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The self-demodulation of pulsed sound beams in a thermoviscous fluid is investigated 
experimentally and theoretically. Experiments were performed in glycerin at megahertz 
frequencies with amplitude- and frequency-modulated pulses. The theory is based on the 
Khokhlov-Zabolotskaya-Kuznetsov (KZK) nonlinear parabolic wave equation. Numerical 
results were obtained from an algorithm that solves the KZK equation in the time domain [Y.-S. 
Lee and M. F. Hamilton, Ultrasonics International 91 Conference Proceedings (Butterworth- 
Heinemann, Oxford, 1991 ), pp. 177-180]. A quasilinear analytic solution, which describes the 
main features of the waveform at all axial locations, is developed in the limit of strong 
absorption. Theory and experiment are in good agreement throughout the near- and far fields. 

PACS numbers: 43.25.Lj 

INTRODUCTION 

The term "self-demodulation," which was coined in 
the 1960s by Berktay, • refers to the nonlinear generation of 
a low-frequency signal by a pulsed, high-frequency sound 
beam. Berktay derived a far-field axial solution for the de- 
modulated waveform that is valid when the following con- 
ditions are satisfied: The amplitude modulation of the car- 
rier wave (i.e., the pulse envelope) varies slowly relative to 
the center frequency of the pulse; the absorption length at 
the center frequency does not exceed the Rayleigh distance 
at that frequency; and the process is weakly nonlinear (no 
shock formation). The demodulated waveform predicted 
by Berktay is proportional to the second derivative of the 
square of the pulse envelope function, and it was first con- 
firmed experimentally by Moffett et al. 2,3 Berktay's result is 
an extension of Westervelt's solution for the parametric 
array. 4 Limitations of Berktay's model, particularly with 
respect to the effects of absorption and pulse duration, are 
discussed by Froysa. 5 Although many papers have been 
written on the subject of self-demodulation (see Refs. 5 
and 6 for reviews of relevant literature), comparison of 
theory and experiment has been made only for the far-field 
axial waveform. 

One purpose of the present paper is to demonstrate 
that the Khokhlov-Zabolotskaya-Kuznetsov (KZK) par- 
abolic nonlinear wave equation 7 accurately describes the 
entire process of self-demodulation throughout the near 
field and into the far field, both on and off the axis of the 
beam. Numerical solutions of the KZK equation are ob- 
tained from a time-domain algorithm developed previously 
by two of the authors. 8 The numerical solutions are com- 
pared with results from experiments performed in glycerin 
at megahertz frequencies. Both amplitude- and frequency- 
modulated pulses are considered. 

Another purpose of the paper is to present a quasilin- 
ear analytic solution that describes the complete evolution 
of the axial waveform. The second-order solution for the 

demodulated waveform accounts for the amplitude modu- 

introduced by Gurbatov et al•, 9 and the effect of absorption 
as included by Cervenka and Alais. 6 The complete axial 
solution is obtained by combining the second-order solu- 
tion with the results developed by Froysa et al. •0 for the 
primary beam. Whereas the individual elements of the 
complete solution have been introduced previously by oth- 
ers, their combination provides a new result that is in ex- 
cellent agreement with the numerical solution 8 for weak 
nonlinearity (Gol'dberg numbers less than unity) and 
strong absorption (absorption lengths less than the Ray- 
leigh distance). 

I. GOVERNING EQUATION AND SOURCE CONDITION 

Our theoretical predictions are based on the KZK 
equation: ? 

a2p Co V•2p + • at-•' + _3 at'2 (]) az at' 2 ac o 2p0c 0 

where p is the sound pressure, z is the coordinate along the 
axis of the beam, V• 2 =a2/at 2 + r- • (a/ar), r is the trans- 
verse radial coordinate (the sound beam is assumed to be 
axisymmetric), t'=t-Z/Co is the retarded time, and Co is 
the sound speeit. The first term on the fight-hand side of 
Eq. ( 1 ) accounts for diffraction, the second term accounts 
for thermoviscous attenuation (• is the diffusivity of 
sound ]]), and the third term accounts for quadratic non- 
linearity of the fluid (B is the coefficient of nonlinearity and 
P0 is the ambient density of the fluid). 

