as

the prisoner’s dilemma, altruistic giving games where players can give up some of their

own welfare to help another person, allocation games where players can show favoritism

in choosing who should receive an indivisible resource, and even moral dilemmas where

players bear no personal costs themselves but have to decide outcomes for groups of oth-

ers. Since each interaction is sampled probabilistically, no two interactions are ever exactly

alike.

With these new tools we investigate the evolutionary dynamics of our agents in the

dynamic dilemma and show our models flexibly reciprocate in this new task outcompeting

selfish agents. We show that since this model learns abstractly it can effectively cooperate

in situations where it learns directly from its own experience (direct reciprocity) as well

as situations where it must learn only from observation (indirect reciprocity). Finally, we

compare our model to existing behavior models in the repeated prisoner’s dilemma and

show that our cognitive agents out-compete the leading finite state automata including Tit-

41



for-Tat and Win-Stay-Lose-Shift. We conclude by discussing the implications of this work

for understanding the origins of uniquely human social cognition and its value for enabling

cooperation.

2.1 Formal Model

We first describe a novel mathematical framework that combines computational cognitive

modeling with the tools of evolutionary game theory. Unlike previous work, this frame-

work allows us to study flexible cooperation as well as the cognitive computations and

representations which underlie it. We borrow the notation of multi-agent utility based de-

cision making.

In general, at time t an agent i is faced with a decision to choose an action a from a

set of actions a ∈ At . Each action specifies a distribution of welfare (R) to the other agents

where Ri(a) is the distribution of welfare to agent i caused by action a. For each action,

there is a probability ε that a random action is taken instead of the agent’s chosen action

(“trembling hand”). Finally, each action is observed by a subset of other agents (Ot). The

set of alternative actions, probability of randomness, and set of observers are stored in the

state st = (At ,ε,Ot). The observation of (st ,at) is assumed to be common knowledge for

all observers in Ot .

2.1.1 Recursive Reciprocal Utility

We start with the basic assumption that intelligent agents have a utility function which they

aim to maximize. This simple engineering principle of intelligence is usually absent in the

behavioral models used in evolutionary game theory. The simplest version of this idea is

an agent that aims to maximize only the reward it receives:

Uselfish
i (a) = Ri(a) (2.1)

where i only values her own welfare. This utility function is identical to the utility functions

commonly used in single agent reinforcement learning tasks. Since an agent with this utility
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function doesn’t directly value the welfare of anyone else, we call agents with this utility

function selfish.

In order to explain altruistic behavior, other utility functions have been studied where

an agent values the welfare of not only herself but also the welfare of others (Kiley Hamlin

et al., 2013; Kleiman-Weiner, Saxe, & Tenenbaum, 2017). One simple way to realize this

idea computationally is by agents recursively valuing the welfare of other agents:

Ualtruistic
i (a) = Ri(a)+∑

j 6=i
R j(a) (2.2)

Since an agent with this utility function will act towards the welfare of all we call agents

with this utility function altruistic.

When compared to the simple agents traditionally studied in the evolutionary game

theory, agents with a selfish or altruistic utility function correspond to a more so-

phisticated version of the Always-Defect (AllD) and Always-Cooperate strategies respec-

tively. In a repeated prisoner’s dilemma, our agents act identically to their corresponding

behaviorist strategies but generalize their behavior to any situation or context that can be

evaluated using a utility function.

While an altruistic agent will act cooperatively, it is not sufficient for the evolution

of cooperation since it cooperates unconditionally and thus can be exploited by selfish

agents. In order to understand how cooperation might stably evolve we seek to build agents

that cooperate conditionally i.e., reciprocally. The Tit-for-Tat (TFT) strategy that emerged

as the winner of Alexrod’s 1981 contest is a celebrated example of a simple strategy that

reciprocates based on its partner’s behavior (Axelrod, 1985). In an evolutionary tourna-

ment, TFT avoids exploitation by AllD while still maintaining cooperation with itself and

the other cooperative strategies.

In contrast to previous work which encodes reciprocal behavior in rules, we develop an

agent we call reciprocal which has a simple recursive utility function that gives rise to a

reciprocal preference:

Ureciprocal
i (a) = Ri(a)+∑

j 6=i
R j(a)1(U j =Ui)
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where 1(U j = Ui) is 1 if j has the same utility function as i and 0 otherwise. Thus if

j and i have the same utility function, i will weight the welfare of j equal to its own in

its decision making process and otherwise will ignore the welfare of j. Unlike previous

approaches such as TFT and its variants which reciprocate cooperation behaviorally, the

reciprocal agent reciprocates cognitively: it values the welfare of those who share its

system of reciprocal valuation.

However, unlike behavior, the utility functions of other agents cannot be observed

directly and thus the agent cannot calculate 1(U j = Ui). Instead utility functions (and

the values they encode) must be inferred through behavior. Replacing 1(U j = Ui) in the

reciprocal agent with its expectation:

Ureciprocal
i (a,s,B) = Ri(a)+∑

j 6=i
R j(a)B(U j =Ui) (2.3)

where B(U j =Ui) are i’s beliefs that i and j share the same utility function. If i believes that

j is of the same type as i then it will weight the welfare of j highly in its decision making

process. Likewise if i infers j is not likely to share its utility function, it will not value j’s

welfare highly or at all.

These beliefs can be computed rationally based on i’s past observations H i) using

Bayesian inference. Since the utility function of the reciprocal agent depends on the

interactions it has observed, it will act differently in the same situation depending on the

inferences it has made. This approach is intentional by design i.e., it correctly reasons about

accidental actions and false beliefs and is character-driven: the reciprocal agent doesn’t

evaluate an action in and of itself, instead it evaluates what that action reveals about the

actor’s underlying utility function (D. A. Pizarro & Tannenbaum, 2011; Kleiman-Weiner,

Gerstenberg, Levine, & Tenenbaum, 2015).

Decision-making is then defined probabilistically under the Luce-choice decision rule

subject to the agent’s utility function U and beliefs B. This soft-maximization reflects

utility maximization when there is uncertainty about the exact utility value:

PB(a|s,U) ∝ eβU(a,s,B) (2.4)
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When β→ 0 the decision maker chooses randomly and when β→∞ the decision maker will

always choose an action with the highest utility. Beliefs (B) are ignored for the selfish

and altruistic utility functions since their utility functions do not depend on their belief.

2.1.2 Inferring Recursive Social Knowledge

We now show how agents can rationally learn the types of other agents based on observa-

tions of behavior using Bayesian inference. Let H i
t = {(s1,a1), . . .(st ,at)} be the sequence

of observations observed by i up until time t. Beliefs (B) about the mental states (desires and

knowledge) of others can can be written as a Bayesian inference (Liddle & Nettle, 2006;

C. L. Baker et al., 2009; Ullman et al., 2009; C. L. Baker et al., 2017; Kleiman-Weiner et

al., 2015; Kleiman-Weiner, Ho, Austerweil, Littman, & Tenenbaum, 2016; Jara-Ettinger,

Gweon, Schulz, & Tenenbaum, 2016; Kleiman-Weiner, Saxe, & Tenenbaum, 2017):

P(U j|H i
t ) ∝ P(H i

t |U j)P(U j) (2.5)

the posterior beliefs on the utility function of j, U j where P(U j) is the prior over a space of

possible utility functions. How to compute the likelihood P(H i
t |U j)? First, the posterior at

time t can be computed directly from our posterior at time t−1:

P(U j|H i
t ) ∝ PBt−1(at |st ,U j)P(U j|H i

t−1) (2.6)

PBt−1(at |st ,U j) denotes the likelihood of action at being taken by an agent of type U j given

their beliefs B at time t − 1. To compute this likelihood, i must have a model of what

j’s beliefs were at time t− 1, when at took place. These models must be recursive. For

instance, when i observes j defect on k, he must assess j’s action in terms of what j believes

about k. If j and i have seen k defect on many others, then j’s defection might be seen

as reciprocity rather than selfishness. Such beliefs can be computed if i has models of

every other agent, which in turn have their own models of every other agent, and so on

(Yoshida, Dolan, & Friston, 2008; Ullman et al., 2009; Kleiman-Weiner et al., 2016).

However, this approach scales poorly as the number of models (and hence model updates)
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(a) (b)

Figure 2-1: Recursive representations of social knowledge. (a) Agent i has a model of each
agent which recursively has a model of each other agent including i. (b) Agent i reasons
directly about the joint belief of each group of agents. Pop-out shows an example of the
joint-beliefs for each subset.

grows exponentially with the number of interactions observed by each agent which makes

it intractable to compute in a repeated game (Figure 2-1a). When approximated with a

finite depth, beliefs quickly diverge and are unstable.

We develop a new approach for modeling higher-order theory-of-mind that is both ef-

ficient and does not require approximations. The key insight is that i’s model of j’s beliefs

only depends on the events jointly observed by i and j. If an event was observed by i and

not j, or was observed by j and not i it can’t be part of i’s model of j’s beliefs because

in the first case it would be irrational and in the second case i would not be aware of it.

As a result, i’s model of j’s beliefs are identical to the beliefs an external agent in a “view

from nowhere” would form had they observed what was jointly observed by i and j (Nagel,

1989). We call this knowledge a joint-belief ; it is i’s model of what he and j know together

(Fagin, Halpern, Moses, & Vardi, 2004; Gmytrasiewicz & Durfee, 2000). Essentially when

we ask what does a subset of agents know about each other, the joint-belief partitions the

observations to only include the set of observations that were jointly observed by that sub-

set. Note: we are not suggesting that there is anything actually external to the minds of
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Figure 2-2: Belief updates using recursive theory-of-mind. Each graph shows i’s beliefs
about j in response to the scenario written above. Note that j’s same action leads to dif-
ferent beliefs depending on what both i and j have observed about k. Here, cooperation
corresponds to paying 1 welfare to give another person 3 welfare and defection corresponds
to doing nothing.

individual agents, but rather that each agent itself can reason about the beliefs they hold

jointly with others.

Formally, joint-belief updates about j’s utility function are written recursively:

P(U j|H i
t ) ∝ PP(U |H i

t−1∩H j
t−1)

(at |st ,U j)P(U j|H i
t−1) (2.7)

where PP(U |H i
t−1∩H j

t−1)
(at |st ,U j) is the likelihood of action shown in equation (2.4) with

P(U |H i
t−1 ∩H j

t−1) as the belief state. H i
t−1 ∩H j

t−1 are the joint observations of agents i

and j that were made before at . Because H i
t−1 ∩H j

t−1 = H j
t−1 ∩H i

t−1 we no longer have

to represent a growing hierarchy of models (Figure 2-1b). By reasoning about joint-belief,

each agent does not need to represent every permutation of i believes j believes k and so

on. Instead each agent represent what i, j, and k jointly believe which can be computed

efficiently using dynamic programming. In general, the joint-belief representation greatly

simplifies reasoning about knowledge when a large group of agents observe new informa-

tion. Instead of updating what each agent knows individually (and what they believe others

know etc.), joint-belief allows agents to directly represent the joint knowledge of the group,

and update that joint knowledge all at once. Figure 2-2 shows some example interactions

between i, j, and k and how i’s joint-beliefs update over in response to observations. With-

out a recursive theory of mind, agents would not be able to differentiate a defection done for

retaliatory reasons from a defection done for selfish reasons. The only thing differentiating

these situations are joint-beliefs.
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2.2 Evolutionary Analysis

In the spirit of rational analysis, our goal is to understand if and when the abstract reci-

procity we have proposed and the inference that supports it is adaptive (Marr, 1982). While

basic forms of perception (e.g., object detection) can be shown as adaptive with respect to

a non-cognitive environment, social cognition must be evaluated against an environment of

other cognitive agents who themselves may be learning and adapting their behavior. For

instance, if measured in isolation, a group of altruistic agents generate more surplus

welfare than a group of reciprocal agents. However, this analysis would not take into

account the fact that the introduction of a single selfish agent would exploit the group

of altruistic agents but would be detected and rebuffed by the group of reciprocal

agents. Therefore we need to also compare the stability of our agents in the presence of

others in addition to how effective they are at generating surplus welfare. Evolutionary

analysis gives us this property and is also suggestive of a mechanism for how the types

of agents might change over time (either through cultural learning or biological evolution)

(M. A. Nowak, 2006; Sigmund, 2010; Rand & Nowak, 2013).

Simulation Details Simulation of a selection process, like a Markov process such as

MCMC (Suchow, Bourgin, & Griffiths, 2017), amounts to finding the steady state frequen-

cies of each agent type after many generations. We follow the best practices described

in Sigmund (2010). In short, N agents interacted, one agent was chosen at random and

selected another agent with probability proportional to its cumulative welfare (∝ exp(sṘ))

where s is the strength of selection. There is also a small rate of mutation where with

probability δ the agent just picks a new utility function from a space of possible functions.

This is called the Moran Process and for most of the analyses here, we show steady state

frequencies of this process in the low mutation limit (δ→ 0). See Sigmund (2010) for the

mathematical details of calculating these frequencies.

The agents in our simulations used parameters β = 5, a prior of P(U =Ureciprocal) =

0.5 with the remaining 0.5 spread uniformly across all other agent types. The types of

agents considered for theory-of-mind inference was always equal to the actual agents in

that simulation. These priors can be learned as well which do not have room to describe
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here.

The Dynamic Dilemma is a generator for a series of interactions where agents never

have the same interaction twice. Each interaction is generated by matching up a random

subset of at least two players and randomly assigning one player as the decision maker for

that scenario. Each pair of individuals might be sampled again with probability γ so the

expected number of interactions between each pair of agents is 1+ 1
1−γ

.

The decision maker is faced with a set of choices A which always includes the option

of doing nothing. Doing nothing corresponds to giving zero welfare to oneself and all the

other players one is interacting with. For each other paired partner the decision maker can

pay a cost (c) which reduces its welfare to deliver a benefit (b) which increases the welfare

of another player. The c are sampled from a Poisson distribution so that sometimes there

is no cost. The b are generated by sampling two random exponential variables (e0 and e1)

and setting b = e0c+ e1 which enforces b > c. To determine the number of actions in a

game, we sample c and b a (1+NA ) number of times which is itself sampled from a Poisson

distribution. For each NA we sample a new c and b and for each of these samples create a

set of choices where each choice corresponds to one of the non-deciding players receiving

b while the decision maker pays c.

The dynamic dilemma environment has stochasticity. Each interaction has a probability

of a “trembling hand” where with sampled probability ε, a random action is taken instead

of the action chosen. Finally, each interaction is observed by all agents with probability

ω and is otherwise only observed by those matched for that specific interaction. For the

simulations shown here in we matched agents into groups of 2 or 3 with equal probability.

For the other parameters we set λc = 1, λNA = 1, λe0 = λe1 = 5 and ε = 0.01. Figure 2-3

shows a visual depiction of the game engine which produces these dilemma.

No two situations generated in the dynamic dilemma are exactly alike yet well known

games correspond to particular regions of the parameter space. For instance, when c and

b are constant, the number of players are limited to two players, NA = 1, and ω = 0 we

can recover a sequential or simultaneous prisoner’s dilemma depending on the temporal

structure of observation. If observation happens only after both players have acted then
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Figure 2-3: Visual depiction of the generative “game engine” which generates unique
dilemma. The top shows the ingredients: a set of players, distributions over costs, benefits,
and number of actions and a template which describes how these elements are combined
into a choice dilemma. Below show example samples which were generated from the game
engine.
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Figure 2-4: Evolutionary analysis of the dynamic dilemma showing the steady state fre-
quencies of the three agent types as a function of the expected number of repeated inter-
actions (a) and the probability that everyone will observe a given interaction when agents
only interact once (b). Simulations were run with N = 10 agents and a selection strength
of s = 0.5

the game is a traditional prisoner’s dilemma, if observation happens after only one of the

players decides it becomes a sequential prisoner’s dilemma. When the number of players

is fixed to three and c = 0, the agents play an allocation game, choosing how to distribute

an indivisible resource.

2.3 Results

Evolution of Cognitively Flexible Cooperation Using simulations we study the evolu-

tion of the reciprocal agent compared against the selfish and altruistic agents in the

dynamic dilemma. Figure 2-4a shows the steady state frequency of the three agent types.

When the expected number of repeated interactions γ is low, the selfish agent dominates.

However, as the expected number of repeated interactions grows, the reciprocal agent

becomes the dominant agent in the population.

Next, we investigated how the probability of public observation impacts the equilibrium

frequencies of the agents even when each pair of agents only interact once. Figure 2-4b

shows that when the probability of public observation was low ω < 0.5 the selfish agent

dominates since the reciprocal agent does not receive enough information to correctly
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infer types. For higher ω, the reciprocal agent is able to learn who to cooperate with

before interacting.

The reciprocal agent unifies both direct and indirect forms of reciprocity in the chal-

lenging dynamic dilemma. When posed as a problem of inference, the behavioral obser-

vations obtained through direct interactions and those from observing the interactions of

others lead to the same types of belief updates. In reality this will not always be true. For

instance, in an indirectly observed interaction, the space of possible alternatives might not

be as obvious as when one is directly interacting so inference might be less accurate. We

leave this as a challenge for future work.

Evolution Favors Cognition over Behavioral Rules Since the reciprocal agent can

play any game, it can also compete in a repeated prisoner’s dilemma tournament (Axelrod,

1985). In Figure 2-5 we ran the reciprocal agent against the dominant finite state au-

tomata strategies from the literature. In addition to TFT, AllD and AllC (discussed above),

we added: generous-TFT (GTFT) a forgiving variant that has a probability of sponta-

neously returning to cooperation after a defection, Win-Stay-Lose-Shift (WSLS, also called

Pavlov) which treats mutual cooperation and defecting against cooperation as “wins” and

mutual defection and cooperation against defection as a “loss” (M. A. Nowak, 2006).

Our first set of simulations replicate the main results from the literature. When there

is no noise in the environment (ε = 0), and there is sufficient repetition TFT (red) is most

favored by evolution (Figure 2-5a). However, no single strategy is dominant. Since TFT

also cooperates with AllC (blue), AllC is always present at a low frequency. The pres-

ence of these unconditional cooperators is an avenue for AllD (orange) to return and so

there is a heterogeneous mixture of strategies at in the steady state. In contrast, when the

reciprocal agent (brown) is added to the tournament (Figure 2-5b), it out-competes all of

the automata strategies and prevents a heterogeneous mixture of agents by not cooperating

with agents it has inferred are unconditional cooperators.

We next investigated a stochastic environment where with probability ε each agent takes

a random action (M. A. Nowak, 2006). The dominant strategy from the first tournament,

TFT, is not robust to noise since even a single perturbed action can lead TFT to alternate
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Figure 2-5: Evolutionary analysis of an Axelrod style repeated prisoner’s dilemma (RPD)
tournament for different parameter settings: expected number of rounds with no noise (top)
and the probability of noisy action with 10 expected rounds (γ= 0.9) (bottom). We compare
tournaments that only include the automata strategies (left) with those that also include the
reciprocal agent (right). The resulting steady state frequency of each agent type is plotted
as stacked bars since the total frequency must sum to one. For all the tournaments each
stage game had b

c = 3 and selection was run with N = 100 agents and selection strength
s = 0.5.
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between cooperation and defection instead of stably cooperating with itself. Consistent

with the literature (M. A. Nowak, 2006), in these stochastic environments WSLS (purple)

dominates since it has an error correction mechanism (Figure 2-5c). However, it is only

robust for relatively low amounts of noise. As the probability of noise increases, AllD

takes over again. Again, when we add the reciprocal agent to the tournament it robustly

evolves even at high noise levels (Figure 2-5d).

Unlike automata strategies where different strategies perform best in certain environ-

ments (TFT when there is no noise and WSLS when there is some noise), the reciprocal

agent performed well across a range of environment. Surprisingly, the reciprocal agent

outperformed the automata strategies even though these automata were hand-designed for

cooperation in this specific context and the reciprocal agent was designed for flexible

cooperation in any context.

2.4 Conclusion

Our work is a first formal investigation of how computational principles of cognition such

as abstraction and inference enable the scale and scope of human cooperation. These sim-

ulations give insights into the origins of distinctively human cooperation and how they

depend on distantly human forms of social cognition (Tomasello, 2014). For instance how

special representations for reasoning about the knowledge of others such as “joint-belief”

can be formed through a recursive theory-of-mind. Deeper still, these studies provide a

start for understanding the evolutionary origins of social cognition. Using this new frame-

work we can precisely quantify when social cognition delivers benefits above and beyond

less sophisticated and less flexible agents (Singh, Lewis, Barto, & Sorg, 2010). This is a

step towards rigorously understanding the ultimate origins of our social intelligence and

how it both supports and is supported by distinctively human cooperation.
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Chapter 3

Learning a Commonsense Moral Theory

Common sense suggests that each of us should live his own life (autonomy),

give special consideration to certain others (obligation), have some significant

concern for the general good (neutral values), and treat the people he deals

with decently (deontology). It also suggests that these aims may produce se-

rious inner conflict. Common sense doesn’t have the last word in ethics or

anywhere else, but it has, as J. L. Austin said about ordinary language, the first

word: it should be examined before it is discarded.

– Thomas Nagel, The View From Nowhere

Basic to any commonsense notion of human morality is a system of values for trading

off the interests and welfare of different people. The complexities of social living confront

us with the need to make these trade-offs every day: between our own interests and those

of others, between our friends, family or group members versus the larger society, people

we know who have been good to us or good to others, and people we have never met before

or never will meet. Morality demands some consideration for the welfare of people we

dislike, and even in some cases for our sworn enemies. Complex moral concepts such as

altruism, fairness, loyalty, justice, virtue and obligation have their roots in these trade-offs,

and children are sensitive to them in some form from an early age. Our goal in this paper is

to provide a computational framework for understanding how people might learn to make

these trade-offs in their decisions and judgments, and the implications of possible learning
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mechanisms for the dynamics of how a society’s collective morality might change over

time.

Although some aspects of morality may be innate, and all learning depends in some

form on innate structures and mechanisms, there must be a substantial role for learning

from experience in how human beings come to see trade-offs among agents’ potentially

conflicting interests (Mikhail, 2007, 2011). Societies in different places and eras have

differed significantly in how they judge these trade-offs should be made (Henrich et al.,

2001; P. Blake et al., 2015; House et al., 2013). For example, while some societies view

preferential treatment of kin as a kind of corruption (nepotism), others view it as a moral

obligation (what kind of monster hires a stranger instead of his own brother?). Similarly,

some cultures emphasize equal obligations to all human beings, while others focus on

special obligations to one’s own group e.g. nation, ethnic group, etc. Even within societies,

different groups, different families, and different individuals may have different standards

(Graham, Haidt, & Nosek, 2009). Such large differences both between and within cultures

pose a key learning challenge: how to infer and acquire appropriate values, for moral trade-

offs of this kind. How do we learn what we owe to each other?

Children cannot simply learn case by case from experience how to trade off the inter-

ests of specific sets of agents in specific situations. Our moral sense must invoke abstract

principles for judging trade-offs among the interests of individuals we have not previously

interacted with or who have not interacted with each other. These principles must be gen-

eral enough to apply to situations that neither we nor anyone we know has experienced.

They may also be weighted, such that some principles loom larger or take precedence over

others. We will refer to a weighted set of principles for how to value others as a “moral

theory,” although we recognize this is just one aspect of people’s intuitive theories in the

moral domain.

The primary data that young children observe are rarely explicit instructions about these

abstract principles or their weights (J. C. Wright & Bartsch, 2008). More often children

observe a combination of reward and punishment tied to the moral status of their own

actions, and examples of adults making analogous decisions and judgments about what they

(the adults) consider morally appropriate trade-offs. The decisions and judgments children
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observe typically reflect adults’ own moral theories only indirectly and noisily. How do we

generalize from sparse, noisy, underdetermined observations of specific instances of moral

behavior and judgment to abstract theories of how to value other agents that we can then

apply everywhere?

Our main contribution in this paper is to posit and formalize a minimal set of cognitive

capacities that people might use to solve this learning problem. Our proposal has three

components:

• An abstract and recursive utility calculus. Moral theories (for the purposes of

trading off different agents’ interests) can be formalized as values or weights that an

agent attaches to a set of abstract principles for how to factor any other agents’ utility

functions into their own utility-based decision-making and judgment.

• Hierarchical Bayesian inference. Learners can rapidly and reliably infer the weights

that other agents attach to these principles from observing their behavior through

mechanisms of hierarchical Bayesian inference; enabling moral learning at the level

of values on abstract moral principles rather than behavioral imitation.

• Learning by value alignment. Learners set their own values guided by meta-values,

or principles for what kinds of values they value holding. These meta-values can seek

to align learners’ moral theories externally with those of others (“We value the values

of those we value”), as well as internally, to be consistent with their own attachments

and feelings.

Although our focus is on the problems of moral learning and learnability, we will also

explore the implications of our learning framework for the dynamics of how moral systems

might change within and across generations in a society. Here the challenges are to ex-

plain how the same mechanisms that allow for the robust and stable acquisition of a moral

theory can under the right circumstances support change into a rather different theory of

how others interests are to be valued. Sometimes change can proceed very quickly within

the span of one or a few generations; sometimes it is much slower. Often change appears

to be progressive in a consistent direction towards more universal, less parochial systems
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– an “expanding circle” of others whose interests are to be taken into account, in addition

to our own and those of the people closest to us (Singer, 1981; Pinker, 2011). What de-

termines when moral change will proceed quickly or slowly? What factors contribute to

an expanding circle, and when is that dynamic stable? These questions are much bigger

than any answers we can give here, but we will illustrate a few ways in which our learning

framework might begin to address them.

The remainder of this introduction presents in more detail our motivation for this frame-

work and the phenomena we seek to explain. The body of the paper then presents one spe-

cific way of instantiating these ideas in a mathematical model, and explores its properties

through simulation. As first attempts, the models we describe here, though oversimplified

in some respects, still capture some interesting features of the problems of moral learning,

and potential solutions. We hope these features will be sufficient to point the way forward

for future work. We conclude by discussing what is left out of our framework, and ways it

could be enriched or extended going forward.

The first key component of our model is the expression of moral values in terms of

utility functions, and specifically recursively defined utilities that let one agent take others’

utilities as direct contributors to their own utility function. By grounding moral principles

in these recursive utilities, we have gained a straightforward method for capturing aspects

of moral decision-making in which agents take into account the effects of their actions

on the well-being of others, in addition to (or indeed as a fundamental contributor to)

their own well-being. The specifics of this welfare are relatively abstract. It could refer

to pleasure and harm, but could also include other outcomes with intrinsic value such as

“base goods” e.g., achievement and knowledge (Hurka, 2003) or “primary goods” e.g.,

liberties, opportunities, income (Rawls, 1971; Scanlon, 1975; Sen & Hawthorn, 1988) or

even purity and other “moral foundations” (Haidt, 2007). This proposal thus formalizes an

intuitive idea of morality as the obligation to treat others as they would wish to be treated

(the ’Golden Rule’, Wattles, 1997; Popper, 2012); but also as posing a challenge to balance

one’s own values with those of others (captured in the Jewish sage Hillel’s maxim, “If I am

not for myself, who will be for me? But if I am only for myself, who am I?”). Different

moral principles (as suggested in the opening quote from Nagel) can come into conflict.
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For instance one might be forced to choose between helping the lives of many anonymous

strangers versus helping a single loved one. Quantitative weighting of the various principles

is a natural way to resolve these conflicts while capturing ambiguity.

On this view, moral learning is the process of learning how to value (or “weight”) the

utilities of different groups of people. Young children and even infants make inferences

about socially positive actions and people that are consistent with inference over recur-

sive utility functions: being helpful can be understood as one agent taking another agent’s

utility function into account in their own decision (Ullman et al., 2009; Kiley Hamlin et

al., 2013). Young children also show evidence of weighting the utilities of different indi-

viduals, depending on their group membership and social behaviors, in ways that strongly

suggest they are guided by abstract moral principles or an intuitive moral theory (Rhodes &

Wellman, 2016; Rhodes, 2012; Rhodes & Chalik, 2013; Powell & Spelke, 2013; Hamlin,

Mahajan, Liberman, & Wynn, 2013; Hamlin, 2013; Barragan & Dweck, 2014; Kohlberg,

1981; Shaw & Olson, 2012; Smetana, 2006). On the other hand, children do not weight

and compose those principles together in a way consistent with their culture until later

in development (Hook & Cook, 1979; Sigelman & Waitzman, 1991; House et al., 2013).

Different cultures or subcultures might weight these principles in different ways, generat-

ing different moral theories (Schäfer, Haun, & Tomasello, 2015; Graham, Meindl, Beall,

Johnson, & Zhang, 2016) and posing an inferential challenge for learners who cannot be

pre-programmed with a single set of weights. But under this view, it would be part of the

human universal core of morality – and not something that needs to be inferred – to have

the capacity and inclination to assign non-zero weight to the welfare of others.

The second key component of our model is an approach to inferring others’ abstract

moral theories from their specific moral behaviors, via hierarchical Bayesian inference.

Our analysis of moral learning draws on an analogy to other problems of learning ab-

stract knowledge from observational data, such as learning the meanings of words or the

rules of grammar in natural language (Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum

et al., 2011). Theorists have long recognized that moral learning, like language learning,

confronts children with a challenge known as the “poverty of the stimulus” (Chomsky,

1980; Mikhail, 2006, 2011): the gap between the data available to the learner (sparse
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and noisy observations of interactions between specific individuals) and what is learned

(abstract principles that allow children to generalize, supporting moral tradeoffs in novel

situations and for new individuals). More specifically in our framework for moral learn-

ing, the challenge of explaining how children learn cultural appropriate weights for differ-

ent groups of people may be analogous to the challenge of explaining linguistic diversity,

and may yield to similar solutions, such as the frameworks of “principles and parameters”

(Chomsky, 1981; M. C. Baker, 2002) or Optimality Theory (Prince & Smolensky, 2008).

In these approaches, language acquisition is either the process of setting the parameters

of innate grammatical principles, or the ranking (qualitatively or quantitatively) of which

innate grammatical constraints must be taken into account. Our framework suggests a par-

allel approach to moral learning and the cultural diversity of moral systems.

So then how do we learn so much from so little? A hierarchical Bayesian approach

has had much recent success in explaining how abstract knowledge can guide learning and

inference from sparse data as well as how that abstract knowledge itself can be acquired

(Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum et al., 2011; Xu &

Tenenbaum, 2007; Perfors, Tenenbaum, & Regier, 2011; Ayars & Nichols, 2017; Nichols,

Kumar, Lopez, Ayars, & Chan, 2016), and fits naturally with the idea that learners are trying

to estimate a set of weighted moral principles. By inferring the underlying weighting of

principles that dictate how the utility of different agents are composed, a Bayesian learner

can make generalizable predictions in new situations that involve different players, different

numbers of players, different choices, etc (Heider, 1958; Malle, Moses, & Baldwin, 2001;

C. L. Baker et al., 2009; Ullman et al., 2009; Kleiman-Weiner et al., 2015; Goodman,

Tenenbaum, & Gerstenberg, 2015; Jara-Ettinger et al., 2016). These hierarchical models

allow for a few indeterminate observations from disparate contexts to be pooled together,

boosting learning in all contexts (Kemp, Perfors, & Tenenbaum, 2007).

