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CHAPTER 2. SPECIFICATION OF  
SIMULTANEOUS EQUATION MODELS

In model specification, the researcher uses prior theory to detail a series 
of equations and represent these using path models, equations, and/or 
matrices. Simultaneous equation models contain random variables (i.e., 
observed variables and error terms) and structural parameters (i.e., con-
stants providing intercepts and the relationships between variables). 
The variables of a simultaneous equation model may be linked through 
direct relationships, indirect relationships, reciprocal relationships, 
feedback loops, and/or correlations between disturbances. Theory plays 
an instrumental role in model creation and determines the theoretical, or 
structural, relationships between the variables of interest. Empirical 
methods assess the fit of these specified models to the data, as we will 
explain later.

The general matrix representation of simultaneous equation models appears 
in Equation 2.1:

y 5 By 1 Gx 1 z (2.1)

Endogenous variables, denoted by y, are outcome variables or variables 
determined within the model. The vector of endogenous variables has 
dimensions p × 1. Exogenous variables, denoted with the q × 1 vector, x, 
are exogenous variables in the model (i.e., they are not explained by the 
model). For computational ease, random variables are assumed to be devi-
ated from their means. Disturbances, or errors in the equations, are repre-
sented with , a p × 1 vector. There is one disturbance per endogenous 
variable, hence the similar dimensions. Gamma coefficients () describe 
the effect of exogenous variables on the endogenous variables and are sum-
marized in the coefficient matrix , which has dimensions p × q. Beta 
coefficients () describe the effect of an endogenous variable on another 
endogenous variable. They are summarized in the coefficient matrix , 
with dimensions p × p. Table 2.1 summarizes the components of a simulta-
neous equation model, including vector/matrix names, definitions, and 
dimensions (Bollen, 1989b; Kaplan, 2009).

Also in Table 2.1, two additional covariance matrices are important in 
describing simultaneous equation models. The matrix designated by  is 
the variance/covariance matrix of the exogenous variables (xs), and  is 
the covariance matrix of the disturbance terms (s). Both covariance  
matrices are symmetric.
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A number of assumptions apply to these models. Simultaneous equation 
models assume that the endogenous and exogenous variables are directly 
measured and have no measurement error. The disturbances include all vari-
ables influencing y that are omitted from the equation and are assumed to 
have expected values of zero (E() = 0). Disturbances are further assumed 
to be uncorrelated with the exogenous variables, homoscedastic and nonau-
tocorrelated. Violations are possible; some will be treated in this monograph, 
while others are addressed elsewhere (e.g., Kmenta, 1997). The random 
variables are assumed not to have instantaneous effects on themselves.

Path Diagrams, Equations, Matrices:  
An Example of Specification

A path diagram pictorially represents how variables are related to one 
another in a theoretical model. Path diagrams use particular conventions: 
Variables shown in rectangles are observed variables, single-headed arrows 
denote the direction of influence, and double-headed arrows depict a covari - 
ance not explained in the model. Errors in the equations could technically be 
placed in ovals (representing unobserved or latent variables), but they are 
typically depicted unenclosed. Figure 2.1 is a path diagram of a recursive 
model containing two exogenous and two endogenous variables. Following 

Table 2.1  Notation for Simultaneous Equation Models

Vector/Matrix Definition Dimensions

Variables
y Endogenous variables p × 1
x Exogenous variables q × 1
	 Disturbance terms or errors in equations p × 1

Coefficients

	 Coefficient matrix for the exogenous variables;  p × q 
 the effect of exogenous variables on endogenous  
 variables; direct effects of x on y 
Β Coefficient matrix for the endogenous variables;  p × p 
 the effect of endogenous variables on endogenous  
 variables; direct effects of y on y 

Covariance matrices

	 Covariance matrix of exogenous variables, x q × q
	 Covariance matrix of disturbance terms, z	 p × p
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the notation introduced above, the gamma coefficients represent direct 
effects of exogenous (x) variables on endogenous (y) variables: 11 is the 
coefficient for the path from x1 to y1, 12 is the coefficient for the path from 
x2 to y1, and 22 is the coefficient for the path from x2 to y2.

