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Abstract—Dynamic contrast-enhanced ultrasound (DCEUS) 
has been used in radiology for many years for lesion detection 
and characterization. In recent years, more emphasis has been 
placed on tumor perfusion quantification with DCEUS. To en-
sure accuracy in both quantitative and qualitative evaluation 
of liver tumors with DCEUS, sources of noise in clinical data 
must be identified and, if possible, removed. One of the major 
sources of such noise is respiratory motion. A new automatic 
respiratory gating (ARG) algorithm is presented and evalu-
ated with clinical data. The results of the evaluation demon-
strate the potential of the ARG algorithm for clinical use as a 
fast and easy-to-implement method for removing respiratory 
motion from DCEUS loops.

I. Introduction

Microbubbles have been used in medical ultrasound 
imaging since the mid-1990s [1]. Microbubbles have 

the advantage of being a pure blood-pool contrast agent 
because they are similar in size to red blood cells [2], [3], 
allowing for the imaging of perfusion in real time. Ultra-
sound imaging with microbubbles or dynamic contrast-
enhanced ultrasound (DCEUS) has found uses in the 
evaluation of response to treatment of liver metastases [4], 
the analysis of focal nodular hyperplasia in the liver [5], 
the detection of coronary disease [6], and the assessment 
of microvascular damage after a myocardial infarction [7].

Quantification of DCEUS image loops provides impor-
tant blood flow information on tumor microcirculation [8]. 
One of the biggest challenges in quantitative DCEUS for 
liver lesions is motion caused by respiration. Respiratory 
motion can cause the lesion, as it appears in the imaging 
plane, to change in size, shape, and location (Fig. 1). This 
causes problems in the qualitative evaluation of the le-
sion, because the clinician needs to take into account the 
movement of the lesion to evaluate its size and perfusion 
patterns. This type of motion might also cause significant 
problems in the quantitative evaluation of the lesion’s per-
fusion, because the lesion will be moving in and out of a 
region-of-interest (ROI) that samples the DCEUS mean 
linear intensity, thus introducing noise artifacts.

Various approaches have been used clinically to com-
pensate for the effects of respiratory motion. One such 

approach is directing the patient to hold his or her breath 
at a specific breathing cycle phase desired by the clinician 
or sonographer, but this technique applies only to patients 
that have the ability to perform a breath hold that can 
last more than 40 s; another disadvantage of this tech-
nique is that hemodynamics are affected during breath 
holds [9], [10]. Another technique for respiratory motion 
compensation found in the literature [4] is to identify the 
position of the diaphragm at a reference position and re-
ject frames in which the diaphragm deviates from the ref-
erence position. This is also a post-processing technique 
(it is implemented after the acquisition of the ultrasound 
loop) and it relies on the operator’s expertise to identify 
the brightest moving reflector.

Several computational techniques have been proposed 
in the literature that would allow for fully or semi-auto-
mated compensation of respiratory motion. Renault et al. 
[11] introduced a technique based on independent compo-
nent analysis (ICA) with which the respiratory cycle could 
be extracted manually from the ICA-derived components 
that represent motion; a threshold can be used on the final 
respiratory kinetics curve to derive the frames that belong 
to the end phases of the respiratory cycle. Mulé et al. [12] 
used principal component analysis (PCA) to extract the 
respiratory kinetics to perform fully automatic gating. A 
drawback of both these techniques is that, because the 
ultrasound acquisition is two-dimensional, there is uncer-
tainty on the portion of the lesion, if any, that will be pres-
ent at the extreme phases of the respiratory cycle, because 
of out-of-plane motion.

Rigid registration is another technique used to com-
pensate for respiratory motion. Rognin et al. [13], [14] 
used a rigid registration technique, with 2-D translation 
and rotation, to realign frames to a reference frame; a 
disadvantage of this approach is that out-of-plane frames 
might be difficult, if not impossible, to re-align. Zhang et 
al. [15] also used rigid registration, with 2-D translation 
only, and frame selection to perform automatic gating; 
the algorithm rejected out-of-plane frames but it required 
a long computation time that would not be realistic in a 
clinical context. Both of these techniques require the user 
to manually draw ROI(s) on frames to denote the search 
space for the registration to take place.