The third key component of our model addresses the dynamics of moral learning. That

is, even once children have inferred the moral values of others, when and how are learners

motivated to acquire or change their own values? A parallel question at the societal level

is what might control the dynamics of moral change across generations. Again we are

inspired by analogous suggestions in the computational dynamics of language learning,
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which has suggested a close relationship between the process of language learning and the

dynamics of language change (Christiansen & Kirby, 2003; K. Smith, Kirby, & Brighton,

2003; Niyogi, 2006; Kirby, Cornish, & Smith, 2008; Griffiths & Kalish, 2007; Chater,

Reali, & Christiansen, 2009). Children are seen as the main locus of language change,

and the mechanisms of language learning within generations become the mechanisms of

language change across generations. In that spirit we also consider mechanisms of moral

learning that can account for the dynamics of learning both in individuals and at the societal

level, for how morals change both within and across generations.

We propose that learners change their own abstract moral values in accordance with two

motivations (or meta-values). The first, external alignment, expresses the idea that learners

will internalize the values of the people they value, aligning their moral theory to those that

they care about (Hurka, 2003; Magid & Schulz, 2017). This mechanism could be associ-

ated with a child acquiring a moral theory from a caregiver. It is in some ways analogous

to previous proposals for the origins of prosocial behavior based on behavioral imitation

or copying behaviors, a mechanism proposed in economics and evolutionary biology both

as a primary mechanism of social learning within generations, as well as a mechanism of

how prosocial behaviors (including altruism and other “proto-moral” concepts) can evolve

across generations (Trivers, 1971; M. A. Nowak, 2006; Rand, Dreber, Ellingsen, Fuden-

berg, & Nowak, 2009; Delton, Krasnow, Cosmides, & Tooby, 2011; Rand & Nowak, 2013;

Henrich & Gil-White, 2001; Richerson & Boyd, 2008). Pure behavioral imitation is not

sufficient to drive learning of the abstract principles and weights that comprise our moral

theories (Nook, Ong, Morelli, Mitchell, & Zaki, 2016), but the mechanism of external

alignment represents a similar idea at the level of abstract principles and weights.

External alignment alone, however, is not sufficient to explain moral learning or the

most compelling aspects of moral change. Across generations, external alignment tends to

diffusion and averaging of individuals’ moral weights across a society. It cannot explain

where new moral ideas come from in a society, or how the individuals in a group can

collectively come to value people that few or none of their progenitors valued. Such moral

progress is possible. For instance, over the past hundred years there has been significant

moral change in racial attitudes and the rights of women in some cultures (Singer, 1981;
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Pinker, 2011). What can account for these shifts, or even more strikingly, for the rapid

change of moral values in a few or even a single generation as seen recently in attitudes

towards same-sex marriage (Baunach, 2011, 2012; Broockman & Kalla, 2016)?

One recent proposal for a cognitive mechanism that underlies moral change is moral

consistency reasoning (R. Campbell & Kumar, 2012). R. Campbell and Kumar (2012)

describe a dual process account of how deliberative moral judgments are adjusted under

pressure from conflicting intuitive responses to analogous moral situations or dilemmas.

Inspired by this account, we suggest a second meta-value, internal alignment, where learn-

ers try to reduce the inconsistency between their moral theory and their attitudes towards

specific individuals. For example, if a learner with parochial values develops feelings for

one out-group member, the value she places on all members of that group may shift. Dur-

ing internal alignment, learners adjust their weights over the moral principles to be con-

sistent with feelings about other agents from sources (deliberative and emotional) such

as: empathy (A. Smith, 1759; D. Pizarro, 2000; Hoffman, 2001), imagination and sto-

ries (Bloom, 2010), analogical reasoning (Keasey, 1973; R. Campbell & Kumar, 2012),

love, or involved contact (even imagined or vicarious) (Allport, 1954; S. C. Wright, Aron,

McLaughlin-Volpe, & Ropp, 1997; Pettigrew & Tropp, 2006; Shook & Fazio, 2008; Paluck

& Green, 2009; Crisp & Turner, 2009). If a learner values a specific agent in a way that is

not explained by the moral theory, she will adjust her moral theory to appropriately value

that person resolving the inconsistency. Since moral theories are abstract with respect to a

particular individual, that realignment may result in rapidly expanding the types of agents

that the learner values.

We now present this model of moral learning in full detail. We will describe in turn

how moral theories are represented, how they can be inferred from sparse data and how

moral acquisition proceeds through meta-values. Finally we turn to the dynamics of moral

change and investigate when moral theories will change rapidly and when such change will

be slow or nonexistent.
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3.1 Representing Moral Theories

The first challenge for moral learners, in our framework, is to represent moral theories for

making welfare trade-offs across an infinitude of situations. We start by considering a sim-

plified decision-making environment for this purpose. Let N be a set of agents indexed by

i, S be a set of states and As be the set of actions available in each state s. The probability of

reaching outcome s′ upon taking action a in state s is P(s′|a,s) which describes how actions

affect outcomes in the world. Let Ri(s) map outcomes to a real number that specifies the

welfare agent i intrinsically experiences in state s. Again, welfare can go beyond pleasure

and pain but this function maps all of the “base goods” and “base evils” into a single di-

mensional measurement of overall welfare. Different states may be valued differently by

different agents or may vary across different contexts. Thus Ri(s) allows for quantitative

assessment of the moral value of a state for a particular agent. In this work, each state

presents an agent with a set of choices that can affect its own welfare and the welfare of

other agents. Appendix 3.5 gives the details for the decisions studied in this work.

We define moral theories in terms of recursive utility functions which build on R(s)

– the welfare obtained by each agent. By defining moral theories in the same units as

choice (utility) these moral theories can be easily integrated into a general decision making

framework. The level-0 moral theory describes an agent who only cares about the quantity

of welfare that she personally receives herself:

U0
i (s) = Ri(s)

Thus agents acting consistent with a level-0 moral theory will always choose actions that

maximally benefit their own welfare regardless of the effect of that action on the welfare

of others. For instance, when faced with the decision to give up a small amount of welfare

to provide a large benefit to someone else or doing nothing, an agent acting under a level-0

moral theory would prefer to do nothing. Furthermore, this level-0 theory also has no way

of trading off the welfare of other people.

We now build on this selfish agent to account for richer social preferences. In Hurka

(2003) the space of values is expanded to include virtue and vices by recursively valuing
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attitudes towards the “base goods” and “base evils” (e.g., the virtue benevolence as “loving

good”). We borrow this idea and extend it to recursively valuing other people to explain

social preferences. We define a level-1 moral theory recursively in terms of the level-0

moral theory:

U1
i (s) = (1− γi)U0

i (s)+ γi ∑
j∈N
j 6=i

αi, jU0
j (s) (3.1)

where γ ∈ [0,1] trades off how much an agent with a level-1 moral theory values their own

level-0 utility compared to the level-0 utility of others. When γi = 0.5 agents weigh their

own utility equally with the utility of the other agents, when γi = 0 they only care about

themselves and when γi ≥ 0.5 they value others more than themselves. Generally speaking,

γi determines the degree to which agent i is prosocial. Each αi, j ∈ [0,1] is the weight agent

i places on the utility of agent j. Depending on the relative value of each αi, j, an agent

acting under a level-1 moral theory will value some agents more than others. If αi, j > αi,k

then agent i cares more about the utility of agent j than the utility of agent k. Since these

recursive utilities eventually ground in the welfare of the individual agents, the settings

of these parameters specify an entire space of moral theories where the goals and welfare

of other agents are treated as ends. Moral theories of this form share similarities to the

social preferences used in behavioral game theory but extend those models to consider how

different agents might be differentially valued (C. Camerer, 2003). We consider further

extensions to these representations in Appendix 3.6.

Having specified a representation for moral theories in terms of recursive utility func-

tions, we consider agents who act consistently with these moral theories using the standard

probabilistic decision-making tools. Since our moral theories were constructed from utility

functions they can easily be mapped from values into actions and judgments. Since actions

can lead to different outcomes probabilistically, decision making and judgment approxi-

mately follow from the expected utility of an action:

EU(a,s) = ∑
s′

U(s′)P(s′|a,s) (3.2)

From expected utility, action selection is defined probabilistically under the Luce-choice
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decision rule which reflects utility maximization when there is uncertainty about the exact

utility value (Luce, 1959):

P(a|s) = exp(βEU(a,s))
∑a′∈As exp(βEU(a′,s))

(3.3)

In the limit β→ 0 the decision maker chooses randomly, while in the limit β→ ∞ the

decision maker will always choose the highest utility action.

Thus far we have specified the machinery for a moral agent where the αi, j define how

each agent values the others. However, each αi, j describe how a specific person should be

valued rather than how to trade-off abstract principles. Without abstract principles an agent

would need to specify a new αi, j for every possible individual. Instead, we propose that

values over specific people should be determined by more abstract relationships, captured

in abstract moral principles: through these principles an agent can deduce how to value

anyone.

While there are many ways of specifying the structure of the moral principles in the-

ory, in this work we consider six kinds of relationship that carry moral obligation: (a) self,

(b) kin, (c) in-group, (d) all-people, (e) direct-reciprocity, and (f) indirect-reciprocity. For

instance, a kin relation might provide a moral reason for helping a loved one rather than

an anonymous person. In-group might capture any shared group affiliation that a culture

or context defines as morally relevant: gender, ethnicity, nationality, religion, and so on.

Direct reciprocity here captures moral obligations to specific known and cooperative in-

dividuals (e.g. a person’s particular friends and neighbors). Indirect reciprocity captures

the moral obligations to members of a broader cooperative community (friends of friends,

employees of the same organization). Throughout this work we will assume that agents are

not planning about the future-repercussions of their actions and that reputational or direct-

reciprocal advantages and disadvantages will be captured by one of the two reciprocity

principles.

Each of these principles expresses a simplified type of relationship between agents and

gives a reason for the way a decision-maker might act towards a particular person. Since

any given dyad may have multiple relations (e.g., a dyad where both individuals are from
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Figure 3-1: A population of 20 agents used throughout this work. (a) Black squares indicate
the presence of a relationship for each of the four principles shown. (b) The relative weights
on each of the six principles for all 20 agents where each row is the weighting of principles
of a single agent. Darker values correspond to a higher weight. (c) The αi, j parameters
implied by the weights and relationships. The darker the cell the more weight that the
agent indexed by the cell’s row puts on the agent indexed by the cell’s column.

the same in-group but also have a direct reciprocity relationship), each principle is as-

sociated with a corresponding weight that quantitatively describes how that principle is

traded-off against others. Neural evidence of these principles has been detected in cortical

and limbic brain circuits (Rilling et al., 2002; Krienen, Tu, & Buckner, 2010; Watanabe et

al., 2014) and there is some evidence that the relative strength of these circuits can provide

motivation for certain types of altruistic behavior (Hein, Morishima, Leiberg, Sul, & Fehr,

2016).

Formally, let P = {kin,group, . . .} be the set of moral principles. Then for each princi-

ple there is a function f p(i, j) over pairs of agents that returns 1 if the relationship between

i and j falls under principle p and 0 otherwise. Specifically, f kin(i, j) = 1 if i and j are

kin, f group(i, j) = 1 if i and j are in the same in-group and f all(i, j) = 1 for all i 6= j.

f self(i, j) = 1 for all i = j. The f d−recip(i, j) = 1 if i and j have a reciprocal relation-

ship and f i−recip(i, j) = 1 if both i and j are in the cooperative group (M. A. Nowak &

Sigmund, 2005). We assume all principles are symmetric so f (i, j) = f ( j, i) and that the

relationships are binary (present or absent). These principles encode abstract knowledge
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about relationships between agents rather than knowledge about specific agents.

Figure 3-1a visualizes these relationships for a population of 20 agents. In this popula-

tion each agent has a single kin relationship and belongs to one of two groups. Note that

the direct-reciprocity relationships are sparse. Since direct-reciprocity is a reciprocal rela-

tionship between two agents, it is not necessarily transitive. Just because i has a reciprocal

relationship with j and j has a reciprocal relationship with k, it does not necessarily follow

that i and k will also have a reciprocal relationship. In contrast, indirect-reciprocity de-

notes membership in a cooperative or trustworthy group (M. A. Nowak & Sigmund, 2005).

These relationships are based on group identity such that everyone in the cooperative group

has an indirect-reciprocity relationship with everyone else in the cooperative group. Hence

these relationships satisfy transitivity. Unlike previous formal models of reciprocity that

were defined in terms of specific behaviors in specific situations, such as Tit-for-Tat in the

prisoners dilemma (Axelrod, 1985; M. A. Nowak, 2006; Rand & Nowak, 2013), our prin-

ciples of reciprocity are implemented in agents who can reciprocally value the utility of

each other. These more abstract concepts of reciprocity (direct and indirect) lead to moral

judgments and actions that generalize robustly across different situations and contexts.

These principles are then weighted so they can be quantitatively traded off. Let Wi be

the weights that agent i places over the moral principles. Each wp
i ∈Wi is the weight that

agent i places on principle p. For self valuation, let γi = 1−wsel f
i . We now rewrite the αi, j

of equation (3.1) as a function of weights over moral principles:

αi, j(Wi) = φi, j + ∑
p∈P

wp
i · f p(i, j) (3.4)

Unlike αi, j which define who each agent values, the Wi define what each agents values.

Who each agent values (αi, j) can be derived using equation (3.4) from what that agent

values i.e., their weights over principles W . We introduce an additional source of valuation

φi, j which stands in for other factors outside of the moral principles that describe how i

values j. Figure 3-1c shows the αi, j derived from the weights and relations of Figure 3-1.
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3.2 Inferring Moral Theories

Above we described how moral theories, expressed as weights or values placed on abstract

relationships and then composed in a recursive utility calculus, can be used during moral

decision making and judgment. That is, we described the forward model, in which moral

decision makers can use their moral theories to choose actions and judgments in any con-

text. The second challenge for moral learners is to infer how others weight the abstract

moral principles from sparse and noisy observations. In the same way that rational ac-

tors reveal information about their beliefs and desires through their behavior, moral agents

reveal information about their moral theory through their behavior and judgments.

Expressing the intuitive theory in terms of principles over abstract categories helps

to make learning tractable. Rather than inferring the value of each αi, j independently, a

learner only needs to determine how to weigh a relatively smaller set of moral principles. It

is the abstractness of the principles that enables generalization and rapid learning under the

“poverty of the stimulus” (Kemp et al., 2007). If a learner observes that a particular agent

weights kin highly, and a new person is introduced who is also related to that agent, the

learner will already have a good idea of how this new relative will be valued. Knowledge

of abstract weights can often be acquired faster than knowledge of particulars, which is

sometimes called “the blessing of abstraction” or “learning to learn” (Kemp et al., 2007;

Kemp, Goodman, & Tenenbaum, 2010; Goodman, Ullman, & Tenenbaum, 2011). This is

the power of hierarchical modeling.

Learning abstract principles also clarifies the intuitive idea that people in a given culture

or in-group will agree more about the relative value of abstract moral principles than about

the relative value of specific people. For instance, people in a specific culture might each

highly value their own siblings but not the siblings of others. Thus we want to model

the way that these theories will be learned at the level of principles not at the level of

individuals. Moral principles explain how moral learners can go beyond the data and infer

hierarchical abstract theories from behavioral data.

Note that we assume that self, kin, in-group and all-people are observable to the

learner i.e., the learner knows which agents are kin and which belong to a common in-group
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(DeBruine, 2002; Lieberman, Tooby, & Cosmides, 2007). However, when observing inter-

actions between third parties, relationships based on reciprocity (direct and indirect)

are not directly observable by the learner and need to be inferred from behavior. Sensi-

tivity to these principles could be innate but could also be learned from a sufficiently rich

hypothesis space or grammar of abstract knowledge (Goodman et al., 2011; Tenenbaum et

al., 2011).

We can now formally state the challenge of inferring a moral theory. Let T be the

number of observations made by the learners. Most of the specific choices we make for the

hierarchical model are not essential for our cognitive argument, but are useful to facilitate

implementation and simulation. While we are committed to a hierarchical structure in

general, the specific mathematical forms of the model (e.g., the choice of priors) are at most

provisional commitments; they are chosen to be reasonable, but there are many possible

alternatives which future work could investigate. Each observation (ai,s) is information

about the choice ai made by agent i from the choices available in state s. For a learner to

infer the moral theories of others, she needs to infer the weights over the moral principles

conditional on these observations, P(W |(a0
i ,s

0), . . . ,(aT
i ,s

T )). This conditional inference

follows from Bayes’ rule:

P(Wi|(a0
i ,s

0), . . . ,(aT
i ,s

T )) ∝ (3.5)

∑
f d−recip

∑
f i−recip

P(a0
i , . . . ,a

T
i |s0, . . . ,sT ,Wi, f d−recip, f i−recip)P(Wi)P( f i−recip)P( f d−recip)

where the likelihood P(a0
i , . . . ,a

T
i |s0, . . . ,sT ,Wi, f d−recip, f i−recip) is probabilistic rational

action as shown in equation (3.3) with the αi, j set by the weights over moral principles

as shown in equation (3.4). To complete this hierarchical account of inference, we need

to specify priors over the unobserved principles direct-reciprocity and indirect-reciprocity

and over the weights themselves.

Since direct-reciprocity relationships are sparse and non-transitive we put an exponen-
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tial prior over each possible reciprocal relationship (B. Lake & Tenenbaum, 2010):

P( f d−recip) = ∏
i∈N

∏
j∈N
j 6=i

λexp(λ f d−recip(i, j))

This prior generally favors a small number of direct-reciprocity relationships when obser-

vations are ambiguous. The higher the value of λ, the more unlikely these relationships.

Indirect-reciprocity relationships are an inference over the group rather than individual

dyadic relationships. Each agent is either in the “cooperating group” or not, and only when

both are in the cooperating group will they value each other under the indirect-reciprocity

relationship. Here C is the “cooperating group”:

P( f i−recip) = ∏
i∈N

p1(i∈C)(1− p)1(i6∈C)

with p as the prior probability of an agent being in the “cooperating group”.

Having specified priors for the two unobserved reciprocity principles, we now describe

how learning abstract knowledge about how moral theories are shared within groups allows

learners to rapidly generalize their knowledge. We define a generative model over the pos-

sible ways the principles could be weighted P(W ). The simplest model might treat each

individual’s weights as generated independently from a common prior, reflecting a belief in

some “universal human nature”. Here we consider a more structured model in which learn-

ers believe that individual’s weights are drawn from a distribution specific to their group.

This represents group moral norms that themselves should be inferred in addition to the

weights of individuals. Specifically we assume that the weights of each individual Wi are

drawn from a Gaussian distribution parameterized by the average weighting of principles

in that individual’s group g:

Wi ∼ Normal(W g
norm,Σ

g)

where W g
norm is the average weighting of principles in i’s group and Σg is how these weights

covary in different individuals of a group. After sampling, the weights are normalized
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Figure 3-2: Hierarchical probabilistic model for inferring latent moral theories from sparse
behavior. T is the number of actions and judgments observed, N are the agents, P are moral
principles and G are the groups. Actions and judgments are observed (shaded in gray).

so that they are positive and sum to one. The higher the values in Σg the more variance

there will be in how agents weight the principles. The correlation between the weights of

the agents is visible in Figure 3-1b. Importantly, a learner does not know the W g
norm for

each group g in advance. The group average W g
norm must be inferred jointly with the Wi

of each agent. Thus while each person has a unique set of weights over moral principles,

those weights are statistically correlated with the weights of others in their group since they

are drawn from the same latent distribution. In this work we consider only diagonal Σg for

simplicity which do not model how principles themselves might be correlated. For instance,

in some society agents that highly weight the kin principle may also highly weight the

group principle highly. These correlations could be captured by allowing for covariance in

Σg. The full hierarchical model is shown schematically in Figure 3-2.

Assuming this structure for P(W ) is just one possible way to add hierarchical structure

to the inference of moral theories. Instead of inferring a different W g
norm for each group,

the learner could infer a single Wnorm for all agents which would imply that the learner

assumes moral theories do not systematically vary across groups. Furthermore, the W g
norm

themselves could vary in a systematic way according to a universal prior. For instance

while one might expect all groups to value kin highly but show significant diversity in

how much they care about group. We did not vary Σg in this work but one can imagine
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a learner inferring that some groups have more within group moral diversity than others

which would be captured by joint inference over this parameter.

We now empirically investigate inference in this model via a set of simulations. One of

the key reasons to use utility functions to represent moral theories is that our learner can

learn from observing different kinds of decisions and judgments in different contexts: they

do not need to see many examples of the same decision, as in classic reinforcement learn-

ing and learning-in-games approaches (Fudenberg & Levine, 1998). In our simulations,

observations of judgments and decisions took two forms: either the actor traded off her

own welfare for that of another person or the actor traded off the welfare of one agent for

the welfare of another. Within these two types, each observed decision was unique: The

actors involved were unique to that interaction, and the quantities of welfare to be traded

off were sampled independently from a probability distribution of characteristic gains and

losses. See Appendix 3.5 for the specific details of the judgments and decisions used as

observations.

Another feature of our simulations is that learners’ observations of behavior are highly

biased toward their kin and in-group (Brewer & Kramer, 1985). This makes learning more

difficult since most of the observed data is biased towards just a few agents but the learner

needs to infer weights and principles that apply to all agents. Figure 3-3 shows an example

of the inference for P(W |(a0
i ,s

0), . . . ,(aT
i ,s

T )) and the marginalized reciprocity relation-

ships P( f d−recip, f i−recip|(a0
i ,s

0), . . . ,(aT
i ,s

T )). As the learner observes more data, the

inferences become more and more accurate. However even with just a few observations,

hierarchical Bayesian inference leverages both the abstract principles and the hierarchical

prior over the weights of groups to rapidly approximate the moral theories of others.

3.3 Moral Learning as Value Alignment

Having described how rich moral theories can be represented and efficiently inferred from

the behavior of others, we now turn to moral learning itself. Specifically, how do moral

learners set their own weights over principles? We propose that moral learners have meta-

values, or preferences over moral theories themselves. Moral learning is then the process of
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Figure 3-3: Maximum a posteriori (MAP) estimate of beliefs from a learner observ-
ing behavior from the society shown in Figure 3-1 under increasing observations (T =
{500,1000,2000}). This learner is biased towards observing the behavior of agents 0 and
1. (top) Samples of the graph inference for the two reciprocity principles. The indirect-
reciprocity relationships are inferred rapidly while direct-reciprocity is slower and more
error prone because of its sparsity. (bottom) The weights inferred by the learner for each
of the other agents. The learner rapidly infers the moral theories of its kin (rows 0-1) and
in-group (rows 0-9) but has significant uncertainty about the moral theories of agents in its
out-group (rows 10-19). The “obs” column is the number of times the learner observed that
agent make a moral decision. Note that the vast majority of the observations come from
kin and the in-group. See Appendix 3.5 for the details of the inference.

aligning a moral theory with these meta-values. We propose two types of meta-values and

study specific instantiations of them. The first, external alignment, instantiates a form of

social learning where learners try to align their weights over principles as close as possible

to the weights of those that they value. The second, internal alignment, is a meta-value for a

moral theory which is consistent with the learner’s attachments and feelings. We formalize
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these meta-values for moral theory alignment and show that they can provide insights into

understanding the dynamics of moral change.

3.3.1 External Alignment: Learning from others

External alignment is a form of cultural or social learning. We explicitly depart from the

type of social learning commonly used in evolutionary models of game theory which de-

pend on behavioral imitation or learning by reward reinforcement (M. A. Nowak, 2006;

Richerson & Boyd, 2008; Rand & Nowak, 2013). Instead, we propose that learners ac-

quire a moral theory by internalizing the abstract principles used by others. Since we have

already described how a learner can infer the moral theories held by other agents, we now

describe how a learner decides who to learn from (Henrich & Gil-White, 2001; Richerson

& Boyd, 2008; Rendell et al., 2010, 2011; Frith & Frith, 2012; Heyes, 2016).

We propose that a learner L sets their moral theory to be close to the moral theories of

those whom they value. We express this meta-value as a utility function that the learner

is trying to maximize with respect to their weights over principles. The utility function

measures how similar the learner’s weights are with the weights of the people that the

learner values. Since who the learner values is determined in part by their weights, there is

an implicit dependence on their current weights, ŵL:

Uexternal(wL|ŵL) =−∑
i∈N

αL,i(ŵL) ∑
p∈P

(wp
L−wp

i )
2. (3.6)

This utility function has two nested sums. The inner sum over principles p is the sum of

squares difference between the moral weighting of the learner and of agent i for each prin-

ciple p. Maximum a posteriori (MAP) estimates were used for the inferred weights wi of

the other agents. The outer sum over agents i sums that squared difference weighted by

how much the learner values each agent i, αL,i(ŵL), given their current weights ŵL. Recall

that αi, j(ŵL) is composed of two terms: a sum over the moral principles as well as an ad-

ditional φ term which can contain other feelings and attachments that are not characterized

by the moral principles as shown in equation (3.4). We propose that a learner may have

some special attachments or feelings towards certain people. Particularly in the case of the-
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ory acquisition we consider a primitive attachment towards a caregiver which results in a

learner having a high φ directed towards that person (Bandura & McDonald, 1963; Cowan,

Longer, Heavenrich, & Nathanson, 1969; Hoffman, 1975; Govrin, 2014). It is interesting

to note that this utility function has a similar structural appearance to the utility function of

the moral decision maker shown in equation (3.1). If we imagine that agents have a prefer-

ence that others share their values, then a learner is increasing the utility of the people she

values by matching her weights to their weights.

To see how the internalization of the values of others might work dynamically, consider

a learner with a single primitive attachment to person i so that φL,i > 0. By valuing person

i, the learner will need to bring her weighting of moral principles in line with i’s weighting

to minimize ∑p∈P(w
p
L−wp

i )
2. But by bringing her values (as characterized by her weights

over moral principles) inline with those of agent i, she will start to value other agents as

well. This process can repeat, with the updated weights wL becoming the old weights

ŵL. For instance, if L and j are in the same in-group and i (L’s caregiver) weights in-

group highly then when L brings her values in line with i, she will also start to value j

since wgroup
L > 0 implies αL, j(wL)> 0. But since αL, j(wL)> 0, the learner will also try to

bring her values inline with the values of j (although to a lessor degree than i). Through

this mechanism, a learner who starts off valuing only a single specific person (e.g., their

caregiver) will initially internalize just that person’s values. But adopting that person’s

values may entail valuing other agents and the learner will recursively average the weights

of those agents into her own. The model makes the non-trivial claim that the αi, j parameters

perform a dual role: they are both the target of inference when learning from the behavior

of others, and they also drive the acquisition of the moral knowledge of others.

We empirically investigate the dynamics of external alignment in the previous society

of agents (Figure 3-1). Each of the 20 agents act as a caregiver (with a corresponding

primitive attachment) to a single learner. Figure 3-4 (top) shows the equilibrium weights of

the 20 learners. The weights that each learner acquires are a combination of what they infer

the weights of their caregiver to be and the inferred weights of the other agents. The extent

to which the weights of other agents are ultimately mixed in with the caregivers’ weights is

controlled by the φ on the learners caregiver. As Figure 3-4 shows, when this φ is high, the
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Figure 3-4: External alignment with caregivers and moral exemplars. The “Actual”
columns shows the actual weights for the caregivers of each of the 20 learners and the
moral exemplar. The “Inferred” columns show the weights each learner infers about the
weights over principles used by their own caregiver (top) and a highly impartial moral ex-
emplar (bottom). The “Actual” and “Inferred” columns look similar since learners infer
weights of others with high fidelity. The following upper columns entitled “Caregiver”
show the resulting moral theory actually adopted by each of the 20 learners as a result of
the process of external alignment shown in equation (3.6). The different values of φ sets the
strength of the feelings of the learner towards their caregiver. For low values of φ the learn-
ers end up valuing many agents and so adopt weights that are similar to the mean weight
of their group. As φ increases there is less averaging and each agent is more likely to only
internalize the weights of their caregiver. The lower columns entitled “Exemplar” show
the resulting moral theory when learners internalize both the values of their caregivers and
the moral exemplar. As the φ on the exemplar increases, learners move from mixing the
caregiver with the exemplar to directly inheriting the values of the exemplar.
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learner just internalizes the values of their caregiver. When φ is low, the learner chooses

weights that are somewhat in between her caregiver’s weights and the weights of those that

the learner ends up valuing.

Beyond this dynamic of acquisition, other ways of setting φ can lead to different learn-

ing dynamics. For instance, if learners place a high φ on agents they aspire to emulate in

terms of success or status, the learning dynamic will emulate that of natural selection. This

is analogous to the replicator dynamics used in evolutionary game theory but would operate

on abstract moral principles rather than behavioral strategies.

In addition to a primitive attachment such as a relationship with a caregiver, one could

also emulate moral exemplars. This kind of learning can also drive moral change for better

or for worse. Moral figures like Martin Luther King Jr. and Mother Teresa have inspired

people not only to copy their specific prosocial actions and behaviors (e.g., protesting for

African American civil rights and helping the needy) but to internalize their values of im-

partial consideration for all. The bottom half of Figure 3-4 shows learners update their

weights under the external alignment dynamic when they have feelings for both their own

caregiver and a moral exemplar with saint-like impartial values (assigning high weights to

the indirect reciprocity and all-people principles). For intermediate values of φ towards the

exemplar, the learners mix the values of their caregivers with those of the exemplar. For

higher values of φ towards the exemplar the learners’ weights mostly reflect the exemplar.

Finally, moral exemplars need not lead to progress. A charismatic dictator or demagogue

can inspire others to narrow their moral theory to place more moral weight on one’s in-

group at the expense of the broader principles.

3.3.2 Internal Alignment: Learning from yourself

While external alignment can account for how values are passed on over time and how new

ideas from a moral exemplar can spread, it does not generate new moralities that cannot be

described as a combination of moral theories that are already expressed in the society. In a

society where everyone only narrowly extends moral rights to others, how can more broad

or impartial theories emerge? We now turn to a second possible mechanism for learning,
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Figure 3-5: Internal moral alignment through inconsistency reduction. (a, top) Schematic
of a learner’s current moral theory ŵL. The solid line shows the contribution of the moral
principles to the αL,i for each of the agents (in arbitrary order). The dotted line is the
additional contribution of φL,i on the αL,i for a particular agent. (a, bottom) The learner’s
updated moral theory wL after internal alignment. This moral theory is adjusted so that the
gap between the solid line and dotted line is minimized, which may also affect some of the
other αL,i (note the arrows pointing in the direction of the change).

internal alignment, which revises moral theories to generate new values through the re-

duction of internal inconsistency. Our notion of internal alignment mirrors some aspects

of the “reflective equilibrium” style of reasoning that moral philosophers have proposed

for reconciling intuition and explicit moral principles (Rawls, 1971; R. Campbell, 2014).

