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Abstract—Microvasculature density (MVD) provides an 

established biomarker for the prognosis of numerous diseases 

associated with abnormal microvascular networks. The 

accurate, robust and timely assessment of MVD changes 

facilitates disease detection, treatment monitoring and patient 

stratification. Nevertheless, the current gold standard (PET) 

for MVD quantification is not used in clinical practice due to its 

high costs and potential health hazards. Contrast Enhanced 

Ultrasound (CEUS) imaging can provide an attractive 

alternative. However, the limited dissociation between larger 

vessels and microvasculature in the imaged tissues limits the 

accuracy and robustness of CEUS. This study proposed a novel, 

and fully automatic technique that dissociates larger vessels 

from microvasculature in CEUS imaged tissues. The ovine 

Corpus Luteum (CL) was used as an in vivo model for the 

development and assessment of the proposed technique. 

I. INTRODUCTION 

Microvascular density (MVD) relates to tumour 
angiogenic potential and is an established biomarker for the 
prognosis of disparate cancers as well as of other diseases 
associated with abnormal microvascular networks (i.e. 
ischaemia and inflammatory disease). A number of anti-
angiogenic therapies that target these cancers are currently 
under development. An important aim of medical imaging 
research is, therefore, to provide a robust, in vivo, 
longitudinal assessment of MVD that facilitates (i) disease 
detection, (ii) treatment monitoring, (iii) ongoing evaluation 
of response criteria, and (iv) informed management 
paradigms. The current response evaluation criteria for solid 
tumours (RECIST) utilises Computerised Tomography (CT) 
to assess tumour volume changes at least three months after 
the treatment. Such indirect assessment significantly limits 
early personalisation based on treatment response and may 
contribute to suboptimal morbidity and mortality rates. 
Though desirable, it is currently difficult to assess 
microvascular (MV) perfusion using any state of the art 
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imaging technology. The gold standard, and only 
commercially available tool, is Positron Emission 
Tomography (PET) [1]. However, quantitative perfusion 
measurement using PET is expensive, hazardous, of limited 
availability and thus difficult to use routinely in clinical 
practice, especially in large populations. 

Ultrasound imaging is a safe, low cost and widely 
accessible technology. Furthermore, sub-capillary sized 
microbubbles (MBs) that are thin-shelled and gas-filled, 
unlike most contrast agents from other imaging modalities, 
behave kinetically like red blood cells and do not extravasate. 
They can therefore be used along with modern ultrasound 
systems, in a process known as Contrast Enhanced 
Ultrasound (CEUS) imaging, to image and quantify 
microvascular blood flow and volume providing a live and 
longitudinal in vivo assessment of MVD [2, 3]. CEUS has 
recently been introduced in clinical cardiology and liver 
radiology [4-6], assessing microvasculature related 
pathology. However, the quantification of perfusion is not 
fully developed and, thus, not used in the clinic. The current 
gold standard for such measurement, PET with (with H2

15
O), 

has shown 9% intra-subject variability. In comparison, CEUS 
has provided 32% variability [1]. A major contributor to the 
limited accuracy of CEUS is the lack of accurate information 
derived solely from capillary flow and volume, required to 
determine tissue perfusion [6].  

Vessels larger than capillaries (VLC) form a significant 
part of CEUS image data, impeding accurate microflow 
measurements. More precisely, VLCs can (i) supply non-
neighbouring regions of the tissue, hence VLC flow may 
contain no physiological information on the state of the tissue 
in the imaged region of interest (ROI), and (ii) directly supply 
local microvasculature, yielding indirect diagnostic 
information on microflow [6]. However, pulsatility, flow 
resistance indices, or flow to area ratios using Doppler data 
from larger vessels do not actually represent the vascularity 
or vascularisation of the imaged tissue [7]. There is a real 
opportunity to establish CEUS as the leading modality for 
perfusion assessment in the clinic by improving measurement 
uncertainty to levels similar to that of PET. In order to 
achieve this, the separation of microvasculature from larger 
vessels is crucial. Currently, a technique using Colour 
Doppler information to highlight larger vessels, and then 
manually segment a ROI excluding the identified VLCs, is 
employed. This technique is elaborate, cumbersome and 
highly subjective. The overarching aim is to generate 
software that automatically, accurately and reproducibly 
dissociates between signals from VLCs and signals from 
capillaries in order to increase the accuracy and precision of 
quantification of microvascular flow and volume with CEUS.  
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A number of kinetics models have been proposed for 
destruction replenishment or bolus studies [8]. The 
developing ovine corpus luteum (CL) is highly angiogenic 
and predictably develops a tumor-like microvascular network 
of around 1cm diameter that exists for approximately 10 days 
before it routinely regresses [9]. In addition, complete CL 
vascular regression can be pharmacologically induced with 
Prostaglandin F (PGF) within 24h [9]. Consequently, this 
study utilised the ovine CL as a dynamic, regulated and 
predictable capillary bed that facilitated the modelling of 
microvascular flow to develop and assess imaging 
technology for detecting small perfusion changes in vivo.  