1 21 is the coef-
ficient for the path from y1 to y2.

2

Figure 2.1  Path Diagram of a Recursive Model
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The model can be written as a series of equations, one for each endoge-
nous variable. Two equations correspond to the path diagram in Figure 2.1 
(intercepts are unnecessary, given that the random variables are assumed to 
be deviated from their means).

y1 5 g11x1 1 g12x2 1 z1 (2.2)

y2 5 b21y1 1 g22x2 1 z2 (2.3)

The two representations are equivalent, although the equations do not 
provide the important information that 1 and 2 are uncorrelated.

1Coefficient subscripts follow particular conventions: The first number in the sub-
script denotes the variable being influenced, and the second number is the variable 
doing the influencing. Subscripts also denote placement in the coefficient matrix, 
row and column positions.
2The path with two-headed arrows between the exogenous variables x1 and x2 
represents the observed covariance between these two variables. Covariances are 
generally represented as two-headed arrows: One convention is to use a curved 
path, and another convention is to use a straight line with multiple-headed 
arrows.
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The same model can finally be written as a matrix equation:

y1
y2

� �
5

0 0
b21 0

� �
y1
y2

� �
1

g11 g12

0 g22

� �
x1
x2

� �
1

z1
z2

� �

(2.4)

With two endogenous variables in the model, the y vector has dimen-
sions 2 × 1. The  matrix, the coefficient matrix for endogenous variables, 
includes 21, the effect of y1 on y2. The  matrix contains coefficients for 
the effects of exogenous variables on endogenous variables and has dimen-
sions 2 × 2. The two disturbance terms are shown in , written as a vector 
with dimensions 2 × 1.

The variances of the exogenous variables and the assumed covariance 
between them are shown in the  matrix with dimensions 2 × 2.3 We follow 
a common convention of only displaying the lower diagonal of symmetric 
matrices. The  matrix, which includes variances of the errors in the equa-
tions, has dimensions 2 × 2. In this model, the  matrix is diagonal—the 
disturbances are not correlated.

F 5
f11

f21 f22

� �

C 5
c11

0 c22

� �

(2.5)

The matrix equations reveal certain properties of simultaneous equation 
models. For instance, variables do not have instantaneous effects on them-
selves, as shown in the zeros down the diagonal of the  matrix.

From Theory to Models: The Implied Covariance Matrix

Understanding simultaneous equation models is aided by switching one’s 
frame of reference to a focus on the covariances among variables rather 
than individual cases in a sample (Bollen, 1989b).4 The focus is on the 
fundamental statistical hypothesis,

	  = () (2.6)

3Unless a researcher is working with experimental data, in which zero correlation 
between exogenous variables can be assured, it is typical not to assume zero correlation.
4Certainly individual observations matter a great deal and cannot be ignored. For 
example, outliers may influence the results of a given analysis.
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where  is the population covariance matrix of the observed variables,  is 
a vector of the parameters to be estimated, and () is the covariance matrix 
implied by your model (written as a function of the model parameters). In 
layman’s terms, Equation 2.6 equates “your data” (at the population level) 
and “your model,” which is precisely what conventional statistical tech-
niques are designed to do. The fundamental statistical hypothesis underlies 
all aspects of modeling in simultaneous equation models: specification, 
identification, estimation, and assessment.

To understand how  = () relates to specification, it is useful to take 
a step back and view the big picture. Researchers typically have a set of 
variables in which they are interested, and they have some model in mind 
of how these variables fit together. This model may appear in a set of equa-
tions or as a path diagram.

The bulk of information needed for specification and estimation is sum-
marized in the variances and covariances between the observed variables. 
That is, the total raw association between the variables is captured in the 
matrix  and is known at least in the population.

