Evaluation of Perfusion Quantification Methods with Ultrasound Contrast Agents in a Machine-Perfused Pig Liver

Bewertung der Methoden zur Quantifizierung der Perfusion mittels Ultraschallkontrastmittel bei maschineller Perfusion einer Schweineleber

Authors
M. Averkiou1, C. P. Keravnou2, M. L. Izamis2, E. Leen3

Affiliations
1 Bioengineering, University of Washington, Seattle, United States
2 Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
3 Hammersmith Hospital, Imperial College London, United Kingdom of Great Britain and Northern Ireland

Abstract

Purpose: To evaluate dynamic contrast-enhanced ultrasound (DCEUS) as a tool for measuring blood flow in the macro- and microcirculation of an ex-vivo machine-perfused pig liver and to confirm the ability of DCEUS to accurately detect induced flow rate changes so that it could then be used clinically for monitoring flow changes in liver tumors.

Materials and Methods: Bolus injections of contrast agents in the hepatic artery (HA) and portal vein (PV) were administered to 3 machine-perfused pig livers. Flow changes were induced by the pump of the machine perfusion system. The induced flow rates were of clinical relevance (150–400 ml/min for HA and 400–1400 ml/min for PV). Quantification parameters from time-intensity curves [rise time (RT), mean transit time (MTT), area under the curve (AUC) and peak intensity (PI)] were extracted in order to evaluate whether the induced flow changes were reflected in these parameters.

Results: A linear relationship between the image intensity and the microbubble concentration was confirmed first, while time parameters (RT and MMT) were found to be independent of concentration. The induced flow changes which propagated from the larger vessels to the parenchyma were reflected in the quantification parameters. Specifically, RT, MTT and AUC correlated with flow rate changes.

Conclusion: Machine-perfused pig liver is an excellent test bed for DCEUS quantification approaches for the study of the hepatic vascular networks. DCEUS quantification parameters (RT, MTT, and AUC) can measure relative flow changes of about 20% and above in the liver vasculature. DCEUS quantification is a promising tool for real-time monitoring of the vascular network of tumors.

Zusammenfassung

Schlussfolgerung: Die maschinelle Perfusion der Schweineleber ist ein hervorragendes Testsystem für den DCEUS-Quantifizierungsansatz bei der Untersuchung des Lebengefässsystems. Die DCEUS-Quantifizierungsparameter (RT, MTT und AUC) können die relativen Flussänderungen in etwa 20% und mehr im Gefäßsystem der...
Averkiou M et al. Evaluation of Perfusion...

Introduction

Ultrasound contrast agents (UCA) are microbubbles that due to their size (1 - 10 μm) stay strictly in the circulation. Dynamic contrast-enhanced ultrasound (DCEUS) utilizes nonlinear imaging techniques to enable real-time visualization of blood flow in the macro- and micro-circulation [1, 2], and has provided improvements in the detection and characterization of tumors and paved the way for the evaluation of tumor angiogenesis [3]. Beyond qualitative assessment and diagnosis in oncology, DCEUS may play a role in disease staging and therapy monitoring by offering quantitative evaluation of tissue, organ, and tumor perfusion [3–6]. Time-intensity curves (TICs) are obtained by placing a region of interest (ROI) on a contrast image. Depending on the protocol of contrast agent administration (bolus or constant infusion [3, 6]), different mathematical models [7] derived from the indicator dilution theory [8] can be fitted to TICs to analytically extract important DCEUS quantification parameters such as the rise time (RT), the mean transit time (MTT), peak intensity (PI) and the area under the TIC curve (AUC). The underlying hypothesis is that these quantification parameters are sensitive to changes in blood flow caused by tumor growth or anti-angiogenic therapies [4–6].

