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Abstract—Indicator dilution methods have a long history 
in the quantification of both macro- and microvascular blood 
flow in many clinical applications. Various models have been 
employed in the past to isolate the primary pass of an indica-
tor after an intravenous bolus injection. The use of indicator 
dilution techniques allows for the estimation of hemodynamic 
parameters of a tumor or organ and thus may lead to useful 
diagnostic and therapy monitoring information. In this paper, 
we review and discuss the properties of the lognormal function, 
the gamma variate function, the diffusion with drift models, 
and the lagged normal function, which have been used to mod-
el indicator dilution curves in different fields of medicine. We 
fit these models to contrast-enhanced ultrasound time-intensi-
ty curves from liver metastases and the ovine corpora lutea. 
We evaluate the models’ performance on the image data and 
compare their predictions for hemodynamic-related parame-
ters such as the area under the curve, the mean transit time, 
the full-width at half-maximum, the time to the peak intensity, 
and wash-in time. The models that best fit the experimental 
data are the lognormal function and the diffusion with drift.

I. Introduction

With the introduction of microbubble contrast 
agents, ultrasound imaging at low mechanical index 

(MI) with real-time scanning has been successfully used 
to detect blood flow at both macro- and micro-circulation 
levels [1]. This important development in medical imaging 
is attributed to certain key features of the microbubbles. 
Because the contrast microbubbles are comparable in size 
with red blood cells, they do not diffuse or leak out of the 
vascular compartment, and behave as pure blood-tracers. 
They also increase the image contrast of the blood when 
visualized with specific non-linear imaging methods [2]–
[5]. Contrast-enhanced ultrasound (CEUS) has been suc-
cessfully applied in oncological radiology to detect and 
characterize liver [6], [7], prostate [8], [9], kidney [10], and 
breast [11] lesions.

The microbubbles may be introduced into the body ei-
ther as a bolus injection or as a constant infusion. With 
a bolus injection, it is customary to use low MI real-time 
imaging and form curves of image intensity as a func-
tion of time (time-intensity curves) for quantification of 
blood flow in a region of interest (ROI). With a constant 
infusion, a destruction-replenishment protocol is usually 
followed for the quantification of blood flow, where the 
bubbles are destroyed in a plane (creating a negative 
bolus) and the wash-in of bubbles from the surrounding 
area is monitored [12]. The bolus injection is sometimes 
preferred to constant infusion, because, in the latter, a 
larger amount of indicator is needed, it takes the indica-
tor a long time to reach steady state, and the infusion 
set-up adds further complexity (tubing, control of flow 
rates, amount to inject, agitation of contrast solution). 
This paper focuses on the bolus injection method. The 
destruction-replenishment technique will be discussed in 
a future article.

The use of indicator dilution techniques in clinical ap-
plications has a long history. Stewart [13] introduced this 
technique at the end of the nineteenth century by infusing 
an indicator intravenously at a constant rate to study the 
cardiac output. A bolus injection method for measuring 
the cardiac output was introduced by Henriques [14] at 
the beginning of the twentieth century, who also noticed 
that the indicator started to recirculate before the pri-
mary pass was complete. Subsequently, several authors 
used indicator dilution techniques in various applications. 
For early works in the field see [15]–[22]. Indicator dilution 
methods have been used extensively in radiological ap-
plications such as ultrasound [23], scintigraphy [24], mag-
netic resonance imaging [25], and computed tomography 
[26].

Often, CEUS time-intensity curves are noisy and the 
wash-out tail is affected by the recirculation of the mi-
crobubbles. At moderate microbubble concentrations, 
acoustic shadowing effects are negligible and the back-
scattered acoustic intensity I is directly proportional to 
the concentration [27]–[29]. Therefore, one can employ 
theoretical models based on indicator dilution techniques 
for ultrasound contrast agents to curve-fit the data to sup-
press noise and isolate the primary pass. This approach 
also allows an analytical determination of important he-
modynamic-related parameters such as the area under 
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the time-intensity curve (AUC), the mean transit time 
(MTT), and the time to the peak intensity (tp) [30]–[32], 
which are related to blood flow and blood volume in an 
ROI. This approach leads to more accurate results than 
simple smoothing techniques which are often used to ex-
clude outliers from the data, but cannot be used to elimi-
nate the effects of recirculation. In the field of CEUS, 
indicator dilution techniques have been used in cardiology 
[27], [33]–[35], the microcirculation of an exteriorized cre-
master muscle [36], brain perfusion [37]–[38], and tissue-
mimicking flow phantom experiments [39].

The objective of this work is twofold: First, to provide 
a detailed review of the physical and physiological basis 
of various models based on the indicator dilution theory 
after a bolus of contrast is injected intravenously, and sec-
ond, to evaluate the performance of the models on CEUS 
data from the microcirculation in the ovine corpus luteum 
and liver metastases.

This paper is organized as follows. Section II first re-
views the basics of the indicator dilution theory based 
on intravenous bolus injection of an indicator. Then, the 
properties of the most commonly used indicator dilution 
models are reviewed. More specifically, the lognormal 
model, the Erlang and gamma variate models, the diffu-
sion with drift models, and the lagged normal model are 
discussed. In Section III, the imaging protocol and the 
imaging quantification methods are presented. In Section 
IV, the results from curve-fitting the models to CEUS 
time-intensity curves from human liver metastases and the 
ovine corpora lutea are presented. Finally, in Section V 
the results are discussed and the conclusions are presented 
in Section VI.

II. Indicator Dilution Methods and  
Theoretical Models

The indicator particles after an instantaneous bo-
lus injection traverse an ROI at different times, because 
they are dispersed through branching vessels, or because 
of Brownian motion, laminar flow, or turbulence. This is 
shown schematically in Fig. 1, where a short rectangle-
shaped bolus of indicator approaching a delta function 
spreads in time after its transit through different organs. 
Even though the initially injected delta-function-shaped 
bolus of indicator has spread to a certain degree, it is often 
approximated as the initial input to an ROI. Therefore, an 
indicator dilution curve is interpreted as the probability 

density function of the indicator transit times through the 
system; that is, it may be related to the amount of indica-
tor particles traversing an ROI per unit time.