Figure 2.2  Three Models From the Same Variables

(A) x1 y1 ζ1
γ11

γ21 β21

y2 ζ2

(B) x1 y1 ζ1
γ11

γ21 β12

ζ2y2

x1 y1 ζ1
γ11

γ21

y2 ζ2

(C)

A researcher’s model makes the argument that the association between 
variables is due to the hypothesized structure. Consider the three models 
displayed in Figure 2.2, Panels A, B, and C. Each model in Figure 2.2 uses 
the same three variables: two endogenous variables (y1 and y2) and one 
exogenous variable (x1). But each is configured differently.
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In Figure 2.2, Panel A, the endogenous variables, y1 and y2, are mutually 
dependent on the exogenous variable, x1, and y1 influences y2. In Figure 2.2, 
Panel B, the two endogenous variables, y1 and y2, are again mutually depen-
dent on the exogenous variable, x1, but here y2 influences y1. In Figure 2.2, 
Panel C, the endogenous variables, y1 and y2, are mutually dependent on the 
single exogenous variable x1. They are also related through an unexplained 
association between their errors. Theory drives which model a researcher 
would choose.

Creating the implied covariance matrix, (), allows a researcher to 
break down exactly how a hypothesized model relates to the known vari-
ances and covariances among the observed variables. As an example, con-
sider the covariance between x1 and y1: COV(x1, y1). This is a known quan-
tity in the population; there is a known association between these two 
variables. What does the model in Figure 2.2, Panel A, imply about this 
association? The answer can be discovered by substituting the equations of 
the model for x1 and y1,

 COV(x1, y1) = COV(x1, 11x1 + 1) (2.7)

Covariance algebra aids in rearranging terms so that Equation 2.7 
becomes5

COV(x1, y1) = COV(x1, 11x1) + COV(x1, 1)

Exogenous variables are assumed to be uncorrelated with the disturbances, 
leaving

COV(x1, y1) = 11VAR(x1)

Finally, the variance of the exogenous variable, x1, is a parameter to be 
estimated in the model. It appears in the  matrix. Making this explicit,

 COV(x1, y1) = 11f11 (2.8)

Equation 2.8 provides the model-implied covariance for COV(x1, y1). 
In the model in Figure 2.2, Panel A, the covariance between x1 and y1 is 

5The following rules and definitions are used (Bollen, 1989b, p. 21). Defining  
c as a constant, and x1, x2, and x3 as random variables: (1) COV(c, x1) = 0,  
(2) COV (cx1, x2) = cCOV(x1, x2), and (3) COV(x1 + x2, x3) = COV(x1, x3) +  
COV(x2, x3). Note also that VAR(x1) = COV(x1, x1).
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implied by the model to be due to the variance of x1(f11) and its effect 
on y1(11).

Of course, COV(x1, y1) is only one of the six possible variances and 
covariances between the three observed variables. The full covariance 
matrix of the observed variables is

S 5
VARðy1Þ

COVðy2; y1Þ VARðy2Þ
COVðx1; y1Þ COVðx1; y2Þ VARðx1Þ

2

4

3

5

For this particular model, there are six variance and covariance ele-
ments in the population, and each can be written as a function of the 
theoretical model appearing in Figure 2.2, Panel A. To provide one more 
example, consider the covariance of x1 with y2. Again, we substitute the 
equations of the theoretical model to determine what it implies about this 
covariance.

COVðx1; y2Þ 5 COVðx1;b21y1 1 g21x1 þ z2Þ (2.9)

The variable y1 is endogenous and requires further substitution:

COVðx1; y2Þ 5 COVðx1;b21ðg11x1 1 z1Þ 1 g21x1 1 z2Þ
5 COVðx1;b21g11x1Þ 1 COVðx1;b21z1Þ

1 COVðx1; g21x1Þ 1 COVðx1; z2Þ
5 b21g11f11 1 g21f11

In short, the theoretical model implies that the relationship between x1 
and y2 is due to both the direct effect of x1 on y2 and the indirect effect of x1 
on y2 through y1. Decomposing covariances in this way shows how the 
model specified in the path diagram and equations relates to the observed 
covariances in . Four implied covariances remain to be calculated to com-
plete the model-implied covariance matrix.