We argue that a similar reflective process can also occur within individuals during moral

learning and gives insights into how commonsense moral theories change.

We start by supposing that through the course of one’s life, one will acquire attach-

ments for various people or even groups of people. These attachments and feelings can

be represented through the φ vector introduced in the previous section. As mentioned in

the introduction, these φ values could come from empathy and emotional responses, imag-

ination and stories, morally charged analogical deliberation, love, contact, exposure etc.

We do not explicitly model how these diverse mechanisms could lead to the formation or

breaking of attachments. Instead we directly manipulate the values of φ.

These feelings which also motivate moral valuation of specific individuals (through φ)

will not necessarily match the weight one’s moral theory places on those individuals. This

could happen, for instance, when a person with a moral theory that places little weight on

anyone outside of their in-group happens to fall in love with an out-group member.
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These feelings might affect one’s moral theory through a desire for moral consistency:

a preference to adopt a moral theory that does not conflict with one’s feelings and intuitions

(R. Campbell & Kumar, 2012; Horne, Powell, & Hummel, 2015). Said another way, feel-

ings inconsistent with the learner’s moral theory could generate an aversive error signal.

The learner would then adjust her moral theory in order to reduce the overall magnitude of

this signal, aligning her moral theory to be internally consistent with these feelings. This

adjustment could be conscious as in moral consistency reasoning (R. Campbell & Kumar,

2012) or unconscious as in cognitive dissonance (Festinger, 1962). Based on this intuition,

we propose a second meta-value for choosing a moral theory that captures this reasoning:

Uinternal(wL|ŵL) =−∑
i∈N

[
αL,i(ŵL)− ∑

p∈P
wp

L · f p(L, i)
]2

. (3.7)

This criteria takes the form of a utility function that the learner is trying to maximize with

respect to their weights over principles. The utility function measures the difference be-

tween how much their moral theory tells them to value each person and how much they

actually value that person when their feelings are included. The intuition behind internal

alignment is that one wants to find a new moral theory (wL) that values specific individuals

(the sum over P) in a way that is consistent with the way one feels about individuals (the

αL,i) which includes both moral principles ∑p∈P ŵp
L · f p(L, i) and the φL,i as shown in equa-

tion (3.4). In the case where there are no additional attachments (and hence φL,· = 0), the

two terms will be in alignment and the learner will choose wL = ŵL i.e., maintain their orig-

inal moral theory without change. When these are not in alignment (and hence φL,· 6= 0),

the weights over principles will be adjusted such that they have higher weight on principles

that include agents where φL,i > 0 and lower weight on principles that include agents where

φL,i < 0. A schematic of this process is shown in Figure 3-5.

Consider a father who holds significant homophobic views and treat homosexuals as

an out-group. If he discovers that a close friend or even his own child is homosexual,

his moral theory is telling him to value that close friend or child much less than he had

felt before. In order to align his weights over principles to be consistent with his feelings

the father may update his moral theory to place less weight on that in-group relation and
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Figure 3-6: Broadening a parochial moral theory through attachments and internal align-
ment. The caregiver and all other agents have parochial values (shown in the “Caregiver”
row) which were inferred by the learner as in Figure 3-3. When the learner only has a prim-
itive attachment for the caregiver (like those shown in Figure 3-4), her moral theory closely
reflects the moral theory of the caregiver (shown in the “Caregiver attachment only” row).
Each following row shows the resulting moral theory when the learner forms an attachment
with an additional individual (with strength φ = 1). When the learner forms an attachment
for a person in their in-group their moral values move from kin to in-group. When the
learner forms an attachment with someone in their out-group but who is also in the group of
indirect-reciprocators, the learner’s weights broaden towards indirect-reciprocity. Finally,
when the learner forms an attachment with a “sinner,” an out-group member who doesn’t
belong to the group of indirect-reciprocators, the only way to resolve the inconsistency is
to highly weight all people.

more weight on the more universal values (all or indirect-reciprocity). Likewise, in the

novel “The Adventures of Huckleberry Finn,” as Huck develops a bond with Jim, a black

runaway slave, his feelings are no longer consistent with the parochial moral weighting

he had previously held (where race is the key feature defining groups) and he updates his

moral weighting to include Jim, which might also include other black people.

Internal alignment is one way to explain the phenomenon of expanding moral circles,

the extension of rights and care to increasingly larger groups of people over time. In our

model this corresponds to moving from the narrow values of kin and in-group to more

impartial values of indirect-reciprocity and valuing everyone. We first study how this might

work at the level of an individual agent. Figure 3-6 shows how a learner’s weights over

principles move from weighting more parochial to more impartial values in response to new

attachments and internal alignment. Crucially and in contrast to external alignment, internal

alignment can account for moral change that does not arise from merely copying the values
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of others. As learners have new experiences, emotional or deliberative, their appreciation

of other people may change and the inconsistency generated by those experiences can lead

to new moral theories.

Internal alignment is broader than the specific instance studied here and other forms are

certainly possible. While we focus on adjusting the weights of the moral theory, the nature

of the principle could also be changed. For instance, the father of the homosexual child

could also reduce inconsistency by subtyping his in-group/out-group membership criterion

such that his child was not excluded (Weber & Crocker, 1983). Another way to reduce

inconsistency would be to allow the attachments themselves to change. The father might

weaken his feelings for his child. Also note that internal alignment may lead to reducing

the moral weight of whole groups. If a learner comes to develop negative feelings for an

individual of a certain group (for example after being victimized by crime), that experience

may drive them toward a more parochial weighting of principles. Figure 3-7 shows how

the narrowing of an impartial theory can occur within a single individual in response to

negative attachments and hatred.

In sum, while external alignment leverages primitive relations to learn abstract moral

principles, internal alignment modifies moral principles to make them consistent with feel-

ings and relationships. While external alignment can remove disparities between what

learners weight and what the people they value weight, internal alignment can remove dis-

parities in whom the agent values by changing what the learner values. Perhaps the clearest

way to appreciate this distinction is to consider the difference between two canonical exam-

ples of moral change where these different alignment mechanisms are operative. Consider

a learner who “loves a saint” versus a learner who “loves a sinner”. Both situations can

lead to moral change, but moral learning by loving a saint follows from external alignment

while moral learning by loving a sinner follows from internal alignment. That is, loving the

saint will lead to copying the values of the saint, for instance internalizing their weight on

the indirect-reciprocity principle as we showed in Figure 3-4 where learners copied from

saint-like moral exemplars. But in loving a sinner, the sinner doesn’t have weights that the

learner can copy since they presumably conflict with the weights of the other people she

values (“love the sinner, hate the sin”). However, internal alignment is still a viable force.
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Figure 3-7: Narrowing an impartial moral theory through feelings of hatred and internal
alignment. The caregiver and all other agents have impartial values (shown in the “Care-
giver” row) so change cannot occur through external alignment. These moral theories
were inferred by the learner as in Figure 3-3. When the learner only has a primitive at-
tachment for the caregiver, her moral theory closely reflects the impartial moral theory
of the caregiver (shown in the “Caregiver attachment only” row). Each following row
shows the resulting moral theory when the learner forms a negative-attachment (hatred)
with φ = −1 towards the hated agent. When the learner experiences hatred toward a per-
son in their in-group internal alignment narrows their moral values to just weight kin and
direct-reciprocity. When the learner experiences hatred for an out-group member who is
also in the indirect-reciprocator group the weights narrow to highly weight the in-group at
the expense of all people. Finally, when the learner experiences hatred towards a “sinner,”
an out-group member who doesn’t belong to group of indirect-reciprocators, the inconsis-
tency is resolved by only narrowing away from valuing everyone.

By highly weighting the “all people” principle, the learner can value both the sinner who

she loves and the other good people the learner values (as in Figure 3-6). To make these ex-

amples concrete, contrast a prejudiced white learner who is inspired to value a moral leader

such as Martin Luther King Jr., and a prejudiced white learner who comes to value a spe-

cific black person who is not especially virtuous (as Huck Finn did with Jim). The former

may copy the impartial values of MLK while the latter may adjust his moral weightings to

include that special person in an effort to make his moral theories consistent.

3.3.3 Dynamics of Moral Change

These two learning mechanisms, external and internal alignment, also have implications

for the dynamics of moral evolution – how moral values change over generations. In our

experiments, for each generation, a new group of learners observe biased samples of be-
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(a) Moral exemplar at generation 1
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(b) Moral exemplar at generation 1 with
remembrance

0 1 2 3 4 5
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
rin

ci
pl

e 
W

ei
gh

t

Narrow Moral Exemplar

0 1 2 3 4 5
Generation

Broad Moral Exemplar

Figure 3-8: Moral exemplars can rapidly reshape moral theories. When a moral exemplar
with impartial values is introduced to parochial minded agents at generation 1 (a), the moral
theories immediately adjust. There was a larger shift in moral theories when the moral
exemplar was stronger (right) and affected 75% of the agents than when the exemplar was
weaker (left) and only affected 25%. However, when the exemplar’s influence extends past
their lifetime (b) they can continue to reshape moral theories long after that exemplar’s
direct influence.

havior and judgment from the previous generation, infer the underlying moral theory (as

in Figure 3-3) and through value alignment, set the weights on their own moral theory (as

in Figure 3-4). This process is iterated for each generation with the learners of the previ-

ous generation becoming the actors for the next generation of learners. Using this model

of generational learning we are able to formulate and answer questions about how moral

learning translates into moral change.

One question, for example, is what leads moral change to persist, and even acceler-

ate across generations. We hypothesize that through external alignment, a moral exemplar

might rapidly affect moral values in even a single generation. The more people that are af-

fected by the exemplar (a measure of that exemplar’s influence), the greater the shift. Once

changed, this shift persists in future generations (Figure 3-8b), but does not continue to
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grow (and indeed may eventually be lost). Thus, we suggest that the greatest moral change

occurs when the exemplar persists across generations in retold stories and memories. As an

example, consider the rituals around “sainthood” in which a moral exemplar’s good acts are

relived and remembered across generations. This persistence allows the exemplar’s moral

principles to continue to shift moral values long after their original influence (Figure 3-8d).

Another question concerns how rapid moral change can spread through a group even

without a specific exemplar (Singer, 1981; Pinker, 2011). For example, how do attachments

between specific individuals create systematic change in overall moral norms, via internal

alignment?

In our simulations, agents started out with a parochial moral theory which heavily

weighted the kin and in-group principles and placed very little weight on the impartial

principles of indirect-reciprocity and all people (shown in Figure 3-1). To measure moral

change we examined the average weighting of these principles during each generation. In

each simulation we varied the fraction of new feelings and attachments (φ > 0) we cre-

ated in each generation and the distribution of those new attachments across the agents.

The proportion of agents (ρ = 0.05,0.15,0.25) who formed a new attachment towards an-

other agent besides their caregiver varied in each experiment. We analyze the equilibrium

of jointly optimizing the external and internal alignment utility functions. Since there are

no “saints” in these simulations, internal alignment is necessary for systematic directional

change in the average weights of the society.

In the first set of simulations, these attachments were created between agents uniformly

at random. Because of uniform sampling, an agent’s new attachment is unlikely to be

towards someone in their kin group and ≈ 50% likely to be towards someone in their

in-group. Thus half of the new attachments are likely to be towards an agent from an out-

group who is not valued by morally parochial agents. Figure 3-9a shows the average weight

on parochial principles such as kin and in-group compared with the broader principles of

all people and indirect-reciprocity. We compared the average weight as a function of the

number of generations and the proportion of agents generating new attachments (ρ). When

ρ = 0.05, there is very little cumulative moral change towards indirect-reciprocity and all

people. However when ρ = 0.15, there is a complete shift towards these broad values
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Figure 3-9: Change in the average agent’s weighting of parochial vs. impartial moral
principles as a function of generation and the proportion of agents (ρ) that develop an
attachment (φ) for another agent chosen (a) uniformly at random or (b) in proportion to
their interaction frequency. The 0th generation is the starting state. As ρ increases, the rate
of moral change rapidly increases in (a) but in (b) moral change is significantly inhibited.

but only after many generations. Finally, when ρ = 0.25, agents predominantly weigh the

impartial principles after only three generations.

In the second set of simulations, agents formed attachments towards other agents pro-

portional to their probability of interacting with that agent. These agents were far less likely

to form a new attachment to someone outside of their in-group since they rarely interact

and observe the behavior of agents outside of their in-group. Figure 3-9b shows how the

moral theories changed under this paradigm. Unlike previous simulations, when ρ = 0.05,

almost no moral change was observed and after one generation the moral theory remained

relatively constant. Even when ρ = 0.25 which led to rapid moral change in the previous

set of simulations, moral change was slow and the parochial values and impartial values

did not cross over until after around ten generations.
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Figure 3-10: Moral change from attachments critically depends on internal alignment.
When simulations are run without internal alignment active during learning, there is no
significant moral change towards impartial values no matter the proportion of agents (ρ)
that develop an attachment for another agent.

To test whether the previous results depended on the internal alignment mechanism,

we ran the same simulations as above but without internal alignment active during learn-

ing (Figure 3-10). No matter the amount of attachments formed (ρ), there was little to

no change in the moral theories demonstrating that moral change based on attachments

critically requires internal alignment.

This result could also correspond to being aware of the inconsistency but lacking the

meta-value to reduce the conflict, choosing to live with that inconsistency rather than revise

one’s moral theory (Bennett, 1974). Another possibility is that agents are simply unaware

of the inconsistency – people often feel strong attachments for their spouses and neighbors

but remain inconsistent. Instead, they must construe the attachments and feelings for their

loved ones as incompatible with their moral position. A recent study by Hein, Engelmann,

Vollberg, and Tobler (2016) showed that unexpected prosocial behavior from an out-group

member elicited a neural signal consistent with a prediction error. These signals could also

act as a cue to initiate the process of updating one’s moral theory. Furthermore, unequal

deserving of moral concern is not always or obviously seen as incompatible with feeling

love for specific individuals. Others may be seen as appropriately and rightly occupying

different positions in the moral arrangement, and therefore having different rights with-

out necessarily generating any internal alignment. Agents may also be motivated by per-

sonal image or other selfish motivations to ignore the inconsistency (Monin, 2007; Monin,
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Sawyer, & Marquez, 2008).

Can this explain why attitudes about some groups change quickly (e.g., women and

homosexuals) but change slowly or not at all for others (e.g., races, religions and nation-

alities) even once those inconsistencies are pointed out? One possibility is that internal

alignment does not operate automatically. Instead, inconsistency may need to be experi-

enced and lived repeatedly to generate moral change through internal alignment. This lack

of continued and interactive contact may underlie the cases where moral change is resistant.

An intriguing possibility along these lines is the role of literature in spurring moral change

(e.g., Uncle Tom’s Cabin) by activating internal alignment. Literature can humanize a per-

son in morally relevant ways, forcing a reader to experience their inconsistency over and

over again. A particularly effective way to generate moral change may be to combine ex-

ternal and internal alignment. A moral exemplar describes and relates their own process of

noticing inconsistency and resolving it through internal alignment, simultaneously walking

others through their own moral change and encouraging them to do the same.

While we have demonstrated that attachments can in some cases lead to rapid moral

change from a parochial moral theory to an impartial one, we now investigate whether

attachments selectively generated towards one’s in-group towards can change agents that

have impartial moral theories into having more parochial moral theories – narrowing the

moral circle. Figure 3-11 shows simulations with a society that starts with an impartial

moral theory and in each generation agents form attachments with other agents specifically

within their in-group. No regression towards parochial values was observed. From these

simulations we hypothesize a “moral ratchet effect,” since impartial moral theories that

value all agents already include valuing those in-group members, no inconsistency arises

from those attachments. Thus moral change towards more impartial theories is robust to

new positive attachments towards one’s in-group and is not expected to lead to moral re-

gression.

The dynamics of these results suggest there may be a critical point for enabling long

lasting moral change. When agents were more likely to be exposed to and develop attach-

ments to agents outside of their in-group they quickly revised their moral theories to be

consistent with these attachments and developed impartial moral theories. When agents
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Figure 3-11: Moral change towards impartial values is robust to in-group attachments.
Agents started with an impartial moral theory but each generation developed attachments
towards others with probability proportional to their interaction frequency. Thus most of
these attachment were formed with kin and in-group members. Although attachments were
parochial, there was little change in the average moral theory.

were limited in their out-group interaction, their parochial moral theories persisted for far

longer. This work suggests that moral learning is a double edged sword: while it is possible

to rapidly and reliably acquire a set of abstract principles from limited and sparse data, the

values acquired might reflect group biases. Under the right circumstances moral progress

can appear rapidly but in other circumstances it fails to cross group boundaries.

3.4 Discussion

We have argued that three principles should be central in a computational framework for

understanding moral learning and moral change. First, the commonsense moral knowledge

used to make trade-offs between the welfare of different people including oneself can be

represented as a recursive utility calculus. This utility calculus weights abstract moral

principles and places value on people enabling the evaluation of right and wrong in an

infinitude of situations: choosing when to act altruistic or reciprocal, favoring one person or

group of people over another, or even making judgments about hypothetical out-of-control

trolleys, etc. This abstract representation contrasts with previous formal models of moral

learning where the knowledge that supports moral judgment consists of simple behaviors

or responses to behavioral reinforcement (M. A. Nowak, 2006; Rand & Nowak, 2013;
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Cushman, 2013). Moral knowledge grounded in behaviors rather than abstract principles

of valuation cannot generalize flexibly to novel situations.

Second, for moral theories to be culturally learned, learners must be able to infer the

moral theories of others, and we showed that hierarchical Bayesian inference provides a

powerful mechanism for doing so. Rational inference is needed to figure out which moral

principles and reasons drove agents to act in a world where moral behavior and judgments

are sparsely observed, noisy and often ambiguous – a “poverty of the stimulus”. What a

person does in one context gives information about what they will do in other contexts, and

learners exploit these regularities to go beyond the data to infer the abstract principles that

drive a person to act. The hierarchical Bayesian model exploits regularities in how moral

theories are shared between group members to generalize rapidly to new people the agent

may have never seen before. In addition to inferring the moral theories of other agents,

our model also infers reciprocity relationships which cannot be directly observed. Without

the ability to infer abstract theories, learning would be limited to behaviorist models which

only care about the observable behavior of others, not their character or reasons for acting.

Finally, having inferred the moral theories of others, learners must choose how to set

their own moral theory. We argue that moral learning is guided by meta-values which

determine the kinds of moral theories that the learner values holding. Under this model,

moral learning is the process of aligning one’s moral theories with these meta-values. A

meta-value for external alignment, tries to match the learner’s moral theory as closely as

possible to the inferred moral theories of the people that the learner values. External align-

ment accounts for the reliability of moral learning from others across generations and gives

an account of how agents mix together the moral theories of the many agents they may end

up caring about. The richness of this form of cultural learning critically requires both the

ability to represent abstract moral theories and infer the moral theories of others. A sec-

ond meta-value, internal alignment, revises moral theories to make them consistent with

attachments and feelings generated from emotional (empathy, love, contact) and delibera-

tive sources (analogies, argumentation, stories) (Allport, 1954; Bloom, 2010; R. Campbell

& Kumar, 2012). Our model makes testable predictions about how the different patterns of

attachments could affect the dynamics of moral change.
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Our core argument is that a full account of moral learning should include at least these

three computational principles: moral theories represented in terms of abstract principles

grounded in a recursive utility calculus, hierarchical Bayesian inference for rapidly infer-

ring the moral theories of others, and learning by value alignment both externally to the

values of others and internally through reducing inconsistency. Our main results take the

form of a series of simulations based on a particular implementation of these principles,

but we stress that our specific implementation is unlikely to be fully correct and is certainty

not complete. Many of the specific quantitative modeling choices we made (for instance,

the choice of squared-error as opposed to absolute difference for the learner’s cost function

on weights, or the choice of a normal distribution as the prior over weights) do not affect

the main results and we are not committed to them specifically. Instead, we want to argue

for and explain the value of several computational principles more broadly in moral learn-

ing, and we hope that their instantiation in a specific computational model can complement

more qualitative accounts of moral learning and moral change (Singer, 1981; D. A. Pizarro,

Detweiler-Bedell, & Bloom, 2006; Pinker, 2011; Mikhail, 2011). Ultimately, we hope that

understanding the mechanisms of moral change at this level can ultimately be valuable in

implementing the changes we would like to see in our societies – or in understanding when

moral progress is likely to be slower than we would like.

Given that this is a first attempt at using these quantitative tools in the moral domain

there are still many possible extensions we hope to address in future work. In this work

learners received data in the form of moral judgments and behaviors, however external

alignment is sufficiently general to learn from other types of data such as explicit decla-

rations of values. For example, a value statement such as “Family comes first!” could be

encoded as a qualitative constraint on the ordering of weights for different moral princi-

ples, i.e., the weight on kin should be higher than on other principles. It can also be used

to learn from punishment and praise. Consider the difference about what is learned when

punished by an anonymous person versus someone you love. In part, the decision to punish

gives information about the punisher’s own moral theory. If the punisher is someone who

the learner cares about it can lead to moral updating through external alignment rather than

behavioral reinforcement.
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Other extensions could integrate our model with recent work which has shown how

deontological principles (of the form “do not X” or “do not intend X” regardless of the

consequences) could be learned (Nichols et al., 2016; Ayars & Nichols, 2017) or emerge

from choice algorithms (Crockett, 2013; Cushman, 2013). Learners are also expected to

learn how different “base” moral goods and evils contribute to the welfare of individuals

or even what counts as moral. Differences in what counts as moral is already known to

vary across cultures and individuals (Graham et al., 2009, 2016). In our model this would

correspond to learning the form and weight of different components in the R(s) function. In

this work we treated all moral goods as having a shared currency (“utility”) but people may

act as if there are multiple sets of value, different currencies that cannot be directly inter-

changed (Baron & Spranca, 1997; Baron & Leshner, 2000; Tetlock, Kristel, Elson, Green,

& Lerner, 2000). Finally, these source of moral value may also compete with mundane and

non-moral values (Tetlock, 2003). We leave these challenges for future work.

Much more can also be said about the structure of moral principles in our framework.

Group membership is often combinatorially complex where each agent may be a member

of multiple groups some observable and others not. Some groups are defined top-down by

external factors such as race, religion, gender, or location while others are defined bottom-

up such as based on a similarity of values (moral and non-moral). While in this work,

we showed how the priors on the values of group members can speed up the inference of

the values of individuals, it can also speed up an inference of who is in what group by

exploiting knowledge of their values. Groups are themselves dynamic and future work

should integrate models of group formation with the dynamics of moral theory learning

(Gray et al., 2014).

Furthermore, in the simulations we studied, there were only two groups which were of

equal size and which shared similar values. We could ask, for example, whether a learner

with a caregiver who holds a minority moral theory is as likely to spread that theory as

one with a caregiver who holds a theory held by the majority? When are minority values

likely to be assimilated into the majority after a few generations, and when do they become

stable? Or consider the effects of ambiguous moral inference on moral change. A person in

one group may show a few cooperative interactions with members of another group, which
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could reflect a low in-group bias and high impartiality. But these actions could also come

about from a high in-group bias together with some specific valuation of a small number

of out-group members, either through highly weighted direct reciprocity links or intuitive

feelings. Others may not know how to interpret their actions, and indeed the individual

may themselves be confused or self-deceptive, as exemplified by the classic excuse, “I’m

not racist! Some of my best friends are black!”. How might these ambiguities speed or slow

the rate of change towards impartial indirect-reciprocity in the expanding-circle scenarios

we discussed above?

While in this work we mainly explored how the moral principles are abstract with re-

spect to individuals and groups, we observe that such principles are also abstract to situ-

ational context (Fiske, 1992). In some contexts one might be justified in acting mostly in

one’s own interests or the interest of one’s loved ones while in another context selfless be-

havior may be obligated. For example, it may be acceptable to give higher weight to one’s

own child under most circumstances, but when acting as a school chaperone this duty is

extended equally to all the children. Furthermore, there are exchanges of welfare based on

merit, effort or punishment which require a notion of proportionality that our representation

does not capture (Rai & Fiske, 2011).

We hope in future work to be able to say more about where these moral principles cog-

nitively originate. Some have argued that children might have an innate understanding of

even the more sophisticated reciprocity based moral principles (Hamlin, 2013). Another

possibility is that these principles come from an even more abstract generative model of

moral and social behavior, either embedded in the roots of societies through something like

an “initial position” bargain (Rawls, 1971; Binmore, 1998) or implemented in a more on-

line fashion in individuals’ “virtual bargaining” with each other (De Cote & Littman, 2008;

Misyak, Melkonyan, Zeitoun, & Chater, 2014; Kleiman-Weiner et al., 2016). Evolutionary

mechanisms (cultural or biological) which favored groups that followed these principles,

because of how they promote cooperation and the advantage cooperation bestows to groups

and their members, are also likely contributors (Rand & Nowak, 2013; Greene, 2014). Our

work here is complementary to all these proposals, and we would like to explore further

how it could integrate with each of them.
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Finally, if we are going to build artificial agents that can act with us, act on our behalf

and make sense of our actions, they will need to understand our moral values (Wiener,

1960; Bostrom, 2014). Our model suggests one route for achieving that understanding: We

could build machines that learn values as we propose humans do, by starting with a broad

set of abstract moral principles and learning to weight those principles based on meta-

values which depend in part on the values of the humans that the machine interacts with

or observes. This proposal fits well with mechanisms of value alignment via cooperative

inverse reinforcement learning (Hadfield-Menell, Russell, Abbeel, & Dragan, 2016) that

have been proposed for building beneficial, human-centric AI systems. We can choose

how much of morality should be built in to these machines and how much should be learned

from observation and experience. With too little abstraction built in (such as trying to learn

the α directly), the machine will learn too slowly and will not robustly generalize to new

people and situations. With too much structure and constraints, the restricted theory may

be unable to capture the diversity and richness of the true moral theories used by people.

The model presented here is just one point on this spectrum which trades off complexity

and learnability. The prospect of building machines that learn morality from people hints

at the possibility of “active” moral learning. Can a learner, child or machine ask questions

about ambiguous cases (perhaps similar to those pondered by philosophers) to speed up the

process of moral learning?

In conclusion, learning a commonsense moral theory, like learning a language, turns

out to require a surprisingly sophisticated computational toolkit. This is true if we seek to

understand how moral knowledge is acquired, particularly the type of moral knowledge that

generalizes flexibly to an unbounded range of situations, and that involves interactions with

others we barely know or have never met. Understanding moral learning in computational

terms illuminates the cognitive richness of our moral minds, and helps us to understand

how our societies might have come to the moral values we hold – and where we might be

going.
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3.5 Simulation Details

In this work we consider two types of decision contexts: one where the actor traded off her

own welfare for that of another person, and one where the actor traded off the welfare of

one agent for the welfare of another. For the first type of decision context, an actor chose

between an allocation of welfare of 0 to herself and 0 to the other agent or an allocation of

−A to herself and A+B to the other agent where A and B were independently resampled

from an exponential distribution with mean 10 for each decision. Thus in these decisions

an agent chooses between doing nothing, or paying a cost (−A) to give a larger benefit to

another agent (A+B). The larger the ratio of the samples (B/A) the greater the joint utility

of choosing the prosocial option.

For the second type of decision context, the actor chose between A welfare for one

agent and A+B welfare for another agent with no impact on the actors own welfare. In this

context, the actor is choosing which person should be given the allocation and the agent not

chosen gets nothing. A was resampled from an exponential distribution with mean 10 and

B was independently sampled from the same distribution as A with probability 0.5 and set

to 0 with probability 0.5. Although there are only two decision contexts, since the actual

welfare trade off is newly sampled for each choice, no decision is exactly like any other.

To generate observations for learning, we first sampled an actor and affected agents

from the previous generation of agents and a decision context with values for A and B.

Then a choice or judgment was generated by sampling from the distribution shown in equa-

tion (3.3) with β = 5. Each learner observed a unique set of decisions and judgments from

different actors. We assumed that the observed agents have already reached an equilibrium

in learning i.e., the agents which generate observations are not themselves learning. Due to

this assumption each observation of a decision is independent.

Maximum a posteriori probability (MAP) inference for the conditional on the observa-

tions (P(W |(a0
i ,s

0), . . . ,(aT
i ,s

T ))) was estimated using an EM-like inference algorithm that

iterated between optimizing the weights Wi of each agent i, the group average weightings

W g
norm, and samples from the two reciprocity relationships (P( f d−recip, f i−recip|H)). In

all simulations we used λ = 1 for P( f d−recip), p = 0.5 for P( f i−recip) and Σg = I for all g.
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3.6 Extending the Utility Calculus

Here we explore possible extensions to the representations of moral theories which demon-

strate the richness of the utility calculus. While we considered recursive utility calculus

where prosocial moral theories the level-1 theory is composed from self-valuing level-0

moral theories. We can iteratively apply recursive valuation to generate utility functions

that allow for higher-order preferences. The level-k utility function is:

Uk
i (s) = (1− γ

k
i )U

k−1
i (s)+ γ

k
i ∑

j∈N
j 6=i

αi, jUk−1
j (s)

An agent with a level-k moral theory goes beyond just valuing people but also includes

recursively valuing the people they value and so on. If γk
i decreases as a function of k (i.e.,

γk
i < γ

k−1
i ), higher orders of recursive valuation become progressively less important.

We can also consider a moral theory that is not just dependent on the expected state and

outcome but also dependent on properties of the action itself. We can abstractly include

these prohibitions by modifying the base utility function.

U0
i (s,a) = Ri(s)−δiDi(a)

where D(a) is a function that returns the degree to which an action violates a deontolog-

ical rule that agent i cares about. Since intentions can be inferred from actions (Mikhail,

2007; Kleiman-Weiner et al., 2015), these constraints could include restrictions on inten-

tion such as the doctrine of double effect or other specific forbidden actions (Tetlock et al.,

2000; Haidt, 2007). Importantly, these norms are limited to those that only depend on the

action (and what can be inferred from the action), without reference to the consequence.