The source is assumed to be a circular piston of radius 
a, for which the prescribed source condition is 

p=pof(t)H(a--r) at z=0, (2) 

where P0 is the characteristic source pressure, f(t) is the 
time dependence, and H is the unit step function defined by 
H(x) =0 for x <0 and H(x)= 1 for x•>0. Amplitude and 
frequency modulation of a carder wave at frequency o0 are 
taken into account by writing 
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f(t)=E(t)sin[coot+4(t) ], (3) 

where the envelope E(t) and phase •b (t) are slowly varying 
functions of time in comparison with sin COot. The instan- 
taneous angular frequency of the carrier wave is 

d& 
11(t) =coø+ d'•' (4) 

The source condition described by Eqs. (2) and (3) ap- 
plies to all numerical and analytical results presented be- 
low. 

II. NUMERICAL SOLUTION 

The numerical solution is based on a dimensionless, 
transformed, and integrated form of Eq. (1): 

f r c92p NP cgP cgP 1 (V•P)dr' +A •-•+ (1 +c) Or &r--4(1 +0') 2 --o, ' 
(5) 

The dimensionless variables are defined by the following 
transformation, which facilitates calculations in the far 
field: •2 

P= ( 1 + rr) (P/Po), a=Z/Zo, 

p= (r/a)/(1 +a), r=coot'- (r/a)2/(1 +a), 
where Zo=cooa2/2Co is the Rayleigh distance at a charac- 
teristic frequency coo. The following two parameters indi- 
cate the relative importance of the terms on the right-hand 
side of Eq. (5). 

A = a0z 0, N = Zo/•, 

where ao=Scog/2Co 3 is the thermoviscous attenuation coef- 
ficient and 2= poCo3/[3cooPo is the plane wave shock forma- 
tion distance, each at frequency coo. A useful auxiliary pa- 
rameter is the Gol'dberg number 

F = N/A = ( ao z--) - 1, 

which appears in the quasilinear solution developed in Sec. 
III. 

Equation (5) is solved numerically in the time domain 
via the algorithm described in Ref. 8. The pressure field 
P(p,a,r) is discretized in space and time, and Eq. (5) is 
integrated numerically term by term to advance the field 
through each incremental step from rr to a+ Aa. Specifi- 
cally, for a given pressure distribution in a plane at an 
arbitrary distance rr from the source plane, diffraction is 
taken into account by solving the equation 

OP 1 fr Oa--4( 1 +a) 2 (V•P)dr' (6) 
with implicit finite difference methods. The solution of Eq. 
(6), now in the plane at rr + Aa, is taken to be the new field 
back at a, and absorption is taken into account by solving 
the equation 

cgP c92p 

aa (7) 

again with implicit finite difference methods. The solution 
in the plane at a+ Aa now includes the effects of both 
diffraction and absorption. A third sweep from rr to rr + Aa 
includes nonlinearity by implementing the relation 

( P(p,a+ Aa, r)=P p,a,r+NP In 1 + 1 +a 
which is an exact solution of the equation 

, (8) 

cgP NP cgP 

&r--( 1 -+-a) Or' (9) 
The three successive sweeps over the incremental step Aa 
thus yield a solution in the plane at rr + Aa which contains 
the combined effects of diffraction, absorption, and nonlin- 
earity. 

The same procedure is repeated over each successive 
incremental step in the rr direction. Implicit backward fi- 
nite difference (IBFD) methods are used to solve Eqs. (6) 
and (7) for the first 100 steps, and Crank-Nicolson finite 
difference (CNFD) methods are used throughout the re- 
mainder of the field. Typical step sizes used to generate the 
numerical results in Sec. V were Art = 10- 3 X ( 1 + rr) 2 for 
the IBFD methods and Ac=3.5X10-3(1+c) 2 for the 
CNFD methods, with Ap_•0.03 and Ar•_0.2. The imple- 
mentation of the IBFD and CNFD methods with the in- 

dicated spatial step sizes is patterned after numerical algo- 
rithms for solving Fourier series expansions of Eq. (5), 
which are reviewed by Naze Tjotta et al. 13 Additional de- 
tails of the present algorithm will appear in a future paper. 