II. METHODS 

A. Animal and Imaging Methodology 

All data were acquired from an adult ewe under terminal 
general anaesthesia with project licence approval from the 
Home Office (McNeilly PPL 60/3906). The ewe’s ovaries 
were exposed by laparotomy and stabilised to avoid 
interfering with the ovarian blood supply. This enabled the 
ultrasound probe to be positioned and oriented for optimal 
data acquisition. Heart rate and blood pressure were 
monitored and recorded throughout the experiment. 

Eight sets of B-mode and CEUS datasets (Fig. 1) were 
acquired using a Philips iU22 ultrasound scanner (Philips 
Medical Systems, Bothell, WA, USA) along with a high 
frequency linear array L12-5 operating on a contrast imaging 
mode (nonlinear pulsing schemes). A 2.4ml bolus of 
Sonovue® (Bracco, Geneva, Switzerland) was utilised to 
highlight the tissue perfusion of the CL. All scans were 
performed across the largest cross section of the CL 
including the ovarian artery. Data were stored in DICOM 
format for offline analysis. At the end of the study the ovary 
was removed and fixed for immune histological analysis 
(Fig. 3.a) of the VLCs (smooth muscle actin) and capillary 
density (lectin) for direct comparison with the ultrasonic 
image data. 

 
Figure 1. (a) B-mode and (b-c) CEUS images of an ovine CL. Early stage (b) 

and peak stage (c) of the CL perfusion illustrated. 

B.  Spatial Alignment of CEUS Frame Sequences  

In order to correct for on-plane movements of the imaged 
structure during the multi-frame data acquisition, each frame 
within the processed frame sequence was spatially aligned to 
a reference frame. The movements were mostly due to 
respiratory motion, hence the reference frame was manually 
selected at the end-expiratory phase. Off-plane movements of 
the imaged CL, such as probe slippage, were kept to a 
minimum during data acquisition.  

The data alignment was initially performed on the B-
mode images employing an intrinsic, image based, rigid 
registration approach [10], which sufficiently compensated 
for CL displacement during the multi-cycle data acquisition. 
The Nelder-Mead’s simplex optimisation strategy was 

utilised in order to derive the optimal transformation 
maximising the Normalised Cross Correlation (NXC) 
between the registered images [11]. Nelder and Mead’s 
simplex provided a good trade-off between robustness and 
convergence time [12], while NXC provided an accurate, 
robust and efficient approach when compared to other image 
similarity measures. To further enhance the accuracy and 
robustness of the proposed approach, outliers in the spatial 
transformation over consecutive frames were identified and 
removed. Due to the smooth, periodic nature of the 
respiratory movement, smoothing splines were employed to 
compensate for sharp, irregular transformations across a B-
mode frame sequence. The splines were customised to not 
smooth over local extrema in the processed transformation 
curve (end-expiratory and end-inspiratory phases). Having 
identified the transformation required to align each frame in 
the B-mode sequence to the reference frame, the 
transformations were then applied to align the corresponding 
CEUS images. 

C. Time Intensity Curves (TICs) and Parametric Mapping 

In order to extract a location specific collection of TICs 
that characterised the entire CL, a 2D rectangular grid was 
laid over the scanning plane of the multi-frame CEUS data. 
For each cell of the grid, a TIC was generated. A 2x2 pixel 
grid compensated for small misalignment errors during the 
spatial registration of the frame sequence without sacrificing 
much of the spatial resolution of the processed data. For each 
of the extracted TICs, a smoothing spline compensated for 
the high levels of noise present in the original curve. A Log-
normal curve (LN) was then automatically fitted to the 
smoothed TIC [8]. 