These deontological norms are integrated with the rest of the moral theory with δi con-

trolling the relative degree that agent i takes into account deontological rules compared to

outcomes (Kleiman-Weiner et al., 2015; Nichols & Mallon, 2006). Recent research has

made progress on learning this function from experience (Cushman, 2013; Nichols et al.,

2016; Ayars & Nichols, 2017). Once this new base utility function (U0) enters the level-k
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recursion, if agent i values the utility of agent j through αi, j, than i will also care about the

deontological prohibitions that agent j cares about. To use these utility functions which

depend on actions as well as states requires simply substituting U(s′) in equation (3.2) for

U(s′,a).
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Chapter 4

Learning to Cooperate and Compete

4.1 Introduction

Our most important relationships involve understanding when to cooperate and when to

compete. From siblings to coworkers, humans rely on both planning and context to know

which situations they should cooperate in and which they should compete in (Galinsky &

Schweitzer, 2015; Rand & Nowak, 2013). And yet in real life, unlike a behavior eco-

nomics experiment, cooperation and competition are abstract with respect to a given sit-

uation. A cooperative or competitive interaction unfolds over time – there isn’t a single

moment where competition or cooperation “happens”. Even if the decision to cooperate or

compete has been made, efficiently implementing those strategies can be difficult. A person

determined to cooperate and knowing what the other person wants will have to develop a

Matrix-Form Games

Blue

Yellow
Cooperate Compete

Cooperate 7,7 -1,8
Compete 8, -1 4,4

Figure 4-1: A social dilemma written as a normal-form game. The numbers in each square
specify the payoff in terms of utility to the blue and yellow player respectively for choosing
the action corresponding to that square’s row and column. If both agents choose cooperate
they will collectively be better well off than if they both choose compete. However in any
single interaction, either agent would be materially better off by choosing to compete.
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Stochastic Games
Cooperate
Compete

10

10

10

10

Yellow
Cooperate︷ ︸︸ ︷
←

/0

...




→

→
...

 . . .

Compete︷ ︸︸ ︷
←

↓
...




←

/0

...

 . . .

Blue

Cooperate



[
←,←, . . .

][
→, /0,↑, . . .

]
...

7,7 6,7 . . .

7,6 6,6 . . .

. . . . . . . . .

-1,8 -2,7 . . .

-2,8 -2,6 . . .

. . . . . . . . .

Compete



[
→,↑, . . .

][
→, /0, . . .

]
...

8,-1 8,0 . . .

7,-1 8,-2 . . .

. . . . . . . . .

-1,8 -2,7 . . .

-2,8 -2,6 . . .

. . . . . . . . .

Figure 4-2: Two-player stochastic games. (top) Grid form representation of the stochastic
game. The arrows show example strategies that can be used to realize both cooperative and
competitive outcomes. (bottom) Matrix representation of the strategy space, with low-level
strategies sorted by a high-level goal. The arrows correspond to moving in a specific direc-
tion and the /0 corresponds to waiting. Note that the action space is effectively unbounded
but the strategies naturally cluster into a small number of high-level goals. If both agents
go to the sides then they will both score the reward but if they fight for the middle in hopes
of using less moves they will collide and only one will get any reward.
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detailed plan of action to realize that cooperative intention. Likewise for a person intent on

competing. In this work we aim to bridge high-level strategic decision making over abstract

social goals such as cooperation and competition with low-level planning over actions to

actually realize those goals.

The ability to form these hierarchical joint intentions is a key component of social be-

havior. The motivated instinct to both infer and evaluate complex social plans emerges

in early childhood (Warneken & Tomasello, 2006; Hamann, Warneken, Greenberg, &

Tomasello, 2011). Young children not only rapidly infer the goals of other agents, but

spontaneously execute complex plans to cooperate with others. For instance, a cooperative

intention might generalize to include not just the low-level details of a joint task but also

tell how to share the spoils. The ability to infer the intentions of others and participate in a

dynamic joint endeavor (sometimes called the “we-mode”) is thought to be a key building

block of large scale collaborative culture (Tomasello et al., 2005).

4.1.1 Naturalistic Games

Game-theoretic investigations of social behavior often represent strategic interactions as

matrix-form games like the one shown in Figure 4-1. In these games, the rows and columns

correspond to the action space of the two players and the cells describe the payoffs to each

agent that would result from those actions. While useful as a succinct representation of

a social decision, these games lack the ecological validity of real social decisions which

require planning across space and time. When presented to participants, it can be diffi-

cult to extract the right information and even after significant training, many people don’t

even look at the payoffs most relevant for strategic reasoning (Costa-Gomes, Crawford,

& Broseta, 2001). When the number of decisions grows beyond two decisions per agent,

these problems are exacerbated.

Instead we use a paradigm commonly deployed in multi-agent systems research which

has not been explored behaviorally (De Cote & Littman, 2008). In this paradigm, strategic

interactions are represented as naturalistic spatial environments that people play intuitively

like video-games. Figure 4-2 shows an example of one of these multi-agent planning en-
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vironments that is conceptually related to the social dilemma shown in Figure 4-1. Unlike

the matrix-form game, these environments also require low-level planning over spatial ac-

tions to realize a strategic goal. The action space of these games is much larger than those

typically studied in matrix-form games but the strategies are still intuitive.

Each player controls the movement of one of the colored circles. On each turn players

choose to either move their circle into an adjacent square (not including diagonal moves)

or to remain in the same position. Attempting to move is costly resulted in the loss of one

point. Choosing to remain in the same position did not incur any cost. Both players select

an action during the same turn and their positions are updated simultaneously. Each square

can only be occupied by one player at a time so if both players try to move to the same

square, one of the players chosen by chance will enter the contested square while the other

remains in place. However both pay the cost for attempting to move. If one player stays in

the same position and the other player tries to move into their square, no movement occurs.

Finally, players cannot move through each other and switch places.

The colored squares are the goals. When either player reaches a square with the same

color as their avatar, that player receives ten points and the round ends. Thus the only way

for both players to receive points is if they both enter squares that match their avatar’s color

on the same turn. These dynamics were chosen to be identical to those in (De Cote &

Littman, 2008) so that our data can also be compared to the models of that work. Because

each interaction generates data about both the action plan and the payouts, we can use these

games to start to investigate the mechanisms people use to coordinate on cooperative and

competitive outcomes. Furthermore, they allow us to study how humans innovate to find

these strategies out of such a large possible space of action plans.

4.2 Model

4.2.1 Hierarchical Social Planning

We develop a hierarchical model of strategic planning that unifies low-level action plan-

ning with high-level strategic reasoning and allows for learning across both levels. In brief,
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agents have two “modes” of low-level planning: a cooperative mode and a competitive

mode. These two modes are connected through a high-level strategic planner that deter-

mines which mode should be deployed based on previous interactions. After each round,

agents use Bayesian theory-of-mind to determine whether or not the other agent’s low-

level actions are consistent with the cooperative planning mode vs. the competitive plan-

ning mode. The agent can then condition their own next actions on the inferred high-level

intentions of the other agent realizing a sophisticated strategic response.

Both modes include forms of model-based learning which allows for learning to gener-

alize across environments as well as model-free reinforcement of actions. In this work we

focus specifically on the high-level goals of cooperation and competition but other high-

level goals such as teaching, punishing or communication are also relevant in these games

and will be investigated in future work. The challenge of hierarchical planning is to link

these high-level goals to a lower-level plan of action.

Our work builds on and is inspired by classical formalisms of intention and joint plan-

ning from the AI literature (Levesque, Cohen, & Nunes, 1990; Grosz & Kraus, 1996) as

well as more modern formulations for planning under uncertainty such as DEC-POMDPs

and I-POMDPs (Gmytrasiewicz & Doshi, 2005; Gal & Pfeffer, 2008; De Cote & Littman,

2008). However the earlier models do not handle uncertainty in a probabilistic way and

hence struggle with quantitative predictions about behavior while the later are often in-

tractable over long planning horizons and don’t explicitly represent abstract social goals.

We briefly introduce stochastic games following the notation of De Cote and Littman

(2008) and then discuss repeated stochastic games. A two-player stochastic game is:

〈S,s0,A1,A2,T,U1,U2,γ〉 where S is the set of all possible states with s0 ∈ S the starting

state. Each agent can choose from a set of actions A1 and A2 which together form a joint

action space A1×A2. The state-transition function, T (s,a1,a2) = P(s′|s,a1,a2) maps a

state and joint action to a distribution over new states. The utility functions of the two

agents U(s′,s,a1,a2) = R describe the agent’s goals in terms of quantitative costs and re-

wards. Finally 0≤ γgame ≤ 1 is the discount rate of reward. In repeated stochastic games, a

series of stochastic games are played one after another in succession between the same pair

of players. We now discuss the cooperative and competitive modes of planning in detail.
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4.2.2 Cooperative Planning

Since there is no specific action that corresponds to cooperation in these stochastic games

(all actions are spatial movements), we develop an abstract notion of cooperation which

generalizes across contexts. We postulate that a cooperative action is one that is good for

the group i.e., efficiently maximizes the utility of all agents. Since under this assumption,

the goal of cooperation is to rationally achieve a group goal, we consider a group-agent

that optimizes a utility function composed of the utility of all agents (Sugden, 1993, 2003;

De Cote & Littman, 2008).

Computationally, we represent this group utility function as a linear weighting of the

utility of the two agents: UG = (w)U1 +(1−w)U2 where w ∈ [0,1] controls how the two

agents are relatively valued by the group-agent. For example when w = 0.5 the group-

agent impartially weighs the utility of both agents equally. We are not implying that this

group-agent actually exists but rather that each player can simulate the same group-agent

by taking an objective view of the planning environment outside and separate of their own

personal goals (Nagel, 1986). Since the “view from nowhere” is a common view for these

agents, it avoids the outguessing regress of thinking about others, and is instead a space

where the details of planning can be hashed out for coordination using what is commonly

known all agents. We note that this utility function can include other social preference such

as inequality aversion or merit based allocations.

Since the group-agent can directly control the actions of both players (like a “we”

agent), it can treat the stochastic game as a single-agent MDP. Rational planning over joint

actions (a1,a2) is achieved through value-iteration:

P(a1,a2|s) = π
G(s,a1,a2) ∝ e(βQG(s,a1,a2))

QG(s,a1,a2) = ∑
s′

P(s′|s,a1,a2)[UG(s′,s,a1,a2)+

γ max
(a′1,a

′
2)

QG(s′,a′1,a
′
2)]

where the group-agent policy, πG(s), is to choose actions with probability proportional to

their future expected utility. A high value of β means that the group-agent is more likely to
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select the action with the highest Q-value and a low value of β means that the group-agent

is more likely to select suboptimal-actions. In all experiments we used a relatively high

value of β = 4. We note that πG is not only a policy for action, but also includes the future-

oriented intentions of what the two agents should do once they get to a new state. These

intentions include how to recover from failed coordination attempts. We used a discount

rate of γ = 0.9 in all the models presented here.

Although each agent might consider the policy of the group-agent, the individual agents

can only control their own actions. To transform this group-agent policy into an individual

policy, individual agents marginalize out the actions of the other player from the joint pol-

icy: πG
1 (s,a1) = ∑a2 πG(s,a1,a2) and πG

2 (s,a2) = ∑a1 πG(s,a1,a2). These policies contain

intertwined intentions, not only an intention to take a specific action but also the inten-

tion that the other agent reach certain states. This “meshing” of plans between the two

agents has been called a key component of joint and shared intentionality (M. E. Bratman,

1993, 2014). Unlike social preference based accounts of cooperative behavior where each

agent individually plans to maximize joint utility, in this account, cooperation is a built in

cognitive feature of planning itself – agents plan together.

When there is a single unambiguous action for both players that maximizes joint utility,

coordination is readily achieved. However in the environments we investigate, there are

often multiple actions that can generate optimal rewards for the group-agent. We now

discuss two mechanisms for learning social norms that can break these symmetries and

lead to robust coordination on a single jointly optimal plan.

We first consider the case where two different actions are equally good from the per-

spective of a group-agent that weighs the utility of the two agents equally but the rewards

will be allocated unequally. For example, consider game (C) in Figure 4-3 where one agent

needs to go around the other. Because moving costs 1 point, the agent who goes around the

other will only earn 7 points while the agent who waits will earn 9 points. From the per-

spective of the group-agent with w = 0.5, it doesn’t matter who goes around since the joint

utility is equal. However if one agent was favored over the other (w 6= 0.5) this symmetry

would be broken and the disfavored agent would take the long route. Thus prior knowledge

about asymmetries in how the group should operate can lead to more robust coordination
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although potentially at the cost of less fair cooperation.

The two agents may start with a different prior on the value of w and thus when simulat-

ing the group-agent will fail to coordinate. Consider the case where both agents think they

should be valued more than the other and hence expect the other player to go around them.

We propose a mechanism based on “virtual bargaining” accounts of social choice that lead

to each agent’s w to converge over time to the same value without any explicit communi-

cation (Binmore, 1998; Misyak et al., 2014). After each interaction, agents can infer the w

that best explains the joint behavior of their previous interaction: P(w|H) ∝ P(H|w)P(w)

where H are the data from previous interactions and the likelihood of those interactions

is defined by the marginalized joint policies generated from planning with a specific w:

πG
1 and πG

2 . In our analysis, each agent starts out with a prior of w = 0.5 and updates it

after each round based on the inferred w of the previous interaction. Thus over time w

will converge and as predicted by the theory of virtual bargaining, more patient agents who

insist on the advantage will gain a greater share of the joint reward in future coordinated

interactions where an equitable split isn’t possible. For example, if in a previous interac-

tion agent 1 took a more costly route, then in the next round agent 1 will be more likely

to take the costly route again generating a social norm for cooperative coordination. Since

w is an input to the planning process itself, it allows for generalizing these norms to new

environments.

Finally, in some environments, there are multiple plans that are equally good for both

agents, creating a different type of symmetry which cannot be broken by w. For example,

the decision to go clockwise or counterclockwise in game (A) of Figure 4-3 is equally good

for both players as long as they both go in the same direction. To capture the intuition that

once agents successfully coordinate, they should continue to coordinate in that way e.g.,

after luckily choosing to go clockwise in game (A), they will go clockwise again on the

next round, agents learn a function NG(s,a1,a2) based on the frequency of previous joint

actions which is added to the state-action QG-value used by the group-agent. This norm

based reinforcement affects the policies of the individual agents through marginalization.

The norms reinforced by this mechanism do not generalize across environments although

feature based norms can generalize when there are features in common between two envi-
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ronments e.g., see Ho et al. in this years proceedings.

4.2.3 Competitive Planning

As before, in these stochastic games there is no action that directly corresponds to “com-

pete”. Instead, we ground competitive planning as each agent attempting to maximize their

individual utility under the assumption that the other agent is doing the same. To tractably

realize this game-theoretic best-response, we extend the cognitive hierarchy / level-K for-

malism used in behavioral game theory to temporally extended polices instead of just ac-

tions (C. F. Camerer, Ho, & Chong, 2004). In brief, a level-K agent best responds to a

level-(K− 1) agent which grounds out in the level-0 agent. Specification of the level-0

agent is sufficient to specify the full hierarchy.

In this work we use a level-0 agent that doesn’t consider the existence of the other

player and tries to efficiently reach her goal without taking any strategic consideration of

how the other player might affect her progress. This level-0 agent is more naturalistic than

randomly acting agents which are commonly used in behavioral modeling (C. F. Camerer

et al., 2004; Yoshida et al., 2008). A level-0 agent of this type only makes sense in these

naturalistic environments since one can easily imagine acting alone unlike in matrix-form

games. The level-0 agent for player i is:

P(ai|s,k = 0) = π
0
i (s) ∝ eβQ0

i (s,ai)

Q0
i (s,ai) = ∑

s′
P(s′|s,ai)(Ui(s,ai,s′)+ γmax

a′i
Q0

i (s
′,a′i))

where P(s′|s,ai) represents transition dynamics that do not depend on the other player.

Having defined the level-0 player we can recursively define all of the other levels in the

hierarchy in terms of lower levels:
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P(ai|s,k) = π
k
i (s) ∝ eβQk

i (s,ai)

Qk
i (s,ai) = ∑

s′
P(s′|s,ai)(U(s,ai,s′)+ γmax

a′i
Qk

i (s
′,a′i)))

Since the other agent is treated as a knowable stochastic part of the environment, the

dynamics of the other player are encapsulated in P(s′|s,ai) which are marginalized out

using the k− 1 player: P(s′|s,ai) = ∑a−i P(s′|s,ai,a−i)P(a−i|s,k = k− 1) where −i is a

shorthand to refer to the “other” player. Because of the maximization operator, a level-K

agent implements a best response to a level-K− 1 agent. Thus zeroth-order agents have

their own goals but ignore the other player, first-order agents act on their own goals but

assume that the other agent is ignoring their existence and so on. In our experiments we

used K = 1 although results were similar with higher values of K.

Even when competitively planning, agents can still improve their behavior through

learning and can even develop certain conventions when they serve mutual self-interest

such as symmetry breaking in coordination games. Again we consider two mechanisms.

The first mechanism improves agent i’s model of agent−i by using the frequency of i’s pre-

viously successful behavior to modify the state-action Q-values of −i such that previously

successful action are more likely to occur again. This model-based mechanism, improves

agent i’s policy since she will best-respond to a more accurate model of agent −i. The

second mechanism is model-free reinforcement of player i’s state-action Q-values when

player i herself successfully reaches a goal. Neither of these norms trivially generalize

across different planning environments that don’t share states.

4.2.4 Coordinating Cooperation and Competition

Finally, we describe how agents can use both the cooperative and competitive modes of

planning to decide whether to cooperate or compete. Since these modes of planning ab-

stract away the details of cooperation and competition, high-level strategic planning can use

these low-level planners without considering their details. Agents first use these planning

modes to infer the high-level intention I of the other player (i.e., their planning mode) us-
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ing Bayesian theory-of-mind: P(I|D) ∝ P(D|I)P(I) where P(D|I) are just the cooperative

or competitive policies. This probabilistic approach is justified because intentions can be

ambiguous. For instance, when both agents reach the goal in a coordination game it could

just be because of luck so the behavior isn’t very diagnostic of the intention. Yet in social

dilemma only the cooperative intention is consistent with behavior where both reach the

goal. Using these inferred strategic intentions, a high-level planner can take a simple and

intuitive form such as reciprocal cooperation (e.g., tit-for-tat) or reinforcement learning at

the level of strategy rather than actions (Fudenberg & Levine, 1998).

4.3 Behavioral Experiments

We developed client/server software that allows for real-time interactions between two par-

ticipants randomly matched through mTurk. All participants went through a short single

player tutorial that familiarized them with the controls of the games, the dynamics of the

game environment, the costs of movement and value of the goals. After the tutorial, pairs

of participants were matched together and played 30 rounds of the same game with the

same partner. Subjects were not told the exact number of rounds they would play together

in order to prevent horizon effects from backward induction. Once both participants sub-

mitted moves, the game state and score were updated and the process continued until the

end of the round. Participants had 30 second for each move and the game ended if a par-

ticipant exceeded their 30 second time bank two moves in a row. We only analyzed data

from complete interactions where the pair of participants completed all 30 rounds of the

game together. All experiments were incentivized with bonuses proportional to the number

of points accumulated.

To compare model predictions with human behavior, we first focused on analyzing

whether or not both players reached a goal on a given round, a behavioral signature of co-

operation in these games. For each pair of participants, the model observes the interaction

in the previous rounds, performs inference on the latent high-level goal and social norms,

and samples a prediction for the behavior of the pair in the next round. We compare this

sampled prediction with actual human behavior to assess model performance. The same
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Figure 4-3: Participant data and model predictions for four environments. Each row shows
data and model predictions for the environment in column 1 which was repeated 30 times.
Rows 1 and 2 are coordination games and rows 3 and 4 are social dilemmas. Column 2
shows the average rate of cooperation for each round of play averaged over the high-
cooperating cluster of participants (blue), low-cooperating cluster of participants (green)
and all participants (red). Column 3 are histograms of the proportion of cooperation for all
pairs of participants. Column 4 quantifies the model predictions where each point repre-
sents the frequency of cooperation for a given dyad observed in the data and as predicted by
the model. The inset shows correlations of the two lesioned models with the same human
data: (top) only compete (bottom) only cooperate.
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model parameters were used for all pairs of participants.

Figure 4-3 shows the results of the behavioral experiments and the model predictions

for four environments (≈ 50 participant pairs per environment), two coordination games

and two social dilemma. Since model predictions were made at the level of each pair of

participants, averaging the behavior and model predictions across dyads obscures individ-

ual differences in the dynamics of cooperative and competitive learning. To investigate the

model predictions in a more fine-grained way, we used unsupervised clustering to split the

pairs of participants into two group. In short, for each pair of participants we construct a

30-dimensional binary vector where each dimension corresponds to one of the 30 rounds.

Each element is set to one if both participants reached a goal in the round corresponding

to that dimension and set to zero otherwise. We ran K-means clustering with K = 2 which

split the data into a high-cooperating cluster and a low-cooperating cluster allowing for

better visualization of the data and model prediction and gave some rough indication about

the model ability to handle individual differences.

In all four environments, some of the pairs converged on a cooperative plan but the

incentive structure of the game i.e., whether or not the game was a coordination game or

social dilemma affected the likelihood that both participants jointly reached a goal. Over-

all, participants jointly reached the goal more frequently in coordination games than in

the social dilemma. As shown in Figure 4-3 the model qualitatively captures the rate of

cooperation and competition in both the high-cooperating cluster and the low-cooperating

cluster as well as the average over all participants. Another coarse measure of behavior

in these games is the distribution of the frequency of cooperative behavior across pairs of

participants. In coordination games, the distribution was left-skewed and in social dilemma

the distribution was right-skewed. These distributions were captured both qualitatively and

quantitatively across these games by the model.

We compared the full model which included both modes of planning and strategic rea-

soning over those two modes with two lesioned models which just used one of the two

planning modes. One lesioned model always used the competitive planning mode and

the other lesioned model always used the cooperative planning mode. Overall, neither

lesioned model could capture the rates of cooperation between the two clusters and qualita-
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both move out

both move in, collide

blue moves in, yellow moves out

jointly reach goals

blue waits, jointly reach goals

jointly reach goals

blue does not wait

blue does not wait

blue waits

starting state

Figure 4-4: Attribution of cooperative intentions in a social dilemma. The blue and yellow
bars show the attribution of cooperativeness for blue and yellow agents respectively and
the black bars show the model predictions. For all bars, 1 is definitely cooperative and 0 is
definitely not cooperative. Error bars show the standard errors of the mean.

tively failed to explain the distribution of cooperative behavior in each game. Both lesioned

models failed to predict the dynamics of strategic reasoning between cooperation and com-

petition in social dilemma and had weaker correlation with participants’ behavior in the

coordination games.

4.3.1 Friend or Foe Inference

Finally, we investigated directly whether or not the abstract planning programs studied

here can also act as models of social intention attribution. In particular we asked whether

or not people reliably attribution a cooperative intention from just a few observations of

behavior even when their behavior was ambiguous. Figure 4-4 shows these inferences in

a prisoners dilemma like stochastic game. On the top row both players move towards the

outer goals. Just this single act alone was sufficient to infer a joint intention to cooperate.

The inference was only reinforced when both agents reached the goals simultaneously. In

the middle row, blue moves towards the middle which is interpreted as slightly competitive.
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collide in center

blue waits

yellow does not wait

yellow waits

yellow waits

yellow does not wait

jointly reach goals

jointly reach goals

starting state

both wait collide in centerstarting state jointly reach goalsyellow waits

Figure 4-5: Attribution of cooperative intentions in a social dilemma requiring coordination
inspired by a four way stop. The blue and yellow bars show the attribution of cooperative-
ness for blue and yellow agents respectively and the black bars show the model predictions.
For all bars, 1 is definitely cooperative and 0 is definitely not cooperative. Error bars show
the standard errors of the mean.

In the case where blue waits, he is seen as equally cooperative as yellow and the uncertainty

is resolved. In the case where blue goes straight for the goal, the inference that blue is no

cooperative is enforced. Finally, when they collide in the middle, the inference that both are

competitive is made. However all it takes is for blue to wait in order for this inference to be

reversed. Furthermore, the inference that yellow was not cooperative carried over into the

future actions yellow made. These inferences were all captured by the model inferences.

In Figure 4-5 shows the social dilemma grids which also explicitly require coordination.

This situation is modeled after a four-way stop where to successfully cooperate one agent

must let the other agent pass. The model captures the variation in participants judgments
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Figure 4-6: Model performance in the attribution experiment (R=0.9)

quite well but the overestimates cooperation when the agents collide in the middle. This

could have been driven by carrying too much of the prior over from the situation where

they both wait but also could have been due to using a higher order model such as asking

whether or not the two agents are acting as a coordinated group. Across these two types of

stimuli the model fit quite well which is quantified in Figure 4-6.

4.4 Discussion

In this work we developed a hierarchical model of social planning to understand how hu-

mans coordinate their low-level action plans to realize high-level strategic goals such as

cooperation and competition. We formalize cooperation and competition as abstract plan-

ning procedures over low-level actions. Both model-based and model-free learning can

create social norms which facilitate robust and stable coordination. One of our main con-

tributions is formalizing how cooperative norms can make cooperation more robust across

environments, a key step for long-lasting collaborative endeavors. While we only had space

to show a subset of our full results, we are currently looking at how agents use these plan-

ning programs and the norms that they learn to generalize cooperation to completely new

environments with the same partner. We will also use these models to study how observers
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Cooperate Compete

Cooperate V Dec
Dec (s),V

Dec
Dec (s) V Dec

BR (s),V BR
Dec(s)

Compete V BR
Dec(s),V

Dec
BR (s) V BR

BR (s),V
BR
BR (s)

Figure 4-7: Abstracted game using social planning. V Dec
Dec (s) is the value function when both

players are using the decentralized cooperative plan, V BR
Dec(s) is the value function when the

first player best responds to other playing the cooperative plan, and V BR
BR (s) is the value

function when both players best respond against each other.

attribute cooperative and competitive intentions to other agents.

These hierarchical planning programs allow agents to reduce the infinite sized matrix

show in Figure 4-2 down to the more compact representation shown in Figure 4-7. Further-

more, these functions allow us to categorize games according to different abstract features.

For instance, to describe the coordination challenge inherent in a game we develop a metric

called the “cost of autonomy:” V Central(s)−V Dec
Dec (s) which is the difference between what

an agent could receive in expectation if they were actually controlled by a “we-agent” and

what they will get in expectation running a decentralized plan. Another interesting metric

is the “temptation:” V BR
Dec(s)−V Dec

Dec (s) which is the difference between what an agent will

get in expectation when executing the decentralized cooperative plan and what they will get

from best responding to that plan. This is a measurement of the degree to which using the

competitive planner is favored in the short term. In future work we will use these metrics

to characterize different the different spatial grids.

While cooperation and coordination are often studied as separate phenomenon coopera-

tion often requires complex coordination. Consider two different teams of scientists. In one

pair, one designs the experiment and the other collects the data, in the other pair, the pair sit

in a room brainstorming new ideas together. Or consider the difference between two chefs

where one cooks a main course and one cooks a dessert and two chefs who work together

making just a single dish. The difference between the former over the later is the complex

“meshing” of subplans. In the former cases, the the initial coordination is sufficient for a

cooperative outcome, as long as they both don’t choose to carry out the same task (two

desserts or two designed experiments), the cooperation is likely to be successful. In the
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later cases, cooperation requires continuous coordination, mutual responsiveness and in-

tention inference, much like a jazz duet. Consider the following definitions which describe

the criteria for a joint intention or we-intention:

Definition 1. We intend to J if and only if (M. E. Bratman, 1993, 2014):

1. (a) I intend that we J and (b) you intend that we J.

2. I intend that we J in accordance with and because of 1a, 1b and meshing subplans

of 1a and 1b; you intend that we J in accordance with and because of 1a, 1b, and

meshing subplans of 1a and 1b.

3. 1 and 2 are common knowledge between us.

In future work, we hope to describe how our computational model described here can

capture some aspects of the philosophical notion of we-agency.

One interesting feature of the model is how an asymmetric w in the cooperative planner

can break symmetries making successful coordination more likely. In future work we’d

like to explore how priors on this parameter in social hierarchies might enable more ef-

fective teamwork e.g., boss-employee relations (Galinsky & Schweitzer, 2015). Finally,

in our current paradigm, the desires of all agents are common knowledge. Investigating

environments that require jointly inferring the goals of others and the plan needed to help

realize a cooperative outcome will be examined in future work.

In future work we will extend these models to even more realistic and complex domains.

One promising direction is to study how the structure of these algorithms might allow for

cooperation in real-time games with complex objects and physics. In these complex multi-

agent interactions, people often cooperate to compete, coordinating cooperation with some

agents in order to better compete against others. Finally, we can use these games to study

how primitive but distinctively human forms of communication such as gesture and point-

ing can help initiate, sustain, and structure complex collaborations. By grounding strategic

social reasoning in a theory of planning we can begin to investigate the mechanisms of

joint intentionality and how these joint intentions enable the scale and scope of human

cooperative behavior (Tomasello, 2014).
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Chapter 5

Non-parametric Bayesian Inference of

Strategies

5.1 Introduction

In strategic settings, predicting the actions of other players is essential for both coopera-

tive and competitive intelligent behavior. Models of how people reason about and infer

the strategies of others can give insights into the cognitive systems used by humans in

interactive strategics contexts. Repeated games are a key example: players must infer the

strategies of others based on their previous interactions in order to achieve their cooperative

or competitive goals.

Repeated games offer significantly more strategic possibilities than one-shot games.

In this work we will use the repeated two-player prisoner’s dilemma as an example to

demonstrate our approach, although our model is general in the underlying stage game

and in the number of players. We first briefly describe the one-shot prisoners dilemma: two

players simultaneously choose to either ‘cooperate’ (C) or ‘defect’ (D). Based on their joint

selection of actions, they obtain utility according to the payoff matrix in Figure 5-1. When

the game is played only once, there is only a single Nash equilibrium: both players defect.

Thus the prisoner’s dilemma represents a simplified social dilemma, both players would

prefer to receive the pareto-optimal outcome (C, C) but only (D, D) is the equilibrium

outcome.
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Player 1

Player 2

C D

C a,a 12,50

D 50,12 25,25

Figure 5-1: Payoff matrix for a two-player prisoners dilemma. The value of a sets the
payoff of joint cooperation and must be 25 < a < 50.

When the prisoner’s dilemma is repeated an indefinite number of times between the

same two players, the cooperative outcome can be rationally sustained as dictated by the

folk theorem (Fudenberg & Maskin, 1986). Unlike one-shot games where the space of

strategies is just a measure over the action space, rational players in repeated games con-

dition their actions on previous outcomes. This results in an exponential growth in the

number of strategies as the repeated interaction continues. As a result of this exponential

growth, learning these strategies from data seems like an intractable task. Each additional

round requires conditioning on greater and greater amounts of data. This complexity is

sometimes called the curse of history (Pineau, Gordon, Thrun, et al., 2003).

To succinctly represent strategies with behavioral significance, theorists have turned to

a model of bounded computation – the finite state transducer (FST), a type of automaton

which compactly represents strategies using only limited memory Carmel & Markovitch,

1996, and Rubinstein, 1986. In the prisoners dilemma, a conditional cooperation strategy

called Tit-for-Tat (TFT), which starts off playing (C) and then copies the previous move of

the other player, can be compactly represented using FSTs. These simple strategies have

significance for the evolution of cooperation, understanding human behavior, and designing

self-regulating cooperative systems (Axelrod & Hamilton, 1981; Kleiman-Weiner et al.,

2016; Littman & Stone, 2005). Below we show an example interaction in the two-player

repeated prisoners dilemma where player 1 (P1) is using the TFT strategy:

P1: CCCDCCCDDDC . . .