COVðy1; y2Þ 5 g11
2
b21f11 1 g11g21f11 1 b21c11

VARðx1Þ 5 COVðx1; x1Þ 5 f11

VARðy1Þ 5 g11
2
f11 1 c11

VARðy2Þ 5 b21
2
g11

2
f11 1 2b21g11g21 1 g21

2
� �

f11 þ b21
2
c11 þ c22

(2.10)
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Pulling everything together, for the three-variable model in Figure 2.2, 
Panel A, the observed covariance matrix, , is

S 5
VARðy1Þ

COVðy2; y1Þ VARðy2Þ
COVðx1; y1Þ COVðx1; y2Þ VARðx1Þ

2

4

3

5
(2.11)

and the covariance matrix that is implied by the model, (), is

SðuÞ 5
g11

2
f11 1 c11

ðg11
2
b21 1 g11g21Þf11 1 b21c11 b21

2
g11

2
f11 1 2b21g11g21 1 g21

2
� �

f11 1 b21
2
c11 1 c22

g11f11 b21g11f11 1 g21f11 f11

2
4

3
5

(2.12)

The fundamental statistical hypothesis,  = (), means that each ele-
ment of Equation 2.11 above is equivalent to its counterpart in Equation 2.12. 
This relationship between  and () is used throughout the rest of the 
monograph.

To reiterate, the elements of (), the model-implied covariance matrix, 
are a function of the researcher’s theoretical model as it appears in the path 
diagram, equations, and matrices. If we were to calculate the implied 
co variance matrix for the model in Figure 2.2, Panel B, it would be differ-
ent from Equation 2.12. The hypothesized model changes, so the implied 
covariance matrix changes as well.

As will be demonstrated throughout the rest of the monograph, the 
relationship between  and () is critical to all steps in modeling  
a simultaneous equation model. For example, researchers can some-
times use  = () to solve for the unknown model parameters during 
identification.

The Implied Covariance Matrix of a Simple Regression

For illustration, we show how to determine the implied covariance 
matrix of a simple regression model of one exogenous and one endoge-
nous variable:

y1 5 g11x1 1 z1 (2.13)
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For this model, there are three variances and covariances at the population 
level, shown in :

S 5
VARðy1Þ

COVðx1; y1Þ VARðx1Þ

� �

(2.14)

To determine the model-implied covariance matrix, (), for a simple 
regression model, we begin by solving for VAR(x1), which can be rewritten 
as COV(x1, x1). The variance of the exogenous variable in this model, x1, as 
noted earlier, is a parameter to be estimated in the model and appears in the 
 matrix.

 COV(x1, x1) = f11 (2.15)

Moving next to COV(x1, y1), we substitute for y1, using Equation 2.13.

COV(x1, y1) = COV(x1, 11x1 + 1)

 = 11VAR(x1) 

(2.16)= 11f11

Next, we determine the variance of y1, or COV(y1, y1). First, substitute for y1:

COV(y1, y1) = COV(11x1 + 1, 11x1 + 1)

Using common rules of covariance algebra yields

COV(y1, y1) = COV(11x1, 11x1) + COV(11x1, 1) + 
           COV(1, 11x1) + COV(1, 1)

Assuming exogenous variables are uncorrelated with the disturbance leaves

COV(y1, y1) = COV(11x1, 11x1) + COV(1, 1)

5 g
2

11f11 1 c11  (2.17)

Putting the elements together yields the following:

 = ()

VARðy1Þ
COVðx1; y1Þ VARðx1Þ

� �
5

g11
2
f11 1 c11

g11f11 f11

� �

(2.18)
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The fundamental statistical hypothesis,  = (), means that each element 
of  is equivalent to its counterpart in ().

VARðy1Þ 5 g
2

11f11 1 c11

COV(x1, y1) = 11f11

VAR(x1) = f11

We can solve for the regression coefficient, 11,

g11 5
COVðx1; y1Þ

f11

5
COVðx1; y1Þ
VARðx1Þ

producing the well-known equation available in any introductory 
econometrics textbook.

Recursive and Nonrecursive Models

Simultaneous equation models can be divided into two major types: recur-
sive and nonrecursive. A recursive simultaneous equation model has no 
reciprocal relationships or feedback loops and no covariances among the 
error terms of the equations (the disturbance of one equation is uncorrelated 
with the disturbances of all other equations). Formally, in recursive models 
 can be written as lower triangular and  is diagonal.