   
 

   √    
         )   )

 
    

⁄  (1) 

where M and S are the mean and standard deviation of the 
TIC. Fig. 2 illustrates a typical example of the original, 
smoothed and Log-normal fitted TICs. Log-norm curves that 
fitted poorly (R

2
<80%) to the corresponding smoothed curves 

were discarded. 

 
Figure 2. Typical TIC of a 2x2 pixel grid within the CL. 

The shape and size of a TIC contains valuable 
information on the size of the underlying vasculature. 
Consequently, the Log-normal model was employed to 
derive, a number of parameters characterising each TIC, 
including: the peak intensity value (IP), the mean transit time 
(MTT), the wash-in-rate (WIR), the wash-out-rate (WOR), 
the full width at half maximum (FWHM) and the area under 
the curve (AUC) [8]. A parametric (probabilistic) image was 
created for each of the six TIC parameters with the intensity 

(a) (b) (c) 
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value of each pixel representing the probability of the 
underlying structure to be a larger vessel. Given the 
assumption that the larger the vessel size, the larger value of 
each utilised parameter, the intensity values were derived 
using a linear mapping between the minimum and maximum 
value of the corresponding parameter.  

Some of the parametric images exhibited larger variance 
between different regions of the CL than others. Larger 
variance may translate to more information on the nature of 
the underlying structures. On the other hand, some parametric 
images displayed highly correlated information. Principal 
Component Analysis (PCA) [13] was therefore used on the 
information from the 6 parametric images deriving a new set 
of uncorrelated (independent) variables. The first three 
principal components represented more than 98% of the 
variance (information) within the 8 parametric images. The 
first principal component (PC1) (Fig.3.c) accounted for any 
structure distinguishable in the 6 parametric images (>80% of 
variance) while PC2 and PC3 contained mostly noise. 

D. Large Vessel Dissociation  

PC1, containing most information on underlining imaged 
CL, was further processed to identify larger vessels and 
dissociate them from microvasculature. PC1 was 
subsequently converted into a 3D map, with the Z-axis 
representing intensity information (Fig. 3.d). The mean 
curvature C [14] was derived for each pixel within the map. 

  
             

         )
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where E, F and G were the 1
st
 fundamental coefficients while 

L, M and N were the 2
nd

 fundamental coefficients of the 
surface     . Peaks, ridges and saddles (positive 
curvature) corresponded to larger vessels feeding the 
surrounding microvasculature, which in turn was represented 
by valleys (negative curvature). Consequently, the mean 
curvature on the 3D surface enabled the automatic 
dissociation between larger vessels and microvasculature 
without the use of a hard intensity threshold.  

III. RESULTS AND DISCUSSION 

Fig. 3.a illustrates an example histological slice of the 
imaged CL while Fig. 3.b and 3.f illustrate the corresponding 
regions (binary masks) identified as VLCs by using Colour 
Doppler information and the proposed automatic technique 
respectively. While the imaging plane between the histology 
and the ultrasound data is most likely not identical, similar 
patterns can be recognised across the CL. For example, large 
VLCs circulate the blood on the perimeter of the CL. Then, a 
set of axial VLCs distribute the blood from the perimeter 
towards the centre of the CL which in turn feed a network of 
VLCs throughout the entire CL. Fig.3.g overlays the binary 
masks from Fig. 3.b and 3.f. The high level of similarity 
between the binary masks extracted using the automatic and 
the Colour Doppler approach is evident. In fact 75% of the 
automatically identified larger vessels overlap with the 
corresponding Doppler identified areas, mostly in the CL 
periphery. However, the proposed automatic technique 
appears to provide higher level of detail (25% non-overlap) 
mostly at the centre of the CL, on what is perceived as 
“larger vessels”. In addition, colour bleeding in the Doppler 

binary masks results in the misclassification of peripheral 
microvasculature near as VLCs. Doppler uses 175% more 
pixels to classify the same region around the circumference 
of the CL when compared to the proposed parametric 
approach. These misclassifications by Colour Doppler can 
have a direct degrading effect in the accuracy and precision 
of tissue perfusion quantification.  

