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Abstract— Confidence in the accuracy of dynamic contrast 

enhanced ultrasound (DCEUS) quantification parameters is 

imperative for the correct diagnosis of liver lesion perfusion 

characteristics. An important source of uncertainty in liver 

DCEUS acquisitions is artifacts introduced by respiratory 

motion. The objective of this study is to construct a respiratory 

motion simulation model (RMSM) of dual contrast imaging mode 

acquisitions of liver lesions in order to evaluate an algorithm for 

automatic respiratory gating (ARG). The respiratory kinetics as 

well as the perfusion models of the liver lesion and parenchyma 

used by the RMSM were solely derived from clinical data. The 

quality of fit (of the DCEUS data onto the bolus kinetics model) 

depends on the respiration amplitude. Similar trends in terms of 

quality of fit as a function of respiration amplitude were observed 

from RMSM and clinical data. The errors introduced on the 

DCEUS quantification under the influence of respiration were 

evaluated. The RMSM revealed that the error in the liver lesion 

DCEUS quantification parameters significantly 

decreased(p<0.001) from a maximum of 32.3% to 6.2% when 

ARG was used. The use of RMSM clearly demonstrates the 

capability of the ARG algorithm in significantly reducing errors 

introduced from both in-plane and out-of-plane respiratory 

motion.  

 

Index Terms—Medical simulation, Ultrasonic imaging, 

Contrast agents, Liver metastases, Respiratory gating 

 

I. INTRODUCTION 

N their more than fifteen years of use [1]  microbubble 

contrast agents have been used in many clinical 

applications. These include the diagnosis of liver lesions [2], 

the assessment of microvascular damage after a myocardial 

infarction [3] and the detection of coronary disease [4]. 

Microbubbles are a pure blood pool contrast agent, because 

their size is of the same order as red blood cells and thus 

cannot leave the vascular bed and escape in the interstitium 

[5], [6]. Their size along with their unique acoustic properties 

allow for the imaging of perfusion in real time using 

diagnostic ultrasound. 
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Microbubbles can be used to perform dynamic contrast 

enhanced ultrasound (DCEUS) for the characterization of liver 

lesions[7]. Muhi et al[8] compared the sensitivity of DCEUS, 

contrast enhanced computed tomography (CECT) and contrast 

enhanced magnetic resonance imaging (CEMRI) in detecting 

metastatic liver lesions from patients with primary colorectal 

cancer. The sensitivity of DCEUS was found to be 73% which 

compared favorably with the 63% sensitivity of CECT 

although it was significantly lower than the 95% sensitivity 

exhibited by CEMRI. Tranquart et al[9] demonstrated a 

similar sensitivity of 79.4% for DCEUS in the characterization 

of 1034 liver lesions as malignant or benign. Furthermore 

DCEUS is a safe imaging modality since it does not make use 

of ionizing radiation like CECT and it can be used on patients 

with pacemakers and ferromagnetic metal implants unlike 

CEMRI. In addition to its safety and clinical efficiency liver 

lesion DCEUS is cost effective and it can provide savings of 

19% and 52% compared with CECT and CEMRI 

respectively[9].  

Studies have been published in the literature [10]–[12] that 

use microbubbles to quantify liver lesion perfusion for early 

evaluation of patient response to treatment. These studies use 

modeling of the tumor perfusion to extract quantification 

parameters in order to make the evaluation of the response to 

treatment more objective than visual assessment and provide 

an early detection of response [13], [14]. Ideally these 

quantification parameters would be affected only by the blood 

flow and volume which in turn are related to the concentration 

of the microbubbles in the lesion under investigation. This is 

almost impossible to achieve due to factors that can affect the 

signal intensity detected by the imaging system like nonlinear 

propagation of ultrasound [15], signal saturation [16], and 

stability of ultrasound probe placement.  