If the amount of the indicator m in a bolus injection 
is known, and the indicator concentration as a function 
of time is measured in an ROI, then both the volumetric 
blood flow rate (F) and the blood volume (V) can be cal-
culated in terms of AUC and MTT:

	 F m= × -( )AUC 1	 (1a)

	 V F= × MTT.	 (1b)

These relations are known as the Stewart-Hamilton rela-
tions [13]–[15] and their derivation makes no assumptions 
about the shape of the indicator dilution curves. In CEUS, 
the backscattered intensity I(t) is measured instead of the 
microbubbles concentration, therefore F and V cannot be 
measured directly. However, as mentioned in Section I, the 
backscattered intensity is proportional to the concentra-
tion at low microbubble concentrations [27]–[29], implying 
that one can measure quantities that are proportional to 
F and V from (1a) and (1b). At large blood flow rates the 
microbubbles move quickly into an ROI, implying a short 
tp, and vice versa [40]. Therefore, in highly vascularized 
malignant tumors, where the blood flow rate is large, we 
expect a shorter rise in the time-intensity curve as com-
pared with the normal parenchyma. It is also noted that tp 
is usually not affected by indicator recirculation, because 
it is shorter than the systemic recirculation time.

The validity of the Stewart-Hamilton relations is based 
on various assumptions, most of them discussed by Zierler 
[22]. The mass conservation principle is a basic assump-
tion of indicator dilution methods. However, this assump-
tion is usually not valid in practice, because a large frac-
tion of the indicator gets lost in the body before it reaches 
a given ROI (e.g., natural deterioration of microbubbles 
[29], the filtering effect through the transpulmonary circu-
lation). However, the relations of (1) still hold in a relative 
sense. Other assumptions made in most clinical applica-
tions are:

The system is a compartment with a single input and •	
a single output.
The injection of the indicator is instantaneous, i.e., it •	
can be approximated by a Dirac delta function. This 
assumption is sufficiently accurate if the MTT through 
the system is much larger than the injection time, oth-
erwise (1b) is not valid, although (1a) remains valid. 
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Fig. 1. Schematic representation of the changes in the shape of a time–intensity curve during passage of the indicator from the injection point through 
the heart and lungs to the liver or other organ or tissue with a microvascular structure.



To avoid the assumption of an instantaneous bolus 
injection, some authors employed deconvolution tech-
niques to estimate the system’s transfer function after 
measuring both the input and output time-intensity 
curves [39].
The blood flow rate is constant (valid only for certain •	
families of vessels; also fairly true if the measurement 
time is made short enough).
The system is stationary, that is, the distribution of •	
transit times in an ROI does not change during the 
experiment (remains valid in pulsatile systems pro-
vided that the changes in transit times fluctuate faster 
about some mean value than the evolution of the dilu-
tion curve). Also the blood flow in the body is not dis-
turbed by the injection of the indicator (valid in most 
cases because the amount of the injected indicator is 
very small compared with the overall blood volume).
The vessels have fixed sizes and the blood is an incom-•	
pressible fluid.
The distribution of transit times of the indicator is •	
identical with the distribution of transit times of the 
blood [a complete mixing of the agent in blood, such 
as in the right heart, is sufficient for the application 
of (1a)].

In the following subsections, we present in detail the 
physical and physiological basis of the lognormal function, 
the Erlang and gamma variate functions, the diffusion 
with drift models, and the lagged normal function. We 
also show that advantage can be taken from the conve-
nient mathematical properties of the models to calculate, 
in most cases analytically, hemodynamic-related param-
eters such as AUC, tp, and MTT directly from the models’ 
parameters.

A. The Lognormal Function

It is well known from statistics that a variable has a 
lognormal distribution if it results from the product of a 
large number of independent random variables. The log-
normal distribution function with a delay t0 is given by

	 I t
t t

e I t tt t( )
( )

, ,([ln ] ) ( )=
-

+ >-( )-AUC
with /

2 0

2
0 0

0
2 2

ps
m s 		

		  (2)

where I(t) is the backscattered signal intensity (which is 
proportional to the indicator concentration) as a function 
of time. The variables μ and σ are the mean and standard 
deviation of the normal distribution of the logarithm of 
the independent variable t. The curve can be scaled hori-
zontally by varying μ and can become more skewed by 
increasing σ. The baseline intensity I0 is essentially an in-
tensity offset (DC offset) because of the noise level present 
in the image and any linear signal caused by incomplete 
cancellation in the nonlinear pulsing scheme. The inclu-
sion of I0 in (2) applies specifically to ultrasound time-
intensity and is not part of the original statistical model. 

The estimated bolus arrival time is set to zero by truncat-
ing the data and resetting the values of t accordingly. The 
parameter t0 is a small adjustment to the time origin of 
the distribution which is obtained from the fitting algo-
rithm outlined in detail in Section III-B. This parameter 
is needed because of the difficulty of accurately identify-
ing the time of the first arrival of contrast, as a result of 
the small signal-to-noise ratio before bubble arrival in the 
ROI. The definitions of I0 and t0 have similar meanings 
in the other models of I(t) hereafter. In [41], Arditi et al. 
presented a transformation for converting (2) into a log-
normal distribution of the flow velocity. MTT, defined as 
the first moment of the probability density function (I(t) 
− I0) minus the bolus arrival time t0, and tp are given by

	 MTT /= =+ -e t ep
m s m s2 22, .	 (3)

Example curves from (1) (with I0 = 0) normalized to 
unit peak intensity are shown in Fig. 2(a). For fixed μ, 
the curves become more skewed as σ increases (i.e., with a 
faster wash-in rate and a slower wash-out rate). For fixed 
σ and increasing μ, the curves are shifted to the right and 
they become broader with slower wash-in and wash-out 
rates.

Koch [42], [43] presented several examples of lognormal 
distributions in biological sciences. The importance of the 
lognormal distribution in sciences including biosciences 
has been also emphasized by Limpert et al. [44]. Since the 
middle of the twentieth century, the lognormal function 
has been used by various groups as an empirical model 
for fitting indicator dilution curves. Stow and Hetzel [45] 
suggested that after omitting the effects of recirculation, 
an indicator dilution curve resulting from a bolus injection 
approximates a lognormal distribution. Wise [46] realized 
that the single exponential extrapolation of the wash-out 
part of indicator dilution curves suggested by Hamilton et 
al. [16] does not adequately isolate the primary pass and 
he suggested that the lognormal distribution is a more ap-
propriate model, because its down-limb curve falls more 
rapidly than the single exponential. More precisely, Wise 
[46] approximated the lognormal curve with two straight 
lines, the tangents at its points of inflection, and he de-
rived the parameters that characterize it from the triangle 
formed by these two tangents and the base line. Later, 
Linton et al. [47] and Band et al. [48] employed the lognor-
mal distribution as an indicator dilution model to fit the 
primary pass of indicator dilution curves in measurements 
of the cardiac output and showed that in this way one can 
avoid overestimates inherent in treating the wash-out as a 
single exponential decay.