A simultaneous equation model is nonrecursive if (1) any of the out-
comes in the model directly affect one another (a reciprocal relationship) or 
there is a feedback loop at some point in the system of equations (a causal 
path can be traced from one variable back to itself), and/or (2) at least some 
disturbances are correlated.

In a previous section, we introduced a simple model of two exogenous 
and two endogenous variables. The model was recursive as demonstrated 
in both the path diagram and the matrices. Examining the path diagram 
(Figure 2.1) reveals no reciprocal links or feedback loops. Furthermore, the 
errors in the equations are not correlated. Examining the matrix equations 
(2.4 and 2.5) also shows a recursive model: the  matrix can be written as 
lower triangular, and the  matrix is diagonal.

In contrast, Figure 2.3, Panels A and B show two types of nonrecursive 
models. Figure 2.3, Panel A, is nonrecursive due to the reciprocal paths 
between y1 and y2 and the correlated error between 1 and 2 (the presence of 
either would be sufficient to define the model as nonrecursive). Figure 2.3, 
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Figure 2.3  Two Nonrecursive Models
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Panel B, is nonrecursive due to the presence of a feedback loop among y1, 
y2, and y3. Note that y1 can be traced back to itself through the change in y2 
and y3. Similarly, y2 and y3 can be traced back to themselves.6

Focusing on Figure 2.3, Panel A, the equations of the model are as follows:

y1 5 b12y2 1 g11x1 1 g12x2 1 z1 (2.19)

y2 5 b21y1 1 g22x2 1 g23x3 1 z2 (2.20)

6A classic theoretical example of a three-variable feedback loop is found in climate 
science: A warmer climate leads to less snow and ice on the surface of the earth, 
which leads to less reflection of heat, which makes the climate warmer. Or consider 
a sleep/stress cycle when sleeping badly leads to more fatigue during the day, which 
makes an individual less able to cope with stressors and in turn leads to poor sleep.
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The matrix equation for the model is as follows:

y1
y2

� �
5

0 b12

b21 0

� �
y1
y2

� �
1

g11 g12 0
0 g22 g23

� � x1
x2
x3

2

4

3

5 1
z1
z2

� �
(2.21)

and

F 5
f11

f21 f22

� �

C 5
c11

c12 c22

� �

The matrix representation helps clarify why the model is nonrecursive. 
First, the  matrix is not lower triangular and cannot be rearranged to be writ-
ten as lower triangular. Furthermore,  is not diagonal; there are off-diagonal 
elements. Nonrecursive models are more complicated to identify, estimate, 
and assess than recursive models, as will be covered in later chapters.

Direct, Indirect, and Total Effects

Simultaneous equation models contain direct, indirect, and total effects. Direct 
effects are effects from one variable to another variable that are not mediated 
by any other variable in the model. Indirect effects are paths from one variable 
to another that travel through at least one other variable. Total effects are the 
sum of direct and indirect effects, representing how much change should occur 
in the outcome variable for a given shift in the antecedent variable.

Specifying a model as a path diagram allows one to trace paths showing 
direct, indirect, and total effects. In the path diagram in Figure 2.2, Panel 
A, for instance, there are three direct effects. Two coefficients show rela-
tionships from exogenous variables to endogenous variables, 11 and 21. 
One coefficient depicts a path from one endogenous variable to the other 
endogenous variable, 21. In this model, there is an indirect effect of x1 on 
y2 that works through y1. The indirect effect is 1121. The total effect of x1 
on y2 summarizes direct and indirect effects, 21 + 1121. Chapter 6 will 
describe calculating and testing indirect and total effects in more detail.

Structural Versus Reduced-Form Equations

Thus far, we have focused our attention on the structural equations of the 
model. Structural equations represent the theoretical model, showing direct 
relationships between the variables. Structural parameters summarize the 
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direct, “causal” links between variables. Equations 2.19 and 2.20 are exam-
ples of the structural equations of a model. Models can also be written in 
“reduced form,” as reduced-form equations.

Reduced-form equations express the endogenous variables solely as a 
function of the exogenous variables. That is, only exogenous variables 
appear on the right-hand side (RHS) of the equations. In a model with a 
reciprocal path, creating the reduced-form equations entails collecting 
endogenous variables on the left-hand side. In any model, there are the 
same number of structural and reduced-form equations.