Further to the DCEUS acquisition problems mentioned 

there is the problem of physiological motion which can also 

have a negative impact on the quantification of blood flow and 

volume. Respiratory motion has the potential to move and 

deform the anatomy being imaged in relation to the imaging 

plane being acquired. In quantitative DCEUS for liver lesions 

the clinician needs to delineate the tumor using a region-of-

interest (ROI) in order to extract the signal from within the 

lesion. However due to respiratory motion, the lesion moves in 

and out of the ROI.  Thus the DCEUS linear intensity signal 

extracted from within the ROI can also have a component 

derived from sampling of normal liver parenchyma and/or 
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vessels. Respiration can also obscure visual details in the 

qualitative assessment of liver lesion DCEUS such as the 

lesion’s feeding vessels since different cross sections of the 

lesion appear on the imaging plane due to out-of-plane 

respiratory motion.  

A clinically used approach to compensate for the effects of 

respiratory motion is to direct patients to perform breath-holds 

[17]. However this approach can only by applied to patients 

that are able to hold their breath for a substantial period of 

time. Further to the practical problems breath-holds can also 

affect hemodynamics [18].  

Post-processing procedures can also be implemented to 

negate the effect of respiratory motion for DCEUS 

quantification of liver lesions. One technique proposed by 

Averkiou et al [10] is for the clinician to manually reject 

frames in which the diaphragm position deviates from a 

reference location. This technique does not require any special 

precautions to be taken during the DCEUS acquisition and 

although it is implemented after the acquisition it can be very 

time consuming since all the steps of the procedure are 

manual.  

Automation of correcting for respiratory motion can also be 

achieved using computational methods [19]–[23]. 

Disadvantages of these methods include the need for user 

intervention [20], [21], [23], extraction of only the end-phases 

of the respiration cycle [19], [20], and speed of execution [23]. 

A fully automatic respiratory gating (ARG) algorithm has 

been presented in the literature that is capable of significantly 

increasing the reliability of DCEUS quantification[24], [25]. 

The ARG algorithm can typically process 1000 frames in 8 

seconds and it can extract any breathing cycle phase required 

by the user. The only manual intervention needed by the ARG 

algorithm is that the user chooses a “trigger” frame thus 

selecting the image (tumor) plane to be analyzed. Even though 

the ARG algorithm has been shown to increase the quality of 

fit of the lognormal indicator dilution model[26] onto liver 

lesion time intensity curves[24] it is impossible to determine 

the absolute gain in accuracy since it is impossible to know the 

true lesion perfusion in-vivo. The solution to this obstacle is 

the use of a simulation of a liver DCEUS acquisition in which 

the perfusion of the lesion is calculated using an indicator 

dilution model.   

The objective of this work is to evaluate the efficiency of 

the ARG algorithm[25] in increasing the absolute accuracy of 

liver lesion DCEUS quantification using the controlled 

environment of a respiratory motion simulation model 

(RMSM) of dual contrast imaging mode liver lesion 

acquisitions.  

II. MATERIALS AND METHODS 

A. Respiratory Motion Simulation Model 

The RMSM was constructed in order to simulate a dual 

contrast imaging mode acquisition of liver lesions. During 

clinical acquisitions of liver DCEUS both in-plane and out-of-

plane respiratory motion can affect the lesion’s shape, size, 

and location in the image. Furthermore the appearance of 

structures like the diaphragm is also influenced by respiratory 

motion and is easily observed on the tissue side of the 

acquisition (Fig. 1). These changes in the appearance of the 

lesion and bright structures (e.g. the diaphragm) induced by 

respiratory motion were incorporated into the RMSM. 

The RMSM was constructed in MATLAB® (2012b, The 

MathWorks Inc., Natick, MA) by generating image loops of a 

spherical lesion imbedded in a liver-like structure in the 

presence of cyclic respiratory motion. A dual contrast imaging 

mode was simulated, where the left side displayed the contrast 

image and the left side the tissue. The brightness of the 

contrast enhanced signal of the lesion and liver was 

programmed according to lognormal indicator dilution models 

derived from mean values of quantification parameters 

extracted from clinical DCEUS acquisitions (see section II.B). 

Specifically the lognormal indicator dilution model was fitted 

onto the clinical lesion time intensity curves and the mean 

values of the extracted quantification parameters of RT, MTT 

and PI were calculated. 