III. QUASILINEAR AXIAL SOLUTION 

As an alternative to the numerical solution described 

in the previous section, an analytic solution can be devel- 
oped for the axial field. The method of successive approx- 
imations is used to obtain a solution of the form 

P =P 1 -l-P2, (10) 

where P l and P2 are the primary and secondary pressure 
fields, respectively, which satisfy the following equations: 

a2pl Co 2 5 a3pl 
cgz 3t'-•- V;Pl-- 2c30 c•t '3 =0, ( 11 ) 

cgz r•t' ---•- V;P2-- 2c30 Ot '3 --2poCo 3 &,2 ß (12) 
Equations ( 10)-(12) shall be used to obtain a quasilinear 
solution for the complete axial waveform, subject to the 
source condition given by Eqs. (2) and (3). It is assumed 
that thermoviscous absorption terminates the nonlinear in- 
teraction region within the near field of the primary beam 
(A• > 1), and that finite-amplitude effects are relatively 
weak (F <• 1 ). 

As discussed by Froysa et al., 1ø Eq. ( 11 ) can be solved 
by performing a temporal convolution of the lossless solu- 
tion (obtained with/i=0) with the dissipation function 

D(z,t) = (c•/2rr6z)1/2 exp(--Co3t2/26z). ( 13 ) 
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For the source condition in Eq. (2), the axial solution thus 
becomes 

p•/po = [ f(t')- f(t'-a2/2Co z) ].D(z,t'), (14) 

where the asterisk indicates convolution with respect to t'. 
Because of the parabolic approximation inherent in the 
KZK equation, the validity of Eq. (14) is restricted at a 
given frequency to o to distances of order 14'i5 
z/a• > (tooa/co) 1/3. All measurements reported in Sec. V 
satisfy this condition. 

The convolution in Eq. (14) can be performed analyt- 
ically for E(t) a Gaussian envelope function, and for •b(t) 
a quadratic function of time [i.e., for which the instanta- 
neous frequency 12(t) varies linearly with time]. The ana- 
lytic result for the corresponding plane wave case, with 
•b=const (no frequency modulation), is discussed in Reft 
10. 

To construct a solution for P2, we begin with the main 
assumptions of Westervelt and Berktay, i.e., that absorp- 
tion terminates the nonlinear interaction within the near 

field of the primary beam (A •> 1 ). An exponentially atten- 
uated, collimated plane wave then provides a reasonable 
model for the virtual source distribution that generates the 
secondary pressure field. It is further assumed that the 
envelope E and phase modulation •b vary sufficiently slowly 
that thermoviscous absorption can be represented by expo- 
nential attenuation that acts locally according to the in- 
stantaneous frequency 12 of the cartier wave, 9 i.e., 

Pl (r,z,t') =po e-"( t')zE( t' )sin[ toot' + ok(t') ]H(a- r), 
(15) 

where 

a(t')= [fl(t')/too]2ao (16) 

is a time-dependent attenuation coefficient proportional to 
fl 2 . 

We now construct an asymptotic solution for P2 by 
first ignoring the effect of absorption on the demodulated 
waveform, and we set 5=0 in Eq. (12). The resulting 
lossless axial solution, designated by fi2, is given by the 
volume integral 

fi2 -- 2 pOCo 40t '2 

fO: fo• ( r'2 ) r' dr' dz' X P• r"z"t'--2Co(Z--Z') z--z' ' (17) 
Since the main contributions to the integral occur close to 
the source (z' <• a -1) and the beam is assumed to be per- 
fectly collimated (Pl =0 for r' > a), Eq. (17) reduces in the 
far field (i.e., z large in comparison with both a -1 and 
to2a:/2Co, where the latter quantity is the Rayleigh distance 
corresponding to radiation at a characteristic secondary 
frequency to:) to 

d2fofo fi2 • 2poC•Z d7 P• (r"z"t') r' dr' dz'. (18) 
The waveform described by the square of Eq. (15) con- 
tains localized energy spectra at frequencies to'to0 and 

to = 2to o because a (t'), E(t' ), and •b (t') are all slowly vary- 
ing functions of time in comparison with sin too t' . At dis- 
tances z>>a• 1, the nonlinearly generated components at 
frequencies to=2to o are far more strongly attenuated than 
the components at frequencies to<too- Retaining only the 
low-frequency components in the forcing function permits 
us to write 

p• = (p•/2)e -2a(t')zE2( t' )H(a-- r). ( 19 ) 
Substitution of Eq. (19) into Eq. (18) thus yields 

flp•a 2 d 2 E2(t') 
/•2•16p0c•zdt '2 a(t') ' (20) 

For •b=const (no frequency modulation) we have 
a=const, and Eq. (20) reduces to the result obtained by 
Berktay. 1 For E=const (no amplitude modulation), the 
result obtained by Gurbatov et aL 9 is recovered. 