P2: CCDCCCDDDCC . . .
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Simple strategies like TFT are often enriched by considering forgiving variants which re-

turn to cooperation after a string of mutual defections or a vindictive TFT which defects

multiple times after a defection regardless of whether or not the other player returns to co-

operation (M. A. Nowak & Sigmund, 1992; Zagorsky, Reiter, Chatterjee, & Nowak, 2013).

Developing strategies for repeated games in terms of FST enables theorists to capture and

study their intuitions about behavior in a formal model. Using FSTs to represent strate-

gies, one maps the curse of history of strategy inference (where the number of strategies

grows exponentially in previous interactions) to a search over the space of possible FSTs.

However, there are still a priori an infinite number of possible automata one must consider.

So how might people infer strategies from the behavior of other players? How do

theorists generate new candidate FSTs for study from this infinite space? In this work we

develop a Bayesian model for strategy inference. The problem of strategy inference can

be posed probabilistically as finding P(strategy|data) i.e., given data from an interaction

between players, finding the probability of each strategy (as represented by an FST). Using

Bayes rule we can write the posterior distribution in terms of the data likelihood and a

strategy prior:

P(strategy|data) ∝ P(data|strategy)P(strategy)

The core of this work is to formalize the pieces of this relationship and to propose an algo-

rithm for inference. P(data|strategy) is the probability that an FST could have generated a

specific sequence of behavioral data. For deterministic FST, this probability distribution is

a delta function. However, in reality, behavior is likely to be ‘noisy’ i.e., selected play may

not coincide exactly with the action prescribed or intended by the strategy. If we assume

probabilistic errors, any FST can generate a sequence of data but with varying probability.

The real challenge of inference comes from specifying P(strategy), the prior distribution

over possible strategies. Since strategies are represented as FSTs and we want to consider

strategies of arbitrary complexity, this is equivalent to specifying a distribution over all

possible FSTs.

Solving this inference problem has key implications for learning equilibrium strategies.

Under some general assumptions, rational learning leads to Nash Equilibria in infinitely
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repeated games (Kalai & Lehrer, 1993). If each player assigns positive probability to all

remaining possible opponent strategies that can occur within future play given past ob-

servations, then Bayesian updating will lead in the long run to accurate predictions about

future play of the game. Bayesian updating is essentially a process of eliminating ‘impos-

sible’ strategies, and selecting the most probable strategies from the remaining possible

choices. The prior plays a key role, in order for guarantees on rational learning to hold, a

learner must correctly assign positive probability over all possible remaining strategies.

One solution common in experimental game theory is to put a uniform distribution over

a hand-selected subset of strategies ((Bó, 2005; Bó & Fréchette, 2011; Blonski, Ockenfels,

& Spagnolo, 2011). However this approach only allows for one to estimate the relative

likelihood of strategies that are specifically hypothesized a priori, preventing the discovery

of novel strategies for commonly studied games. Furthermore, this method is not robust

for games that have not been analytically analyzed. For instance, Bó & Fréchette, 2011

conducted experiments and found that Tit-for-Tat and Always-Defect account for more than

80% of played strategies in Repeated Prisoner’s Dilemma games, but later work pointed

out that a lesser known strategy of equal complexity called Semi-Grim can better account

for their data (Breitmoser, 2015). Since Semi-Grim was not in the authors’ original prior

hypothesis space, it could not be inferred. Likewise, inexperienced players faced with a

strategic situation need a robust way of inferring the strategies of other players such that

given sufficient evidence, the correct strategy will be inferred.

Besides using a uniform prior over a finite hypothesis space, another approach for pre-

dicting behavior is based on learning methods such as fictitious play (Fudenberg & Levine,

1998). Under this framework, each player best responds to the other player based on the

empirical frequency of the other player’s actions. While these methods can be powerful at

predicting behavior, they do not infer a model of the other players’ strategies. Thus, while

reinforcement learning methods can learn the statistical likelihood of certain actions, they

do not learn a causal model (like a FST) of other players. These methods are less likely to

generalize across games or predict the behavior of others in rare situations.

Here, we present a novel non-parametric Bayesian model for strategy inference in re-

peated games. We develop a new prior over strategies based on the Hierarchical Dirichlet
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Process (HDP) (Teh, Jordan, Beal, & Blei, 2006). The model is non-parametric in the

number of states in an FST and implicitly represents the infinite space of possible FST. We

derive a Gibbs sampler for efficient inference in this model which successfully infers the

actual strategy in simulated interactions. Our model predicts the correct FST even under

noisy conditions and can be used to investigate human strategies from behavioral data. Our

main contribution is to bring powerful tools from statistical machine learning to the study

of strategic behavior. To our knowledge this is the first application of the HDP in game

theory and the analysis of human strategic behavior in games. This model is a step towards

developing computational agents with social intelligence that can predict the behavior of

others in strategic settings.

5.2 Model

We first describe the finite state transducer (FST) formally and describe its relation to a

hidden Markov model (HMM). This relation allows us to leverage a suite of tools from

probabilistic graphical models for inferring FSTs. We review the hierarchical Dirichlet

process (HDP) and the HDP-HMM and extend these models to represent strategies. We

call this new model the HDP-FST. The HDP-FST is a generalization of the HDP-HMM

and can be used to represent and infer strategies in repeated games.

5.2.1 FST and HMM

An FST is a bounded model of computation which is capable of representing strategies

in infinitely repeated games (Rubinstein, 1986). Formally, for player i an FST is a tuple

〈Si,OOO,yyy,πππ,φ,F〉 namely, a finite set of states Si = {s1, . . . ,sn}, a finite set of input symbols

OOO = {o1, . . . ,on}, a finite set of emission symbols yyy = {y1, . . . ,yn}, and a transition relation

πππ where πi j = Pr(st+1 = j|st = i,ot ∈ OOO), where ot is the input observed at time t. F

characterizes the distribution for emissions at each state si ∈ Si, where φsi parameterizes

the emission yi such that yi|si ∼ F(φsi).

FSTs represent strategies as “if-then” computations. Given two players i and j: if player

j previously played action o j, then player i transitions to a particular state s and performs
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action yi|s at the next iteration of the game. Thus FSTs take in a set of inputs and for each

input, update their internal state and produce an emission. In the context of strategies, the

emissions of an FST correspond to actions.

For illustration, two FSTs (TFT and Semi-Grim) are reproduced in Figure 5-2, with

Si = {sC,sD}, OOO = {C,D}, yyy = {C,D}, fφsC
(C) = 1 and fφsD

(D) = 1, where fφsC
, fφsD

are

the pdf of F(φsC) and F(φsD) respectively. Since the input symbols in games come from

other strategic players we will use yyy−i = OOO where −i are all the players except i. The

starting state of an FST is s0.

Tit-for-Tat (TFT)

sC sD

C

D

C

D

y j =C

sC sD[ ]
sC 1 0
sD 1 0

y j = D

sC sD[ ]
0 1
0 1

yi =C yi = D[ ]
sC 1 0
sD 0 1

Semi-Grim (SG)

sC sD

C, 1

D, 0.6

D, 0.4

C, 0.4

D, 1

C, 0.6

y j =C

sC sD[ ]
sC 1 0
sD 0.4 0.6

y j = D

sC sD[ ]
0.4 0.6
0 1

yi =C yi = D[ ]
sC 1 0
sD 0 1

Figure 5-2: Representations of strategies for the two-player repeated prisoners dilemma.
(top) FST representation. Arrows show transitions between states given the actions of
the other players. (middle) Transition matrices between the state at time t (rows) and t +1
(columns), one for each action available to the other player. Each entry gives the probability
of transitioning between states. The box above each matrix specifies the other player’s
action at time t. (bottom) Emission matrix which probabilistically maps from a state (rows)
to action (columns).

Let si,t ∈ Si be the state of player i and yi,t ∈ yi be the action taken by player i at time

t. Using TFT as an example, si,t = sC and yi,t = C. If the action by player j at t, y j,t = C,

then si,t+1 = sC and yi,t+1 =C; otherwise if y j,t = D, then si,t+1 = sD and yi,t+1 = D from

πππ. Thus i plays in round t +1 the action that the j played in round t.

The strategy Grim-Trigger plays cooperate until a defection is played and then defects
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forever. Semi-Grim is a more forgiving version of the Grim-Trigger that “forgives” defec-

tion and tries to resume cooperation i.e., even if ∃k ∈ {1, . . . ,T} s.t. y j,k = D, there is a

small probability for si to return to sC if y j,t = C. Following the example in Figure 5-2,

if y j,t = D and si,t = sC, then Pr(si,t+1 = sC) = 0.4. Thus there is some probability that i

remains in a cooperative state even if j defects. Similarly, if si,t = sD and y j,t = C, then

Pr(si,t+1 = sC) = 0.4 i.e., there is some probability of transitioning back to the cooperating

state if cooperate was played by j.

In order to infer FST from data, we first describe the relationship between an FST and

the HMM, a common probabilistic model for analysis of sequential data such as language

or DNA. An HMM is a doubly-stochastic Markov chain defined as a tuple 〈sss,πππ,yyy,φ,F〉;

where sss = (s1,s2, . . . ,sT ) represents a sequence of states linked by a transition matrix πππ,

where πi j = p(st+1 = j|st = i), with π0i = p(s1 = i). Corresponding to each state in the

model is a parallel sequence of observations yyy= (y1,y2, . . . ,yT ) with yt drawn conditionally

dependent only on st . For each state st ∈ {1, . . . ,K} there is a parameter φst that reflects the

likelihood of the observation at that state: yt |st ∼ F(φst ).

The difference between an HMM and an FST is that an HMM does not condition on

the observed actions made by player j. Conditional on an opponent’s action at t−1, both

models are representationally identical – a set of transition matrices in the FST becomes

a single transition matrix like the HMM. This implies that the HMM can be written as a

limiting case of the FST. By assuming that player j’s action fully specifies the transition

probability between st−1 and st i.e., each row of the transition matrix is conditionally inde-

pendent, then the HMM can be augmented into an FST by making the states of the HMM

dependent on the other players’ actions. The equivalence between these augmented HMMs

and FSTs has been formally proven and has been applied for use in speech recognition

(Kempe, 1997; Mohri, Pereira, & Riley, 2002).

While the FST formalism can represent specific strategies, it doesn’t provide an al-

gorithm or mechanism for enumerating or representing a hypothesis space of strategies.

Consider an example sequence of plays in the infinitely repeated prisoner’s dilemma where

the observed actions are [(D,D), (D,C), . . . ]. Player 1’s strategy could be Always-Defect,

which is a one-state FST or could be TFT, a two-state FST, or even a three-state FST where

121



player 1 begins with D, and defects until two iterations of C is observed from player 2, then

plays C. This kind of reasoning can generate an infinite space of strategies if the number of

states in the FST are not restricted. How do we represent this space formally and apply it

tractably for inference?

5.2.2 HDP-HMM

We now develop a new model for strategy inference based on the correspondence between

the HMM and FSTs. This model is based on the HDP-HMM, a non-parametric extension

of the HMMs (Teh et al., 2006). This is the first time to our knowledge of Bayesian non-

parametric models applied to a game theoretic contexts. We first review Bayesian non-

parametric models in general, focusing on Dirichlet Processes. Then we describe how

Dirichlet Processes can be generalized with the Hierarchical Dirichlet Process (HDP) and

how these tools are used for sequence modeling with the HDP-HMM.

We first introduce the Dirichlet Process (DP). A DP is a generalized Dirichlet distribu-

tion (the conjugate prior of a multinomial distribution), but may contain an infinite number

of elements. The DP is commonly used to describe a prior over the distribution of random

variables and is parameterized by a base distribution H, and a concentration parameter α,

where α > 0. For instance, consider the following DP

G∼ DP(α,H) (5.1)

H ∼ N(µ,σ2)

where the base distribution (H) is a normal distribution with mean µ and variance σ2.

Draws from the DP, G, would have the same support as H, with one important difference

- all draws from the DP are discrete. While H is continuous, implying that the probability

that any two samples are equal is 0, this is not the case for G. See Figure 5-3 below for a

graphical illustration.
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Figure 5-3: (left) A normal distribution H ∼ N(µ,σ2) and (right) G ∼ DP(H,α), with H
interposed for reference. G is a probability distribution that “looks like” H, but whose
distribution is discrete.

Stick-Breaking Process

The DP can also be represented by a stick-breaking process. This formalism directly reveals

its discrete nature (Sethuraman, 1994). For k = 1,2, . . . , let:

φk ∼ H β
′
k ∼ Beta(1,α) βk = β

′
kΠ

k−1
l=1 (1−β

′
k) (5.2)

Then the random measure defined by G = ∑
K
k=1 βkδφk is with probability one equal

to a sample from DP(α,H), where δφ is a probability measure concentrated at φ. The

construction of β1,β2 can be also thought of starting off with a stick of length 1, and we

break it off at β1 ∼ Beta(1,α), and recursively break the remaining portion at β2, β3 and

so on. This process is also called GEM(α) after Griffiths, Engen and McCloskey, where α

refers to the same concentration parameter as in the DP, and α > 0.

Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process (HDP) is a set of DPs that are coupled together with a

random base measure that is itself a DP. The HDP was developed to apply non-parametric

methods to the problem of clustering grouped data. Data can be subdivided into different

groups, and within each group there can be clusters that capture latent structure within

that group. These models have been used in machine learning to cluster and classify data

such as documents and genetic data (Beal, Ghahramani, & Rasmussen, 2002; Blei, Ng, &

Jordan, 2003; Gabriel et al., 2002; Wood, Gasthaus, Archambeau, James, & Teh, 2011).

There are many similarities between these problems and the challenge of inferring

strategies. As we have shown, strategies can be represented in terms of states, transition
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probabilities, and emission matrices. The clusters in strategy inference refer to the distinct

states in the FST. Given a sequence of observed actions by player i (e.g., ‘C’ or ‘D’), and the

corresponding history of actions by player j, we want to identify the underlying and distinct

states in i that produced these actions and the transitions between these states. However, in

order to consider all possible strategies, we would have to consider and conduct inference

for an infinite number of transition parameters and states, which is not a computationally

feasible process.

Next, we need to integrate out the infinite number of transition parameters and repre-

sent the process with a finite number of indicator variables. In the HDP there is a natural

bias towards using already existing transitions proportional to their prior usage (“rich get

richer”). This implies that the latent state sequence (sssiii) produced by the FST that we ob-

serve are typical trajectories (Beal et al., 2002) – which results in a set of strategies biased

towards those of lower complexity (as measured by the number of states in the FST) that

most resemble the actual strategy.

We now formally describe the HDP. First, we define a global vector β and local vectors

πk in the method shown below.

β∼ Dirichlet(γ/K, . . . ,γ/K) (5.3)

πk|β∼ DP(α,β) φk ∼ H

where πk represents the transition probabilities out of state k, and φk parameterizes the

distribution of emissions at each state k, drawn from a base distribution H. Since each

πk ∼ DP(α,β), the states (within each FST) that the transition matrices refer to are shared

as each DP is drawn from the same β, itself a discrete distribution obtained from the global

draw parameterized with γ and K. Each atom in β hence represents the prior mean for

transition probabilities leading into state k.

The ratio γ/K determines the sparsity of β. For instance, if γ/K� 1, the mass of β will

be highly concentrated in just a few components. When γ/K→ ∞, the mass will gradually

be equally dispersed across all the components. As K → ∞, the prior in equation (5.3)

becomes an HDP. Each πk has concentration parameter α that determines deviation from
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the mean. This sharing is shown graphically in Figure 5-4. Since the DP draw of the base

measure is necessarily discrete, subsequent draws will be drawn from the same discrete

distribution.

Similar to the DP, the HDP can also be constructed via a stick-breaking process (Teh et

al., 2006; Van Gael, Saatci, Teh, & Ghahramani, 2008):

β∼ GEM(γ), πk|β∼ DP(α,β), φk ∼ H

st+1|st ∼Multinomial(πst ), yt |st ∼ F(φst ) (5.4)

The graphical model for the HDP-HMM is shown in Figure 5-5.

Figure 5-4: The sparsity of β is shared. (right) An example β. (left) Each πi shares the
same atoms as β and πi,k has βk as its expected value.

5.2.3 HDP-FST

Just as we showed the relation between the FST and the HMM, we will now show that the

HDP-HMM is a limiting case of a more general class of models which we call the HDP-

FST. Let yyyiii = (yi,1,yi,2, . . . ,yi,T ) be the history of actions for player i where each yi,t is the

action player i took at time t. yyy jjj are the history of actions taken by player j which are

observed by player i. For now, we restrict analysis to one additional player, but the model

is general any finite number of players.

In an HMM, the probability distribution of each subsequent state is dependent only on
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γγγ βββ

ααα πππK

HHH φφφk

S0 S1 S2 . . . ST

Y1 Y2 . . . Yi,T

Figure 5-5: Graphical model for the HDP-HMM. The four ‘global’ parameters (γ,α,H,β)
generate πK and φk, the two parameters that define a FST. The remainder of the figure
follow a typical HMM formalism, with the emission Y· being a function of the state s· and
φk. Each state follows the Markov property, i.e. the probability distribution of the current
state depends only on the previous state.

the previous state. However, in a FST each state is dependent on both the current state and

the observed actions of the other player. Adding this additional dependency to the HDP-

HMM turns it into the HDP-FST. Let the state sequence of player i be sssiii = (si,1, . . . ,si,T ).

Player i observes player j’s action y j,t at time t and conditions si,t+1 on both the previous

state si,t and the previous action played by player j, y j,t . Thus like an FST, conditional on

st , the HDP-FST only needs to know the other player’s previous action y j,t and not their

full sequence of actions yyy jjj.

Heterogeneity between different people could be captured through the hyperparame-

ters, β, φ and H which are now subscripted by i, but retain their interpretation from equa-

tion (5.4). The HDP-FST is formally:

βi ∼ GEM(γi), πi,k,y j |βi ∼ DP(αi,βi)

φi,k ∼ Hi si,t+1|si,t ,y j,t ∼Multinomial(πi,si,t ,y j,t )

yi,t |si,t ∼ F(φi,si,t ) (5.5)

The key difference between equation (5.5) and equation (5.4) is that πi additionally

depends on y j. This is comparable to how an HMM can be augmented into an FST. Intu-

itively, consider a partition of πi into |y j| different k× k matrices, where |y j| is the number

of unique actions available to player j, and when |y j| = 1, then the HDP-FST is equiva-

lent to the HDP-HMM. The interpretation of the hyperparameters βi,αi,γi is unchanged.
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Figure 5-6 shows the graphical model for the HDP-FST in the case of two players.

γγγi βββi

αααi πππi,K

HHH iii φφφi,k

Si,0 Si,1 Si,2 . . . Si,T

Yi,1 Yi,2 . . . Yi,T

φφφ j,k

πππ j,K

HHH jjj

ααα j

βββ jγγγ j

S j,0 S j,1 S j,2 . . . S j,T

Y j,1 Y j,2 . . . Y j,T

Figure 5-6: HDP-FST graphical model. Some arrows from the hyperparameters to the
states si,t and actions are omitted for clarity. The dotted arrows represent the additional
conditional dependency added from the HDP-HMM model, where each si,t is conditioned
on y j 6=i,t−1, si,t−1 and πi.

Note that each player is shown with a different set of hyperparameters. These hyperpa-

rameters could be different for different players if we believed that the players differed in

some capacity. A larger γ for a particular player could correspond to believing that a player

is a priori more likely to play a smaller FST. Similarly, choosing a smaller γ corresponds

to a higher prior probability on strategies with a large number of states allowing for larger

FSTs. While the model allows for this variation, in this work we use the same parameters

and base distribution for all analyses. Hence for the remainder of the paper:

γi = γ j = γ αi = α j = α Hi = H j = H

5.2.4 Inference

Having described a prior over strategies using HDP-FST, we now describe how to make

inference over this hypothesis space tractable using a Gibbs sampler. The Gibbs sampler is

a commonly used method for drawing samples from a distribution that cannot be calculated

analytically. This method is relevant because the exact Bayesian inference for the model
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is intractable as the number of states K is infinite, which means we cannot apply a generic

forward-backward algorithm as one would commonly do if the K was known in advance.

Since the distribution is over strategies, each sample is a specific FST and by running

the Gibbs sampler for many iterations we can draw enough samples to approximate the

posterior distribution.

We now describe the Gibbs sampler for inference in the HDP-FST. Gibbs sampling

works by sampling each variable while conditioning on the values of all the other variables

in the distribution (Murphy, 2012). Our Gibbs sampler builds on the direct sampling mech-

anism presented in Teh et al., 2006, and we reference Van Gael et al., 2008’s description of

sampling for the HDP-HMM. Given that the states are exchangeable, we can analytically

marginalize out the latent variables πi,φi from equation (5.5). Thus sampling will only

involve the latent state sequence sssiii and the DP parameter βi. In order to resample si,t , we

need to calculate the following conditional probabilities:

p(si,t ,s j,t |si,−t ,s j,−t ,yi,t ,y j,t ,yi,t−1,y j,t−1,βi,β j,α,H)

∝ p(yi,t |si,t ,H) · p(y j,t |s j,t ,H) · p(si,t ,s j,t |si,−t ,s j,−t ,yi,t−1,y j,t−1,βi,β j,α) (5.6)

where si,−t refers to the sequence of states si excluding si,t .

However, the structure of conditional independence in the HDP-FST can simplify this

equation and allow for more efficient sampling. The conditional likelihood of (yi,t ,y j,t)

given the states si,t and s j,t , actions yyyiii and yyy jjj, and base distribution H is easy to compute as

each yi,t and y j,t is only dependent on their respective states at time t. Further, if the base

distribution H and the likelihood F from equation (5.5) are conjugate we can analytically

update this portion of the likelihood. Given that the state space for these strategies is dis-

crete, the conjugate multinomial-Dirichlet distribution is appropriate and greatly simplifies

inference.

Furthermore, we can use the independence structure of the model to avoid having to

sample from {sssiii,sss jjj} jointly. Because of the Markov property of the model, each si,t is

conditionally independent of all sss jjj given si,t−1, si,t+1, y j,t−1 and y j,t , where y j,t−1 and y j,t
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are observed. Therefore each sequence of states sssiii can be sampled independently of the

hidden states of all other players. This factors the model into independent components

(one for each player) which can be treated separately during inference. For this reason, we

can sample each player independently when resampling the latent state sequences. We can

also further reduce si,−t to {si,t−1,si,t+1} given that si,t is only dependent on player i’s state

one time period prior and one after. Using this simplification we can rewrite equation (5.6)

as:

p(si,t |si,t−1,si,t+1,yi,t ,y j,t−1,y j,t ,βi,α,H)

∝ p(yi,t |si,t ,H) · p(si,t |si,t−1,si,t+1,y j,t−1,y j,t ,βi,α) (5.7)

Now we describe the sampling mechanism for p(si,t |si,t−1,si,t+1,y j,t−1,y j,t ,βi,α). First,

we remove the subscripts for si, βi and observed j’s actions y j as it is clear which player we

are referring to for each variable. At any time t, let nl,m be the total number of transitions

from sampled states l to m, excluding time steps t and t − 1, and let n·,l , nl,· be the total

number of transitions into and out of state l respectively. Let K be the current number of

distinct states in s1,s2, . . . ,st−1.1

Because there is a Dirichlet prior on β, we can define the distribution of st generated

1Since we ignore the ordering of states in β, the K distinct states are labeled 1, . . . ,K, and K +1 refers to
a new state.
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from a single transition πl
2 as:

p(st |st−1 = l,β,α) =
∫

πl

p(πl,st |st−1 = l,β,α)dπl

=
∫

πl

p(πl|β,α)p(st |st−1 = l,πl)dπl

=
∫

πl

Γ(∑k αβk)

∏k Γ(αβk)
p(st |st−1 = l,πl)dπl (5.8)

=
∫

πl

Γ(∑k αβk)

∏k Γ(αβk)

K+1

∏
k=1

π
αβk−1
l,k

K+1

∏
k=1

π
nl,k
l,k dπl (5.9)

=
Γ(∑k αβk)

∏k Γ(αβk)

∏k Γ(αβk +nl,k)

Γ(∑k αβk +nl,k)

=
Γ(α)

Γ(α+nl,·)
∏

k

Γ(αβk +nl,k)

Γ(αβk)
(5.10)

where we use the fact that β has a dirichlet prior in equation (5.8).

We augment (5.10) with the observed yt−1 to find, for a single state st = k:

p(st = k|st−1 = l,yt−1,α,β) =
Γ(α+nl,·|yt−1)

Γ(α+nl,·|yt−1 +1)
Γ(αβk +nl,k|yt−1 +1)

Γ(αβk +nl,k|yt−1)

=
αβk +nl,k|yt−1

α+nl,·|yt−1

(5.11)

which states that the probability of st = k given st−1 = l is proportional to the relative

frequency of previous transitions from state l to k (
nl,k

nl,·
) and smoothed by αβk, the prior

over k.

Note that we can sample backwards t from t+1 as well. Since we observe yt (i.e. action

of player j at time t), we have:

p(st = k|st+1 = m,yt ,α,β) =
αβk +nk,m|yt

α+nk,·|yt

(5.12)

2recall that πl refers to the transition probabilities from state l to all other states, and πl,k refers to the
probability of transitioning from state l to state k
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From (5.11) and (5.12), we have: p(st = k|st−1,st+1,β,α,yt−1,yt) ∝

(αβk +nst−1,k|yt−1)
αβst+1 +nk,st+1|yt

α+nk,·|yt

for k ≤ K,k 6= st−1

(αβk +nst−1,k|yt−1)
αβst+1 +nk,st+1|yt +1

α+nk,·|yt +1
for k = st−1 = st+1

(αβk +nst−1,k|yt−1)
αβst+1 +nk,st+1|yt

α+nk,·|yt +1
for k = st−1 6= st+1

αβkβst+1 for k = K +1

where yt−1 and yt refers to the observed actions of player j at t − 1 and t. Using these

equations for the conditional updates we can realize tractable inference in the HDP-FST

using a Gibbs sampler.

5.3 Results

We empirically investigate the effectiveness of this model to infer FSTs under sparse and

noisy observations of behavior. We apply the model to previously published data set of

human behavior in the infinite discounted prisoners dilemma (Bó & Fréchette, 2011). To

more precisely evaluate the model, we also analyze performance on a simulated data set

where the ground truth strategies are known.

5.3.1 Behavioral Results

We used our model to analyze data from a previous human behavioral experiment run by

Bó & Fréchette, 2011. Subjects were matched into dyads and played a discounted version

of the prisoners dilemma i.e., the repeated interaction ended with constant probability after

each round. In different interactions the value of a in the payoff matrix varied between

32 and 48 (see payoff matrix in Figure 5-1). Prior work predicts that as the cooperative

outcomes becomes less attractive relative to mutual defection, subjects will be more likely

to defect. We analyzed all dyadic interactions that lasted at least 10 rounds.

In Figure 5-7 we show the averaged posterior distribution across the 41 dyads that
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Figure 5-7: Posterior distribution over strategies averaged across all dyads that played at
least 10 rounds of the prisoners dilemma. Strategies not commonly studied in the literature
were clustered by their complexity where K is the number of states in the strategy. The
value of a modulated the relative value of the cooperative outcome. Although most players
are well described by simple one state strategies, there is a noticeable shift from most dyads
playing always-defect (AD) when a was low (left) to most dyads playing always-cooperate
(AC) when a is high (right).

lasted longer than 10 rounds for three values of a. When a took a low value the most com-

mon strategy inferred was Always-Defect (AD). As the value of a increased, the Always-

Cooperate (AC) strategy was inferred with higher probability (with an intermediate balance

of AC and AD when a took an intermediate value). We found relatively few instances of

more complex strategies such as TFT and WSLS. This likely reflects a combination of the

simplicity bias in the non-parametric prior since only a few of 41 dyads were longer than

20 rounds as well as the observation that many of the dyads played (C,C) or (D,D) for the

entire interaction which while consistent with TFT and other more complex strategies does

not provide for any additional predictive power over simpler strategies. Finally, we note

that there was also a significant number of strategies the model discovered that have not

been investigated in the literature, particularly those with K > 2 where K is the number of

states.

We also analyzed the few long interactions in the data set that exceeded 20 rounds of

repetition. We selected a dyad that seemed to have a fairly complex pattern of interaction

and used the model to infer a distribution over strategies for just that dyad. Figure 5-8

shows the actions taken by the two players and the inferred distribution over strategies for

each of the players. The model detected evidence of TFT for player 1 and Semi-Grim for
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Figure 5-8: Posterior over strategies for two human players during a long interaction of 23
rounds. Of the strategies discussed in the literature, the model find some evidence for the
play of Semi-Grim and TFT in both players. However, overall, both players’ play are more
consistent with larger and more complex FSTs.

player 2. As can be seen in the histograms both the two state FSTs were insufficient to

capture the complexities of the interaction and most of the probability mass was on FSTs

with three or more states. This suggests that people’s actual strategies are more complex

than the simple strategies of reciprocal cooperation (like TFT) predicted by current theory.

5.3.2 Simulated Results

Using the four FSTs listed in Figure 5-9: TFT, Win-Stay-Lose-Shift (WSLS), Tit-for-Two-

Tats and semi-grim we generated 200 simulated dyadic interactions. Each of these simula-

tions tests features of our model that have been challenging for previous approaches. We

chose TFT and WSLS because they are of scientific significance (M. Nowak & Sigmund,
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Figure 5-9: Simulated performance of inference with four different strategies (columns)
that generated data while playing a random opponent. Each point is the average model
performance of 200 runs. (Top) The posterior probability on the correct strategy. (Middle)
The probability that the strategies contained in posterior distribution will correctly predict
the next action of the true strategy. The dotted grey lines show the maximum possible
performance. (Bottom) The average number of states in the posterior distribution of FSTs.
The dotted grey lines show the actual number of states in the actual strategy.

1993), Tit-for-Two-Tats because it has more than two states and semi-grim because it has

probabilistic transitions between states. Furthermore, we tested the algorithm when the ob-

servations were perfectly observed and also when 20% of the observations were corrupted

by noise.

For all analyses presented here, we fixed α = γ = 0.5 and used a symmetric prior on

H = [0.3, . . . ,0.3]. The first 200 samples of the Gibbs sampler were thrown away as burn

in and the chain was thinned every 2 samples. We ran the sampler until we collected

500 posterior samples. While many of the FSTs described in the literature are those with

deterministic transitions and emissions, the model is not restricted in this way and does not

represent deterministic strategies any differently from probabilistic ones. Thus in order to

compare the probabilistic output of strategies from the model, we round the transition and

action matrices to their closest deterministic FST. Since two deterministic FSTs may be

identical to each other by merely relabeling the states (which corresponds to permuting the

transition and emission matrix), we clustered FSTs into functionally equivalent strategies

by testing for isomorphisms in their graph. Using these two methods we were able to

classify a sample of a probabilistic strategy from the model to a known strategy type (if one
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was known).