The lesion was perfused according to the lognormal 

model[26] with a rise time (RT) of 17 seconds, a mean transit 

time (MTT) of 80 seconds and a peak intensity (PI) of 17 AIU 

(arbitrary intensity units). The parenchyma was perfused with 

a RT of 30 seconds, a MTT of 62 seconds and a PI of 33 AIU 

(Fig. 2). On the tissue side of the acquisition constant intensity 

levels were kept between a low intensity background and a 

50% higher intensity moving structure. The total simulation 

time was 74 seconds, the frame rate was set to 8Hz and the 

imaging plane consisted of 300 by 300 pixels (px).  

 
Fig. 1.  Example of a clinical dual contrast imaging mode acquisition showing 

the contrast side (left) and the tissue side (right) at two time instances from the 

time of microbubble injection. At 44.1 s from the microbubble bolus injection 

a) the lesion (solid outline) can be clearly seen on the imaging plane whereas 

0.5 s after b) the lesion appears altered in shape, size, and location. The 

diaphragm (dashed outline) has changed in position and dimensions due to 

both in-plane and out-of-plane motion.   

The lesion was modeled as a sphere approximating the 

ellipsoid appearance of lesions seen in clinical acquisitions 

(Fig. 1). The radius of the lesion was set at 20px (RL) 
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corresponding to the median liver lesion size from the clinical 

study and the parenchyma as a cube containing the lesion. In-

plane and out-of-plane respiratory motion was produced by 

varying the position and radius of the lesion respectively 

according to a normalized respiratory kinetics curve (G(t)) that 

was extracted from patient data (Fig. 3). A set of liver lesion 

radii [r(t)] corresponding to each time instance in the 

acquisition were calculated using (1) and the values of the in-

plane translation [Δr(t)]  of the liver lesion were determined 

using (2), 

 
22

( ) ( )r t R OPA G tL   , (1) 

 ( ) ( ) ,r t IPA G t i j      (2) 

where G(t) was the patient derived normalized respiratory 

kinetics curve, RL=20px, t was the time instance during the 

acquisition, OPA was a scalar defining the out-of-plane 

amplitude attributed to out-of-plane respiratory motion and 

IPA was a scalar defining the in-plane amplitude attributed to 

in-plane respiratory motion (Fig. 4a). On the tissue side of the 

acquisition the bright moving structure was modeled as a 

triangular prism captured as a rectangle on the imaging plane 

as a representation of the oblong appearance of the diaphragm 

in clinical studies (Fig. 1). The width of the rectangle was set 

to a constant value of 50 px and the values of the height of the 

triangle captured on the imaging plane were calculated using  

( )
( ) ,

0 2

OPA G t
h t h


    (3) 

where G(t) was the patient derived normalized respiratory 

kinetics curve, ho=20px, t was the time instance during the 

acquisition and OPA was a scalar specifying the out-of-plane 

amplitude attributed to out-of-plane respiratory motion (Fig. 

4b). In plane motion was imposed by varying the center of the 

rectangle according to (2).  

 
Fig. 2.  Lognormal indicator dilution model time intensity curves used to 

calculate the linear DCEUS intensity on the contrast side of the RMSM. The 

lognormal models were constructed using clinically derived (see section II.B) 

quantification parameters (normal liver and liver lesions) for the RT, MTT, 

and PI.  

Multiplicative noise was applied to the DCEUS side of the 

simulation in order to compare errors caused by respiratory 

motion to those produced by noise. The gamma distribution 

multiplicative noise model proposed by Barrois et al[27] was 

used according to (4), 
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where κ=3 and α=0.5. The k value of 3 was based on 

measurements performed by Barrois et al whereas the alpha 

value of 0.5 was derived based on the condition that the mode 

of the distribution (Mo) must have a value of 1. In order to 

apply the multiplicative noise from the gamma distribution  

each DCEUS frame of the simulation was multiplied by a 

random sample of a 300 x 300 matrix derived from the a 

gamma distribution with κ=3 and α=0.5. The random sample 

was generated using the “gamrnd” function part of 

MATLAB’s Statistics Toolbox. 

Three sets of simulations were run to study the effect of 

lesion size, in-plane and out-of-plane respiration amplitude. 