The importance of the lognormal function in the perfu-
sion of regularly perfused organs has been emphasized in a 
more recent analytical work by Qian and Bassingthwaighte 
[49]. These authors studied the distribution of blood flow 
and the kinetics of indicator wash-out in the stochastic 
flow bifurcation model originally developed by Van Beek 
et al. [50]. The model assumes that each parent vessel gen-
erates two daughter vessels with a fraction γ of the flow in 
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the parent vessel entering one branch and the remaining 
fraction entering the other. Qian and Bassingthwaighte 
assumed that γ is a random variable (0 ≤ γ ≤ 1) with an 
arbitrary probability density function and showed that, 
for a network of vessels with a large number of genera-
tions, the flow distribution is a lognormal function and 
the relative dispersion (standard deviation divided by the 
mean) of the blood flow exhibits fractal scaling. They also 
showed that the large time asymptotic behavior of the 
tracer dilution curve is well represented by a lognormal 
distribution function.

In the field of CEUS, the lognormal function was em-
ployed by Tiemann et al. [27] to fit time-intensity curves 
from phantom experiments and an ex vivo beating heart 
model. This work was done using harmonic power Dop-
pler imaging (H-PDI) with an HDI-3000 (ATL Ultrasound 
Inc., Bothell, WA), a technique that uses high MI (thus 
causing bubble destruction) with intermittent scanning at 
1 Hz. These authors measured the AUC of time-intensity 
curves for different contrast dosages at a constant flow 
rate and showed that there is a linear relationship between 
the AUC and the contrast dosage. This result is in agree-
ment with (1a) for injections with less than 420 mg of 
Levovist, i.e., below the shadowing onset. Furthermore, by 
comparing the MTT measured from CEUS time-intensity 
curves and indocyanine green dilution curves, the authors 
concluded that Levovist microbubbles at moderate con-
centrations are free-flowing tracers through the myocar-
dium.

B. The Erlang and Gamma Variate Functions

The Erlang probability density function is derived by 
assuming that constant blood flow can be modeled as a 
series of n mixing homogeneous compartments of equal 

volume Vc, with each compartment having only one input 
and one output of blood [51], [52]. After an instantaneous 
injection of an indicator bolus, the rate of change of the in-
dicator concentration Ci(t) in compartment i (i = 1, …, n) 
is given by the following set of differential equations: 

	
d
d c c

C
t

m
V

t
F
V

C1
1= -d( ) 	 (4a)

	
d
d c

C
t

F
V

C t C t i ni
i i= - =-[ ( ) ( )], ,..., ,1 2 	 (4b)

where δ(t) is the Dirac delta function. The validity of (4a) 
and (4b) is based on the assumptions that there is com-
plete mixing between the indicator particles and the blood 
in each compartment, and the indicator movement from 
one compartment to the next is unidirectional, i.e., the 
diffusion process is neglected. The single-compartment so-
lution of (4a) is a single-exponential decay, which is what 
Hamilton et al. [16] used to fit the wash-out part of indica-
tor dilution curves. After the system of differential equa-
tions (4a) and (4b) is solved, we obtain Cn(t) which, as 
stated earlier, is linearly proportional to I(t),

	 I t
n

t t e I
n

n t t( )
( )!

( ) .( )=
-

- +- - -AUC /

b
b

1
0

1
0

0 	 (5)

The function (I(t) − I0) is known as the Erlang probabil-
ity density function with a delay t0. The parameter β ≡ 
Vc/F is called the rate parameter, because it is equal to 
the time constant of a single compartment’s response to 
an impulse bolus. The number of compartments n is also 
known as the shape parameter because the skewness of 
the distribution is equal to 2/ n  implying that I(t) be-
comes more symmetric as the number of compartments 
increases. This is expected because the indicator bolus 
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Fig. 2. Plots of four models with important parameters varied: (a) the lognormal function, (b) the gamma variate function, (c) the local density 
random walk function, (d) the lagged normal function with one exponential. All curves are normalized with respect to their maximum.



becomes more dispersed as it passes through a large num-
ber of compartments.

Linton et al. [47] compared the Erlang function with 
the lognormal function by fitting data generated by (5) 
for a range of skewness found in human indicator dilu-
tion curves and concluded that, for practical purposes, the 
lognormal and Erlang functions give very similar results. 
The main difference between the two functions is that, 
for highly skewed Erlang functions (i.e., small number of 
compartments), the lognormal curves are more rounded 
near the origin.

An alternative to the deterministic approach discussed 
previously, a stochastic derivation of the Erlang function 
as an indicator dilution model, was recently given by Mis-
chi et al. [35]. In [35], a random variable is associated with 
the position of the indicator particle along the tube. When 
the probability associated with the movement of the par-
ticle to the subsequent section of the tube (compartment) 
is small, a Poisson distribution can represent the indicator 
concentration resulting from the unidirectional movement 
of the indicator particles from one section of the tube to 
the next. As a result of this stochastic process, Mischi et 
al. [35] showed that the Erlang function represents the 
impulse response function of the system.

One can also relax the constraint of an integer number 
of compartments and obtain the gamma variate function 
given by [53]

	 I t t t e It t( )
( )

( ) ,( )=
+

- +
+

- -AUC /

b aa
a b

1 0 0
1

0

G
	 (6)

where α ≡ n − 1. The term βα+1Γ(α + 1) normalizes the 
gamma variate in (6) so that (I(t) − I0) is a probability 
distribution that integrates to unity when AUC equals 1. 
Advantage can be taken of the convenient properties of the 
gamma variate function to calculate the MTT and tp:

	 MTT p= + = ×b a a b( ), .1 t 	 (7)

Example curves from (6) (with I0 = 0) normalized to 
unity peak intensity are shown in Fig. 2(b). As the param-
eter α increases for fixed β, the curves become more sym-
metric (less skewed), for the same reasons as explained 
above for the Erlang function. For fixed α, as the rate pa-
rameter β increases, both the wash-in and wash-out rates 
increase. As discussed by Thompson et al. [53] and Li et 
al. [54], the nonlinear dependency of the parameters in (6) 
needs to be taken into account in the non-linear regres-
sion to obtain unbiased estimates of AUC, β, and α. In 
this paper, the gamma variate function is used instead of 
the Erlang function to fit experimental data; the gamma 
variate function is more general because it allows for non-
integer values of the parameter α.

The gamma variate function can be extended to ac-
commodate compartments of unequal volumes [55]. In this 
case, the solution for n compartments is a summation of 
n single exponentials whose coefficients depend on the dif-
ferent volumes of the compartments. However, the rapidly 

increasing number of fitting parameters in this case does 
not lead to an improved representation of real tracer dilu-
tion curves.