Figure 5-9 shows the results of this empirical analysis. We evaluated the inferences of

the model on three metrics: its ability to infer the correct FST, whether or not it predicted

the next action correctly, and the mean number of states in the distribution of sampled

FSAs. Since the repeated prisoners dilemma has only two actions, chance guessing of the

next action will result in 50% correct predictions. For semi-grim the best one can predict

is only 75% due to stochasticity in the transitions. In contrast, the chance probability

of predicting the correct FST is negligible. In no part of the model did we include any

specification of the FSTs commonly studied in the literature but the model correctly infers

them given only sparse and noisy observations.

The top row of Figure 5-9 shows the model’s success in inferring the underlying strategy

used to generate the interaction. Due to the simplicity bias inherited from the HDP prior,

the simpler strategies (TFT and WSLS) are inferred correctly with less data. When trained

on simulated behavior corrupted by noise (shown in green), predictive performance was

impaired but still improved with more training data. Even when the model doesn’t infer the

correct FST with high accuracy it is still effective at predicting the next move. When the

training sequence is short, there are many plausible FSTs that are consistent with the data.

Finally, we calculated the average number of states across the FSTs in the posterior

sample as an approximate measure of the complexity of the inferred strategy. Given a

very small amount of training data, the model mostly infers strategies of low complexity

but as the amount of training data increases, the average number of states in the inferred

sample grows. This feature, the ability to increase model complexity as the amount of

data grows, comes from the non-parametric prior and balances against overfitting. With a

medium amount of training data the number of FSTs considered grows considerably and

even exceeds the actual number of states in the ground truth FST since there are many

FSTs consistent with the data. However, as the training data increases, the model places

most of its posterior mass on the correct strategy and the average complexity converges

to the complexity of the true strategy. When the training signal is corrupted with noise,

the complexity of the inferred FSTs exceeds that of the actual sequence since the model

accounts for some of the stochasticity with extra model complexity to account for noisy
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actions.

With these simulated results we have shown the power of this model to infer the strate-

gies used by players that play strategies described by a single FST out of an infinite space of

possible strategies without ever enumerating that space. Our non-parametric model trades

off model complexity with data fit and allows for the consideration of more complex models

as the amount of data grows – in contrast to previous analyses which uses a finite hypothesis

space.

5.4 Conclusions

In this work we developed the HDP-FST, a new non-parametric Bayesian model for the

inference of strategies in repeated games. By extending the HDP, our model inherits many

desirable properties of non-parametric models: (1) prior support over a hypothesis space

that contains all possible FSTs without actually constructing this infinite space, (2) dy-

namically trades-off the complexity of the inferred model with model fit by biasing the

posterior probabilities towards simpler strategies, and (3) allows for model complexity to

grow with the data. We developed an efficient Gibbs sampler for conditional inference

in this model. Using this inference scheme, we showed that from sparse and noisy ob-

servations of a dyadic interaction, it both infers the strategies and accurately predicts the

expected next action. When applied to human data, the model inferred many strategies

which have not been previously examined in the literature on repeated prisoners dilemma.

While we focused on the infinitely repeated prisoners dilemma our model applies to any

repeated game with a finite number of players and a finite action space.

In future work we would like to develop a beam sampler for these models which would

allow for more efficient online inference (Van Gael et al., 2008). It may be possible to adapt

these methods to account for nonstationarity in player’s strategies by putting a lower weight

on earlier actions. Since our approach to inference is probabilistic and causal it is possible

to compose it with other probabilistic models allowing for richer multilevel analyses of

human behavior that can explicitly model individual variation across subjects.

While our model of strategy inference considers all possible FSTs (with a bias towards
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simple strategies) it does not consider the strategic implications of the FSTs. Consider the

following example:

P1: CCCD

P2: CCCC

where we want to infer the strategy for P2. While both AC and Tit-for-2-Tat are consistent

with P2’s play, we intuitively believe that Tit-For-2-Tat should be more likely, i.e., our

intuitions about what strategies are most likely a priori may also take into account the

strategic nature of those strategies, not just complexity. In future work we will investigate

the way the prior over strategies itself might be modulated by payoffs:

P(strategy|data,payoffs) ∝ P(data|strategy)P(strategy|payoffs)

One possibility is that strategies which are not consistent with a best response could be

assigned a lower or even zero probability in the prior. Another possibility is to weight a

strategy’s prior probability by an estimate of its expected payoff. The modulation of the

prior by payoffs might itself be modulated by one’s estimate of the strategic sophistication

of one’s opponent. For instance, if a player knew their opponent was very intelligent they

might place a very low prior probability on that opponent using Always-Cooperate.

Understanding which strategies are “good” will likely require players that don’t just

infer strategies but also plan using them (Doshi-Velez, Wingate, Roy, & Tenenbaum, 2010;

Kleiman-Weiner et al., 2016; Panella & Gmytrasiewicz, 2015). The combination of strate-

gic inference with planning will be essential for developing intelligent agents that flexibly

cooperate and compete.
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Chapter 6

Fairness and the Inference of Reputation

6.1 Introduction

From the distribution of wealth across society to the distribution of dessert at the end of

a dinner party, humans seem uniquely capable of enlarging the size of the pie and sharing

it fairly (Tomasello, 2014). We make these decisions guided by normative principles such

as efficiency, which says to maximize the total utility of the group and fairness, which

says in part that distributions should be both equitable and impartial. We also use these

principles intuitively when judging whether others’ decisions are fair when considered from

an impartial or objective perspective (Rawls, 1971; Nagel, 1986).

In the real world where resources aren’t perfectly divisible, these principles can often

come into conflict. It is well known that efficient allocations of resources are often in-

equitable and equitable allocations of resources are often inefficient – they leave some of

the pie on the table. For example, if Alice has one apple and Bob has none and we take

Alice’s apple and throw it out, Alice and Bob are in a more equitable state but the total

welfare (efficiency) is reduced. This is called inefficient equity. Even young children pre-

fer inefficient equity: they prefer to destroy a resource rather than distribute it inequitably

(P. R. Blake & McAuliffe, 2011; Shaw & Olson, 2012). Preferences for equity and effi-

ciency are often captured quantitatively by directly deriving them from the outcomes. For

instance, efficiency might correspond to the total or average outcome among a group of

agents and inequity might correspond to the differences between the outcomes of different
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agents (Adams, 1965; Fehr & Schmidt, 1999).

While early work focused on whether a given outcome is perceived as fair (Adams,

1965; Fehr & Schmidt, 1999), there is now growing evidence that decision makers are sen-

sitive to what their choice signals about themselves. Specifically, inequity created without

showing partiality can be fair. If both Alice and Bob are equally deserving but there is

only one apple, a decision maker might avoid giving it to either one in order to avoid an

outcome that is neither equitable nor impartial. For instance, if the decision maker decided

to give the apple to Alice an observer would infer that the decision maker is partial to Alice.

However, if the decision maker can flip a coin or access another source of randomness and

use the chance outcome to determine who should get the apple, the decision maker can cre-

ate inequity but without worrying about others attributing partiality (Shaw & Olson, 2014;

Choshen-Hillel, Shaw, & Caruso, 2015).

Both adults and children adjust their distributional preferences depending on whether

they are the ones choosing or not. For instance, people are usually dissatisfied with receiv-

ing less than an equally worthy counterpart, but when they created the inequity themselves

they were more likely to find this acceptable (Choshen-Hillel & Yaniv, 2011). Adults and

children are willing to create inequity that disadvantages themselves but are less willing to

create inequity that could be interpreted as favoritism or nepotistic preferences (Choshen-

Hillel et al., 2015). These results are incompatible with explanations of social preferences

that only consider an aversion to inequitable outcomes or other preferences that are directly

derived from outcomes. Understanding how to combine these conflicting perspectives (ef-

ficiency vs. equity and equity vs. impartiality) is a challenge that we can address with

computational modeling. Specifically, how might a flexible preference for these normative

values be integrated together and flexibly applied?

Computationally, preferences like impartiality are significantly more sophisticated than

just evaluating expected outcomes. We propose that an aversion to partiality is an aversion

to having ones actions appear partial to others. Thus to evaluate whether an action will

appear partial requires anticipating how one’s actions will be interpreted by others. This

requires a mentalistic theory-of-mind: the capacity to interpret behavior as being driven by

beliefs, desires and intentions (Dennett, 1989). The same choice made in a different context
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Figure 6-1: An influence diagram (ID) is a directed acyclic graph over three types of nodes:
state nodes (circles), decision nodes (rectangles), and utility nodes (diamonds). Directed
edges between nodes determine causal dependencies. State and utility nodes take values
that depend on the values of their parent nodes. The total utility to the decision maker is
the sum over the utility nodes. Green and red utility nodes correspond to rewards and costs
respectively. The value of decision nodes is freely chosen by the decision making agent
according to equation (6.4). (a) ID of the Base Decision Maker. Merit corresponds to γγγ

and the Inequity and Efficiency nodes corresponds to the first and second components of
equation (6.3) (b) ID of the Judge which infers whether a base decision maker was partial
given an observation of her action, P(partial|a). (c) The Constructed Social Preference
recursively builds on the Base Decision Maker adding an aversion to appearing partial (UP).
(d) Simulated results when the decision maker can allocate $1,000 to one agent and $100 to
another or the value on the x-axis to both agents when both agents are equally meritorious.
The Constructed Social Preference is more likely to select the wasteful equal option to
avoid an attribution of partiality.
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or from a different set of alternatives might be evaluated differently as it will carry different

information about the underlying goals and desires that drove the choice. For instance, if a

decision maker can choose to give his colleague either $100 or $1,000 and chooses to give

him $1,000 we might infer that he likes his colleague. However if his choices were to give

either $1,000 or $2,000, giving $1,000 signals a dislikes for his colleague. Thus the same

action requires a different interpretation depending on the unchosen option. Furthermore,

the capacity for theory-of-mind can affect distributional preferences: previous work found

that children with a more developed theory-of-mind were more likely to give fair offers in

the ultimatum game (Takagishi, Kameshima, Schug, Koizumi, & Yamagishi, 2010).

In this work, we propose that preferences over the beliefs others will form are con-

structed by turning theory-of-mind inward, anticipating the evaluations others will make

about the actions one might take. With the knowledge of how one’s actions will be judged

before deciding, a decision maker can calibrate her actions to send the right signals (Baumeister,

1982; Bénabou & Tirole, 2011). We note that we do not believe agents to be necessarily in-

tentionally signaling impartiality to others. Instead agents may strive to maintain a desired

image of themselves from an objective viewpoint or “self-signal” (Nagel, 1986; Bodner &

Prelec, 2003; Bénabou & Tirole, 2011).

In this paper we develop a computational framework for capturing the above intuitions.

We use influence diagrams as a structural representation of a rational actor and Bayesian

inference over influence diagrams to enable theory-of-mind inferences about whether an

action will be perceived as partial. While the framework we will present is a general way

of constructing preferences from the anticipated judgments of others, we focus specifi-

cally on constructing distributional preferences with the desire to be perceived as impartial

(Shaw, 2013; Shaw & Olson, 2014; Dungan, Waytz, & Young, 2014; DeScioli, 2016).

We first present a mathematical model that integrates preferences for efficient and equi-

table outcomes with an aversion to appear partial. We then test our model empirically

in two parameterized allocation games with many conditions that allow us to test some

of the fine-grained predictions of the model. Finally, we conclude by sketching how our

model can be extended to capture other social desires constructed from a decision maker’s

preference to appear positively in the minds of others.
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6.2 Computational Analysis

In this work we aim to model both the way participants act in resource allocation games

as well the judgments they make about the resource allocations of others. We start from

the simpler preferences for efficiency and equity which are based on outcomes and build

towards constructing a social preferences for impartiality which are implicitly intentional.

We define a resource allocation game as follows. Let A be the set of actions available to

the decision maker. For each action a∈A there is a probabilistic transition function P(R|a)

which maps an action to a vector of rewards R where each ri ∈ R is the amount of reward

given to agent i. In a resource allocation game, the decision maker picks an action (a) such

that the expected reward to the other agents (R) achieves the desires of the decision maker.

We now define the desires of the Base Decision Maker as components of a utility func-

tion. These desires will determine how Base Decision Maker distributes resources. We

consider two base desires. The first is a relative preference over the rewards received by

specific agents. To realize this preference, we include the reward received by each of the

other agents as weighted components of the decision maker’s own utility. Depending on

the value of these weights, an agent might impartially value others or might be partial to-

wards certain individuals. Formally, let αi ∈ ααα be the weight that the decision maker places

on the reward given to agent i. When αi > 0, the decision maker gains utility proportional

to the reward received by i, when αi < 0 the decision maker loses utility proportional to

the reward received by i and when α = 0 the decision maker is indifferent to the reward

received by i. By expressing different α over different agents the decision maker can ex-

press partiality (or aversion) towards specific agents. Including the rewards received by all

others as positive elements (α > 0) in the decision maker’s own utility creates a preference

for Pareto efficient allocations, a form of efficiency where the reward distributed cannot be

increased by taking other actions without making one of the receiving agents worse off.

The second base desire implements a form of proportional equity, the idea that those

who contribute more to a joint endeavor should reap a larger share of the rewards or “just-

desserts”. A well studied way to capture proportional equity quantitatively is to constrain

the relative reward (ri) given to each agent to be proportional to their relative effort or merit
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(γi) (Adams, 1965):
r1

γ1
=

r2

γ2
= . . .=

rN

γN
(6.1)

We transform these constraints into a measurement of inequity:

I(R,γγγ) = ∑
i∈N

∑
j∈N
j>i

|γ jri− γir j| (6.2)

With a notion of efficiency and equity in place, we can define the allocation preferences

for the Base Decision Maker. The expected utility (EU) to the decision maker of choosing

a is:

EUbase[a] =−αIAEa[I(R,γγγ)]+ ∑
i∈N

αiEa[ri] (6.3)

where Ea[I(R,γγγ)] is the expected amount of inequity created by action a and αIA ∈ ααα is

the weight the decision maker places on inequity aversion. Ea[ri] = ∑ri riP(ri|a) is the

expected reward for i when the decision maker takes action a. Decision making follows

probabilistically by sampling from the soft-max of expected utility:

P(a|ααα) ∝ exp(β∗EU[a]) (6.4)

with higher values of β leading to a higher probability of selecting the action with the

highest expected utility.

Influence diagrams are a natural choice for structurally representing this model since

they can flexibly capture decision problems with multiple factors and recursive sources

of value. Furthermore, they can be used to reason about the latent mental states of a de-

cision maker from just a sparse and noisy observation of behavior (Jern & Kemp, 2015;

Kleiman-Weiner et al., 2015). The utility of the Base Decision Maker which is defined in

equation (6.3) can be expressed graphically as the influence diagram shown in Figure 6-1a.

The first term of equation (6.3) corresponds to the UI node and the second term corresponds

to the UE node.

We now consider a Judge who makes inferences and judgments about the underlying
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preferences of the Base Decision Maker following an observation of behavior. Specifically,

in the Base Decision Maker the ααα encode the preferences of the agent and so for the Judge

these ααα become the target of inference. For our purposes, the Judge is interested in the

extent that the Base Decision Maker is partial to one or more agents. The Judge’s prior

is that the Base Decision Maker is partial (a binary variable) with probability 0.5. If

partial, one of the αi = αpartial (i chosen uniformly at random) and the other α−i =

−αpartial. Otherwise, if the agent is not partial, all α1...N = 1. The Judge also has

some prior uncertainty on the degree that the Base Decision Maker cares about inequity

so αIA ∼ Exponential(λ). With these priors over the types of preferences a Base Decision

Maker might have, a Judge can use Bayesian inference to compute the extent that an agent

was partial based on just a single observed allocation:

P(partial,ααα|a) ∝ P(a|ααα)P(ααα|partial)P(partial) (6.5)

where P(a|ααα) is the model of action shown in equation (6.4) and the ααα are then marginal-

ized out to obtain a posterior on P(partial|a). Figure 6-1b shows how the judge does

inference over the parameters of the influence diagram representing the Base Decision

Maker.

A Constructed Social Preference inherits from and recursively builds upon both the

Base Decision Maker and the Judge. In particular, the Constructed Social Preference has

an additional preference to appear impartial. Since this is a preference over the beliefs oth-

ers will form as a result of her decision, the preference to appear impartial is a preference

over the posterior P(partial|a). The Constructed Social Preference integrates these be-

lief based preferences with the preferences for equity and efficiency of the Base Decision

Maker:

EUconstructed[a] = EUbase[a]−αPAP(partial|a) (6.6)

where αPA is the extent that the Constructed Social Preference cares about whether other

agents view her as impartial or not. This equation and the influence diagram in Figure 6-1c

show how the Constructed Social Preference is built on top of the Judge and Base Decision
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Figure 6-2: Empirical results and model predictions of (a) choices and (b) judgments of
partiality for the trials in experiment 1 where both of the agents were equally meritorious.
Trials with no gray bar indicate the model predicted near 0. Error bars are the standard
error of the mean.

Maker.

The Constructed Social Preference goes beyond preferences over outcomes like those

in the Base Decision Maker. Instead, it anticipates the inferences other agents will make

about its actions and optimizes its actions so that others have desirable beliefs. Figure 6-1d

shows a simulated example where a decision maker had to choose between allocating either

$1,000 to one agent and $100 to another equally meritorious agent or giving a smaller but

equal value to both. The Constructed Social Preference is more likely to select the equal

option since it implies lower partiality even though both the Base Decision Maker and the

Constructed Social Preference care equally about avoiding inequity.

In order to compare the model with human participants, we used maximum-likelihood

estimation to optimize the free parameters to human judgments. The five parameters used

for all simulations were: β = 0.003, αpartial = 6, λ = 0.7, αPA = 1350. If agent i was

more meritorious than agent j then γi
γ j

= 4. Importantly, the parameters used to model

the partiality data were constrained to be the same as those used to model participants’

decisions.

6.3 Experiments and Results

We test the predictions of this model in two parametric behavioral experiments that measure

participants’ decisions in a hypothetical resource allocation game as well as judgments

about the partiality of another agent who made an allocation. Both experiments were run
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Figure 6-3: Empirical results and model predictions of (a) choices and (b) judgments of
partiality for the trials in experiment 1 where one of the agents was more meritorious than
the other. Trials with no gray bar indicate the model predicted near 0. A “fair bonus” was
when the decision maker gave the large bonus to the agent with more merit. An “unfair
bonus” was when the decision maker gave the large bonus to the agent with less merit.
Error bars are the standard error of the mean.

on Amazon Mechanical Turk. For each condition we compare the average responses with

the predictions of the model.

6.3.1 Experiment 1: Proportionality and Impartiality

In experiment 1 we investigate how equity and merit affect choices in an allocation game.

We presented two groups of participants with the following vignette which describes an

allocation game that took place in an everyday office setting:

Alex and Josh are both employees at a large company. Their coworker Max has been

asked to decide how to assign bonuses to Alex and Josh. Due to company policy, Max

can either: give $1,000 to one employee and $100 to the other or give [$0 / $100 /

$500 / $1000 / $1,100] to both. Alex and Josh currently make the same amount each

year, do the same job, [and have received identical work evaluations / but Alex has

received a better work evaluation].

Participant group 1: What would you do? (Give Alex the $1,000 bonus and Josh the

$100 bonus / Give Josh the $1,000 bonus and Alex the $100 bonus / Give them both a

bonus of [$0 / $100 / $500 / $1000 / $1,100])
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Participant group 2: Max decides to [give Alex the $1,000 bonus and Josh the $100

bonus / give Josh the $1,000 bonus and Alex the $100 bonus / give them both a

bonus of ($0 / $100 / $500 / $1000 / $1,100)]. Who do you think Max likes better?

(Definitely Alex = -1, Equal = 0, Definitely Josh = 1)

The bold text shows the different variants of the vignettes. On different trials the value

of the equal option varied between $0 and $1,100. On some trials both employees received

equal work evaluations and on some trials one employee received a better work evaluation.

The names of the employees changed on each trial but were always a high frequency male

name.

We first report the results for when both employees were equally meritorious (Figure 6-

2). We found high rates of inequity aversion that led to highly wasteful bonus allocations

(Choices: N = 89; Judgments: N = 104). When the equal sized bonus was $0, almost

50% of participants chose to allocate nothing, wasting a total of $1,100 ($1,000 + $100)

rather than allocating unequal bonuses. When the bonus was $100, over 75% of participants

wasted the $1,000 bonus in favor of two equal $100 bonuses. These allocations were highly

wasteful and were Pareto dominated since the unequal allocation would have made at least

one of the employees better off without making the other employee worse off.

The partiality judgments made by a second set of participants is consistent with the

idea that the aversion to creating unequal outcomes stems in part from a desire to appear

impartial. We transformed judgments of liking into a partiality index by measuring absolute

difference from 0. Even when the alternative equal allocation required wasting the entire

bonus, a person who allocated the large but unequal bonus was judged as highly partial

(towards the person who received the higher bonus). Our computational model corroborates

this interpretation and captures both participants’ judgments of partiality and then uses

those judgments to explain the strong aversion to an unequal outcome. The full model

closely follows the pattern of decision making.

We now turn to the trials where one of the two employees received a better evaluation at

work than the other and was thus more meritorious (Choices: N = 89; Judgments: N = 104).

Figure 6-3 shows that this difference was sufficient to drive participant choices away from

the wasteful equal bonus towards giving the large but unequal bonus to the employee who
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was more meritorious. This shift is consistent with equity (the more deserving employee

got a greater share of the rewards). However, this also resulted in a novel type of wasteful

decision making: the option to allocate $1,000 or more to both employees was forgone

over 70% of the time by the Pareto dominated unequal option that maintains equity based

on merit.

Surprisingly, participants attributed the lowest partiality to employees who selected the

equal bonus even though one of the receiving employees was more deserving than the other.

This points to a possible difficulty in achieving equitable distributions. Even when some

agents might be more deserving than others, inferences of partiality are still readily made

when observing an unequal distribution. Here equity and impartiality work against each

other. Since the equal bonus led to a lower attribution of partially, as the size of the equal

bonus grows, the model slowly shifts to the efficient equal bonus.

6.3.2 Experiment 2: Procedural Fairness and Impartiality

In a second experiment we repeated the equal merit condition of experiment 1 but also

included the possibility that the employee making the decision could flip a fair coin to

decide who gets $1,000 and who gets $100 (Choices: N = 54; Judgments: N = 158).

Besides the addition of this coin the vignette was identical to the vignette in experiment 1.

This is a key test of the impartiality hypothesis since when the size of the equal bonus is

low, an inequitable but efficient allocation can be given without signaling partiality towards

either of the employees by flipping a coin (Shaw & Olson, 2014; Choshen-Hillel et al.,

2015).

Consistent with the model predictions shown in Figure 6-4, participants did not judge

employees who flipped the coin to be partial towards either of the employees. When the

value of the equal bonus was low (≤ $100) participants no longer wasted resources like

they did in experiment 1. Instead they flipped the coin in order to allocate the full bonus

without signaling partiality.

Combining the two experiments, we quantify the overall model performance across all

of the conditions in the two experiments. Figure 6-5 shows the quantitative correlation
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Figure 6-4: Empirical results and model predictions of (a) choices and (b) judgments of
partiality for experiment 2 which introduced the option to flip a fair coin to decide the
allocation of the unequal bonuses. Trials with no gray bar indicate the model predicted
near 0. Error bars are the standard error of the mean.

of the model predictions with the average judgments of participants. Overall, participant

judgments and decisions were highly correlated (R2 = 0.94) with the model predictions.

This suggests that the model is capturing some of the fine grained structure of how people

attribute both partiality and use it to make allocations of welfare.

Finally, we compare the full model presented here against a lesioned model that in-

cludes inequity aversion but does not reason about partiality and hence corresponds to the

Base Decision Maker (i.e., αPA = 0). The parameters in the lesioned model were directly

fit to the choice data and were not constrained to fit the judgments. This model fit the data

less well than the full model (R2 = 0.82). However, this lesioned model has less parameters

than the full model. To test for the possibility that the full model is overfitting the data we

performed cross-validation using randomly chosen subsets of half the data to fit the free

parameters and then tested against the held-out half. The held-out cross-validation correla-

tion between the model and participants was R2 = 0.93 which suggests that the full model

is robust and is not overfitting. In contrast, the lesioned model performed much worse

(R2 = 0.74) under cross-validation. When the full model was applied only to the choice

data it captured nearly all of the variance (R2 = 0.97) and was still robust when evaluated

on only held-out trials (R2 = 0.96).
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Figure 6-5: Quantification of model performance. Each point represents the model predic-
tion and participant judgment for a single condition. For better fitting models the points
will lie close to the y = x diagonal. (left) The full model compared including both decision
and judgment data. (middle) The full model compared only on the decision data. (right)
Lesioned model that did not include partiality compared only on the decision data.

6.4 Discussion

We introduced a new computational model for constructing preferences by modeling ratio-

nal agents which care about what others will infer about them from their actions. In this

model, the machinery of theory-of-mind is turned inward to simulate how an action will

likely be perceived or judged by others. Agents then use the perceptions and judgments

they anticipate others will form to construct rich preferences over socially desirable traits

such as impartiality. We tested key components of the model in two behavioral experi-

ments that were designed to contain conflict between efficiency, equity and partiality and

measured both participants’ hypothetical resource allocations and the judgments they made

about the partiality of others who had acted. The predictions of the model were closely cor-

related with both allocation decisions as well as partiality judgments. Finally, we note the

best fit parameters had a high value for αPA which suggests that partiality aversion was

playing an important role in the model fit for predicting choices. A lesioned model that did

not contain this parameter failed to predict participants’ judgments in both experiments.

We now briefly describe qualitatively some of the other predictions this model can

make without any structural extension. Our model predicts that when the decision maker

and one of the agents have a previous relationship (such as old friends or a reciprocal

relationship in a different context) there will be a greater probability of inferring partiality

since this previous relationships will manifest itself on the prior over partial. With a

greater probability of others inferring partiality a decision maker will be even less likely
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to give their friend a larger reward than another person. This reasoning might explain

why nepotism and cronyism is judged as unfair and avoided (Dungan et al., 2014). Other

procedural tools such as the delegation of the decision to a third party may also be important

to avoid the attribution of partiality. Under the model we have presented, if an attribution

of partiality can be made less likely, the decision maker might be more likely to participate

in nepotism and favoritism.

In future work we would like to investigate how other forms of social preferences can

be constructed by placing preferences over anticipated judgments. For instance, people

might desire to appear as trustworthy and generous or avoid appearing selfish or envious.

Ultimately we suspect that an agent who carefully manipulates their image so that all oth-

ers think she is a great person – will end up behaving quite similar to a person who is

truly good. However, her behavior will be less robust – when she suspects her actions

are unobserved or can only be interpreted ambiguously, the constructed social preferences

disappears along with the altruistic or fair behavior (Dana, Weber, & Kuang, 2007). By

constructing social preferences such as impartiality, a key component of fairness, from the

anticipated judgments of others, we quantitatively predict the fine-grained structure of both

participants’ decisions concerning the allocation of resources and participants’ judgments

about those who make distribution decisions. Our model makes clear that the power of

theory-of-mind is not necessarily limited to understanding the beliefs and desires of other

intentional agents. It can also be pointed inward to strategically shape beliefs and desires

in others.
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Chapter 7

Inference of Intention in the

Computation of Moral Judgment

7.1 Introduction

Our actions often have multiple effects, whether it’s creating a small amount of pollution in

order to pick up groceries or making trade-offs between civilian deaths and military objec-

tives during a war. Did the general try to achieve the military objective even at the cost of

civilian lives or did his plan use civilian deaths in order to demoralize the enemy? The abil-

ity to distinguish between the effects an agent intended versus those that were side-effects

are critical in general for social cognition and in particular for assigning responsibility and

assessing moral permissibility. Our goal here is to understand these processes in computa-

tional terms.

Reasoning about the intentions of other agents relies on theory of mind, the capacity

to infer an agent’s underlying mental states such as beliefs and desires from her actions.

Recently, a lot of progress in computational modeling of theory of mind has been made by

formalizing lay intuitions that other agents act as rational actors who maximize expected

utility subject to their beliefs. A Bayesian observer can then invert the agent’s planning

process and reason about the likelihood of certain beliefs and desires given the agent’s

actions (C. L. Baker et al., 2009, 2017; Jern & Kemp, 2015).

Although most computational accounts of theory of mind have focused on desires and
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beliefs, intentions are a third mental state thought to be particularly useful. Intentions can

be thought of as plans of action that an agent commits to, chosen in order to bring about its

desires given its beliefs about the causal structure of the world (M. Bratman, 1987; Malle

& Knobe, 1997). Using an example from M. Bratman, 1987, imagine a person with the

desires to have a milkshake but also the desire to go on a diet. If the desire to go on a diet

is sufficiently high, the person will not buy the milkshake without any irrationality on the

part of the decision maker. In contrast, the person cannot intend to both go on a diet and

have the milkshake. Thus while desires can be in conflict an intention must have a sense

of coherence and commitment. Further, Malle and Knobe argue that three key criteria

differentiate intentions from desires: “First, intentions are directed at the intenderâĂŹs

own action, whereas desires can be directed at anything. Second, intentions are based on

some amount of reasoning whereas desires are typically the input to such reasoning. Third,

intentions come with a characteristic commitment to perform the intended action, whereas

desires do not” (Malle & Knobe, 2001). Children understand these mental states early in

development and begin to understand the subtle between desires and intention as early as 5

years old (Schult, 2002).

It is hypothesized that the ability to reason about and with the intentions of others is

one the key factors that enables the sophistication of human social behavior (Tomasello et

al., 2005; Tomasello, 2014). They are also an important input into the evaluation of moral

permissibility such as the doctrine of double effect’s requirement against intending harm

(Mikhail, 2007; Cushman, 2013; Waldmann, Nagel, & Wiegmann, 2012; Crockett, 2013;

Greene, 2014). Specifically the doctrine of double effect (DDE) states among other an act

is morally permissible if:

1. the action itself is not morally impermissible,

2. the good outcomes but not the bad outcomes are intended,

3. there is no way to produce the good outcomes without also producing the bad out-

comes,

4. the bad outcomes are not disproportionate to the good outcomes (Mikhail, 2007,

2011).
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Beyond normative theories, intention is also a key factor in determining legal culpabil-

ity. People are held responsible and punished for just having an intention to cause harm

(mens rea) even if no harm is actually caused (L. Young, Cushman, Hauser, & Saxe, 2007;

Cushman, 2008). Again, there is a key distinction between desire and intention. One might

have the desire to harm ones enemy (or benefit oneself even at the expense of someone

else), but until those desires have actually generated an intention they are not punished.