The effect of attenuation on the demodulated wave- 

form is now taken into account. The nonlinear interaction 

region of radius a and length a-1 constitutes a reasonably 
compact volume directly in front of the transducer. Cer- 
venka and Alais 6 included the effect of attenuation as 
though the demodulated waveform were radiated directly 
by the transducer. Following the same approach, we in- 
clude attenuation by performing a temporal convolution of 
Eq. (20) with the dissipation function from linear theory: 

l•p•a2 ( d2 E2(t'))*D(z,t') (21) P2 '" 16poC•Z dt' 2 a ( t' ) ' 
A complete solution for the axial waveform can be 

obtained by combining the solutions for the primary and 
secondary fields. For A •> 1 and F <• 1, the amplitude of the 
secondary wave does not approach that of the primary 
wave until the demodulated waveform is far from the non- 

linear interaction region, where P2 is given by Eq. (21). 
Closer to (or within) the nonlinear interaction region [i.e., 
before Eq. (21 ) is valid], the primary wave Pl provides the 
main contribution to the total acoustic pressure p. We 
therefore substitute Eqs. (14) and (21 ) into Eq. (10) to 
obtain the complete quasilinear axial solution 

P f(t')--f t'-- 
Po 

l•po a2 d 2 E 2 ( t' ) 
+ 16poc•zdt '2 a(t') ,D(z,t'). (22) 

For comparison with the experimental and numerical re- 
sults presented below, it is convenient to rewrite Eq. (22) 
in terms of the dimensionless quantities introduced in Sec. 
II: 

Fd2(E(r)) 2 P f(r)--f(r--a-1)+•a•-• 1 +&k/dr Po 

exp(-r2/4Aa) 
* •/4•rA a ' (23) 

where r=toot' (because r=0), and the asterisk now indi- 
cates convolution with respect to r. To assess the relative 
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FIG. 1. Comparison of experiment and theory for the axial propagation of a 3.$-MHz pulse from tr=0.21 (first row) through tr= 1.15 (last row). The 
theoretical predictions are obtained from numerical solutions of Eq. ($) with tooT= $0•r, m= 5, A = 15, and N= 1.6 (F =0.11 ). Calculations based on 
Eq. (23) yield equally good agreement with experiment. Decibels indicate level relative to the corresponding source level. 

magnitude of the demodulated waveform, let E (t) = sin tOe t 
and •b=const. The resulting secondary pressure P-=P2 
contains the single frequency tO_--2tO e and has magnitude 

JP-/PoJ = (F/16tr) (tO_/tOO) 2 exp[- (tO_/tOo)2Atr]. 
This result describes an absorption-limited parametric 
array 4 that produces the "difference frequency" tO_--2tO e. 

IV. EXPERIMENT 

Experiments were performed in a small tank filled with 
glycerin. Glycerin was chosen because it provides suffi- 
ciently large absorption at megahertz primary frequencies 
to permit investigation of the entire process of self- 
demodulation within distances on the order of tens of cen- 

timeters. In order for accurate comparisons to be made 
with predictions based on the KZK equation, the attenu- 
ation coefficient must depend on the square of the fre- 
quency. A quadratic frequency dependence was confirmed 
experimentally to within 2%. However, the tendency of 
glycerin to absorb moisture from the air caused the atten- 
uation to vary slightly from day to day as a function of 
humidity (e.g., the attenuation at any given frequency 
would change by up to 10%, but the dependence on fre- 
quency remained quadratic). Nominal values for the 
density 16 and coefficient of nonlinearity 17 for glycerin are 
p0 = 1260 kg/m 3 and/•= 5.4, respectively. The value of the 
sound speed was found experimentally to be Co-- 1920 m/s. 