An additional set of simulations was run this time with 

multiplicative noise applied on the contrast side of the 

acquisition to investigate the effect of noise on the DCEUS 

quantification parameters extracted from the RMSM. The 

effect of lesion size on the DCEUS quantification parameters 

was studied with a set of simulations with increasing lesion 

radius between 10 and 35 px; the IPA was varied between 0 to 

36 px and the OPA was set to 0 px. A set of simulations with a 

constant OPA of 10 px and a varying IPA between 0 to 36 px, 

a set with a constant IPA of 10px and a varying OPA between 

0 to 36 px in order to evaluate the error introduced on the 

DCEUS quantification parameters from both in-plane and out-

of-plane motion. The maximum amplitude of 36 px was 

chosen in order to simulate the clinical scenario in which the 

lesion is not visible in the imaging plane at the end phases of 

respiration. A set of simulations were also run with a constant 

OPA of 10 px and a varying IPA between 0 to 36 px with the 

presence of multiplicative noise on the DCEUS side of the 

acquisition.  

 
Fig. 3.  Normalized respiratory kinetics curve extracted from patient data that 

was used to drive the respiration motion of the respiratory motion simulation 

model.  

The mean linear intensity within a ROI corresponding to the 

initial position of the lesion on the contrast side of the RMSM 

(Fig. 4a) at time zero was extracted across time. Due to the 
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respiratory motion present in the simulation the lesion time 

intensity curve extracted will exhibit similar breathing 

artefacts as in the clinic. The lognormal indicator dilution 

model was fitted onto lesion time intensity curves extracted 

with and without the use of ARG. The quantification 

parameters of RT, MTT, area under the curve (AUC) and PI 

were calculated and compared to the input perfusion 

parameters of the RMSM. By comparing the error introduced 

on the quantification parameters the accuracy of DCEUS 

quantification with and without ARG can be assessed. 

 
Fig. 4.  Zoom-in on a simulated dual contrast imaging acquisition at the time 

of peak of the parenchyma (29 seconds). a) Simulated DCEUS side of the 

acquisition with the initial position of the lesion indicated (solid black circle) 

encompassing mostly the parenchyma with the lesion moved out of position 

in-plane by a vector Δr(t) and a reduction of its radius from the initial radius 

of RL (20 px) to r(t) due to out-of-plane respiratory motion. b) Simulated 

tissue side of the acquisition with the moving structure out of position in-plane 

by a vector Δr(t) and a variation in its height from h0 (20 px) to h(t) 

accounting for out-of-plane  motion.  

B. Clinical DCEUS Acquisitions 

Twenty-two (22) patients (10 female, 12 male) with liver 

metastasis were imaged. The median age of the female 

patients was 69 (range, 47-72) and the male median age was 

74 (range, 59-77). Approval for the scanning was obtained by 

the ethics review board of our hospital. Also the procedure 

was fully explained to all participating patients and informed 

consent was obtained. 

The Philips iU22 scanner (Philips Medical Systems, 

Bothell, WA) along with the C5-1 curve-linear array probe 

was utilized for all imaging. The imaging frequency was set at 

1.7 MHz and the pulsing scheme used was power modulation 

with a mechanical index (MI) of 0.06. One minute loops were 

acquired at a frame rate between 7-10 Hz in dual contrast 

imaging acquisition mode with an image resolution of 

0.39mm/px. The time-gain-compensation (TGC) was set so 

that a very low level of uniform noise was present on the 

image before the arrival of the microbubbles, ensuring that the 

TGC was at the threshold of detection. In an effort to maintain 

a uniform pressure field the focus was set below the depth of 

the lesion. The Sonovue (Bracco s.p.a., Milan, Italy) 

microbubble contrast agent was injected as a 2.4mL bolus. 

The clinician maintained a constant imaging plane by 

monitoring the “tissue” side of the acquisition. 

C. Image Data Analysis  

The patient DICOM files were extracted from the Philips 

iU22 scanner and transferred to the commercial quantification 

software QLAB version 8.1 (Philips Medical Systems, 

Bothell, WA) for analysis. Both the arterial and late portal 

phases of the DCEUS loop were used to accurately draw a 

ROI encompassing the liver lesion. The frame at which the 

lesion was delineated was the reference that defined the 

breathing cycle phase to be extracted by the ARG algorithm. 