DCEUS quantification methods have been studied in-vitro using flow tissue phantoms, typically constructed from tubing of various sizes to facilitate flow [9–11]. In-vitro studies have, however, limited physiological relevance since they represent a single passage of contrast through simple tubing, thereby ignoring the dispersion of microbubbles through branching vessels, variable flow resistance, and variable flow states. Clinical trials have been performed [4, 12–16] in order to assess the ability of DCEUS quantification to predict patient response to drugs targeting angiogenesis. The extracted quantification parameters were correlated with the response evaluation criteria in solid tumors (RECIST) and overall survival, both currently used in clinics as the approved metrics for therapy evaluation [3, 6]. However, in addition to the difficulty measuring flow in the tumors due to their complex vasculature, other problems exist: lack of large and thorough reproducibility study [6, 17], conflicting views as to which quantification parameters best correlate with flow changes (AUC in [12, 15, 16], RT in [4] and PI in [14]), and variations in machine settings between sessions [6, 18, 19]. In a review article by a group of experts in the field [6], it is clearly stated that DCEUS quantification is still far from consensus and clinical use. In a guidelines article [3] the variations between quantification software are pointed out and the reproducibility is described as "acceptable" but further investigation is needed.

Recently, Izamis et al. [20] developed and evaluated a sub-normothermic human-sized machine perfusion system suitable to preserve slaughterhouse pig livers. They showed with biochemical and hemodynamic measurements and DCEUS imaging that the developed model is a simple, cost-effective approach for stable, ex-vivo whole organ preservation. To overcome the limitations of DCEUS quantification listed above, and to avoid costly and complex in-vivo animal experiments and ethical issues in clinical trials, we propose the use of the machine-perfused pig liver model as perfusion quantification development and validation test bed.

In the present study, machine-perfused pig livers were used to investigate bolus kinetics of contrast microbubbles in an environment which closely resembles in-vivo conditions. The effect of bubble concentration on bolus kinetics parameters was examined first. Then, various flow changes with clinical/physiological relevance were induced in the machine-perfused liver and were measured in the liver vasculature with DCEUS quantification. The quantification parameters (RT, MTT, PI, AUC) were evaluated for their ability to detect the induced flow changes in the liver vasculature. The accuracy, resolution, and limitations of DCEUS flow quantification were studied in an effort to understand its strengths and weaknesses when used clinically for real-time monitoring of the vascular network of tumors.

Materials and Methods

Indicator dilution theory

The wash-in and washout of contrast microbubbles in an ROI may be modeled by the indicator dilution theory [3, 8]. If the amount of indicator m in a bolus injection is known and the indicator concentration as a function of time c(t) is measured in an ROI, the volumetric blood flow (Q) and the blood volume (V) can be calculated in terms of AUC and MTT:

\[Q = m \cdot (AUC)^{-1} \]

\[V = Q \cdot MTT \]

where

\[AUC = \int c(t) \, dt \]

\[MTT = \frac{\int c(t) \, dt}{\int c(t) \, dt} \]

Microbubble concentration cannot be measured directly, thus the backscattered intensity I(t) is measured instead. Since intensity is linearly proportional to the concentration [9, 21], Eqs. (1) & (2) can be used to calculate Q and V from AUC and MTT. Here we also note that the rise time (RT) is linearly related to MTT (see Eq. (10) in the study by Strouthos et al. [7]) and hence to flow rate.

Ex-vivo machine-perfused livers

The studies were approved by the Cyprus National Bioethics Committee and the National Veterinary Services. Three healthy porcine livers were procured from a local abattoir. Details on liver procurement and the perfusion system can be found elsewhere [20]. The organs were then stored on ice and transported to the laboratory (time of static cold storage was \(\leq 1 \) hour), where they were connected to the machine perfusion system (Fig. 1a) and sustained for up to 3 hours.