In the present work, a new post-processing method is 
proposed for automatic respiratory gating (ARG) of du-
al-contrast imaging (an anatomical B-mode image and a 
contrast-specific image displayed side-by-side in the same 
frame) loops. The only input needed by the user is to 
select a trigger frame in which the lesion is clearly seen 
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and can be delineated. The new ARG algorithm is easy to 
implement and use, fast, and leads to a simple workflow 
for the clinical operator.

II. Materials and Methods

A. ARG Algorithm

The ARG algorithm applies to the B-mode loop of the 
dual-contrast imaging loop acquisition because the ana-
tomical information in the B-mode loop is less sensitive to 
intensity variation than the contrast loop. The algorithm 
is presented as implemented in this study, but modifica-
tions can be made to the algorithm to change its speed 
and/or performance. The software package Matlab (v. 
2007b, The MathWorks Inc., Natick, MA) was used to 
implement the ARG algorithm.

1) Quantify Amount of Motion: Consider a B-mode loop 
consisting of N frames, { } .I i iN=1  First, the B-mode loop was 
downsampled by a factor of 2 (i.e., every other frame is 
kept) and resized using nearest-neighbor interpolation by 
a factor of 0.3. The resulting sequence of frames was stored 
as a new loop, {ˆ} .ˆI i iN=1  To detect the motion present, each 
resulting frame was subtracted from the average of all the 
frames [16] (Fig. 2). The sequence of frames resulting from 
the subtraction is defined by
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Next, the frames from { } ˆMi iN=1 were threshold to binary by 
the 30% of the maximum value of each frame. The result-

ing frames suffered from the presence of noise from single 
and small clusters of bright pixels present in the { } ˆMi iN=1 
sequence. This problem was addressed by first removing 
single pixels from the thresholded binary images and then 
keeping only the n largest groups of clusters of connected 
pixels, called structures hereafter. The removal of single 
pixels was implemented using the morphological operation 
clean of the bwmorph function and the extraction of the 
largest structure using the Area operation of the region-
props function, both part of Matlab’s Image Processing 
Toolbox. The sequential procedures of applying a thresh-
old on the frames and the retention of the n largest struc-
tures will be referred to hereafter as image operator ℑ. The 
ℑ operator takes two arguments: X, which can be a frame 
or sequence of frames, and n, which is the number of larg-
est structures that will be extracted by the operator. The 
ℑ operator was applied on the { } ˆMi iN=1 sequence and the 
resulting binary frames were stored in the sequence { } ˆPi iN=1 
(Fig. 3), according to
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Each frame from the { } ˆPi iN=1 sequence holds a moving 
structure extracted from the corresponding B-mode frame; 
thus, if all the frames from the { } ˆPi iN=1 sequence are added 
together, a map of the motion present in the whole B-
mode loop can be produced. The result was a matrix made 
up of integer-value elements; each element in this matrix 
was associated with the amount of motion present at the 
corresponding pixel coordinate in the whole of the B-mode 
loop. This matrix was called the motion information ma-
trix (MIM) (Fig. 4) and was calculated using

Fig. 2. Subtraction of a frame from the average of the {ˆ} ˆI i iN=1 sequence. Note the relative increase of brightness of the diaphragm in the resulting 
frame compared with the original frame of the {ˆ} ˆI i iN=1 sequence.

Fig. 1. Example of the changes of the size, location, and shape of a liver lesion, in a dynamic contrast-enhanced ultrasound (DCEUS) loop, at three 
different time instances. These changes are mainly attributed to respiratory motion.
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	 MIM = =∑{ } .ˆPi iN 1 	 (3)

2) Establish Breathing Cycle to be Extracted: As previ-
ously mentioned, the user must define the trigger frame 
before the ARG procedure begins. This frame defines the 
breathing cycle phase that was extracted by the ARG al-
gorithm. First, the trigger frame was subtracted from the 
average of the uncompressed (without the reduction in the 
resolution)/undownsampled B-mode loop:

	 M I N I i iNtrigger trigger= − =∑1
1{ } .	 (4)

The ℑ image processing operator was then applied to the 
Mtrigger frame according to

	 P Mtrigger trigger= ℑ〈 〉, .5 	 (5)

The MIM was resized to the original B-mode loop frame 
size using bicubic interpolation. The Ptrigger frame’s struc-
tures were overlaid over the MIM, and the mean intensity 
MIM value was calculated within each structure (Fig. 5). 
These values were stored in the { }S iM =1

5  sequence, where 
the index i corresponds to each extracted structure.