In particular this frame served as the “trigger” frame by which 

ARG was performed (see section II.D). The lesion time 

intensity curves from linearized image data were extracted 

from QLAB and were analyzed with and without the 

implementation of the ARG.  

Non-linear regression fits of the lognormal indicator 

dilution model [26] were performed on the lesion time 

intensity curves using MATLAB’s Curve Fitting Toolbox trust 

region algorithm. The quantification parameters of AUC, PI, 

RT, and MTT were extracted from the lognormal model fit. In 

addition the quality of fit of the lognormal model on to the 

data was assessed by calculating the coefficient of 

determination (R2
LN). The quality of fit has been used in the 

literature[21], [23], [25] as a metric of the improvement in the 

reliability of DCEUS quantification.     

The effect of respiration on the DCEUS acquisitions was 

quantified by calculating the respiration amplitude (RA) of the 

time intensity curves extracted without the use of ARG. The 

RA was calculated by first computing the frequency spectrum 

of the lesion time intensity curves. The faster varying 

respiration component of the lesion time intensity curve was 

between the respiration range of 0.1-0.5 Hz [28] in contrast to 

the slower changing lesion perfusion pattern that was below 

0.1Hz (Fig. 5). The RA was calculated as the ratio between the 

area under the frequency spectrum between 0.1-0.5Hz and the 

area between 0-0.1Hz. 

 
Fig. 5.  Example of a clinical lesion time intensity curve extracted from a 

DCEUS acquisition under the influence of respiratory motion (left) and its 

frequency spectrum (right). The separation of the lesion perfusion and 

respiration components is clearly shown in the frequency domain.  

D. ARG Algorithm 

 The ARG algorithm was applied on the tissue side of the 

dual contrast imaging acquisition. The MATLAB® (2012b, 

The MathWorks Inc., Natick, MA) scientific computing 

software was used to implement the ARG algorithm (Fig. 6). 

The location and intensity of motion produced by bright 

structures in the loop was identified by subtracting each frame 

from the average from all the frames[29] and summing the 

result. Bright moving structures were identified on the trigger 

frame and the intensity of the motion corresponding to each 

structure was calculated as the average motion intensity 

encompassed by the structure. In addition a frequency domain 

analysis was performed to calculate the respiratory contents 

associated with each moving structure. A ROI was constructed 
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from the structure with the highest contents of respiratory 

motion and applied on the tissue loop to extract the time 

intensity curve. The troughs and peaks of the time intensity 

curve correspond to the time instances at which the acquisition 

was out-of-phase and in-phase with the trigger frame 

respectively. By removing the frames that were below 40% 

from the peak intensity the respiratory motion in the loop was 

reduced. The threshold value of 40% was a compromise 

between preserving enough time intensity curve data to 

perform a reliable fit of the lognormal indicator dilution 

model, while at the same time reducing the amount of 

respiratory motion in the loop. A more detailed description of 

the implementation of the ARG algorithm can be found in the 

literature[25]. 

 
Fig. 6.  Summary flowchart of the processes used to implement the ARG 

algorithm in MATLAB. 

III. RESULTS 

From the simulations investigating the effect of lesion size 

with increasing IPA it was shown that as the lesion size 

decreases the percentage error in the parameters increases for 

the same IPA (Fig. 7). However when the IPA was normalized 

to the lesion radius of each simulation the percentage error of 

the quantification parameters was shown to be constant for the 

same IPA/RL ratio (Fig. 8). The results reported hereafter are 

in reference to the IPA/RL and OPA/RL.   

 
Fig. 7. RMSM results with increasing in-plane respiratory amplitude and 

different lesion sizes. The percentage error for a) RT, b) MTT, c) AUC, and d) 

PI is shown. 

 
Fig. 8. RMSM results from Fig. 7 with the x-axis of the plots displaying the 

IPA normalized to the lesion radius (RL=20px).  

The results from the RMSM showed that ARG algorithm 

reduced the error in the quantification parameters introduced 

from in-plane respiratory motion (Fig. 9). The overall errors 

where reduced from a mean of 13.0% to a mean of 2.4%. 