While the DDE gives intentions a prominent role in moral judgment, the relationship

between intentions and outcomes is complicated by the fact that it is possible to do the right

thing for the wrong reasons (Scanlon, 2009). Scanlon, 2009 imagines cases such as saving

a person in need but only to receive the fame or a case where an agent saves the mother

of his political opponent only so that his political opponent doesn’t receive his mother’s

large inheritance to spend on the campaign. Scanlon argues that even though the intentions

aren’t correct the actions themselves are still permissible.

Here we investigate a novel computational representation for reasoning about other

people’s intentions based on counterfactual contrasts defined over influence diagrams. This

model can distinguish between intended outcomes and unintended side effects as well as

represent the future-oriented aspect of intentions as plans (M. Bratman, 1987). We use this

model of intention inference as an input into a computational model of intuitive moral per-

missibility judgments based on the DDE and show this model explains both well-studied

and novel moral dilemmas. We first motivate our approach with examples to build intu-

itions. We then describe a computational model that captures these intuitions. Finally, we

show how this model can explain human moral judgments across a wide range of moral

dilemma.

Throughout this work we will motivate and test our model on variations on the well-

known “trolley problems” (Thomson, 1985). Although lacking in everyday realism and

heavily studied in moral psychology, our aim here is not to explain a novel phenomena in

moral judgment, instead our aim is synthesize known aspect of moral psychology into a

unified model of moral judgment. For this purpose, “trolley problems” are highly suitable.

They are familiar to both readers and participants with clear causal structures, events, and

can be easily parameterized.
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Figure 7-1: Schematic representation of trolley track geometries: (a) side track, (b) loop
track and (c) side-side track.

7.1.1 Side track and loop track

The canonical examples for the role of intention in moral permissibility judgments are

the side track and loop track (Thomson, 1985). The side track, shown in Figure 7-1a is

a scenario where an out-of-control trolley is heading towards five people. An agent is

standing near a switch (A1) which will turn the trolley from the main track with five people

on it (P1-P5) to a side track with one person (P6). The loop track, shown in Figure 7-1b has

a loop instead of a split such that the trolley will continue on and hit the five unless it hits

the man on the looping track which would cause the train to stop. Consider that in each of

the situations, the agent throws the switch.

Empirically, throwing the switch in the loop track is judged less morally permissible

than the side track (Mikhail, 2007). Explanations of this finding usually draw on the agent’s

intention. In the side track, the agent neither intends the hitting nor killing of the man on

the side track while in the loop track the agent does intend for the trolley to hit the man on

the loop but not his death. Indeed, Sinnott-Armstrong, Mallon, Mccoy, & Hull, 2008 found

that people judge the decision maker as both more responsible and intentional in the loop

track case than the side track.
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7.1.2 Side-side track

Following M. Bratman (1987), future-oriented planning is an important aspect of intention.

To probe this aspect of intention in permissibility we developed a novel track geometry

which requires inference over the full plan rather than just a single action. As shown in

Figure 7-1c, the side-side track scenario is similar to the side track except that the side

track has an additional side track with its own switch (A2). Consider a situation in which

there is one person on the main track, five people on the side track and no one on the side-

side track. If the trolley is going down the side track, unless the agent throws the second

switch directing the trolley down the side-side track, the trolley will continue and hit the

people on the side track.

We hypothesize that throwing the first switch is intuitively morally permissible. How

can this be explained even though the trolley is now heading towards the five people?

Since intentions are forward-directed, they include the agent’s intention to throw the second

switch, saving all the lives. Only if the agent doesn’t intend to throw the second switch

does the action become impermissible. Thus this notion of intention must clearly influence

moral permissibility, without knowing the agents future intentions, we cannot assess the

outcomes. This case motivates the central role of planning in our computational model. It

is insufficient to consider intentions as merely directed towards the effects of a single action

but rather the effects of the entire plan need to be taken into consideration.

7.1.3 Joint inferences: norms, desires and intentions

Inferences about the intentions of an agent are often intertwined with inferences about

the agent’s desires and the social norms to which those desires conform. We contrast a

side track dilemma that has one anonymous person on the main track and two anonymous

people on the side track with a dilemma we call brother track where the agent’s brother is

on the main track and there are two anonymous people on the side track.

In the first dilemma, throwing the switch is likely to be judged as highly impermissible

while in the brother track case it is intuitively more permissible to save one’s brother. When

the agent throws the switch in the first case, participants might infer that the agent intended
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to kill the two people. In brother track, participants infer that the agent is following a norm

to value loved ones more and doesn’t intend to kill the two people on the side track, instead

the intention of their action was to save their brother. In another variant of brother track, the

brother is on the side-track and two anonymous people are on the main track. If the agent

throws the switch, we may infer that the agent followed a “hyper-egalitarian” norm that all

lives should be valued equally, or. . . she might not value all lives equally, she just intended

to kill her brother! To infer the intended consequences and judge moral permissibility thus

requires jointly inferring the agent’s desires and the norms that guided their actions.

This problem of joint inference also arises when assessing the moral permissibility of

decisions made under uncertainty. Consider the side-side track case but the second switch

has a 90% probability of failure. If the decision maker throws the switch they save 1 person

with certainty but will kill 5 people with 90% probability. Thus this decision will lead to

3.5 lives lost in expectation. While this could mean the decision maker intends to kill those

people, another interpretation is that the decision maker is risk seeking in this situation,

preferring a small chance of saving everyone than letting one person die with certainty. If

the attitude of the decision maker towards risk is taken into account this can change the

inferred intention and hence also change whether or not their action is seen as morally

permissible.

These kinds of complications also arise when agents have to make taboo trade-offs.

Consider a problem, equipment track with the same structure as side track but the decision

maker is the owner of the train company and in addition to the people on the tracks, there is

piece of equipment on one of the tracks that is highly valuable to the train company. If the

owner throws the switch, saving the five people and the piece of train equipment, but killing

one person on the side track was it done for the right reasons? Again, this judgment requires

joint inference over the value the owner places on the conversion rate between the value

of the taboo good (monetary value) and the lives saved and killed. Furthermore, imagine

positions of the people are switched, with only one person and the equipment on the main

track and five people on the side track. If the owner throws the switch, out intuition isn’t

that the owner intends to kill the 5 people nor that he intends to save the single person.

Instead, we infer that he simply intends to save the equipment.
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These three cases, brother track, side-side track, and equipment track will be modeled

in detail across a wide range of parametric variations that aim to push around these joint in-

ferences. We then test the predictions of this model empirically in behavioral experiments.

7.2 Computational Framework

Our computational approach has two parts. The first is a computational account of intention

inference and the second uses this account to model permissibility judgments. The model

is presented to capture the real-world richness of intentional planning and has greater gen-

erality than is needed for our examples.

Our representation of intentions is based on influence diagrams (ID) (Shachter, 1986).

Influence diagrams are similar to Bayes nets and were used previously to capture reasoning

about what other agents know and want during decision-making (Jern & Kemp, 2015).

Solving an ID yields an optimal policy (σ∗): the actions the decision-making agent needs

to take to maximize her expected utility. We show how the ID and the policy can be used

together to compute foreseen outcomes: the most likely outcome of the agent’s policy.

Using a counterfactual criterion, we refine the foreseen outcomes into a subset of outcomes

that are intended.

Overall, we aim to capture that intentions: (1) are partial plans with means-ends cor-

respondence, (2) predict the expected effects of actions, (3) can distinguish between out-

comes that the agent is committed to bring about and those that are side-effects, (4) are

future-oriented, (5) give reasons for action and are hence inputs to further practical reason-

ing such as moral permissibility (M. Bratman, 1987). Indeed, one practical reason for the

centrality of intentions in folk psychology is that knowing an agent’s intentions allows one

to predict how the agent will behave and why.

We then show how an observer with uncertainty about the desires and norms of the

agent can rationally update his beliefs about the agent by inverting the planning process

using Bayes’ rule, and finally, can use these inferences to make judgments about moral

permissibility.
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7.2.1 Rational action in influence diagrams

We first introduce influence diagrams which generalized the factored representations of

Bayesian networks to decision problems. We follow the notation of Koller and Friedman

(2009). An influence diagram ID is a directed acyclic graph over three types of nodes: state

nodes (depicted as circles, X ), decision nodes (depicted as rectangles, D), and utility nodes

(depicted as diamonds, U). Directed edges between nodes determine causal dependencies.

State and utility nodes take values that are a function of the structural equations and depend

on the values of their parent nodes. In particular, utility nodes take a real number as a value

which when summed together represent the total utility to the decision making agent.

Unlike state and utility nodes, the value of decision nodes are not determined by struc-

tural equations but are instead freely chosen by the decision making agent. Under the

assumption of rational action, the decision making agent attempts to make these decisions

such that their total utility is maximized. The full set of these decisions in a given problem

is an agent’s policy which map each decision node to a particular value and is represented

by σ. Let σ∗ be the policy that maximizes the expected total utility of the decision problem

represented by ID:

σ
∗ = arg max

σ

EU[IDσ]

where EU[IDσ] is the agent’s expected utility when following policy σ. In order to calculate

the expected utility of a given policy, we define ζ as an outcome, the setting of each of the

state, utility and decision nodes in ID to a value. For each node Z ∈ ID, ζZ is the value of

node Z in outcome ζ. Thus the expected utility of policy σ can be calculated by averaging

the total utility of an outcome U(ζ), weighted by the likelihood of that outcome under the

policy P(ζ|IDσ) for each possible outcome:

EU[IDσ] = ∑
ζ

P(ζ|IDσ)U(ζ)

U(ζ) = ∑
V∈U

ζV

P(ζ|IDσ) = ∏
X∈X

P(X |PaX ,σ)
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where PaX are the parents of node X . Thus the ID representation concisely factors the

agent’s decision problem into individual states, decisions, sources of utility and the struc-

tural equations that define the dependence relations between them. Defaults are encoded by

requiring any policy that changes the value of a decision node away from its default value

to incur a small utility cost (not shown in figures).

See Figure 7-2a for an influence diagram representation of the side track dilemma

shown in Figure 7-1a. The only decision in the policy is the choice to throw the switch

A1. This action determines whether the trolley goes down the left track (TL) track or right

track (TR) which determines which people are hit and killed affecting the decision maker’s

utility. Specifically, if we assume that the utility of each person on the tracks to the decision

making agent is 1, then the agent’s policy under rational action is to throw the switch (since

5 is greater than 1). In Figure 7-2a this policy is shaded in gray. We will continue to build

on this example as we build out our model of intention.

7.2.2 Foreseen and Intended Outcomes

The structure of the influence diagram allows us to reason explicitly about the possible

outcomes that result from an agent’s choices. We first describe foreseen outcomes that

characterize the agent’s expectations about the effect of her actions before refining the

foreseen outcome into an intention, which excludes outcomes that are unintended.

Definition 2. The best foreseen outcome ζF is the outcome with the highest expected utility

that can be foreseen by the agent acting under rational action:

ζF = arg max
ζ

U(ζ)P(ζ|IDσ∗)

ζF captures all the consequences that the agent can optimistically foresee happening as

a result of her policy but does not include backup plans or other types of conditional con-

tingent plans. The decision to choose only a single foreseen state is motivated by efficient

planning algorithms which plan only on the likeliest states and replan if necessary rather

than exhaustively planning for every contingency (Platt, Tedrake, Kaelbling, & Lozano-

Perez, 2010).
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Figure 7-2: An influence diagram (ID) representation of intention. (a) The ID for the side
track decision dilemma. (b) The foreseen outcomes F . Each node is set to the best value
possible under the policy of throwing the switch (shown in bold). (c) The intention I is
shaded in gray. Like the foreseen outcome, each node is set to its most likely value under
the policy, however only the nodes shaded in gray and their values are intended by the
agent.

In our working example of the side track, the foreseen effects of throwing the switch

in side track are that the 5 people on the main track will not be hit by the trolley and live,

generating 5 utility while the person on the side track will get hit by the trolley and die

generating -1 utility for the decision-maker. This is shown in Figure 7-2b where each node

is assigned to its foreseen value ζF (shown in bold). Thus the influence diagram allows for

an intuitive causal representation of the effects of the agent’s decision, each with its own

utility nodes which can be reasoned about independently.

While foreseen outcomes optimistically describe the consequences of an action and

are brought about “intentionally”, not all foreseen consequences are intended by the deci-

sion maker (M. Bratman, 1987). Analogously in causal reasoning, not all of the factors

which influence an outcome are judged by human participants to be causes of an observed

outcome. This has led to the development of computational models of actual causation

which try to model the commonsense notion of causality through counterfactual reasoning

(Halpern & Pearl, 2005). This formalism has successfully captured aspects of empirical

attribution of responsibility (Lagnado, Gerstenberg, & Zultan, 2013; Sloman, Fernbach, &

Ewing, 2012; Chockler & Halpern, 2004). We propose that a similar model can distinguish
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an agent’s intended outcomes from foreseen outcomes. Intended outcomes (as opposed to

unintended outcomes), are those that are a cause of the agents particular plan. By phrasing

this hypothesis in the language of causal reasoning we can use computational tools used

to model reasoning about causal events such as counterfactuals to model reasoning about

intentions.

These models determine whether an event X was a cause of an observed effect Z by

checking whether or not Z counterfactually depends on X i.e., in a counterfactual world

where X didn’t occur the effect Z also doesn’t also occur. This counterfactual operation

captures the intuition that mere co-occurrence is insufficient for causation. If X and Z co-

occur but X is not a cause of Z then in the counterfactual world where X doesn’t occur, Z

will still happen and hence X will not be considered a cause of Z.

Although this simple definition captures human intuitions about some causal situation

it requires some extension to capture the robustness of human judgments, namely those

about which the effect is overdetermined by multiple causes each of which is sufficient to

bring about the effect e.g., if X or Y then Z. These cases are tricky for the simple coun-

terfactual model because in the counterfactual world where X doesn’t occur, Y still causes

Z happen and hence by symmetry neither X nor Y is considered a cause of Z since Z did

not depend on either variable in the counterfactual world. This fails to capture the intuition

and data that both X and Y are causes of Z in cases of this structure. To robustly capture

human judgments in these settings we employ the full counterfactual machinery developed

by Halpern and Pearl which expand the space of counterfactual worlds which can be con-

sidered. For example in the case of overdetermination described, the model allows one to

consider the world where neither X nor Y occur and so Z doesn’t occur and hence both

X and Y are predicted as causes. Thus these models can capture commonsense causal

judgment through counterfactual reasoning which are thought to be an important input into

other forms attribution and responsibility judgments (Lagnado et al., 2013; Sloman et al.,

2012).

Halpern and Pearl counterfactuals were originally developed for reasoning about causal

graphs and the structural equations that describe the relationships between the event nodes.

Here we generalize Halpern and Pearl counterfactuals to reasoning about the causes of
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actions chosen by an agent by considering counterfactual contrasts over influence diagrams.

Thus while counterfactuals over Bayesian networks answer a question about commonsense

or actual causation, we propose that counterfactuals over influence diagrams can answer a

question about mental causation which describe the intentions of the agent.

Specifically, intended outcomes are the subset of foreseen outcomes that the choice

of the optimal policy (σ∗) counterfactually depends upon. The full formal machinery of

Halpern and Pearl is crucial for reasoning about these intentions because in many cases

an agents action is highly overdetermined i.e., there were many source of utility that when

combined together were resulted in the specific plan of that agent. While overdetermina-

tion often requires carefully constructed cases in causal reasoning where causes happen

simultaneously, overdetermination is omnipresent in intentional reasoning since there are

usually many possible reasons for action. Intentional inference is to decide which of those

reasons are intended by the agent. We generalize Halpern and Pearl (2005) to decision

problems where the effect is actually the planned set of actions and the structural equations

are supplemented by the action nodes of the influence diagram and rational planning. Our

definition of an intention is as follows:

Definition 3. An intention I is a subset of nodes and their corresponding values such that

the following conditions are satisfied:

1. Nodes in I take on values foreseen under σ∗.

2. Let ID\I be a counterfactual influence diagram that is ID with the nodes in I fixed. I

are intended if σ∗\I 6= σ∗, i.e., the optimal policy for ID\I is different from the optimal

policy for the original influence diagram ID.

3. The sets of nodes in I are a minimal subset, i.e., there are no smaller subsets of

intended nodes, which when removed or fixed would also satisfy 2.

The intention I for the side track is shown in Figure 7-2c by the nodes and values

highlighted in gray. The decision to throw the switch does not depend on the values for

hitting and killing the person on the side track (P6) and the loss of utility that resulted.

Even if those nodes were removed from the influence diagram the agent would have still
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acted the same. Thus those nodes are side effects of the action. In contrast, if the nodes

that correspond to the states and utility of the people on the main track were removed, the

agent would not have thrown the switch. Since the policy with the nodes removed is not

equal to the policy for the full ID, those nodes and their values are treated as intended.

We only consider the fixation or removal of nodes. However, capturing other aspects of

intention may require counterfactual perturbations to the utility values rather than fixation

(Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015).

Our representation of intentions as counterfactuals over influence diagrams satisfies the

five aspects of intentions we aimed to capture: (1) I is a partial plan than contains future

expected actions, (2) the outcomes in I are the expected result of the plan, (3) I distinguishes

between intended outcomes the agent is committed to bring about and side effects, (4) I

contains future-oriented policy information, (5) the nodes and values in I give the reasons

for the action. By representing the intention as a subset of the influence diagram, we can

capture the notion that intentions include intend-to commitments that commit the agent to

future action as representing by intended action nodesx as well as intend-that commitments

that commit the agent to make the world take on a specific state as represented by intended

state nodes. These aspects of intention have been discussed in formal planning models and

are thought to be important for collaborative planning (Grosz & Kraus, 1996). Thus I is a

compressed representation of the actions an agent plans to make and their intended effects.

This is a useful representation in that the agent doesn’t have to continuously plan after

each decision and event. As long as things are going as expected (or “according to plan”)

the agent can continue to follow his policy. When things don’t go as intended, the agent

doesn’t have to begin planning from scratch but can instead try to plan back to the intended

state. We developed this model with the goal of representing intention inference in theory of

mind and remain agnostic as to whether these computations capture the deliberate processes

of a decision maker.

If I contains probabilistic contingencies, then we might prefer to use the word “hopes”

rather than intends. It seems strange to say that an agent intends to win $5,000,000 when he

buys a lottery ticket (if $5,000,000 is the highest payoff); it seems more reasonable to say

that he hopes to win $5,000,000. Similarly, if a doctor performs an operation on a patient
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who has cancer that he believes has only a 30% chance of complete remission, it seems

strange to say that he “intends” to cure the patient, although he certainly hopes to cure the

patient by performing the operation. In addition, once we think in terms of “hopes” rather

than “intends”, it may make sense to consider not just the best outcome, but all reasonably

good outcomes. For example, the agent who buys a lottery ticket might be happy to win

any prize that gives over $10,000, and the doctor might also be happy if the patient gets a

remission for 10 years.

The following example, which is due to Chisholm (1966) and discussed at length by

Searle (1969), has been difficult for other notions of intention to deal with: Louis wants

to kill his uncle and has a plan for doing so. On the way to his uncle’s house in order to

carry out his plan, he gets so agitated due to thinking about the plan that he loses control

of his car, running over a pedestrian, who turns out to be his uncle. Although Louis wants

to kill his uncle, we would not want to say that Louis intended to kill his uncle by running

over the pedestrian, nor that he intended to run over the pedestrian at all. Given reasonable

assumptions about Louis’s beliefs (specifically, that the pedestrian was extremely unlikely

to be his uncle), he clearly would have preferred not to run over the pedestrian than to run

him over, so the outcome running over the pedestrian was not intended. Thus according to

our definitions, even though he full-filled his desire, he did so unintentionally.

Example: Side track and loop track

As demonstrated before (see Figure 7-2c), the model correctly predicts that hitting and

killing the man on the side track is unintended. In contrast, for the loop track, when the

man on the loop is hit but not killed, the policy remains unchanged, so the model predicts

that the killing of the man is unintended. However, the model predicts that hitting the man

on the loop is intended since it is required to stop the trolley from hitting the 5 on the main

track. Thus due to this difference in causal structure, the agent in loop track intends to hit

but not kill the man on the loop. Indeed throwing the switch in loop track is found to be less

permissible than throwing the switch in side track. Given that the number of lives affected

is the same in both conditions suggests that the intention to harm in the loop track case

could account for this difference as has been suggested in the literature (Mikhail, 2007).
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Figure 7-3: Influence diagram for the (a) loop track and (b) side-side track with the inten-
tion shaded in gray and the action in black.

Example: Side-side track

In the side-side track, the model predicts that if the agent throws the first switch, her inten-

tion is to also throw the second switch so that the trolley goes down the side-side track and

kills nobody. The model further predicts that both saving the person on the main track and

the 5 people on the side track are intended since in both cases they were counterfactually

relevant to the policy: if the person on the main track wasn’t there, the agent wouldn’t

throw the first switch. If the people on the side track weren’t there, the agent wouldn’t have

thrown the second switch (since throwing switches has a small action cost associated with

it).

The role of intention in evaluating permissibility is clear here even though it plays a

different role than in the loop track. The number of lives affected can only be calculated

under the agent’s future-oriented plan. Thus the intention captures a key aspect of the per-

missibility by requiring an inference over future actions rather than through understanding

which effects are intended and which are side-effects.
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7.2.3 Intention inference through inverse planning

Inference of intention through the ID requires knowledge of the agent’s desires and beliefs.

However, observers often only know these desires and beliefs with uncertainty such as

in the brother track examples in the introduction. The structure of these priors gives the

observer an expressive theory of mind, capable of representing agents with both good and

evil desires or adherence to different norms. The observer’s beliefs about the agent’s desires

are modeled by introducing uncertainty over the parameterization of the utility nodes. This

uncertainty induces a probability measure over IDs (shown in Figure 7-4) and since each

ID has an intention under rational planning, it also induces a probability measure over

intentions. Given observation of an agent’s action(s) A, an observer can rationally update

his belief about the agent’s intentions I, desires D and norms N using Bayes rule:

P(I,D,N|A) = P(A|I)P(I|D,N)P(D,N)/P(A)

Since P(A) cannot be analytically calculated we used rejection sampling to draw sam-

ples from P(I,D,N|A). We first sample from the desire and norm distribution of the

observer P(D,N) which defines an influence diagram IDD,N . Planning in this ID yields

P(I|D,N). If the intended action is the same as the observed action A we keep the sample

which is a joint distribution over the intention, desires and norms. If the intended action is

not A, the sample is discarded and the processes is repeated.

Structured priors for norms and risk preferences

In order to quantitatively predict observer’s judgments of P(I,D,N|A) we must specify the

structure of P(D,N), the distribution over how the agent values the lives of the people on

the tracks. Let DT be the utility to the decision maker of the nT people on track T not being

killed. Let kT =−1 when the agent wants to kill the people on track T , if not, kT = 1. kT is

negative for all T with probability αb which means the agent wants to kill as many people

as possible. Otherwise, kT = −1 for each track independently with probability αk. This

allows for the decision maker to selectively want to kill a specific group of individuals (and
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(B)
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1 dead?

Desire: 
5 dead?

Throw 
Switch? 
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Preferences 

Figure 7-4: Joint inference of intentions, desires and norms in a belief, desire, intention
(BDI) planning architecture. The nodes in the gray box correspond to the influence diagram
the agent is planning over. The nodes outside the box represent the observer’s uncertainty
over the agent’s beliefs and desires. The observer can use this prior to infer the agent’s
intention (gray) from the observation of a single action (black).

save another) but also allows for an agent who just wants to kill as many people as possible.

When making decisions about loved ones (brother track), risk (side-side track), the

value of life compared to property (equipment track) and other higher-level values, we

hypothesize that decision-makers will be of certain types in terms of how that take a specific

normative stance. Specifically, when valuing loved ones we consider two norms: all lives

should be valued equally or loved ones should be valued more. For risk taking, an agent

might be risk seeking, risk neutral or risk averse as to whether or not he prefers taking a

chance to save as many as possible even through lives might be lost. When it comes to

trading off the value of a life lost and property damage, an agent might believe that when

lives are at stake, nothing but lost lives matter while other agents believe that all costs

should be taken into consideration. Thus each agent is endowed with a set of norms and

these norms affect utility of each DT or the way the DT are added together in the case

of risk. More formally, let normbro be whether the agent values loved-ones more than

anonymous people or values all people equally, let normrisk indicate whether the agent
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risk seeking, risk neutral, or risk adverse and let normequip be whether property and lives

can or cannot be traded-off. For each norm, the a priori probability of each type is equally

likely and thus P(N) is uniform over types.

Having specified the space of norms we now describe how these norms affect the way

the decision-maker assigns and computes her desires. If the agent’s normbro values loved-

ones more than anonymous people and the person on track T is the agent’s brother, then the

brother is counted as equal to an αbro number of anonymous people and if normbro values

all people equally the brother is valued the same as a single anonymous person. If the

agent’s normequip cares more about his property than lives, than the utility of the equipment

to the decision maker DE valued comparatively to αequip > 1 lives and if normequip doesn’t

believe lives and property can be traded-off then the value of the equipment is equal to a

small fraction of a human life 1/αequip < 1. Let kE = 1 when the agent wants to save the

equipment and let kE =−1 when the agent wants to destroy the equipment. Then αe is the

prior probability that kE = −1. This probability was fixed such that αe = αb +αk i.e., the

probability of wanting to destroy the equipment is equal to the probability of wanting to

kill one of the groups of people.

In contrast to normbro and normequip which directly affect the valuation of the people

and objects under consideration, normrisk determines how utilities are compared under

uncertainty. Risk preferences are traditionally modeled by applying a non-linear transfor-

mation to the total utility of each possible outcome. We use a standard single parameter

risk function which exhibits constant absolute risk aversion (CARA) and is commonly used

in the economics literature (Arrow, 1965; Pratt, 1964):

Urisk(u) =

(1− exp(−normrisku))/normrisk, if normrisk 6= 0

u, if normrisk = 0
(7.1)

Figure 7-5 shows how this transformation modifies the base utility of each outcome

when under the different agent types. The risk averse agent has a concave utility function

and heavily weights a possible loss over a possible gain, the risk seeking agent has a convex

utility function and heavily weights a possible gain over a possible loss while the risk
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Figure 7-5: Example risk transformations for three possible agents, a risk averse one, a risk
seeking one, and a risk neutral one.

neutral agent’s utility is untransformed. Thus agent with differently parameterized risk

functions will have different preferences when acting under uncertainty.

Finally, as is common in discrete choice, we include independent multiplicative expo-

nential noise eT for each source of factored utility which captures other unmodeled sources

of variation including perceptual and valuation errors. Thus DT = nT kT eT for anonymous

people and brother when the norm is not followed and DT = αbrokT eT when the norm

to value loved ones more is true and the agent’s brother is on track T . The value of the

equipment is modeled with a similar function, DE = αequipkEeE . Since risk preferences are

captured when the different sources of factored utility are summed together the risk norm

normrisk acts at the level of decision making rather than on the way the agents on the tracks

are valued and gives the following modified decision rule for action which includes risk

preferences.

EU[IDσ] = ∑
ζ

P(ζ|IDσ)Urisk(ζ) (7.2)

These probabilistic variables specify the structure of the observer’s beliefs about the

decision-making agent’s desires and allow for observers to make rich inferences about

both the desires and norms the agents have that drove the agent’s intention and action.

By combining hierarchical Bayesian inference over desires and values with counterfactual

reasoning over the plans consistent through rational action with these desires and values,

an observer can jointly infer the intent of an agent’s actions.
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7.2.4 Computing moral permissibility

Finally, we use these inferred intentions as an input in to a novel computational model

of moral permissibility. The trolley problem and its variants are well-studied for probing

the cognitive processes that generate moral permissibility judgments. However, without

a model of graded intention it was not previously possible to quantitatively model these

judgments.

We develop a quantitative probabilistic model of moral permissibility judgment based

on the DDE. The model is constructed from noisy-or components where different aspect

of moral permissibility are composed to form a single judgment. Specifically, both actions

and omissions are impermissible if they were done with an intention to harm and actions

that cause harm must also minimize the amount of harm done. Thus our model of moral

permissibility has two components: intentions i.e., the meaning of the action and the utili-

tarian consequences of the action. We define the intentional component as:

Impermissibilityintention = P(Iharm)+(1−P(Ihelp))(1−P(Iharm)) (7.3)

when human lives could be lost, an action or omission is impermissible if it was chosen

without an intention to harm (Iharm) or without an intention to help (Iharm). Since intentions

can only be inferred with uncertainty, the probability of an intention to harm P(Iharm) and

probability of lacking an intention to help 1− P(Ihel p) is used. Importantly this aspect

of moral permissibility justifies the quantitative modeling approach we have applied to

modeling intentions. Without the model of intentions we previously described, modeling

the intentional aspect of moral permissibility in quantitative terms would not be possible.

In addition to the intentional component, the full permissibility model includes a con-

sequential component for actions that cause harm. We define this utilitarian component

as:

Impermissibilityutility = 1− 1
(1+UtilityGap)

(7.4)

where UtilityGap is the difference between expected outcome of the best possible action

and the expected outcome of the agent’s actual action such that UtilityGap= 0 when the
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Figure 7-6: Graphical depiction of the components of moral permissibility modelled here.
Most actions are morally permissible (white), but intending or causing harm is in general
morally impermissible (red). However, there are some exceptions allowed by the DDE, it
can be permissible to cause harm if it was done with an intention to bring about a positive
outcome and that outcome was achieved with the minimal amount of harm.

agent’s action was best possible and UtilityGap grows positively when the agent’s action

was not the best possible. So UtilityGap captures the extent to which an agent failed

to minimize harm. Additionally, we consider not only the actual number of lives lost but

rather the subjective value of lives under the inferred societal norm i.e., personal utilities

are used. For instance if an agent is inferred to be following the “loved ones matter most”

norm and this norm is acceptable to society, the decision makers personal utilities are used

to calculate the UtilityGap.

Finally these two components are themselves composed together as a “noisy-or” to

create the full model of moral permissibility which was transformed from moral impermis-

sibility to moral permissibility:

Impermissibilityfull = Impermissibilityintention (7.5)

+(Impermissibilityutility)(1− Impermissibilityintention) (7.6)

Permissibilityfull = 1− Impermissibilityfull (7.7)

Thus in the full model an action is judged as impermissible if it was done with an

impermissible intention or failed to minimize harm. The structure of this model is shown

visually in Figure 7-6.
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7.2.5 Model fitting

The model has 4 free parameters which were fit to the data by minimizing RMSE. The

same parameters are used across all studies and analyses: normbro = normequip = 10, αb =

αk = 0.05, normrisk = 5 and the cost of getting involved 0.05.