Fig. 4.a illustrates an example of 7 regions of interest 
(ROIs), all manually classified (by expert) as VLCs by 
employing Doppler binary masks. However, their 
corresponding TICs, as plotted in Fig. 4.a and 4.b, 
demonstrate very different characteristics. In fact, the ROIs 
correspond to areas identified as arteries (1), veins (1), large 
vessels (3) and microvasculature (2). Microvasculature has 
been purposely selected in close proximity to the VLCs to 
highlight the sensitivity of the proposed dissociation 
technique. As expected, there is a clear distinction in peak 
value, width and area between the TICs corresponding to 
larger vessels and TICs corresponding to microvasculature. 
Moreover, as illustrated in Fig. 4.b, contrast arrives in arteries 
first, followed by larger vessels that distribute the blood in 
the microvasculature and is finally transferred out of the CL 
through the veins. Fig. 4.c and 4.d. provide further TIC 
examples from 7 ROIs identified by the proposed automatic 
approach as VLCs and 7 ROIs identified as MV. Both the 
VLC and microvasculature examples were carefully 
distributed across the entire CL, with some microvasculature 
in very close proximity to nearby VLCs. This level of detail 
cannot be achieved by the current manual dissociation 
approach utilising Colour Doppler information. The proposed 
multi-parameter approach, taking into consideration such 
information from the TICs, correctly dissociates between the 
larger vessels and microvasculature in close proximity 
without the need for an objective measurement of flow. 

TABLE I. TIC PARAMETER RANGE ACROSS 14 ROIS 

 MVs (7)  VLCs (7) 

 Mean RSTD (%)  Mean RSTD (%) 

IP 88.69 6.21  113.14 14.42 

MTT 152.63 17.59  200.16 19.74 

WIR 2.07 13.53  2.65 18.87 

WOR 0.54 18.51  0.55 20.00 

FWHM 127.43 12.74  151.29 10.91 

AUC 14221.00 14.34  22666.00 17.55 

Table I summarises the parameter range (Mean and 
Relative Standard Deviation - RSTD) extracted from the 
VLC and MV TICs respectively. All but the WOR provide 
valuable information in the automatic dissociation process. 
The proposed multi-parameter technique, combined with 
PCA, increases the accuracy and robustness of large vessel 
identification and therefore provides a powerful pre-
processing tool in the perfusion measurement related to the 
underlying microvasculature. Finally, the large variability 
observed in VLC TICs is attributed to the large size disparity 
of VLCs, ranging from (i) arteries and veins, to (ii) 
intermediate VLCs distributing the blood to (iii) smaller 
arterioles and venules that connect directly to local capillary 
beds (MV). As demonstrated by Fig. 4 and Table I, the 
parametric images provide valuable information that can be 
utilised for further classification amongst these VLCs. 
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Figure 3. (a) Histological slice of CL, (b) Colour Doppler highlighting VLCs, (c) PC1 from parametric imaging, (d) 3D representation of PC1 used to derive 
curvature, (e) VLCs over PC1, (f) corresponding VLC binary mask and (g) overlay of Colour Doppler and parametric binary masks. ROI approx. 10mm. 

 
Figure 4. (a-b) 7 ROIs and corresponding TICs representing arteries (1), veins (1), large vessels (3) and microvasculature (2), (c) 7 ROIs and corresponding 

TICs representing a range of VLCs across the entire CL, (d) 7 ROIs and corresponding TICs representing a range of MVs across the entire CL. 

IV. CONCLUSION 

This study introduced a novel and fully automatic 
approach for the dissociation between vessels larger than 
capillaries and microvasculature in CEUS image sequences. 
The proposed technique utilised a set of parametric images 
derived from localized TICs and thus required no direct 
measurement of flow. It also demonstrated potential for a 
more accurate and robust dissociation between VLCs and 
microvasculature than the current laborious and highly 
subjective approaches using Colour Doppler. Such 
dissociation could enable a much needed increase in accuracy 
and precision in the quantification of tissue perfusion.  
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