Specifically for the RT the mean error was decreased from 

20.0% to a mean of 3.9%, for the MTT from a mean of 3.1% 

to 1.3%, for the AUC from 16.4% to a mean of 2.6% and for 

the PI from a mean of 12.4% to 2.0%. In addition to reducing 

errors introduced from in-plane respiratory motion the ARG 

algorithm was shown to also reduce the errors from out-of-

plane motion. The mean error introduced with increased OPA 

was reduced by 16.4%, 1.2%, 14.1% and 9.9% for the RT, 

MTT, AUC and PI respectively (Fig. 10).  

The reduction in the mean percentage error of quantification 

parameters with the use of ARG was tested using the paired t-

test at a significance level of 0.001. It was found to be 

statistically significant for the RT, AUC and PI (p<0.001) both 

for in-plane and out-of-plane respiratory motion. The 

reduction of the MTT percentage error was found not to be 

significant for the in-plane (p=0.014) and out-of-plane 

(p=0.044) motion. MTT did not suffer much from motion as it 

is a time parameter associated with the overall duration of the 

bolus that despite the respiratory noise it still remains 

unaffected. As an example, consider adding high frequency 

noise (respiratory noise) on a low frequency signal (MTT). 

The overall effective period of the low frequency signal 

remains unaffected. 
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Fig. 9.  Percent error of the quantification parameters with increasing in-plane 

respiratory amplitude with (squares) and without (circles) the use of the ARG 

algorithm. 

The multiplicative noise introduced on the DCEUS 

simulation had no effect on the RT and MTT with the results 

with and without noise being almost identical [compare Fig. 

9(a)-(b) with Fig. 11(a)-(b)]. However noise did increase the 

errors for the amplitude quantification parameters by a mean 

value of 50.0% for AUC and 50.0% for PI [compare Fig. 9(c)-

(d) with Fig. 11(c)-(d)]. The error increase due to noise for the 

amplitude parameters was almost constant across increasing 

IPA with the calculated standard deviation of the mean 

increase in error being less than 0.6%. 

 
Fig. 10. Same as Fig.9 but with out-of-plane motion. Percent error of the 

quantification parameters with increasing out-of-plane respiratory amplitude 

with (squares) and without (circles) the use of the ARG algorithm.  

The overall RMSM validity was evaluated by comparing 

the relationship between the R2
LN and the respiration amplitude 

(RA) extracted both from the simulation and patient data. 

Simulation data using the parenchyma perfusion model 

extended to an RA of 1.1 whereas the clinical data extended to 

an RA of 2.2. This was attributed to the fact that clinical data 

include signal from nearby vessels, like veins, that can 

contribute to a higher linear intensity within the lesion ROI 

compared to the parenchyma. In order to investigate the effect 

of vessels to lesion DCEUS quantification parameters a set of 

simulations were run with constant OPA and variable IPA. 

The parenchyma perfusion model was replaced with a vein 

model with a RT of 27 seconds, a MTT of 54 seconds and a PI 

of 190 AIU derived from the clinical data. The results from 

both simulation sets were compared with the clinical data (Fig. 

12). Both the clinical data and the simulations demonstrate a 

negative correlation with the R2
LN decreasing as the RA 

increases without the use of ARG. The slope of the linear 

regression was -0.33 and -0.40 for the clinical and simulation 

data respectively. With the use of ARG the slope was 

decreased for both the patient (-0.12) and simulation data (-

0.14).  

 
Fig. 11. Same as Fig. 9 but with added multiplicative noise. Percent error of 

the quantification parameters with the application of multiplicative noise 

under increasing in-plane respiratory amplitude with (squares) and without 

(circles) the use of the ARG algorithm.  