Returning to the nonrecursive model presented in Figure 2.3, Panel A, 
the structural equations are as follows:

y1 5 b12y2 1 g11x1 1 g12x2 1 z1 (2.22)

y2 5 b21y1 1 g22x2 1 g23x3 1 z2 (2.23)

To determine the reduced-form equation for the y1 equation, substitute 
for y2, yielding

y1 5 b12ðb21y1 1 g22x2 1 g23x3 1 z2Þ 1 g11x1 1 g12x2 1 z1

Next, multiply, gather, and rearrange terms.

y1 5
1

1� b12b21

ðg11x1 1 b12g22x2 1 g12x2 1 b12g23x3 1 b12z2 1 z1Þ

The reduced-form equation is therefore

y1 5 P11x1 1 P12x2 1 P13x3 1 z
�
1 (2.24)

where

P11 5
g11

1� b12b21

P12 5
b21g22 1 g12

1 2 b12b21

P13 5
b12g23

1 2 b12b21

z
�
1 5 z1 1 b12z2
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The y2 equation is similar:

y2 5 P21x1 1 P22x2 1 P23x3 1 z
�
2 (2.25)

where

P21 5
b21g11

1 2 b12b21

P22 5
b21g12 1 g22

1� b12b21

P23 5
g23

1� b12b21

z
�
2 5 b21z1 þ z2

Reduced-form equations provide information about the total effects of 
exogenous variables on endogenous variables in a model. In Equation 2.25, 
P21 is the total effect of x1 on y2, which includes the indirect effect of x1 on 
y2 that works through y1 and includes the reciprocal relationship between y1 
and y2. Chapter 6 discusses the multiplier, 1= 1 2 b12b21ð Þ. The reduced-
form equations are central to understanding assessment of simultaneous 
equation models, as we discuss in Chapter 5.

Instrumental Variables

Identifying and estimating nonrecursive models require understanding 
instrumental variables. Instrumental variable (IV) estimation was devel-
oped for situations where the regressor is correlated with the error term 
such as occurs in nonrecursive models. In such situations, the regressor is 
sometimes called “troublesome” or “problematic.” Although instrumental 
variables are frequently treated as a technical solution to an identification 
or estimation problem—and indeed, this is an important function they 
serve—we discuss them in this chapter because our view is that they should 
fundamentally arise from serious theoretical consideration. Furthermore, 
although instrumental variables are most frequently associated with the 
literature on limited-information estimators, we emphasize throughout this 
monograph that careful selection of instrumental variables is necessary 
regardless of which estimator the researcher employs.

With a problematic regressor, a researcher must find an instrumental 
variable, which we will call z1, that is (1) uncorrelated with the disturbance,

COV(z1, 1) = 0
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but (2) correlated with the variable for which it is an instrument,

COV(z1, x1) ≠ 0

In this monograph, we focus on the need for instrumental variables to 
address a correlation between the error and a regressor due to the regressor’s 
reciprocal relationship with another variable (discussed in Chapter 4).7 
Instrumental variables are also used to correct for a correlation between a 
regressor and the error due to other causes, including an omitted variable 
that correlates with the regressor and affects the dependent variable, or 
measurement error in the regressor.8

Example of Instrumental Variables:  
Voluntary Associations and Generalized Trust

We demonstrate the use of instrumental variables in a nonrecursive model 
with an empirical example. This example, from the political science and sociol-
ogy literatures, will be used throughout the monograph. The theoretical  
question focuses on the likely interdependent relationship between voluntary 
association membership and generalized trust. Research on social capital posits 
the importance of both voluntary associations and trust to the well-being of 
society (Fukuyama, 1995; Paxton, 2002; Putnam, 1993). But the relationship 
between the two is likely reciprocal (Brehm & Rahn, 1997; Claibourn & Martin, 
2000; Shah, 1998). For instance, scholars have argued that participation in vol-
untary associations can bring about greater general trust in others due to repeated 
social interactions, norms of cooperation, and reputation effects (Paxton, 2007). 
Conversely, those who are more trusting may feel more comfortable interacting 
with others in an association and therefore may be more likely to join.