7.3 Behavioral Experiment and Results

We test the predictions of the model with three large scale behavioral studies. Each study

contained many moral dilemma with a large number of varied factors including the lo-

cation, number and identity of the people and objects on the tracks as well as the track

geometry and probabilities. In all three experiments, subjects had to infer the intentions

of agents action jointly with the traits and preferences of the agent. By gathering data in

a highly parameterized fashion we can test the fine grained and graded predictions of the

model. Over all three experiments, we collected data on 58 different trolley dilemma (22

+ 16 + 20) including questions about moral permissibility, the intentions of the agent and

inferences about the norms and traits of the agent. Considering all three experiments, there

were 288 questions points collected from participants and the model made quantitative pre-

dictions for all of these. All subjects were recruited via Amazon Mechanical Turk using

the psiTurk software package (McDonnell et al., 2012).

7.3.1 Study 1: Joint inferences of intentions and norms

In the first study we consider a set of tracks with the same geometry as the side track but

on each track there were either 1, 2 or 5 anonymous people or the agent’s brother. The

tracks are presented in the format XvY where X and Y are the number of people on the

main and side track respectively or are a ‘B’ if it’s the agent’s brother e.g., 5vB denotes

that there are 5 anonymous people on the main track and the agent’s brother on the side

track. We considered all permutations that had at least one track with a single person on

it (this excludes 2v5 and 5v2) yielding a total of 11 track configurations. For each track

configuration the agent could throw the switch or not which yielded a total of 22 scenarios.
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This scenario captures key aspects of ambiguity, for an example of the modeling approach

see Figure 7-7.

Value of B = 1

Throw 
Switch? 

Yes

Train 
main / side? 

Side

5 hit? 
No

5 killed?  
No

B hit? 
Yes

B killed? 
Yes

Utility(5) Utility(B):

Value: 
Value all life equally

Value loved ones most

Value of B >> 1

Throw 
Switch? 

No

Train 
main / side? 

Main

5 hit? 
Yes

5 killed? 
Yes

B hit? 
No

B killed? 
No

Utility(5) Utility(B):

Value: 
Value all life equally 

Value loved ones most

Figure 7-7: There can be significant ambiguity when inferring intentions jointly with the
norms one is following. Depending on the priors, one might infer a positive intention no
matter what course of action is taken. (left) If the decision maker lets 5 people die, we
would infer jointly that he is following a norm that says to value loved ones more than
anonymous other and hence had the intention to save his brother (signified by Luigi) which
under the a certain standard of minimizing harm could be morally permissible. (right) If
the decision maker decides to kill his brother, we might think that he is following a hyper-
egalitarian norm that says to value all lives equally and that his intention was to save the 5
anonymous people killing his brother as a side effect. If these intentions are inferred, the
decision makers action might also be judged as morally permissible.

We recruited 202 participants. Each participant was shown all of the 11 track config-

urations in a randomized order and for each track it was randomized as to whether or not

the agent threw the switch or not. Thus we collected data on all 22 scenarios but each

participant only saw 11 of the 22 scenarios.

For each scenario, participants first read a passage describing the trolley dilemma adapted
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from Mikhail (2007) but with the identity and number of people varied to reflect the track

configuration and agent action of that scenario. The name of the decision-making agent

was different in every scenario so that it was clear that each decision was made by a dif-

ferent person. Before starting the experiments, participants were given instructions about

the experimental interface and needed to answer comprehension questions about the agent

before continuing. The scenario description is below. Italics denote the parts of the story

that were changed between trials depending on the configuration and identity of the people

on the track:

Hank is taking his daily walk near the train tracks when he notices that the train

that is approaching is out of control. Hank sees what has happened: the driver

of the train saw (some people / a man) walking across the tracks and slammed

on the brakes, but the brakes failed and the driver fainted. The train is now

rushing toward (five men / two men / one man) and is moving so fast that (they

/ he) will not be able to get off the track in time. Hank sees that the man is his

brother. Hank is standing next to a switch, which he can throw, that will turn

the train off the main track onto a side track, thereby preventing it from killing

the (men / man). (Five men / Two men / One man / Hank’s brother is) standing

on the side track with (their / his) back turned. Hank can throw the switch,

killing (the five men / the two men / the man / his brother); or he can refrain

from doing this, letting (the five men / the two men / the one man / his brother)

die.

If Hank throws the switch, (the five men / the two men / the man / his brother)

on the side track will be killed. If Hank does not throw the switch, (five men,

two men, one man, his brother) on the main track will be killed. Knowing both

of these facts, Hank does (throw / not throw) the switch.

After reading each story, participants answered the following questions:

1. “Was it morally permissible for Hank to (throw / not throw) switch?” (yes or no).

2. “Did Hank throw the switch in order to kill (his brother/the man/the two men/the five

men) on the side track?” (yes or no).
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Figure 7-8: Model and human data for study 1 (left) agent threw the switch (right) agent
did not throw the switch

3. “Did Hank throw the switch in order to not kill (his brother/the man/the two men/the

five men) on the main track?” (yes or no).

4. “Hank most likely believes:” (slider with endpoints “all lives should be valued equally”

or “only loved ones should be valued”)

Results

The average participant responses are shown in Figure 7-8. The patterns of moral permis-

sibility judgment showed the following intuitive trends: (1) the more lives saved and less

lives killed the more permissible the action; (2) killing the brother was seen as less per-

missible compared to killing an anonymous person for a given number of lives saved; (3)

saving the brother became less permissible as the number of lives sacrificed grew.

177



In all configurations, participants were more likely to infer that the participant acted in

order to save rather than kill even though the action had both effects (the middle rows of

Figure 7-8). The intention to kill was inferred to be greatest when the number of lives lost

was higher than the number of lives saved and when the agent switched the trolley onto

the track with the brother. Furthermore, the attributed intention to not kill was showed an

inverse correlation with the intention to kill suggesting that subjects primarily attributed a

single intention to the action. This inference is related to the low prior probability that the

decision maker desired any of the agent death.

The bottom row of Figure 7-8 shows the averaged participant responses for the infer-

ence over the agent’s relative belief between the two norms: “all lives should be valued

equally” and “only loved ones should be valued”. When the brother is saved, participants

inferred that the agent is morel likely to be following the loved ones norm. When the

brother is killed, participants infer that the agent is following the all lives equal norm. The

more anonymous people killed, the stronger the inference that the agent is following a norm

to treat all loved ones specially. Finally, abstaining from throwing the switch was seen as

more permissible in all cases (left vs. right column of Figure 7-8).

The model explains and predicts the qualitative phenomena described above and grounds

the phenomena in mental state inference. For instance the asymmetry of higher attributions

to save than to kill are reflected in the low prior probability of any agent desiring to kill

any of the agents. Richer still, the model explains much of the fine grained variation in

the human attribution judgments across trials that are only subtly different. For instance,

the difference between 5v1 and 2v1 both satisfies the utilitarian component of the moral

permissibility function but saving the people in the 5v1 case also provides greater evidence

that the agent doesn’t have an intention to kill the 1. Finally, the addition of the brother acts

as a distinct reason for action i.e., saving the brother can explain away the decision to kill 5

people without as strong an inferred intention to kill. Figure 7-14a shows that overall, the

model explains most of the variation in these judgments.

One interesting finding across all of the experiments was that people (and predicted by

the model) were more likely to infer intent from commissions from omissions. This “bias”

shows is apparent even in young infants (Spranca, Minsk, & Baron, 1991; Feiman, Carey,
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& Cushman, 2015).

7.3.2 Study 2: Temporally extended plans under uncertainty

We next tested human judgments in the novel side-side track shown in Figure 7-1c. Using

the side-side track we can investigate how subjects dealt with reasoning about plans that

could only be completed with uncertainty. The main track always had one anonymous

person and the side track had either 2 or 5 people on it. To test our probabilistic planning

representation, the second switch which moves the trolley from the side track onto the side-

side track was broken with probability either 0, .4, .9 or 1 for a total of 16 possible scenarios.

If the switch was broken then the trolley will continue down the side track whether or not

the agent throws the second switch. Figure 7-9 walks through some of these situations and

how the modeling formalism deals with ambiguity.

We recruited 198 participants. Each participant was shown all of the 8 tracks and prob-

ability configurations in a randomized order and for each track it was randomized as to

whether or not the agent threw the switch or not. Thus we collected data on all 16 scenar-

ios but each participant only saw 8 of the 16 scenarios.

As in the first study, participants read a passage describing the side-side track dilemma

in each scenario but with the probability of the switch working, number of people, and agent

action varied between participants. The name of the decision-making agent was different

in every scenario so that it was clear that each decision was made by a different person.

Before starting the experiments, participants were given instructions about the experimental

interface and needed to answer comprehension questions about the agent before continuing.

The scenario description is below where italics denote the parts of the story that were

changed between trials:

Hank is taking his daily walk near the train tracks when he notices that the

train that is approaching is out of control. Hank sees what has happened: the

driver of the train saw one man walking across the tracks and slammed on the

brakes, but the brakes failed and the driver fainted. The train is now rushing

toward the man and is moving so fast that he will not be able to get off the track
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Figure 7-9: Ambiguity when jointly inferring risk preferences and intention. (top left) Even
though the expected value of lives lost when flipping the switch is 2, if the decision maker is
inferred to have risk seeking preferences, his action can be explained as the intention to save
all the people (including flipping the second switch). (top right) Likewise, an agent who
prefers to let 1 person die with certainty instead of taking a 0.4 chance of saving everyone
might be inferred to risk averse with the intention to save the 2 people and letting the one
person die as a side-effect. (bottom) However, when there is no uncertainty in whether or
not the second switch is working, there is no other “good” explanation for letting the person
die, and so the intention to kill the person on the main track is inferred.
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in time. Hank is standing next to a switch, which he can throw, that will turn

the train off track A onto track B, thereby preventing it from killing the main.

(Two men are / Five men are) standing on track B with their back turned. There

is a second switch that Hank can throw to turn the train from track B onto the

empty track C but this switch is occasionally broken. If the second switch is

broken, the train will keep going on track B even if Hank throws it.

If Hank throws the first switch but not the second switch, (the two men / the five

men) on track B will be killed. If Hank throws both switches and the second

switch is not broken, the train will go down track C and no one will be killed.

If Hank throws both switches and the second switch is broken, (the two men /

the five men) on track B will be killed. If Hank does not throw either switch,

the man on track A will be killed. Hank knows there is a 0%, 40%, 90%, 100%

chance that the second switch is broken.

In fact, Hank does throw / not throw the first switch.

After reading each story, participants answered the following questions:

1. “Was it morally permissible for Hank to (throw / not throw) the first switch?” (yes or

no).

2. “Did Hank (throw / not throw) the first switch intending to flip the second switch?”

(yes or no).

3. “Did (throw / not throw) the first switch in order to kill (the man / the two men / the

five men) on the (side track / main track)(side track / main track)?” (yes or no).

4. “Did (throw / not throw) the first switch in order to not kill (the man / the two men /

the five men) on the (side track / main track)?” (yes or no).

5. “When lives are at stake, believes that risks should:” (slider with endpoints “always

be taken to save as many as possible” or “never be taken when more lives might be

lost”).
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Results

The average participant responses are shown in Figure 7-10 for the case of 5 people on the

side track and Figure 7-10 for the case of 2 people on the side track. The patterns of moral

permissibility showed that subjects were highly sensitive to the expected number of lives

lost. The more lives that were expected to be lost the less permissible the action was judged

to be.
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Figure 7-10: Model and human data from the sideside experiment (a) 1v5 and (b) 1v2. (left)
Agent threw the switch (right) agent did not throw the switch. Risk aversion is normalized
so that 0.5 is risk neutral, 1 is maximally risk averse, and 0 is maximally risk seeking.
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As before, omissions were generally seen as more morally permissible than commis-

sions. However failure to throw the switch when the switch had a 0 probability of being

broken (and hence it was possible to save everyone) led to an extremely high rating of

impermissibility. Thus while omissions that allow harm may often be judged to be more

permissible than actions which cause harm, allowing harm when all harm could have been

avoided is still judged as unacceptable.

The attributed intentions were highly consistent, that is, if the subjects inferred that the

decision maker didn’t intend to kill the people they also predicted that the decision maker

would also thought the second switch showing a second aspect of intention (“intend to”

vs. “intend that”) that the model can directly account for. Thus our experiments capture

both the forward looking and consistency constraints of intention. Consistent with inverse

planning, participants inferred risk seeking preferences when the decision maker threw the

switch and inferred risk averse preferences when the decision maker chose not to throw

the switch. The model explains both the mental state inferences as well as the attribution

of moral permissibility. Figure 7-14b shows that overall, the model explains most of the

variation in these judgments.

7.3.3 Study 3: Doing the right thing for wrong reasons

In the third study we tested human judgments about the equipment track which was de-

signed to test how participants make inferences jointly about how agents make taboo trade-

offs and how those trade-offs affect moral permissibility. The protagonist of each vignette

in this experiment was the CEO of the train company and had to make a decision about the

same track geometries in used in side track. However in addition to the one, two, or five

anonymous agents, a piece of equipment very valuable to the train company was placed

on one of the tracks in some of the trials. Thus there were 15 total track configurations: 5

with no equipment, 5 with the equipment on the main track and 5 with the equipment on

the side track. As before, in each track configuration there was a scenario for both the CEO

throwing and not throwing the switch for a total of 30 scenarios. The ten scenarios with no

equipment are the same as those investigated in the brother track study. These scenarios
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Figure 7-11: Ambiguity in intention under taboo trade-offs. (left) The values of the decision
maker are ambiguous – did he throw the switch to save the five people (believing only lives
lost matter) or did he throw the switch to save the equipment (believing that trade-offs
can be made). Even though he did the “right thing” the intention inference determines
whether or not he made that decision for the right reason. (right) In contrast, if the decision
maker clearly only cares about the financial loss, his intention is clearly to only save the
equipment. However, he also didn’t intend the harm – it’s just a side effect which might
prove complicated for a model of moral permissibility which only depends on intentions
and does not include the overall amount of harm caused.

were included to provide some diversity to participants and to replicate the earlier findings.

We recruited 245 participants via Amazon Mechanical Turk using the psiTurk software

package. As in the previous studies, each participant was shown all of the 15 track configu-

rations in a randomized order and for each track it was randomized as to whether or not the

agent threw the switch or not. Thus we collected data on all 30 scenarios but each partici-

pant only saw 15 of the 30 scenarios. Participants read a passage describing the equipment

track dilemma in each scenario but with the location of the equipment, number of people,

and agent action varied between participants. The name of the decision-making agent was

different in every scenario so that it was clear that each decision was made by a different

person. Before starting the experiments, participants were given instructions about the ex-

perimental interface and needed to answer comprehension questions about the agent before

184



continuing. The scenario description is below where italics denote the parts of the story

that were changed between trials:

Hank, owner and CEO of a train company, is taking his daily walk near the

train tracks when he notices that a train that is approaching is out of control.

Hank sees what has happened: the driver of the train saw (one man, two men,

five men) walking on the tracks and slammed on the brakes, but the brakes

failed and the driver fainted. The train is now rushing toward (the man, the two

men, the five men) and is moving so fast that (he, they) will not be able to get

off the track in time. Hank is standing next to a switch, which he can throw,

that will turn the train off the main track onto a side track, thereby preventing

it from killing (the man, the two men, the five men). (Another man is, Two

men are, Five men are) standing on the side track with (his, their) back turned.

Hank can throw the switch, killing (the man, the two men, the five men); or

he can refrain from doing this, letting the (one man, two men, five men) on the

main track die. Hank also notices that a piece of extremely valuable equipment

owned by his train company is on the (side track, main track). If the train goes

down the (side track, main track) the equipment will also be destroyed which

will cost Hank’s company over 20 million dollars to replace.

If Hank throws the switch, (the man, the two men, the five men) on the side

track will be killed and the train equipment destroyed, “ ”. If Hank does not

throw the switch, (the man, the two men, the five men) on the main track will

be killed“ ”, and the train equipment destroyed. In fact, Hank does (throw, not

throw) the switch.

After reading each story, participants answered the following questions:

1. “Was it morally permissible for Hank to (throw, not throw) the switch?” (yes or no).

2. “Did Hank (throw, not throw) the switch in order to kill (the man, the two men, the

five men) on the (side track, main track)?” (yes or no).
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3. “Did Hank (throw, not throw) the switch in order to not kill (the man, the two men,

the five men) on the (side track, main track)?” (yes or no).

4. “Did Hank (throw, not throw) the switch in order to (destroy, not destroy) his com-

pany’s equipment?” (yes or no).

5. “Hank most likely believes that when lives are at stake:” (slider with endpoints “no

costs matter except lost lives” or “other costs should be taken into account”).

Results

The average participant responses are shown in Figure 7-12 and Figure 7-13. In general,

the effects of the taboo trade-off on moral permissibility were quite subtle. In general, the

presence of the equipment made the action less permissible. This can be most clearly scene

in Figure 7-13 for the case of “5v1+E” where failure to throw the switch leads to a lower

judgment of permissibility than in the “5v1” condition. These effects were also observed

in the model predictions.

Across the track conditions, when the equipment was saved it, there were lower attribu-

tions to save and kill the people. This can be seen most clearly in the case of “1+Ev5,” the

decision maker is not inferred to want to save the one person or kill the five people, rather

participants inferred that he just wanted to save the equipment. This effect was strongest

when there was no “reason” to throw the switch besides saving the equipment (“1+Ev1”,

“1+Ev2”, and “1+Ev5”). This effect was also made by the model which enables this predic-

tion through the “explaining-away” phenomenon in probabilistic inference. We find that

in absence of explicit information about the intentions of the agents (c.f., Knobe, 2003),

participants were most likely to attribute “good” reasons to the agents actions. That is, in

the absence of evidence that a person did the right thing for the wrong reasons, participants

inferred that the person did the right thing for the right reason. The model makes these

predictions by having strong priors that the decision maker is a good person.

Finally, participants consistently inferred the decisions makers norm about how mate-

rial objects should be traded-off against human lives. Consistent with general intuition,

when the decision maker destroyed the equipment, participants inferred that she was more
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likely to believe that valuing the equipment on the same scale as human lives. However, the

degree to which this attribution was made varied with the track configuration. The more

total lives lost, the higher the attribution that the decision maker finds it acceptable to value

the equipment on equal terms as human lives.

The model explains and predicts the qualitative described above and also quantitatively

matches the majority of participant inferences and judgments. Figure 7-14c shows that

overall, the model explains most of the variation in these judgments.

7.4 Model Evaluation

Our computational model closely matched the empirical data for both attributions of inten-

tionality and values as well as judgments of moral permissibility. Figure 7-15 shows the

correlation of all model predictions against human judgments. The model fit closely ex-

plains most of the variation in the human data with R = 0.95. While this correlation is high,

its possible that alternative models might also do well without any modeling the cognitive

process of intention inference. To test this hypothesis we compare against a cue-based

model which for each question combines the different features of the scenario together in

a weighted way:

Ypermissibility,
3×intention,
3×norms,
second switch

∼ A∗ [Nmain +Nside ∗P+EM +ES +BM +BS]

where A is whether or not the decision making threw or didn’t throw the switch, Nmain/Nside

are the number of people on the main/side track, P is the probability of the second switch

being broken if it exist and is otherwise set to 1, EM/ES and BM/BS are dummy variables

that determined whether the equipment or brother was on the main/side track and Y was the

predicted response for a given question. Since this model does not model the way that the

judgments are related to each other it requires many more parameters. For instance it does

not attempt predict multiple types of intention attributions from the same scene. When fit

to all of the scenarios the model requires 96 free parameters.

In contrast, our cognitive model contains only four free parameters but contains many
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Figure 7-12: Model and human data from study 3 where the agent threw the switch. A “+
E” under the track number indicates that the train company equipment was on that part of
track.
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Figure 7-13: Model and human data from study 3 where the agent did not throw the switch.
A “+ E” under the track number indicates that the train company equipment was on that
part of track.
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Figure 7-14: Quantification of model performance for each of the there studies. Each point
represents the model prediction and participant judgment for a single question. For better
fitting models the points will lie close to the y = x diagonal.

strong structural assumptions which tie these different inferences and attributions together.

Since the alternative model has so many free parameters its likely that even though it could

fit any data, it is less likely to generalize to cases that it hasn’t been trained on i.e., it isn’t

capturing the underlie processes that humans are using to make these judgments. One way

to compare generalization is to perform a cross-validation.

For both models we split the data in half 100 times and trained both models on one

half and measured the correlation on the other half. To encourage the cue-based model to

generalize we fit the parameters under L1 regularization – this was required to get stable

estimates of the model parameters. The cue-based model generalized with R = 0.71 while

our cognitive model still fit the data highly with R = 0.94. These results provide support

that the cognitive model is actually modeling generalizable processes that link the inference

of intention and moral judgment.

7.5 Discussion

We developed a novel model for intention inference based on counterfactual contrasts over

influence diagrams. While we are not the first to give a computational account of inten-

tion (c.f., Cohen & Levesque, 1990 which does not allow for probabilistic reasoning or

counterfactuals), our model is the first probabilistic model based on inverse rational plan-
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Figure 7-15: Overall quantification of model performance assessed across all three studies.
Each point represents the model prediction and participant judgment for a single question.
For better fitting models the points will lie close to the y = x diagonal.

ning that can distinguish between outcomes an agent intended and side effects that were

merely foreseen. Our model makes quantitative predictions about both intentional action

and moral permissibility judgments which correspond well to human judgments.

While previous accounts of how the intentions of an agent and moral permissibility

interact often point to the doctrine of double effect. Our results suggest that the doctrine of

double effect is a special case of a more general theory. It is a boundary case in the sense

that it explains in a non-graded way how intention and moral permissibility interact. By

grounding moral permisssilbity in an intutive theory of planning and intention of intenation

we can explain the fine grained structure of the role of intention in intutive judgments of

moral permissibility. The model applies to many more situations than the ones we focused

on in this paper. In future work, we will apply our model of intention inference to both non-

trolley moral dilemmas and non-moral domains such as games and other social interactions

(Falk, Fehr, & Fischbacher, 2008; Falk & Fischbacher, 2006; Tomasello, 2014).

Forming intentions and reasoning about the intentions of others is important for build-

ing autonomous agents that interact with the world and with people in moral ways. An

agent might have seemingly innocuous desires, but this might lead it to form morally rep-

rehensible intentions. In a thought experiment from Bostrom, 2014, a super-intelligent
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T1
T2 T3

Figure 7-16: A trolley dilemma requiring more complex planning. The optimal choice at
the first juncture is to have the train go down T3 to eventually have the trolley hit the one
person on the far right. However, if the person making the decision making must choose
rapidly and has little time to integrate all the information, one might judge the choice of T2
as permissible since it has a much better worse case option than can be seen quickly.

agent with the only goal of maximizing the number of paperclips is created. As a result the

agent destroys the world and all of the people in order to achieve this single minded pursuit.

If the agent had auditable intentions it could also be subjected to moral constraints (like the

DDE or otherwise). Indeed, the thought experiment itself relies on our human ability to

simulate the intentions of other agents. Finally, one path towards building moral machines

consistent with human values is to build computational models of human morality that are

grounded in the logic of planning and inference. AI agents could then anticipate how their

behavior would be judged by humans and modify their actions if needed.

Finally, there are many other key planning constraints that we may use to judge the

moral permissibility of others actions. Figure 7-16 shows a trolley dilemma where if no

action is taken many lives would be lost. While some actions are better than others when

there are a large number of choices, one might forgive a person for choosing a slightly

suboptimal decision especially if the amount of time allowed to make that decision is small.

If time is short, those actions might not be part of the decision makers world model. By

deciding what nodes should be included in a judges theory of the decision maker one could

model this kinds of constraints. Richer models of our intuitive theory of how others plan

including how our planning is bounded may be needed to capture moral judgments in moral

complicated settings (Evans, Stuhlmüller, & Goodman, 2016).
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Chapter 8

Conclusion

Thinking would seem to be a completely solitary activity. And so it is for other

animal species. But for humans, thinking is like a jazz musician improvising a

novel riff in the privacy of his own room. It is a solitary activity all right, but on

an instrument made by others for that general purpose, after years of playing

with and learning from other practitioners, in a musical genre with a rich

history of legendary riffs, for an imagined audience of jazz aficionados. Human

thinking is individual improvisation enmeshed in a sociocultural matrix.

–Michael Tomasello, A Natural History of Human Thinking

8.1 How do we get so much from so little?

We observe sparse, noisy, and over-determined instances of behavior in specific instances

but make rich inferences about joint beliefs, desires, intentions, character, moral theories,

strategies, and social norms that generalize to new situations and people. How do we get

so much abstract knowledge out of so little data? My thesis argues that these feats of social

intelligence are driven by the representation of rich mental models of other agents which

enable these inferences. These models are highly abstract but support the ability to simulate

planning in hypothetical and counterfactual situations.

Each chapter in this thesis is an instance of these abilities and extends the computational
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approach to handle richer types of inferences than have been possible before. Chapter 2

showed how mental model can be recursive which enable joint-beliefs which stay in sync

when reasoning about the character of others. Chapter 3 showed how moral theories rep-

resented in terms of the components of a utility function can be inferred and culturally

transmitted. Chapter 4 developed a novel representation for joint intentions and showed

how friend or foe can be inferred from across space and time. Chapter 5 investigated how

strategies represented as the infinite space of finite state automata can be inferred from

sparse data. Chapter 6 showed how reputations can be inferred from just a single action.

Chapter 7 investigated how influence diagrams allow inferring structured plans such as in-

tentions from the observation of just a single action. These studies demonstrate the power

of hierarchical Bayesian inference combined with artificial-intelligence models of planning

for learning about and with other agents.

We have limited abilities, knowledge and resources and are faced with selfish or even

hostile others but we find ways to cooperate generating cumulative improvements in wel-

fare and knowledge. How do we get so much cooperation out of so little incentive and

individual ability? Again, my thesis argues that social intelligence enabled by rich mental

models of other agents allow us to collaboratively plan with others using joint intentions

to achieve what none of us could do on our own. We maintain these collaborations by act-

ing reciprocally when required, inferring who will act reciprocally towards us and enforce

these norms with moral actions and judgments. These cognitive tools enable us to find

positive sum interactions which increase the size of the pie and that we know how to share

fairly.

Each chapter in this thesis build on the rich inferences listed above to realize models

and agents that are capable of sophisticated and robust cooperation. Chapter 2 showed

how a mentalistic implementation of reciprocity leads to more robust cooperation that can

sustain itself in the presence of selfish others. Chapter 3 developed computational models

of how moral theories can adapt and change over time leading to more progressive and

impartial more theories. Chapter 4 developed a novel computational account of mental-

istic joint intentionality which allows agents to coordinate their cooperation across space

and time. Chapter 5 explored higher order automata strategy which can account for more

194



sophisticated interactions in repeated games. Chapter 6 showed how people manage their

reputation by anticipating how their actions will be judged when allocating resources to

others. Chapter 7 showed how we use inferences about the mental states of others to judge

their actions, good and bad.

Deeper still, these studies provide a hint at the bidirectional link between the origins of

social intelligence and the value of flexible cooperation. On the one hand, this work shows

how social intelligence such as multi-agent planning or reasoning about reputations can

enable flexible and powerful cooperation. On the other hand, it also provides a hint into the

origins of our social intelligence. In environments where there are substantial benefits to

flexible cooperation, individuals with more sophisticated social intelligence will be selected

for. Thus we can also provide some insights into how the demands of increasingly flexible

cooperation might have driven the evolution of specialized social cognition. This also

raises questions about whether human cognition is specially engineered for cooperation

(Warneken & Tomasello, 2006; Tomasello, 2014).

8.2 Agent-oriented intelligence

A major theme running across these chapters is the centrality of agent-oriented cognitive

representations as a basis for social intelligence. The behavior of other agents is not inter-

pretable on its own. Instead, we learn representations of other agents that are agent-like i.e.,

they are complete with beliefs, desires, intentions, etc (Shoham, 1993; Spelke & Kinzler,

2007). We use these representations, to learn about others, to learn what they know, and

simulate what they might do. Today, most recommendation systems employ “big data” to

compute sophisticated correlations e.g., “customers who bought this book also bought.” In

contrast, humans can make these inferences from far less data. Furthermore, the data we

do observe often comes from varied and changing situations. I’ve shown here how agent-

oriented representations allow us to fill in the gaps between our sparse observations and

integrate across diverse data.

Truly integrating agent-oriented representations of behaviors with object-oriented rep-

resentations of physical systems is still a fundamental challenge (Diuk, Cohen, & Littman,
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2008; B. M. Lake, Ullman, Tenenbaum, & Gershman, 2017). For instance, young infants

and their caregivers create triadic attentional relationships called joint attention that include

both objects in the world and their caregivers (Tomasello, 1999; Tomasello et al., 2005).

These joint attentional states are thought to drive key aspects of language learning. While

this thesis has not tackled the cognitive challenges of language learning and use directly,

the underlying agent-oriented representations described here are those that human language

is thought to build on (Tomasello, 2014).

8.3 Towards human-like social intelligence in machines

Recent successes in machine learning have been driven by explosions in computational

power and the availability of huge quantities of data. Many believe that further advances

in computer hardware and bigger data will be sufficient to close the gap between human

and machine intelligence. My work argues that human intelligence is not only quantita-

tively powerful (such as the ability to think faster or integrate more data), but that our most

sophisticated thinking is also qualitatively different. We think in ways that are not cur-

rently available to any machine and which current evidence suggests are unique to human

cognition in the animal kingdom. This is particularly true in the case in social intelligence.

Two player games played recreationally and professionally by humans with simple rules

have acted as benchmarks for AI systems and over the past two decades steady progress has

been made with early success in Backgammon (Tesauro, 1995) and Chess (M. Campbell,

Hoane Jr, & Hsu, 2002) and more recent successes in Go (Silver et al., 2016, 2017) and

Poker (Bowling, Burch, Johanson, & Tammelin, 2015; Brown & Sandholm, 2017). Each

of these games are well defined zero-sum, i.e., the only way for one player to win is for the

other player to win and these games have a single clearly defined optimal solutions.

Once we leave the world of zero-sum two-player interactions, there is no longer a single

solution and players must negotiate ad-hoc both what they want to solve and how to actually

solve it. Furthermore, we don’t just play games we also create them. Consider the game

of Calvinball which has only one rule: “you make up the rules as you go.” These are the

kinds of ad-hoc games a pair of children might play in the backseat of a car on a long road
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trip, but they characterize everyday interactions such as politeness, office politics or even

the rules of engagement just to name a few examples.

Human social interactions are negotiated in the moment, using norms and morals learned

throughout development, by exploiting abstract cognitive theories of other agents. This

thesis is a step towards understanding these cognitive abilities from the perspective of

reverse-engineering i.e., recreating them in mathematically precise models. These mod-

els and algorithms point to new ways of engineering social machines that understand, learn

from, and cooperate with people and could narrow the gap between human and machine

intelligence.
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