Flow rate (produced with a peristaltic pump) was typically set to 800 ml/min for the portal vein (PV) and 400 ml/min for the hepatic artery (HA). The selected flow rates ensured that PV pressure was \(\leq 10 \) cmH\(_2\)O and HA pressure was between 60 and 100 cmH\(_2\)O, values similar to those of humans. Hepatic stability was ascertained with half-hour interval measurements of bile production, oxygen consumption, and sustained vascular perfusion. The perfusion was monitored via DCEUS imaging (Fig. 2). Typical images of a bolus injection administered to the liver are shown in Fig. 2.
Imaging
L12 – 5 and L9 – 3 linear array probes of an iU22 diagnostic ultrasound scanner (Phillips Medical Systems, Bothell, WA, USA) were used to image the livers. First the livers were evaluated for the presence of any anatomical abnormalities and air using the L12 – 5 linear array in B-mode imaging and in a contrast mode to ensure uniform perfusion across the whole liver. The L9 – 3 probe was held fixed in a position using a mechanical arm (Fig. 1b) to monitor the perfusion of that specific region and record contrast image loops (Fig. 2). A contrast mode with the following parameters was used: power modulation, frequency = 3.1 MHz, MI = 0.05, focus of 3.5 cm, frame rate = 12 Hz, persistence off, and compression maximum (50 dB). The 2D gain was continuously adjusted and recorded when the intensity-concentration relationship was under investigation, to avoid signal saturation which would result in inaccuracies in the quantification parameters [21]. The image plane was chosen such that it contained a cross-sectional view of each input vessel (PV and HA), a branch of the HV, and well-perfused parenchyma (Fig. 3a–c).

Flow protocol
Two specific tasks were studied in each of the 3 livers:
1. The effect of bubble concentration on quantification parameters (RT, MTT, AUC, PI) under constant flow.
2. The effect of flow changes in the HA and PV on bolus quantification parameters measured on the macro-circulation, the micro-circulation in the parenchyma, and the HV vascular tree. In task (2), 3 different flow changes were considered as outlined in Table 1. Flow Changes A allowed for changes in both the HA and the PV while the overall total flow remained constant. In Flow Changes B, the PV was held constant while the HA was varied and thus the overall total flow was varied. Similarly in Flow Changes C, the HA was held constant while the PV was varied and thus the overall total flow was varied.

For task (1), a total of 8 microbubble solutions were prepared using the following dilutions (mL added in 1 L): 0.1665, 0.0908, 0.0196, 0.0099, 0.0040, 0.0020, 0.0010, and 0.0005. The concentrations that were used cover a clinically relevant wide range. Since the bolus is going directly to the liver, it is diluted in a lot less fluid compared to an intravenous bolus injection in vivo. We have assumed that while for a patient the bolus is spread in 5 L of blood, the bolus is diluted in 0.5 – 1 L of total fluid (in the actual liver) in the machine-perfused liver. Thus, the highest dilution (0.1665 ml in 0.5 – 1 L) is not far from the clinical dose (1 ml in 5 L). The measurement time was kept below 1 hour to avoid bubble deterioration. The bolus volume was 1 ml injected through a rubber stop in either the PV or the HA. One-minute video loops were collected for every...
jection. Between injections, a C5–1 curve linear array probe was used to destroy any remaining microbubbles in the system. In order to study the ability of DCEUS quantification to detect flow changes in the liver vasculature, flow changes at the PV or the HA or both were induced via the flow regulators. These clinically relevant flow rates (●▶Table 1) mimic in a simplified and controlled manner flow changes that might be caused during the progression or regression of tumor angiogenesis. Bolus injections of 1 ml and contrast concentration of \(C = 0.1 \text{‰} \) were used and 1-minute loops were collected. A new vial of contrast agent was used for the whole set of flow variation measurements. The experiments were repeated in a total of 3 livers and results are shown as the mean ± standard deviation. In order to combine parameters from different livers, which also meant different ROIs and different vasculature, the extracted quantification parameters were normalized with respect to the maximum value of each parameter in every liver.

Contrast agent

CUSTOM MADE MICROBUBBLES (DEPARTMENT OF PHARMACEUTICS, UNIVERSITY OF GENT, GHENT, BELGIUM), very similar to Definity (which was not available in our country), were used in this work. Microbubbles were prepared as described in [22]. The average size of the microbubbles was 2.5 µm and they contained Perfluorobutane gas (PFB, \(C_4F_{10} \)). The concentration of the microbubbles was \(3 \times 8 \times 10^8 \) microbubbles/mL.