Our sound source was a Panametrics piezoelectric 
transducer with radius a =0.64 cm. The source was excited 

by signals produced with a LeCroy 9112 arbitrary function 
generator (50-MHz digitization rate, 12-bit amplitude res- 
olution), which was programmed to generate waveforms 
defined by Eq. (3) with center frequency f0=tO0/2•r= 3.5 
MHz. The Rayleigh distance at this frequency was %=23 
cm, and thermoviscous attenuation introduced losses of 
approximately 6 dB/cm. Envelope functions were defined 
by 

E( t) --exp[ -- ( 2t/T)2m], (24) 

where T is the nominal duration of the pulse, which in- 
cludes approximately tOoT/2•r cycles at frequency tOo, and 
the integer m determines the rise and decay time of the 
envelope. A Gaussian envelope is produced with m= 1, 
and the rise time decreases as m increases, with' a perfect 
rectangular envelope obtained with m--oo. A characteris- 
tic rise time t r may be defined by setting I dE/dtl- t• -1 at 
t = + T/2, which yields try= (e/4m) T. The receiving trans- 
ducer was a Marconi bilaminar membrane hydrophone 
with an active element of diameter 1 mm and a response 
that was flat to within 0.5 dB over the frequency range of 
interest. The received signals were recorded and averaged 
with a Sony/Tektronix RTD 710 digitizer (200 MHz, 10 
bits). 

We encountered one particular experimental difficulty 
worth mentioning. Some measured waveforms that were 
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FIG. 2. Comparison of waveforms obtained by high-pass filtering (above 
approximately to0/2) selected measured waveforms in the first column of 
Fig. 1 (left column above), with linear theory based on Eq. (14) (right 
column). Decibels indicate level relative to the corresponding source 
level. 

described by the second derivative of the square of the 
envelope function (in agreement with the Berktay result) 
had amplitudes substantially larger than those predicted by 
theory. This anomaly was attributed to quadratic source 
nonlinearity, as follows. A piezoelectric source exhibits 
strain in response to an applied voltage E(t)sin tOot, and 
therefore quadratic source nonlinearity may produce a dis- 
placement waveform component in the fluid that is pro- 
portional to E 2. The effective source pressure is propor- 
tional to particle velocity, which is the time derivative of 
this displacement (dE2/dt), and propagation of the axial 
pressure waveform into the far field introduces yet a sec- 
ond time derivative as a result of diffraction (which leads 
to d2E2/dt a). Special care was therefore exercised to find a 
source transducer that responded with suitable linearity 
over the desired range of operation. 

v. RESULTS 

Shown in Fig. 1 are results for the propagation of the 
axial waveform produced by a pulsed source with center 
frequency f0 = 3.5 MHz. The first two columns contain the 
measured waveforms P(•')/Po and frequency spectra 
S(tO/tOo), and the second two columns contain the corre- 
sponding ' theoretical predictions. Equation (24) with 
tO0T=50•r and m=5 was used for both the theoretical 
calculations and the input to the signal generator. The val- 
ues of A and N were measured directly, and then minor 
adjustments were made to optimize comparison with the- 
ory, as follows. First, A was adjusted to provide the proper 
attenuation rate for the primary wave (small variations in 
A produced large variations in the predicted waveforms), 
and then N was adjusted to match the amplitude of the 
demodulated waveform. The result of this process yielded 

EXPERIMENT 

1[ .I -77 dB II 

1I •li -80 dB . 

1I / • -83 dB 

THEORY r/a 

0.75 

1.49 

3.00 

5.97 

FIG. 3. Comparison of measured and predicted waveforms across the 
beam at tr=0.55, from r/a=O (on axis) to r/a=6. The theoretical pre- 
dictions are obtained from numerical solutions of Eq. (5) for the same 
parameters as in Fig. 1. Decibels indicate level relative to the correspond- 
ing source level. 

A = 15 and N= 1.6 (and therefore F =0.11 ), which corre- 
spond to an attenuation coefficient a0=64 Np/m and an 
effective peak source pressure p0=0.51 MPa (i.e., 231 dB 
re: 1 fiPa). The frequency spectra in the second and fourth 
columns of Fig. 1 are normalized to yield maximum am- 
plitudes of unity at the source. Decibels given in each figure 
indicate level relative to that at the source. Whereas the 

theoretical predictions shown in Fig. 1 are provided by the 
numerical solution of Eq. (5), practically indistinguishable 
results are given by Eq. (23). Direct comparison of the 
numerical and analytical solutions is postponed to the end 
of this section. 

Figure 1 demonstrates that overall agreement between 
theory and experiment is very good. Note the absence of 
second harmonic generation, which supports assumptions 
made in the derivation of Eq. (23). The slight asymmetry 
in the measured waveforms, which is most noticeable at 
tr= 1.15, appears to be caused by asymmetry in the tran- 
sient response of the source transducer (e.g., due to ring- 
ing). 