The simplicity of the gamma variate function moti-
vated various groups to employ it for fitting CEUS time-
intensity curves. In an in vitro study, Li and Yang [39] 
employed the gamma variate function to fit time-intensity 
curves for constant and pulsatile flow. These authors de-
termined the values of the parameters α and β by fitting 
the gamma variate function to their data. By using decon-
volution methods, the authors also extracted the transfer 
function of the phantom and showed that this method 
is effective for both constant and pulsatile flows. The 
two-compartment gamma variate function was employed 
by Wasmeier et al. [34] to fit time-intensity curves from 
images of rats’ myocardium. These authors showed that 
with CEUS they could differentiate between infarcted and 
non-infarcted myocardial segments. In all of these cases, 
however, the non-linear dependency of the parameters in 
(6) was not properly taken into account, which might have 
resulted in biased estimates of the fitted parameters.

C. Diffusion With Drift Models

Sheppard and Savage [56] were the first to suggest the 
application of diffusion with drift models for the inter-
pretation of indicator dilution curves. The movement of 
indicator particles through part of the circulation system 
is regarded as a longitudinal diffusion superimposed on a 
linear convection. The equation that describes the diffu-
sive and convective transport is given by
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where C(x,t) is the indicator concentration at position x 
and time t, D is the effective longitudinal diffusion coef-
ficient, and v is the blood velocity. In complicated systems 
such as the blood flow in tumor microcirculation, D is 
a collective parameter that represents contributions from 
various physical mechanisms such as turbulent mixing, 
Brownian motion, and transport in a microvascular bed 
with diffusive architecture.

Norwich and Zelin [57] solved (8) for an instantaneous 
impulse bolus injection in the case of no special boundary 
condition at the outlet to obtain C(x,t) which is linearly 
proportional to backscattered signal intensity in CEUS, 
I(t), given by
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The function in (9) is known as the local density random 
walk (LDRW) model [58] with time delay t0. The param-
eter μ ≡ x0/v (x0 is the distance between the entry and 
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exit sites of the ROI) is the mean transit time needed for 
a microbubble to cover the distance x0. The parameter λ 
is defined as λ ≡ μv2/2D, and the skewness of the curve 
is equal to λ−1. The Peclet number (Pe) is defined as 
Pe = τD/τc, where τD is the diffusive time of contrast 
microbubbles (which is equal to x0

2/D) and τc is the con-
vective time, which is equal to μ. Therefore, Pe = 2λ, 
implying that λ can have direct physiological significance 
[59]. Given that this model allows for multiple passages 
of the microbubbles through the outlet, the average time 
the microbubbles stay in an ROI [known as the mean 
residence time (MRT) which is the first moment of (I(t) 
− I0) minus t0] is larger than MTT. This property of 
the LDRW model should be contrasted with the gamma 
variate model which is the other fluid-mechanics-based 
model discussed in this paper. The latter is based on the 
assumption of unidirectional movement of the indicator 
particles from one mixing compartment to the next, im-
plying MRT = MTT. The parameters MTT, MRT, and 
tp of the LDRW model can be expressed in terms of μ 
and λ as follows:

	
MRT MTT

p

= +
æ
è
ççç

ö
ø
÷÷÷ =

=
æ
è
ççç

ö
ø
÷÷÷ + -( )

m
l

m

m
l

l

1
1

2
1 4 12

, ,

.t

	 (10)

The difference between MRT and MTT is μ/λ =  
2D/v2, implying that a large diffusion constant D leads to 
an increased number of microbubble passages through the 
outlet [60]. If the square of the blood flow velocity (v2) is 
much larger than 2D, the effects of microbubble diffusion 
become negligible and the value of MRT approaches the 
value of MTT.

Fig. 2(c) shows example curves from (9) normalized to 
unit peak intensity. As μ increases with λ fixed, the MTT 
and MRT increase and the curves become broader with 
slower wash-in and wash-out rates. As λ increases with 
μ fixed, the effects of diffusion decrease and the curves 
become narrower.

Sheppard and Savage [56] derived (9) using a random 
walk approach. The assumption behind this stochastic 
derivation is that the indicator particles perform a ran-
dom walk motion which leads to a progressive spreading 
of the particles about some central abscissa. For a large 
number of time steps, Sheppard and Savage [56] employed 
the central limit theorem to obtain (9).

Like the LDRW model, the first passage time (FPT) 
model is also a solution of the diffusion with drift equation 
(10). The only difference between the two models is the 
boundary condition at the outlet. The FPT solution is ob-
tained when a virtual absorbing barrier is assumed at the 
outlet plane—in other words, the indicator can pass only 
once through the boundary, whereas the LDRW solution 
allows multiple passages. Therefore, in the FPT model, 
the MRT coincides with the MTT. The solution of (10) for 
the FPT model [58] is given by
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The related parameters derived from the FPT model are 
given by

	 MTT MRT p= = = + -( )m
m
l

l, .t
2

9 4 32 	 (12)

It can be easily seen from (10) and (12) that, in both the 
LDRW and FPT models, tp is smaller than MTT. In the 
limit λ → ∞ we obtain tp = MTT, because the contribu-
tion of diffusion is infinitesimally small and all the parti-
cles reach the outlet at the same time μ. Often, the LDRW 
model is preferred over the FPT model because the FPT’s 
assumption of an absorbing barrier at the outlet is less 
likely to hold than the LDRW’s free boundary condition. 
As discussed in [59] the LDRW model gives better fits 
than the FPT model for small values of the parameter λ, 
where the effects of tracer particles diffusion are large.

The first successful application of the LDRW model to 
fit CEUS time-intensity curves from cardiac images has 
been done by Mischi et al. [33]. In another study, Mischi 
et al. [35] compared the performance of the LDRW model 
with that of the gamma variate function on time-intensity 
curves from both an in vitro study and in vivo cardiac 
images. The authors showed that both models provided 
accurate curve fits and blood volume estimates and they 
concluded that further studies are needed to carefully dif-
ferentiate between the two models.