Image quantification

QLAB software (Philips Medical Systems, Bothell, WA) was used to form TICs from the DICOM files by placing an ROI on the image (●▶Fig. 3a–c). TICs of both input vessels (PV or HA), the output vessel (HV) and the parenchyma (Pa) were extracted from QLAB (●▶Fig. 3d, solid lines) and were fitted to an LDRW model (●▶Fig. 3d, dashed lines). DCEUS quantification parameters, \(RT \), \(MTT \), \(AUC \) and \(PI \), were extracted from the fitted model.

Results

The effect of bubble concentration on quantification parameters under constant flow is shown in (●▶Fig. 4a–f, g–l) for injections at the PV and HA, respectively, in a semi-log scale to better accommodate the large range of concentrations used. It is observed that \(RT \) remains constant with increasing concentration both in larger vessels of the PV, HA and HV and micro-circulation (Pa) (●▶Fig. 4a–c, g–l). This result was expected as the
Flow rate was kept constant in these measurements [see Eq. (2)]. However, it is observed that PI increases linearly with increasing concentration (Fig. 4d–f, j–l) as a function of bubble concentration in semi-log scale after a PV and an HA bolus injection, respectively. PV injection is shown as a blue line and HA injections are shown as a red line. A straight line was fitted in the data to make it easier for the reader to appreciate the linear relationship in a semi-log scale. The quality of fit is excellent with $0.72 < R^2 < 0.96$. The deviations of PI from the linear fit are attributed to the increased acoustic shadowing (higher attenuation at higher microbubble concentrations) [21]. Thus, the two higher concentrations were omitted from the plots.

Fig. 4 a–c Normalized rise time a–c, g–l and normalized peak intensity d–f, j–l as a function of bubble concentration in semi-log scale after a PV and an HA bolus injection, respectively. PV injection is shown as a blue line and HA injections are shown as a red line. a, d, g, j ROI on a PV or on an HA main vessel, b, e, h, k ROI on an HV main vessel, c, f, i, l ROI on the parenchyma. A straight line (y = constant for RT and y = x for PI) was fitted in the data and it is shown in dashed lines.

Fig. 5 shows the normalized RT as a function of flow rate for the case where the total flow rate was kept constant at 1200 ml/min (Table 1, Flow Changes A). It is observed that the normalized RT decreases when the flow rate increases in both large vessels, the HA (Fig. 5a) and the PV (Fig. 5d). However, the RT change in HA is more pronounced than in the PV because the induced flow rate change in the HA was greater (from 150 to 400 ml/min, 2.7x) than in the PV (from 800 to 1050 ml/min, 1.3x). The measurements in Fig. 5a, d are fitted with 1/Q curve and shown as a dashed line, with $R^2 = 0.93$ and $R^2 = 0.90$, respectively. In the HV (Fig. 5b, e) it is observed that RT does not follow a specific trend with increasing flow rate in both arterial and venous injections. This result is attributed to the fact that the HV reflects the summation of PV and HA flows, which is kept constant at 1200 ml/min in this case. For the same reason, in the parenchyma after injection in the HA (Fig. 5c) and the PV (Fig. 5f), despite the induced flow rate change, the RT still stays constant. The case where flow rate changes were induced only in the HA tree while the flow rate of the PV vasculature was maintained constant (Table 1, Flow Changes B) is shown in Fig. 6a–c. It is observed that these flow rate changes are detected in the input vessel as RT decreases with increasing flow rate (Fig. 6a), but not in the HV vessel, Fig. 6b, or the microcirculation in the par-
enchyma, Fig. 6c, as no clear trends or significant changes of RT with increasing flow rate are observed. Fig. 6d–f show RT for the case where flow rate changes were induced in the PV while the HA flow rate was kept constant (Table 1, Flow Changes C). It is observed that RT decreases with increasing flow and the induced flow rate changes are reflected in the RT of both the input (Fig. 6d) and the outflow vessel (Fig. 6e) and also can be detected in the micro-vasculature (Fig. 6f). Since the outflow vessel (HV) reflects the summation of PV and HA flows and taking into account that approximately 75% of the total flow is supplied by the PV, the outflow is only minimally affected by the changes in the arterial vascular tree when PV flow is kept constant (Fig. 6b). Thus, the changes induced in the HA (Table 1, Flow Changes B) cannot be measured from the quantification parameters extracted from the TICs.