IV. DISCUSSION 

 

In this study a RMSM was developed that was used to study 

the effectiveness of an ARG algorithm in increasing the 

absolute accuracy of liver lesion DCEUS quantification. The 

use of simulation to evaluate respiratory compensation 

algorithms for liver lesion DCEUS has been previously 

suggested by Renault et al[20]. The simulation by Renault et 

al examined the effects of respiration for a single in-plane and 

out-of-plane amplitude with only the contrast side of the 

acquisition being simulated. Furthermore the errors that 

respiration introduced on lesion time intensity curves were 

evaluated qualitatively without looking into specific 

quantification parameters. That study concluded that image 

registration based algorithms for respiratory motion 

compensation were inadequate in removing out-of-plane 

motion from liver DCEUS acquisitions.  The independent 

component analysis (ICA) method proposed by Renault et al 

and the principal component analysis (PCA) examined by 

Mule et al[19] have been shown to remove both in-plane and 

out-of-plane motion from DCEUS loops. However only the 

end phases of the respiratory cycle can be extracted using ICA 

and PCA analysis, and since the acquisition is two 

dimensional there is the uncertainty whether a portion or any 

part of the lesion will be present on the extracted frames.  

The RMSM used in this study considers a broad range of 

out-of-plane and in-plane respiratory motion amplitudes. The 

application of the ARG algorithm on the dual contrast imaging 
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mode simulation has been shown to significantly reduce the 

errors on DCEUS quantification parameters. Overall the 

implementation of the ARG algorithm significantly reduced 

the errors introduced by respiratory motion (p<0.001) from a 

maximum of 32.3% to less than 6.3%. ARG produced 

significant gains in DCEUS quantification parameter accuracy 

for the RT, AUC and PI (p<0.001) whereas the impact of 

ARG on MTT was not significant. This was also the case for a 

clinical study [24] where the MTT was found to be unaffected 

by the ARG algorithm.  

The increase in the accuracy from the use of the ARG 

algorithm can improve clinical outcomes in liver DCEUS 

quantification. For example in a clinical study on liver lesion 

DCEUS quantification by Averkiou et al [10] the response of 

patients to treatment was detected as a mean change in the 

wash-in time ratio quantification parameter of 17% after the 

first treatment. Zocco et al [30] found significant changes 

from the baseline of -20% and -25% in the AUC and PI 

respectively for patients that had a response to hepatocellular 

carcinoma treatment. Both Averkiou et al and Zocco et al used 

respiratory gating to improve the accuracy of their quantitative 

analysis.  These changes in the quantification parameters 

would be impossible to detect if there is an error of about 30% 

already present due to the respiratory motion. Furthermore in 

the quantification parameter reproducibility study performed 

by Averkiou et al an average deviation of 9% was calculated 

which is above the maximum residual error of 6.3% remaining 

after the use of ARG. 

By taking into consideration multiplicative noise on the 

contrast side of the dual contrast imaging simulation no 

change was observed on the time quantification parameters of 

RT and MTT. The results were almost identical with the 

maximum difference being less than 1.8% for the RT and 

MTT extracted both with and without ARG. On the other hand 

the amplitude parameters of AUC and PI were severely 

affected with the value of the AUC error increasing by a 

maximum of 51.4% and of the PI by a maximum of 50.5%. 

Simulations run by Barrois et al [27] found absolute error 

differences for the AUC of 49.8-50.3% , the MTT of 15.5-

22.0% and 4.3-5.6% for the RT. The simulations applied 

multiplicative noise directly onto each data point of the time 

intensity curve, corresponding to a mean signal from a 5x5 

block of pixels, in contrast with the RMSM that takes the 

average within a 20px radius ROI. Thus the sample size used 

to calculate the values of the time intensity curve data points 

for the current study is 1257 compared with 25 from Barrois et 

al. The standard error of the mean, SE
n


   [31], is thus 

expected to be higher for the smaller sample explaining the 

discrepancy between the results obtained from the two studies. 

Therefore the errors reported by Barrois et al are more 

relevant to parametric imaging studies rather than the 

modeling of the average perfusion of a liver lesion.   

 
Fig. 12. Scatter plots of R2

LN vs. respiration amplitude with and without the 

use of automatic respiratory gating (ARG) for a) clinical patient data and b) 

simulation results from the RMSM. The linear regression lines of the 

displayed data are also shown without (solid) and with (dotted) ARG. 