We can measure both voluntary associations and trust using data from 
the 1993 and 1994 waves of the General Social Survey (GSS). In the GSS, 
respondents report whether they belong to any of 16 types of voluntary 
organizations, including service, political, youth, and church groups. We 
computed the number of types of organizations to which a respondent 
belonged. Generalized trust is measured by three variables: the extent to 
which the respondent feels people in general (1) are fair, (2) are helpful, and 

7In the context of simultaneous equation models, the problematic regressor will 
typically be indicated by a y—as an endogenous variable in the system of equations.
8Both the well-known omitted variable problem and measurement error are issues 
that confront all analytic techniques using observational data, including ordinary 
least squares, logistic regression, and so on, and are not issues unique to simultane-
ous equations models.
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(3) can be trusted.9 For our simple example, we created a single factor score 
estimate that is the combination of the three indicators of trust.10

To keep the example simple, we include one predictor that influences both 
endogenous variables: the level of education of the respondent in years. Theory 
and prior research suggest that more educated respondents should belong to 
more voluntary associations and also have greater generalized trust. To identify 
and estimate this model, we also need at least one instrumental variable for each 
endogenous variable. This must be a variable that does not have a direct relation-
ship with the outcome variable in a given equation, or any omitted variables that 
influence the outcome variable. In a path diagram, an instrumental variable will 
appear as a variable predicting one endogenous variable but not the other.

For voluntary association membership, one such possible instrumental 
variable is the presence of young children less than 6 years of age. Although 
there is little reason to expect that the presence of young children will affect 
one’s trust in others, they likely influence the amount of time available for 
association participation. For trust, a possible instrument is a measure of 
whether the respondent has been burglarized in the past year. Although 
there seems little reason for such an event to affect one’s memberships, 
experiencing a burglary should affect one’s trust in others.

Figure 2.4 displays this model in a path diagram. The variables y1, volun-
tary association memberships, and y2, generalized trust, are in a reciprocal 
relationship; x1, children less than 6 years of age, influences voluntary asso-
ciation memberships but not trust and therefore serves as an instrumental 
variable in the model; x2, education, influences both voluntary associations 
and generalized trust; and x3, burglary, is hypothesized to influence general-
ized trust but not membership in voluntary associations. The variable x3 
therefore serves as an instrument for generalized trust in the model dis-
played in Figure 2.4. The reasoning provided for the instrumental variables 
in this model is at this point entirely theoretical. Tests described in Chapter 
5 can help a researcher determine whether an instrumental variable is valid.

It is also helpful to have an overidentified model. To overidentify the 
model, we modify the exactly identified model by adding a second 
excluded instrumental variable to each equation (see Figure 2.5). In the 

9There are three questions regarding trust, helpfulness, and fairness: “Generally 
speaking, would you say that most people can be trusted or that you can’t be too 
careful in life?” “Would you say that most of the time people try to be helpful, or that 
they are mostly just looking out for themselves?” “Do you think most people would 
try to take advantage of you if they got a chance, or would they try to be fair?”
10One could instead model trust as a latent variable with three indicators (Paxton, 
1999), which would make the resulting example a general structural equation model 
(Bollen, 1989b).



20

Figure 2.4  Path Model of Voluntary Associations and Generalized Trust
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Figure 2.5   Overidentified Model of Voluntary Associations and Generalized 
Trust
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overidentified model, hours of TV viewing influences association partici-
pation, and having experienced the divorce of one’s parents influences 
trust.

Examples of Instrumental Variables in Published Research

Finding appropriate instrumental variables is a challenging task and 
should not be taken lightly. But although challenging, the task is not 
impossible. In this section, we provide additional examples of instru-
mental variables used to identify and estimate models in published 
research.

·	 Kritzer (1984) used survey data from husbands and wives to test 
the likely reciprocal effect of political party identification between 
spouses. That is, husbands’ political party identification may influence 
wives’ party identification, and vice versa. Kritzer used the party 
identification of parents as instruments. His logic was that although we 
might expect the party identification of a spouse’s, say the wife’s, 
parents to affect her party identification, there is little reason to suppose 
that the wife’s parents’ party identification would affect her husband’s 
party identification (after accounting for her own party identification). 
Parents’ party identification acts as an instrumental variable in this 
model.