D. The Lagged Normal Function

The lagged normal function as a model for indicator 
dilution curves was proposed by Bassingthwaighte et al. 
[61] for the case where blood from a large artery flows into 
a microvascular bed. The simplest lagged normal function 
is based on two compartments: a large vessel character-
ized by a Gaussian dispersion of the tracer transit times 
and a microvascular bed which is a homogeneous mixing 
compartment represented by a single exponential func-
tion. The random dispersion of the transit times of the 
tracer in a large vessel could be attributed to pulsatile, 
laminar, or turbulent flow [61]. Complete mixing of the 
tracer with the blood is not taking place in the large ves-
sel, but the model assumes that the blood and the tracer 
have the same distribution of transit times [62]. Another 
interpretation put forward by Davis and Kutner [63] is 
that the system is composed of a mixing compartment 
and the Gaussian dispersion is occurring throughout the 
whole system.

In general, the lagged-normal functions are convolu-
tions of a Gaussian density function with one or more ex-
ponentials. For the simplest lagged normal function with 
one exponential, the convolution integral is
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The parameters μ and σ2 are the MTT and the tran-
sit time variance of the compartment represented by the 
Gaussian distribution, respectively. The parameter λ is 
the rate constant of the mixing compartment.

By performing integration by parts and after introduc-
ing the baseline intensity offset I0, I(t) may be expressed 
[62] as

	 I t K L I( ) [ erf( )] ,= + +
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with erf(.) being the error function.
It should be noted that the function I(t) in (15) does 

not have a time origin, because neither the term K nor 
the term [1 + erf(L)] become zero for any finite value of t. 
This model, however, has been used widely to fit indicator 
dilution curves, because the [1 + erf(L)] term goes asymp-
totically to zero relatively fast. Example curves from the 
lagged normal function normalized to unity peak inten-
sity are shown in Fig. 2(d). As the mixing compartment 
time constant λ increases for fixed σ, the rate of wash-out 
decreases with a small increase in the rate of wash-in, 
whereas as σ increases at fixed λ, the curves become more 
symmetric because the effects of the indicator dispersion 
become larger.

Davis and Kutner [63] compared the fit performances 
of different-order lagged normal functions (the order n is 
the number of exponentials convolved with the Gauss-
ian function) on indicator dilution curves of indocyanine 
green in the pulmonary circulation of dogs. These authors 
found that the second-order lagged normal function gives 
slightly better fits than the first-order one. They also ob-
served that the improvement of their fits with a third-
order lagged normal function was very small.

The MTT of the first-order lagged normal function 
given by

	 MTT = +m
l
1

,	 (16)

which is the sum of the MTTs of the Gaussian and the 
exponential functions. The second moment (M2) of the 
lagged normal function is given by

	 M 2
2 2

2

1
= + +MTT s

l
.	 (17)

This parameter will be used for calculating the initial es-
timates of the fitting parameters that are provided to the 
nonlinear regression algorithm (Section III-B). The time 
to the peak intensity tp does not exist, because the model 
does not have a time origin.

In the field of contrast ultrasound, the lagged normal 
density function has been used by Fisher et al. [36] to fit 
time-intensity curves in an investigation of myocardial and 
microcirculatory kinetics of BR14 (Bracco, Geneva, Swit-
zerland). The model fitted accurately the time-intensity 
curves from cardiac images taken from open chest animal 
experiments. An empirical function which resembles the 
lagged normal function, the so-called Fermi-exponential 
function has been used by Krogias et al. [37] to fit CEUS 
time-intensity curves from cerebral perfusion imaging. The 
error function has been employed to extract the wash-
in time of time-intensity curves in a study of blood flow 
changes in liver cancer during treatment [64].

III. Materials and Methods

A. Imaging Protocol

All CEUS examinations were performed on a Philips 
iU22 ultrasound scanner (Philips Medical Systems, Both-
ell, WA). We chose to use image data from two different 
clinical applications: 1) The ovine corpus luteum which 
was surgically relocated close to the skin, without dis-
turbing its normal function or vasculature, to allow the 
positioning of an ultrasound probe at an optimal and fixed 
position; and 2) human liver metastases. The choice of the 
two data sets was such as to provide one set with easy 
access and no motion artifacts for an easy curve analysis 
(corpus luteum) and one typical clinical scenario (liver 
metastases). The imaging parameters used for both the 
corpora lutea and liver metastases are shown in Table I. 
The nonlinear pulsing scheme employed was power modu-
lation. In both cases, the contrast processed image was 
displayed side-by-side with the standard gray scale im-
age. Image loops were acquired and saved as linearized 
data (following reversal of logarithmic compression and 
other non-linear processing). The software package QLAB 
(Philips Healthcare, Andover, MA) that was used for the 
initial analysis of the images removes the logarithmic com-
pression used by the scanner, which is made by the same 
manufacturer.

The contrast injection consisted of 2.4 mL of SonoVue 
contrast agent (Bracco S.P.A., Milan, Italy), administered 
intravenously as a bolus. The 2.4 mL of contrast is within 
the linear range of intensity versus concentration relation-
ship [29]. For the corpus luteum, it was injected into a 
catheter in the jugular vein followed by a saline flush of 
10 mL that ensured that all the contrast in the line was 
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administered to the animal. The injection to the human 
subjects (also 2.4 mL in volume) was followed by a saline 
flush of 5 mL. Patients were instructed to breathe normal-
ly (no breath holding or deep breaths) and the resulting 
respiratory motion in the images was removed by respira-
tory gating [64].

B. Image Quantification

The performance of the theoretical models discussed in 
Section II was evaluated by fitting them to CEUS time-
intensity curves from nine image loops of liver metastases 
(from colorectal cancer) and ten image loops of the ovine 
corpus luteum. In addition to the three hemodynamic-
related parameters AUC, MTT, and tp discussed in Sec-
tion II, two additional empirical parameters often used for 
the quantification of blood flow, namely the full-width at 
half-maximum (FWHM) [30] and the wash-in time (WIT) 
defined as the time between 5% and 95% of the peak in-
tensity [64] were measured. The WIT and the FWHM 
provide alternatives to estimates for tp and MTT, respec-
tively, with the advantage of being independent of a time 
origin.

The image analysis and quantification were carried out 
with the commercial quantification software QLAB. The 
tasks included segmentation of the corpus luteum and 

liver lesion (selection of an appropriate ROI for analy-
sis) and formulation of time-intensity curves for that ROI. 
The measured intensity of the selected ROI for all the 
frames within a loop as a function of time provides the 
time-intensity curve for a loop. Typical images from loop 
captures are shown in Figs. 3(a) and 3(b) for the corpus 
luteum and a liver metastasis, respectively. The ROI con-
taining the corpus luteum was selected manually based 
on the contrast uptake at peak intensity. The intention 
in drawing the ROI was to include only the microvascu-
lar network of the corpus luteum. The liver metastasis 
ROI was drawn based on information from the late portal 
phase.