The errors introduced from the gamma distribution noise 

model on the amplitude parameters can be predicted 

analytically. The mean and standard deviation can be 

calculated from the moments of the gamma distribution[32] 

and are given by      and k   . Also by 

differentiating (4) the mode (i.e. maximum of the probability 

density function) can be calculated as  1Mo     . By 

eliminating κ and α the mode can be written in respect to μ 

and σ as

2 2

Mo
 




 . The multiplicative model used from 

the work of Barrois et al[27] uses the relationship between the 

standard deviation (σ), the mean (μ), and the shape parameter 

κ of the gamma distribution to estimate κ from DCEUS 

measurements of the standard deviation and mean linear 

intensity with increasing concentration of microbubbles. Since 

the relationship used [27] between σ and μ is a linear model 

slope  
 

and also 





  , derived from the 

moments of the gamma distribution, the mean, and the mode 

can directly related to the shape parameter κ by 

1
Mo





 



 
 
 

. Consequently the mean (μ) linear intensity 

within the ROI will be one and a half times the value of the 

mean liner intensity before the gamma distribution noise was 

applied with parameters κ=3 and Mo=1 used in the RMSM. 

The overall mean error between the amplitude parameters 

extracted with and without multiplicative from the simulation 

was found to be 50.0% with a standard deviation of less than 

0.5% verifying the analysis made. As already mentioned in the 

previous paragraph the error obtained from the simulations by 

Barrois et al for the AUC was between 49.8-50.3% agreeing 

with the prediction of the analysis presented.  

Limitations of the RMSM include simplifications made 

compared to the complexity of clinical dual contrast imaging 

acquisitions. The shape of clinical lesions does not follow a 

strict spherical shape as used in the RMSM although an 

ellipsoidal shape is generally assumed for demonstration 

purposes[7]. In addition respiratory motion does not only 

cause rigid in-plane and out-of-plane motion but also results in 

deformation due to the elasticity of tissue.  The deformation of 

the lesions due to respiratory motion was not accounted for in 

the RMSM. Despite of these limitations of the RMSM it offers 
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a controlled platform by which to study the absolute errors 

introduced by respiratory motion on DCEUs quantification 

parameters. Furthermore the RMSM has the potential to be 

used in the training of clinicians in DCEUS quantification in 

an effort to increase intra-observer and inter-observer 

agreement. This could be especially useful for multi-centre 

studies since the training can be performed remotely and data 

analysis can be centralized. Future studies of respiratory 

motion could also simulate 3D DCEUS acquisitions to 

investigate the effect of respiratory motion compensation 

schemes on DCEUS quantification. However 3D DCEUS is 

not currently used routinely in the clinic[33] thus there are not 

enough clinical data available to construct such a model.    

Both the perfusion and respiration kinetics of the RMSM 

were derived from clinical dual contrast imaging acquisitions 

in an effort to maximize the clinical relevance of the model. 

The similarities of the relationship between R2
LN and RA for 

the RMSM and the clinical data give confidence to the clinical 

suitability of the model (Fig. 12). This further reinforces that 

the results obtained for the error reduction in DCEUS 

quantification parameters are expected to occur in the clinic. 

V. CONCLUSION 

A RMSM was presented that takes into account in-plane, 

out-of-plane respiratory motion, and multiplicative noise. The 

RMSM was used to investigate the effectiveness of an ARG 

algorithm in increasing the accuracy of liver lesion DCEUS 

quantification by removing in-plane and out-of-plane motion 

from dual contrast imaging mode acquisitions. The use of 

RMSM clearly revealed that the ARG algorithm significantly 

reduces errors introduced from in-plane and out-of-plane 

respiratory motion. The time quantification parameters of RT 

and MTT remained almost unaffected under the presence of 

multiplicative speckle noise whereas the amplitude 

quantification parameters of AUC and PI showed a constant 

error of 50% from their set values. The relationship between 

the quality-of-fit (R2
LN) and the respiration amplitude (RA) for 

both clinical and RMSM-simulated data was similar thus 

confirming the clinical relevance of the simulation. Finally, 

the RMSM has proven to be a useful tool in studying bolus 

kinetics and investigating the impact of ARG on the accuracy 

of liver lesion DCEUS quantification parameters.   
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