The { }S iM =1
5  sequence holds values of the amount of 

motion associated with each structure. This motion or 
change in the grayscale values of the B-mode loop frames 
could be due to respiration, cardiac motion, contrast agent 
presence, or any other change in the gray scale values of 
the B-mode loop through time.

In the interest of establishing whether the motion as-
sociated with each structure can be attributed to respira-
tion, the mean grayscale intensity values for each frame 
of the B-mode loop within a square measuring 30 × 30 
pixels was calculated. The size of the square was selected 
by considering two competing factors: 1) the standard er-
ror of the mean of the grayscale intensity values decreases 
with the size of the square; and 2) a very large square 
would fail to detect motion from small moving structures. 
Based on these two factors, a 30 × 30 square is optimal. 
The center of the square was placed at the center of mass 
of each structure of the Ptrigger frame. Each structure on 
the Ptrigger frame was identified by a specific index number 
assigned using the bwlabel function and the center of mass 
of each structure was calculated using the Centroid op-
eration of the regionprops function, both part of Matlab’s 
Image Processing Toolbox. This operation returned the 
time–intensity curve (TIC) associated with each extracted 
structure from the trigger frame. A square was used to 
extract the TIC, rather than using each structure as a 
binary mask, to reduce calculation time by approximately 
a factor of three. The next step was to calculate the Fou-
rier transform (FT) of each TIC so its frequency contents 
could be analyzed (Fig. 6).

A metric was needed to quantify the presence the respi-
ratory motion associated with each structure extracted 
from the trigger frame; these metric values were stored in 
the { }S iF =1

5  sequence. { }S iF =1
5  values were calculated as the 

area of the frequency spectrum between 0.1 and 0.5 Hz 
divided by the sum of the area from 0 to 0.1 Hz and the 
area between 0.5 to 1 Hz:

Fig. 3. Extraction of the largest moving structure from the { } ˆMi iN=1 sequence: (a) threshold image to binary by the 30% of the maximum pixel value, 
(b) remove single pixels, and (c) keep only first largest structure.

Fig. 4. Example motion information matrix (MIM). Observe the two 
main areas in which motion occurs. The dominant structure producing 
motion is the diaphragm. Note that the values shown have been log-
compressed to make the data easier to visualize.

Fig. 5. Moving structures extracted from the trigger frame overlaid over 
the motion information matrix (MIM). The structures are labeled for 
reference purposes.
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The rationale for (6) is that the area between 0.1 and 
0.5 Hz represents contributions to the frequency spectrum 
by respiration. The 0 to 0.1 Hz range represents contribu-
tions from slowly changing events, such as the change of 
grayscale values caused by the flow of microbubbles, and 
the 0.5 to1 Hz frequency range represents sources of noise 
or physiological motion other than respiration present in 
the TIC curve. Thus, from (6), it can be observed that the 
values stored in { }S iF =1

5  increase as respiratory motion 
presence increases and undesired change in grayscale val-
ues in the B-mode loop decreases.

Another metric that was recorded was whether the 
maximum value of the amplitude of the frequency spec-
trum lay within the respiration frequency range or not. 
This is a binary metric, stored in the { }S iB =1

5  sequence, 
and it takes the values of either 0 or 1.

The combined metric, stored in the { }S i=1
5  sequence, is 

defined as
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Eq. (7) holds unless a structure receives an SB of 0, then 
the corresponding S metric also receives a value of 0. If all 
the values { }S i=1

5  were given a zero value, then the { }S i=1
5  

sequence reverted back to its original values before the 
consideration of SB. In Table I, example { } ,S iM =1

5  { } ,S iF =1
5  

{ } ,S iB =1
5  and { }S i=1

5  values are shown for the structures in 
Fig. 5.

The TIC corresponding to the structure that receives 
the highest { }S i=1

5  score value was extracted again, this 
time using the structure as a binary mask applied on the 
B-mode loop. This was done to ensure maximum quality 
for the next step of the ARG procedure.