A novel respiratory gating technique was utilized to 
minimize the effects of respiratory motion on data from 
the images of liver metastases [64]. A reference position of 
the diaphragm or any other bright interface was selected 
and all frames where the diaphragm deviated from that 
position were rejected.

To smooth the time-intensity curves and reject outli-
ers, a standard local regression filter known as robust 
locally weighted scatter-plot smoothing (rloess) avail-
able in MATLAB (The MathWorks, Inc., Natick, MA) 
with window span five was employed before further pro-
cessing. Afterwards, iterative non-linear regression fits 
based on the minimization of least square errors were 
performed on the smoothed time-intensity curves using 
the built-in MATLAB trust region algorithm. All models 
have three common fit parameters which are the AUC, t0 
and I0. They also have two additional parameters, except 
the lagged normal function which has three additional 
parameters. Initial estimates as well as lower and upper 
bounds of the fitting parameters were provided to the 
algorithm. For estimating the baseline intensity I0, an 
estimate of the peak intensity Ip is first needed. The lat-
ter is obtained by averaging the values of I in the range 
where the intensity is greater than 90% of the maximum 
intensity in the wash-in and wash-out parts of the curve. 
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TABLE I. Ultrasound Scanner Settings for the Acquisition 
of the Liver Metastasis and the Corpus Luteum Contrast-

Enhance Ultrasound Images. 

Image structure
Corpus 
luteum

Liver 
metastasis

Transducer L9–3 C5–2
Center frequency (MHz) 3.1 1.7
Acquisition time (s) 60 120
MI (contrast) 0.05 0.06
Frame rate (Hz) 12 7–10
Dynamic range (dB) 38 38

Fig. 3. Examples of contrast-enhanced ultrasound images with selected regions of interest: (a) corpus luteum at the peak enhancement and (b) liver 
metastasis at the late portal phase.



For the initial estimate of I0, the latest point in time in 
the wash-in part of the curve where the intensity is less 
than 2% of the estimate of Ip is first found. Then, all the 
intensity values until that time are averaged to obtain 
the initial estimate for I0. The lower bound for I0 is set 
to zero and the upper bound is set to 1.2 times the ini-
tial estimate of I0. The last point in time during wash-in 
where the intensity is less than or equal to the estimate 
for I0 is the initial estimate for the time origin t0 which is 
set to zero. The upper bound of t0 is set to 10 s and the 
lower bound is set to −10 s for all models except for the 
LDRW and FPT, where the upper bound is set to zero 
to avoid the root of negative numbers [see (9) and (11)]. 
If the algorithm hits a bound, then both the estimate 
and the bounds are shifted by 1 s for all models (because 
all models must be fitted to the same data) and the new 
estimate of t0 is set to zero. This procedure is repeated 
until the fitting algorithm does not hit a bound for any of 
the models. All the data points that correspond to values 
of t smaller than the initial estimate of the time origin 
are not included in the curve-fitting process. The initial 
estimate of AUC is obtained from a numerical integra-
tion of the time-intensity curve with the trapezoidal rule. 
The width of each trapezoid is the time between consecu-
tive frames. The initial estimates of the other parameters 
are calculated in terms of tp, and the first and second 
moments of the time-intensity curves. The estimate for tp 
is the mean of all values of t in the wash-in and wash-out 
parts of the time-intensity curve where I is larger than 
90% of the peak intensity. The initial estimates of the 
parameters μ and σ of the lognormal model are obtained 
by solving (3). Similarly, the initial estimates of param-
eters α and β of the gamma variate model are obtained 
by solving (7). The estimates for the parameters μ and 
λ of the LDRW and FPT models are obtained from the 
solution of a system of two equations for the first and 
second moments of the time-intensity curve which can 
be expressed in terms of μ and λ [65]. For the lagged 
normal function, the initial estimate of λ is obtained 
from a single exponential fit (which reduces to a linear fit 
after a logarithmic transformation) to the wash-out tails 
of time-intensity curves. Subsequently, the estimates of 
μ and σ2 are obtained from (16) and (17), respectively. 
The convergence time of the algorithm varied from one 
to three seconds with small differences among the vari-
ous models, on a Windows-based workstation Intel Core 
Duo 2.4 GHz with 4 GB of RAM.

In certain cases, the wash-out parts of time-intensity 
curves were affected by the recirculation of the contrast 
microbubbles. However, the models employed for this 
study are not well suited for fitting the second circulation, 
at least without any further modifications. Therefore, to 
isolate the primary pass of the indicator, the fitting win-
dow was truncated to the point in the wash-out tail where 
the value of the intensity is 25% and 5% of the maximum 
intensity value for the liver metastasis and corpus luteum 
data sets, respectively. The choice of truncation was em-
pirical and based on the data available.

For a quantitative assessment of the models’ perfor-
mances, two parameters were calculated, namely the coef-
ficient of determination (R2) and the root mean square 
error (RMSE). The coefficient of determination is the 
fraction of variation in the data that is accounted for by 
the regression model, and the RMSE is the average dis-
tance of the data points from the fitted line. For a com-
parison of the models’ performance, the average values of 
R2 and their standard deviations were measured for all 
liver metastasis and corpus luteum data separately. Un-
like R2, the RMSE values do not have an upper bound. 
Therefore, to compare the RMSE values produced by the 
different models, we implemented the following normal-
ization procedure: the value of RMSE produced by each 
model on each time-intensity curve was normalized with 
respect to the average RMSE produced by all models. 
Subsequently, the average values of the normalized RMSE 
and their standard deviations were calculated separately 
for all liver metastasis and corpus luteum data sets. The 
same procedure for parameter normalization and averag-
ing was repeated for the hemodynamic-related parameters 
AUC, MTT, FWHM, tp, and WIT.

The LDRW model is the only one that allows for a clear 
distinction between MTT and MRT [see (10)], because it 
allows multiple passages of the microbubbles through an 
outlet. The difference between the values of these two pa-
rameters is quantified by the parameter d, which is defined 
as follows:

	 d º
-

=
+

MRT MTT
MRT

1
1 l

.	 (18)

IV. Results

Figs. 4(a) and 4(b) show typical examples of time-in-
tensity curves from a corpus luteum and a liver metasta-
sis, respectively, together with the fitting functions of the 
lognormal model. The fitting ranges include all the data 
from the estimated arrival times until t = 19 s and t = 
21 s for the corpus luteum and liver metastasis data, re-
spectively. The fit qualities of the lognormal model on the 
two time-intensity curves are R2 = 1.00, RMSE = 2788 for 
the corpus luteum, and R2 = 0.97, RMSE = 358 for the 
liver lesion. The values of R2 imply that the model fitted 
both time-intensity curves well with the fit quality on the 
corpus luteum data being slightly better than on the liver 
metastasis data. The fit on the corpus luteum data pro-
duced a larger RMSE, because the larger intensity values 
(because a different probe and frequency were used) in 
this data set result in a larger absolute value of RMSE.