Fig. 7 shows AUC as a function of flow rate for Flow Changes B (Fig. 7a–c) and Flow Changes C (Fig. 7d–f, Table 1). The trends in Fig. 7 are similar to those of Fig. 6. Specifically in Fig. 7a–c where flow rate changes were induced only in the HA, the flow changes could be detected only in the input vessel (Fig. 7a). AUC decreases with increasing flow rate according to Eq. (2). In Fig. 7d–f where flow rate changes were induced only...
in the PV, it is observed that \(AUC \) decreases with increasing flow both in the input (Fig. 7 d) and the outflow vessel (Fig. 7e), as well as the parenchyma (Fig. 7f).

Finally, Fig. 8a, b show \(PI \) as a function of flow rate for Flow Changes B (Table 1) and Flow Changes C (Table 1), respectively. It is observed that \(PI \) is relatively constant with flow rate changes for both the input vessels (HA, Fig. 8a and PV, Fig. 8b). \(PI \) is expected to change when the vascular density changes which did not change for the healthy livers studied here.

Discussion

DCEUS has the potential to measure relative flow changes in the microcirculation and this opens the possibility for its use as an imaging biomarker of tumor response to therapy. Despite its existence for over 10 years and a number of published works, there are still some basic questions and issues such as the relationship of the bolus dynamics quantification parameters with flow, its accuracy and resolution, reproducibility, and its limitations. In trying to address some of the issues above, machine-perfused pig liver presents itself as an ideal test bed due to its clinical relevance. One small drawback is that there are no tumor models for such a system, but in-depth understanding of the DCEUS ability to measure flow in the microcirculation in a normal functioning liver is of great importance.

One problem we have encountered is that certain microbubbles may be sticking in the pig liver microvasculature [20]. Sonovue (Bracco S.P.A., Milan, Italy) was also used (results not shown here) and very similar trends were observed with the exception that some sticking to the microcirculation was observed. The microbubbles currently in clinical use do not have any similar “sticking” issues reported in humans. In machine perfusion models the absence of lungs to filter larger microbubbles presents a small problem as larger microbubbles circulate in the liver. How-
ever, according to the principles of indicator dilution, the size of the microbubbles does not directly affect flow measurements. The intensity-bubble concentration relationship under low MI conditions was studied for the first time in a clinically relevant model. A linear relationship was confirmed for up to a certain concentration at which acoustic shadowing begins. All errors from signal saturation in the ultrasound scanner were removed by a previously published method [21] of continuous gain adjustment in both the scanner and the quantification software. RT and MTT are not affected by bubble concentration changes. This is an important result for clinical studies as measurements of flow rates in vivo from RT and MTT will not be affected by variation in the concentrations between injections. However, large bubble concentrations should be avoided for accurate quantification of flow.

We have induced a variety of flow changes by virtue of adjusting the pump controlling the flow in both the HA and the PV of the perfused livers and tried to measure the induced changes in the larger vessels of those vascular trees, the HV, and the liver parenchyma. One advantage of the ex vivo machine perfusion model is that injections to either the HA or the PV are administered and thus those specific vascular networks are studied independently.

In the first set of flow changes (●▶ Fig. 6a, d) where the overall flow rate was held constant while the HA and the PV were changing proportionally, the change on the specific input vessel (HA or PV) was clearly reflected in terms of RT changes. Similar trends were observed with the other input vessels (HA or PV) (●▶ Fig. 6b, c, e–f). We note here that this type of flow change is perhaps the closest to liver tumors in vivo. Our findings suggest that tumor flow changes will best be recorded in the larger arterial vessels and not the parenchyma.