3) Final Step of ARG Procedure: The final step of the 
ARG procedure involves finding the location of the peaks 

and troughs of the TIC of the structure that receives the 
highest S score. Peaks are indicative of the presence of a 
structure on the position it occupied on the trigger frame, 
whereas troughs indicate the absence of the structure from 
its position on the trigger frame. To locate the peaks of 
the TIC, the approximate time between the peaks of the 
TIC was calculated using the frequency spectrum. By lo-
cating the frequency at which the maximum amplitude 
occurs within the respiratory range (0.1 to 0.5 Hz), fmax, 
the time between the peaks was approximated as Tmax 
= ( fmax)−1. The peaks were then located based on their 
separation being no less than Tmax/2; this allows for flex-
ibility because patient respiration frequency can fluctuate 
during examination. The location of the peaks was imple-
mented by setting the parameter MINPEAKDISTANCE 
of Matlab’s Signal Processing Toolbox findpeaks function 
to Tmax/2.

Once the peaks of the TIC were located, a piecewise 
cubic Hermite interpolating polynomial (pchip) was fitted 
on the peaks. The TIC was inverted and the same proce-
dure was repeated to locate the troughs and fit a pchip on 
the troughs; thus, the envelope of the TIC was calculated. 
A threshold of 40% was then applied on the envelope of 
the signal and only frames that were above this threshold 
were accepted, the rest were rejected. The 40% value was 
established after considering the robustness of the fit of 
the lognormal model onto the data and at the same time 
optimizing the goodness of fit of the model. The frames 
that were accepted made up the ARG loop and were, 
within a threshold, at the same breathing cycle phase as 
the trigger frame (Fig. 7).The whole ARG algorithm is 
laid out in the flowchart shown in Fig. 8.

B. Imaging Protocol

Eighteen (18) patients (7 female, 11 male) with liver 
metastasis were imaged. Approval for the scanning was 
obtained by the ethics review board of our hospital. The 
procedure was fully explained to all participating patients 
and informed consent was obtained.

All imaging was performed with a Philips iU22 scanner 
(Philips Medical Systems, Bothell, WA) using the C5-1 
imaging probe. The imaging frequency was 1.7 MHz, the 
pulsing imaging sequence used was power modulation 
(PM) with a mechanical index (MI) of less than 0.06, and 
the frame rate varied between 7 and 10 Hz. The acqui-
sition mode was dual-contrast imaging and 2-min loops 
were acquired. During the acquisition, the focus was set 

Fig. 6. The Fourier transform of the time–intensity curve (TIC) extract-
ed from structure labeled 4 in Fig. 5. The respiration cycle bandwidth is 
denoted with the dashed vertical lines.

TABLE I. Example of Scores Received by Various  
Structures Shown in Fig. 5. 

Structure 
index SM SF SB S

1 2.27 0.89 0 0.00
2 5.68 0.85 0 0.00
3 1.40 1.04 0 0.00
4 24.25 1.65 1 0.90
5 8.61 2.21 1 0.61



christofides et al.: automatic respiratory gating for contrast ultrasound evaluation of liver lesions 29

well below the depth of the lesion to ensure uniform pres-
sure field. The time gain compensation (TGC) gain was 
adjusted in such a way that it was uniform across depth 
and avoided signal saturation. Before the arrival of the 
contrast agent, there was a hint of uniform noise in the 
image as an assurance that the TGC gain was at the 
threshold of detection.

A 2.4-mL bolus of Sonovue (Bracco s.p.a., Milan, Italy) 
was injected. The radiologist acquiring the loops main-
tained a constant imaging plane by observing the tissue 
side of the acquisition.

C. Quantification Approach

The patient DICOM loops acquired with the Philips 
iU22 scanner were transferred to a workstation running 
the commercial quantification software QLAB (v. 8.1, 
Philips Medical Systems, Bothell, WA). An ROI was 
manually drawn on the trigger frame of the DCEUS loop 
encompassing the lesion (Fig. 9). Both the arterial and 
late portal phases of the DCEUS loop were used for the 
accurate drawing of the ROI [4].

Time–intensity curves from linearized image data were 
extracted using the QLAB software and saved to a text 
file. The B-mode loop image data, the trigger frame index, 
and the frame rate of the acquisition were also saved. This 
information was passed on to the Matlab implementation 
of the ARG algorithm. After processing by the ARG algo-
rithm, a new lesion TIC was produced.