Fig. 5(a) shows the fitting functions produced by all 
models on a corpus luteum time-intensity curve and Fig. 
5(b) is a magnification of Fig. 5(a) near the time origin. 
As shown in these figures, the lognormal function and 
the two models based on diffusion with drift (LDRW and 
FPT) fitted the various parts of the time-intensity curve 
well. In addition, the LDRW and FPT models produced 
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curves that are very close to each other. Near the time ori-
gin, the gamma variate function produced a curve which 
is steeper than the data and the lagged normal function 
produced a curve which lags behind the data. The lagged 
normal function is also slightly slow in the wash-out part 
of the curve. The same procedure was repeated on a liver 
metastasis time-intensity curve and the results are shown 
in Figs. 6(a) and (b). It can be seen from these figures that 
the fits produced by all models follow similar trends as in 
Figs. 5(a) and (b).

The average values of R2 and RMSE (and their standard 
deviations) for the corpus luteum and the liver metastasis 
data sets are presented in Tables II and III, respectively. 
Observing the values of the fit quality parameters, it may 
be deduced that the various models have comparable fit 
performances on both data sets. The lower fit qualities of 
the gamma variate and the lagged normal functions in a 
small region near the time origin have a small impact on 
the overall fit performances of these models, because the 
width of this region is small.
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Fig. 4. Examples of fitted curves [arbitrary intensity units (AIU)] with 
the lognormal function on (a) a corpus luteum and (b) liver metastasis 
time-intensity curves.

Fig. 5. (a) An ovine corpus luteum time-intensity curve fitted with five 
models: the lognormal, the gamma variate, the local density random 
walk (LDRW), the first passage time (FPT), and the lagged normal; (b) 
a magnification of (a) near the time origin (the lines for LDRW and FPT 
are very close to each other).

TABLE II. The Average R2 and Root Mean Square Error (RMSE) Extracted From Curve-Fits 
With all the Models on the Corpus Luteum Data. 

Lognormal Gamma variate LDRW FPT Lagged normal

R2 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
RMSE 1.01 ± 0.09 1.04 ± 0.08 0.98 ± 0.04 0.97 ± 0.04 1.00 ± 0.11

TABLE III. The Average R2 and Root Mean Square Error (RMSE) Extracted From Curve-Fits 
With all the Models on the Liver Metastasis Data. 

Lognormal Gamma variate LDRW FPT Lagged normal

R2 0.92 ± 0.06 0.91 ± 0.06 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.06
RMSE 1.00 ± 0.02 1.08 ± 0.15 1.00 ± 0.02 0.98 ± 0.03 0.93 ± 0.15



The results for the average values of the normalized 
hemodynamic-related parameters together with their 
standard deviations for both the corpus luteum and the 
liver metastasis data sets are shown in Tables IV and V, 
respectively. The trends in the behaviors of the models on 
both data sets are similar. In general, a good agreement is 
observed between the values of the hemodynamic-related 
parameters extracted from curve fittings with the lognor-
mal function and the FPT model, with the parameter 
tp being the only exception. The values of AUC, MTT, 
and tp extracted from fits with the gamma variate func-
tion are smaller than those produced by the other models. 
Both the LDRW and the FPT models produced values of 
tp that are larger than the values produced by the other 
models. Also, the average values of MTT extracted from 
the LDRW model are smaller than the average values of 
this parameter extracted from the lognormal, the FPT 
and the lagged normal models. The values of the param-
eter d, which quantifies the difference between the param-
eters MRT and MTT for the LDRW model, are 0.30 ± 
0.15 and 0.15 ± 0.08 for the liver metastasis and corpus 
luteum data sets, respectively. The results for MRT from 
the LDRW model and MTT from all other models (MRT 
= MTT for all models except the LDRW) are shown in 
Table VI. It is observed that the average value of MRT 
from the LDRW agrees within one standard deviation with 
the average values of MTT extracted from the other mod-
els, with the gamma variate being the only exception. The 
values of AUC extracted from fits with the lagged normal 
function are larger than those produced by the other mod-
els. The WIT has a smaller variation among models as 
compared with AUC, MTT, and tp, whereas the FWHM is 
the most stable parameter, with the smallest dependence 
on the choice of the regression model, because it does not 
depend on the fit quality near the time origin.
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Fig. 6. (a) A liver metastasis time-intensity curve fitted with five mod-
els: the lognormal, the gamma variate, the local density random walk 
(LDRW), the first passage time (FPT), and the lagged normal with a 
single exponential, (b) a magnification of (a) near the time origin (the 
lines for LDRW and FPT are very close to each other).

TABLE IV. Normalized Hemodynamic Parameters1 Extracted From Fits on the Corpus Luteum 
Data Set With all Models. 

Lognormal Gamma variate LDRW FPT Lagged normal

AUC 1.01 ± 0.04 0.95 ± 0.04 0.96 ± 0.02 0.97 ± 0.02 1.11 ± 0.05
MTT 1.09 ± 0.03 0.85 ± 0.02 0.94 ± 0.11 1.13 ± 0.02 0.99 ± 0.14
FWHM 1.01 ± 0.03 1.01 ± 0.03 1.00 ± 0.02 1.00 ± 0.02 0.99 ± 0.04
tp 1.05 ± 0.10 0.85 ± 0.03 1.13 ± 0.04 1.17 ± 0.04 —
WIT 0.97 ± 0.05 0.97 ± 0.02 0.98 ± 0.02 0.99 ± 0.02 1.09 ± 0.04
1AUC = area under the time-intensity curve; MTT = mean transit time; FWHM = full-width at half-maximum;  
tp = time to the peak intensity; WIT = wash-in time.

TABLE V. Normalized Hemodynamic Parameters1 Extracted From Fits on the Liver Metastasis 
Data Set With all Models. 