When the total liver flow was allowed to change by changing either the HA flow while keeping the PV constant and vice versa (●▶ Table 1, Flow Changes B and C), we were able to easily measure these changes in the input vessels (HA or PV) (●▶ Fig. 6a, d). In the outflow vessel (HV) and the parenchyma, we could detect changes in the RT only when the PV flow rate was changed (●▶ Fig. 6e, f). By considering the overall percent changes in each case, we can deduce the flow resolution of our method. When the HA was changing (●▶ Table 1, Flow Changes B), the overall flow change was 4% to 18% (50/1200 to 250/1400). It is observed that DCEUS quantification may not detect changes in this range in the parenchyma and this may be the lower bound. When the PV was changing (●▶ Table 1, Flow Changes C), the overall flow change was 25% to 63% (200/800 to 1000/1600). In this range of flow changes, DCEUS quantification can detect those changes down to the microvascular level (parenchyma). From these two sets of measurements, we can deduce that DCEUS can effectively measure flow changes when they are about 20% and above. During the progression or regression of angiogenesis, the resulting flow changes are typically greater than 20% [23] and thus it would be feasible to measure them with the present technique. Both RT and AUC are inversely proportional to the flow rate according to Eq. (2) & (3) and that was confirmed with our results (●▶ Fig. 6–7). In the literature, there is some confusion as to which parameter to use and different investigators suggested using either time (RT and MTT) or AUC for extracting flow information. Their choice was often based on the ability of the ultrasound scanner to accurately measure them or on the statistical correlation of those parameters with other established markers in their experiments. Specifically, single-center studies in patients with metastatic renal carcinoma [16] and hepatocellular carcinoma [15] showed that AUC was consistently correlated with RECIST criteria. A multi-center study performed in patients with different types of solid tumors [12] enhanced previous results and showed that AUC had the most significant association among other quantification parameters with overall survival.

In another clinical trial, a correlation of RT with early tumor response to therapy in patients undergoing a combination of antiangiogenic and cytotoxic treatment for colorectal metastasis in the liver was demonstrated [4]. Our work here shows that RT, MTT and AUC are all related to flow. However, measurements performed in clinics may suffer from different sources of error [19]. Generally, intensity parameters (AUC and PI) are more error prone due to signal saturation, nonlinear propagation artifact [24], and acoustic shadowing.

Often dramatic changes in both the size and the microvascular flow of tumors take place during chemotherapy, and it becomes even more challenging to accurately measure those changes with 2D ultrasound due to the inhomogeneous nature of the tumor vasculature. However, our work here shows that it is possible to use DCEUS quantification to monitor those changes, and once 3D ultrasound technology (imaging and quantification) is clinically available DCEUS quantification will easily be adapted.

One area where DCEUS quantification can play a very important role is monitoring ultrasound-mediated drug delivery approaches like sonoporation [25]. The safety, bedside availability, and relatively low cost of ultrasound, combined with the ability to measure flow in the microcirculation make DCEUS quantification a valuable tool for real-time monitoring of therapeutic applications which target the vascular network of tumors. In addition, machine perfusion of human-sized livers combined with DCEUS quantification may play a pivotal role in the study of tumor ablative techniques such as radio frequency and microwave ablation, cryoablation, and irreversible electropropagation where not only the lesion formation may be closely monitored but also the changes in the microcirculation in an area around the ablation zone (penumbra).

In tumor perfusion monitoring where vascular changes are happening either as a result of tumor growth or as a response to chemotherapy, the arterial input to the tumor is changing, thus making it more difficult to accurately apply the techniques described. Changes due to the cardiac output of the patient as a result of possible cardiotoxicity of chemotherapy which also further influence the arterial input function also add to this effect. Thus, we have refrained from trying to estimate absolute blood flow rates and instead noted relative changes. In addition, estimation of PI relating to the vascular volume and vascular density, in combination with time parameters related to flow, would be important in those cases despite the fact that amplitude parameters (PI and AUC) are more prone to signal saturation and acoustic shadowing errors.
duced flow changes in the livers were detected both in the larger vessels (HA or PV) depending on where the injection was administered, and in the HV and the parenchyma. DCEUS quantification can detect relative flow changes greater than 20% everywhere in the liver vasculature.

Acknowledgement

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Project: DIDAKTOR/0311/78). Ine de Cock and Ine Lentacker from University of Ghent are gratefully acknowledged for microbubble preparation used in this work. We are also grateful to Kypros Stylianou for his invaluable technical assistance.

References

Averkiou M et al. Evaluation of Perfusion... Ultraschall in Med