D. Data Analysis

To assess the effectiveness of the ARG algorithm, both 
the TICs extracted with and without ARG processing 
were fitted on a lognormal indicator dilution model [8]. 
The goodness of fit of the data to the model was estab-
lished using the coefficient of determination (R2) and the 
root mean square error (RMSE), shown in (8) and (9), 
respectively,

Fig. 7. Gated time–intensity curve (TIC) extracted from structure 4, 
shown in Fig. 5.

Fig. 8. Flowchart of the automatic respiratory gating (ARG) algorithm.
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where yi are the linear intensity data points, fi are the cor-
responding points from the lognormal model fit, y  is the 
mean value of the yi points, and n is the number of data 
points. An example of such an analysis is shown in Fig. 10.

To arrive at useful conclusions, the data were visualized 
as boxplots. The limits of the boxes are the 25% (Q1) and 
75% (Q3) quartiles and the middle of the box indicates the 
median of the data. The lower limit of the whiskers is FL 
= Q1 − [1.5 × (Q3 − Q1)] and the upper limit of the whis-
kers is FU = Q3 + [1.5 × (Q3 − Q1)]. All data that are 
outside FL and FU are considered outliers. The boxplots 
have notches indicating 95% confidence intervals for the 
median, the limits of which are calculated as median ± 
1.57 × ( ) ,Q Q N3 1− /  where N is the number of samples.

Further to the boxplots of the data, one-tail paired t-
tests with unequal variances were performed using the R 
programming language [17] and the pwr package [18] was 
used to calculate the power of the t-tests performed.

III. Results

The results of the t-test performed on the R2 with and 
without ARG processing show a p-value less than 0.05 
with a t-test power of 1.00. A p-value of less than 0.05 is 
also calculated for the RMSE data with a t-test power of 
greater than 0.93. The p-values calculated and the powers 
of the tests allow for confident conclusions to be drawn 
from the analysis.

In Fig. 11 boxplots of the R2 and RMSE values of the 
lognormal model fits are plotted with and without ARG. 
From Fig. 11(a), it can be seen that the R2 95% confi-
dence interval notches on the boxplots of with and with-
out ARG processing are not overlapping. This is not the 
case, however, with the RMSE boxplot 95% confidence 
interval notches.

It should also be noted that the ARG algorithm, as im-
plemented in Matlab 2007b, had a mean run time of 0.87 
± 0.10 (standard deviation) seconds per 100 frames on an 
Intel E8400 (Intel Corp., Santa Clara, CA) at 3 GHz with 
2 GB of RAM. These runs times are faster than those pre-
viously published in the literature [11], [12], [15].

Fig. 9. Region of interest (ROI) drawn encompassing lesion on trig-
ger frame of the dynamic contrast-enhanced ultrasound (DCEUS) loop, 
shown here in late portal phase. The mean linear intensity DCEUS val-
ues are extracted from within this ROI.

Fig. 10. Mean linear intensity data from a region of interest (ROI) around 
a lesion with and without automatic respiratory gating (ARG), includ-
ing the fits on the lognormal indicator dilution model. In this example, 
the R2 of the fit with and without ARG are 0.89 and 0.37, respectively.

Fig. 11. (a) Boxplots of the R2 values and (b) boxplots of the root mean square error (RMSE) for the model fit of the clinical cases analyzed with 
and without automatic respiratory gating (ARG). The notches on the boxplots are the 95% confidence levels of the median. The p-values and the 
power at 95% confidence level of t-tests performed are also included.
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IV. Discussion

From Fig. 11, it is evident both from the notches on the 
boxplots and the t-test results that the R2 is indeed im-
proved with the use of ARG, within a 95% confidence in-
terval. However regarding the RMSE, although the t-test 
arrives at the conclusion that by using ARG the RMSE 
is significantly lower than without using ARG, there is an 
overlap of 1.2 RMSE units in the 95% confidence interval 
notches of the boxplots.