We now consider the first-order components of the 
waveforms shown in Fig. 1. The waveforms in the left 
column of Fig. 2 were obtained by filtering out the low- 
frequency components (below approximately to/to0=0.5) 
in the measured waveforms in the first column of Fig. 1. 
Linear theory based on Eq. (14), with rn=5 and 
toot = 50•r in Eq. (24), is presented in the right column of 
Fig. 2. Small signal transient effects due to the high ab- 
sorption produce the amplitude and phase modulations 
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FIG. 4. Comparison of experiment and theory for the axial propagation of a frequency-modulated 3.5-MHz pulse from tr:0 (first row) through tr= 1.53 
(last row). The theoretical predictions are obtained from numerical solutions of Eq. (5) with ½: (tOot)2/275•r, to0T:50•r, m= 5, A= 16, and N--1.6 
(F--0.10). Calculations based on Eq. (23) yield equally good agreement with experiment. Decibels indicate level relative to the corresponding source 
level. 

(i.e., higher amplitudes and lower frequencies) at the be- 
ginnings and ends of the pulses. Similar effects were mea- 
sured first by Moffett and Beyer •8 in an experiment de- 
signed to check the theoretical predictions of Blackstock. 19 
Agreement between theory and experiment in Fig. 2 is 
somewhat better at the leading (left) end of each pulse 
than at the trailing end. The poorer agreement at the trail- 
ing end is consistent with the fact that effects of transducer 
ringing were more pronounced at that end. Also, the fil- 
tering process itself can introduce asymmetry. Comparison 
with Fig. 1 reveals that, at or--0.6, the modulation of the 
waveform in Fig. 1 is due to both linear and nonlinear 
effects. Farther from the source, the dominant cause of 
modulation is the contribution from the secondary pres- 
sure P2- 

Measured and predicted waveforms both on and off 
axis, at tr=0.55, are compared in Fig. 3. The theory is 
obtained again from numerical solution of Eq. (5) [Eq. 
(23) applies only to the axial waveform], with the same 
parameter values used for Fig. 1. The higher directivity of 
the primary wave, compared with that of the demodulated 
waveform, leads to a relative suppression of the primary 
wave as the observation point is moved farther off axis. The 
measured waveforms in Figs. 1 and 3 reveal the same gen- 

eral features as those measured first by Moffett et al. 2,3 
Shown in Fig. 4 is the axial self-demodulation of a 

frequency-modulated tone burst with a center frequency of 
f0=3.5 MHz and a phase modulation given by 
½ = (w0t) 2/275•r. The remaining parameters are 
w0T=50•r, m--5, A--16, andN= 1.6 (F--0.10). The in- 
stantaneous angular frequency of the tone is thus 
ll/2•r=fo(l+4fot/275), which increases linearly with 
time by approximately 50% over the duration of the pulse. 
The theory in Fig. 4 is obtained from the numerical solu- 
tion of Eq. (5), although results obtained from Eq. (23) 
are virtually the same. We note that the experimental re- 
sults shown for or--0 correspond to the electrical input to 
the transducer and not the pressure in the fluid. At 
•r=0.30, absorption produces a greater effect at the trail- 
ing, high-frequency end of the pulse, and at cr--0.77, the 
nonlinear effect of self-demodulation is noticeable at the 

trailing end. At or-- 1.53, the leading, low-frequency end of 
the pulse is nearly demodulated. The higher amplitude at 
the leading edge of the demodulated waveform corre- 
sponds to the lower primary frequency, and therefore 
longer nonlinear interaction region. We call attention to 
the fact that the predicted frequency spectra for the pri- 
mary wave (i.e., for W/Wo •> 0.3) are slightly broader than 
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rigated with both theory and experiment. Attention was 
devoted to the case in which absorption is sufficiently 
strong that the nonlinear interaction is relatively weak and 
restricted to the near field of the sound beam. A recently 
developed time-domain algorithm for solving the KZK 
equation was used to obtain numerical solutions. A qua- 
silinear analytic solution for the entire axial field was de- 
veloped and compared with both measurements and nu- 
merical results. The good agreement between theory and 
experiment demonstrates that the KZK equation and the 
analytic solution for the axial field provide accurate de- 
scriptions of the entire self-demodulation process. 
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