Lognormal Gamma variate LDRW FPT Lagged normal

AUC 1.00 ± 0.02 0.87 ± 0.07 0.95 ± 0.02 1.05 ± 0.10 1.12 ± 0.10
MTT 1.07 ± 0.13 0.77 ± 0.13 0.75 ± 0.21 1.17 ± 0.15 1.00 ± 0.20
FWHM 1.00 ± 0.01 0.98 ± 0.03 1.00 ± 0.01 1.00 ± 0.01 1.03 ± 0.05
tp 1.04 ± 0.06 0.90 ± 0.04 1.10 ± 0.05 1.15 ± 0.04 —
WIT 1.01 ± 0.03 0.97 ± 0.06 1.00 ± 0.03 1.02 ± 0.04 0.99 ± 0.07
1AUC = area under the time-intensity curve; MTT = mean transit time; FWHM = full-width at half-maximum;  
tp = time to the peak intensity; WIT = wash-in time.



V. Discussion

Mathematical models can be employed to fit indica-
tor dilution curves to filter out the noise and isolate the 
primary pass of the indicator. In addition, a model that 
fits the data well may help to interpret the primary pass, 
because it describes the functional relationship among the 
variables of the system under study. Contrast ultrasound 
image data from both the macro- and microcirculation can 
be modeled with indicator dilution theory. The objective 
of utilizing such models is the estimation of hemodynam-
ic-related parameters such as the AUC, MTT, FWHM, 
tp, and WIT, which in turn may lead to quantification of 
microcirculation in various clinical scenarios.

We have presented the physical and physiological basis 
of different indicator dilution models namely the lognor-
mal function, the gamma variate function, the diffusion 
with drift models (LDRW and FPT), and the lagged nor-
mal function. We evaluated the models’ performances on 
CEUS image data from human liver metastases and ex-
posed ovine corpora lutea. Despite the comparable values 
of fit, quality parameters (R2 and RMSE) produced by the 
various models on both data sets, there are differences be-
tween the fit performances of certain models near the time 
origin and the wash-out tail, implying that the overall 
fit quality parameters are not always adequate measures 
of a model’s performance. The lognormal function and 
the diffusion with drift models (LDRW and FPT) are the 
most accurate models, because they fitted well the time-
intensity curves from both the liver metastasis and the 
corpus luteum for the entire fitting range.

As shown in the analytical work of Qian and Bassingth-
waighte [49], the lognormal function is an appropriate in-
dicator dilution model for microvascular networks with a 
large number of generations.The gamma variate function, 
which is based on unidirectional motion of the indicator 
particles from one mixing chamber to the next [35], does 
not properly model the indicator diffusion, which would 
otherwise smooth sharp changes in the gradient. As a con-
sequence, this model tends to overestimate the value of 
the time origin t0 and underestimate the values of AUC, 
MTT, and tp. The LDRW and FPT models work well 
for microvascular networks with a diffusive architecture, 
because they explicitly take diffusion into account. In ad-
dition, the LDRW is the only model that allows for a 
distinction between MRT and MTT. The values of MTT 
estimated by this model are significantly smaller than the 
estimated values of MRT. This result is encountered when 

the LDRW model is used to fit skewed curves with finite 
values of the parameter λ, where the effects of microbubble 
diffusion are non-negligible. The LDRW model also pro-
duced values of MTT which are, on average, smaller than 
the values of MTT produced by the lognormal, the FPT, 
and the lagged normal models. The average values of MRT 
extracted from fits with the LDRW model agree within 
one standard deviation with the values of MTT extracted 
from the other models, the gamma variate function being 
the only exception. A comparison of volume and flow rate 
estimates in phantom experiments based on hemodynam-
ic-related parameters extracted from curve fits with the 
lognormal and the diffusion with drift models may give 
further insight into the specific properties of these models. 
The lagged normal function produces estimates of AUC 
that are larger than the estimates produced by the other 
models, especially when it fits very skewed time-intensity 
curves. This is attributed to the fact that the wash-in part 
of this model is dominated by a term which does not have 
a time origin and the wash-out part is dominated by a 
single exponential term which decays slowly. The latter is 
reminiscent of earlier criticism on modeling the wash-out 
parts of indicator dilution curves with a single exponential 
function as suggested by Hamilton et al. almost a century 
ago [16]. The empirical parameter FWHM has the small-
est variation among models, because it does not depend 
on the fit quality near the time origin. Therefore, it may 
be a useful parameter to monitor during treatment in on-
cology and other clinical scenarios.

The parameters MTT, FWHM, tp, and WIT are ac-
curately measured in CEUS, because they are rather in-
dependent of ultrasound scanner settings (they are time 
measurements). The parameter AUC is more sensitive on 
imaging parameters (depth, attenuation, and frequency) 
and thus it may not be as reproducible as the time param-
eters. The dependence of the parameters on the fit quality 
near the time origin can be reduced with the choice of an 
appropriate model as discussed earlier. For the param-
eters that depend on the wash-out of the indicator (AUC, 
MTT, and FWHM), it is important to eliminate possible 
recirculation effects by curve-fitting the data in an appro-
priate fitting interval.

Quantification of blood flow and blood volume at the 
microcirculation level with the aid of indicator dilution 
models will help the on-going research in therapy monitor-
ing in various oncology applications. Another promising 
application of mathematical modeling of the microcircula-
tion is parametric imaging, which is the formation of a 
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TABLE VI. Normalized Values of Mean Transit Time (MTT) Extracted From Fits With Different 
Models1 (Except LDRW) and the Values of Mean Residence Time (MRT) Extracted From Fits 

With the LDRW Model.1 

Lognormal 
MTT

Gamma variate 
MTT

LDRW 
MRT

FPT 
MTT

Lagged normal 
MTT

Liver metastasis 1.02 ± 0.13 0.74 ± 0.16 0.95 ± 0.18 1.11 ± 0.13 0.95 ± 0.19
Corpus luteum 1.06 ± 0.03 0.82 ± 0.03 1.06 ± 0.08 1.10 ± 0.03 0.96 ± 0.12
1LDRW = local density random walk; FPT = first passage time.



functional image from new parameters (often a combina-
tion of two or more) extracted from the mathematical 
models fitted on perfusion data at the pixel level or in 
small groups of pixels.

VI. Conclusions

All major indicator dilution models, namely the lognor-
mal function, the gamma variate function, the LDRW and 
FPT models, and the lagged normal function, have been 
discussed in detail and compared with one another. The 
validity of these models for use with CEUS was investi-
gated with a large number of image loops from an animal 
model of microflow in the ovaries and from human liver 
metastases. From our analysis, we conclude that the mod-
els with the best performances are the lognormal function 
and the diffusion with drift models, because their physi-
ological and physical basis takes into consideration the 
architecture of microvascular networks. With the choice of 
an appropriate model, various hemodynamic-related pa-
rameters (AUC, MTT, FWHM, tp, and WIT) can be mea-
sured accurately. An application-specific model may be 
selected after analysis of more in vitro and in vivo data.
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