This mismatch is believed to be caused by the two out-
lier points seen clearly in Fig. 11(a) that have an R2 value, 
without the use ARG, of more than 0.8. In Fig. 12, the 
boxplots are redrawn, this time omitting the two outlier 
cases; note that the statistical power of the t-test on the 
RMSE data has increased, although marginally. Also note 
that the notches of the boxplots, in this case, do not over-
lap either for the R2 or RMSE boxplots. It is believed 
that certain patients’ data do not suffer from respiratory 
motion as much as others even though, of course, there is 
respiratory motion present.

Another important assumption underlying this work is 
that a better fit of the data to the model suggests more 
accurate results on the hemodynamics of the lesion. This 
assumption considers respiratory motion as noise added 
to the data which, if removed, will provide more accurate 
results. However, it is very difficult to refer to “more ac-
curate results” when the real perfusion of the lesion is 
unknown.

In addition to significantly increasing the goodness 
of fit of the lesion linear intensity data to the lognormal 
indicator dilution model, ARG results in effective frame 
downsampling by eliminating frames that are not use-
ful for quantitative or qualitative evaluation. This frame 
downsampling makes the evaluation of the image loop 
faster by reducing the time required to calculate the fit 
of an indicator dilution model to the data, in the qualita-
tive evaluation of the loop, and in parametric imaging 
approaches. The rejection of frames that are out of phase 
with the presence of the lesion on the imaging plane can 
also reduce the processing time for motion-compensation 
algorithms that use computing-intensive image processing 
techniques such as image registration [13]–[15].

For the goals of the current study, only a single phase of 
the breathing cycle was extracted by the ARG algorithm. 
However, there are clinical situations in which multiple 
breathing cycle phases must be extracted. An example of 
such a clinical situation is the presence of multiple lesions 
that cannot be captured on a single imaging plane. This 
multiphase extraction can be achieved using the ARG al-
gorithm and modifying the gating of the lesion’s TIC (Fig. 
7) so that the signal envelope of the TIC is segmented into 
several parts, each representing a different breathing cycle 
phase.

This work concentrated on DCEUS of liver lesions but 
it should be noted that the ARG algorithm can be imple-
mented in other DCEUS studies, such as the evaluation of 
blood flow in the hepatic artery and portal vein [19], [20]. 
Moreover, the ARG algorithm can also be used in conven-
tional B-mode imaging to help with qualitative evaluation 
of video loops.

The novel algorithm presented addresses limitations of 
computational methods for compensation of respiratory 
motion found in the literature, such as the ability to select 
any breathing cycle phase desired by the clinician instead 
of extracting the end phases of the breathing cycle [11], 
[12]. The only user input required by the ARG algorithm 
is the trigger frame, whereas other methods in the litera-
ture require the user to draw ROIs on frames to perform 
rigid registration [13]–[15], a requirement that has the po-
tential to introduce time delays in the clinical workflow.

Finally, it should be noted that the ARG algorithm 
cannot be applied in cases in which there was an acci-
dental movement (by either the operator or the patient) 
that changed the image plane, unless the original image 
plane is recovered later in the loop. In such a case, the 
ARG algorithm will eliminate all motion frames acquired 
after the change of the imaging plane. Empirically, the 
minimum number of frames needed to perform a robust fit 
on the model lies between 100 and 150 frames for a 2-min 
acquisition.

V. Conclusion

This study presents an ARG algorithm that can im-
prove both the qualitative and quantitative analysis of 

Fig. 12. (a) Boxplots of the R2 values and (b) boxplots of the root mean square error (RMSE) for the model fit of the clinical cases analyzed with 
and without ARG, not including the outlier cases. The notches on the boxplots are 95% confidence levels around the median. The p-values and the 
power at 95% confidence level of t-tests performed are also included.
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DCEUS loops. The ARG algorithm requires only the 
selection of the trigger frame that defines the breathing 
cycle phase to be extracted and performs all other tasks 
automatically. The implementation of such algorithm is 
possible on any diagnostic ultrasound system that has 
a dual-contrast imaging mode. Furthermore, the patient 
is not required to alter his/her breathing, allowing for a 
comfortable examination. The effectiveness of the ARG 
algorithm in removing respiratory motion in a clinical set-
ting has been demonstrated by the results of this study. 
Finally, this algorithm is very fast; it can remove respira-
tory motion from a 1000-frame loop in 8 s.
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