·	 Levitt (1996) wanted to investigate the effect of prison incarceration 
on crime rates. Certainly, increasing the prison population could lead to 
decreased crime rates. But increased crime rates could also increase 
incarceration, creating a reciprocal relationship and a problematic regressor. 
Levitt used litigation related to prison overcrowding as an instrument for 
prison incarceration. He argued that prison litigation could cause prison 
populations to decrease but would not directly affect crime rates. In a 
similar manner, Hoxby (1996) used the passage of laws allowing union 
activity as an instrument for teachers’ unionization in its effect on student 
outcomes.

·	 Some studies use attitudinal measures as instruments. A study of 
the reciprocal relationship between females’ labor force participation 
and fertility expectations used a measure of attitude toward the 
workplace to predict labor force participation (assuming that it does not 
directly affect a respondent’s fertility expectations) (Waite & Stolzenberg, 
1976). This same study also posited that one’s ideal family size will 
affect fertility expectations but will have no direct effect on actual labor 
force participation.
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·	 Sadler and Woody (2003) theorize that individuals in interaction 
are influenced by their interaction partner’s level of dominance (a 
reciprocal relationship between two individuals). To create instruments, 
Sadler and Woody rely on other theories suggesting that individuals 
bring their own interpersonal style to an interaction as well. Thus, both 
individuals will bring their own “trait dominances” to the interaction, 
and trait dominance acts as an instrumental variable in the model. That 
is, an individual’s trait dominance will influence his or her own 
interactional dominance. But it should not influence his or her interaction 
partner’s interactional dominance directly.

·	 A study estimating the reciprocal relationship between crime and 
residential mobility posited population size as an instrument for crime 
(Liska & Bellair, 1995). Although population size may influence crime, 
there is little reason to suppose it affects residential mobility. The authors 
also hypothesized that government revenue per capita—as a proxy for tax 
burden—may affect residential mobility without affecting crime (making 
tax burden an instrument for residential mobility). Note that this latter 
specification assumes that social services do not affect the level of crime, 
which may or may not be theoretically justified. Statistical tests described 
in Chapter 5 can help a researcher further evaluate potential instrumental 
variables.

·	 Barro and McCleary (2003) investigate whether the religiosity of a 
population influences a country’s economic growth. But there could be a 
return effect since economic development may cause individuals to 
become less religious (the secularization hypothesis). As one instrument 
for religion, Barro and McCleary use the establishment of a state religion. 
Establishment of a state religion should arguably influence religiosity in a 
country, but, as state religions were often declared centuries ago, not 
economic growth in the present period. See Young (2009) for an 
outstanding discussion and assessment of state religion as an instrument 
for religiosity.

·	 Ansolabehere and Jones (2010) ask whether a constituent’s perceived 
agreement with their congressperson on policy issues increases their 
approval of that congressperson. But it might be that constituents who 
approve of their congressperson tend to assume they agree on questions of 
policy. Ansolabehere and Jones had information on actual roll call voting 
by congresspeople and could use that as an instrument for constituents’ 
perceived roll call voting. Reasonably, actual roll call votes can only 
influence constituent approval through constituent perceptions of those 
votes.
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These are just a few examples of the variables researchers have used as 
instrumental variables when modeling nonrecursive models. Careful theory 
and some creativity can produce useful instrumental variables. Indeed, 
solid reasoning and clever research designs can take precedence over many 
of the statistical features of these models. In research using instrumental 
variables to address problematic regressors of a variety of types, research-
ers have used physical features as instrumental variables (e.g., the number 
of rivers in a metropolitan area as an exogenous source of the number of 
political units and subsequent segregation; Cutler & Glaeser, 1997); a 
lagged version of the variable of interest (assuming that there are no addi-
tional effects from earlier time points; Markowitz, Bellair, Liska, & Liu, 
2001); and “simulated instruments” (Hoxby, 2001). For other examples, see 
Murray (2006b, chap. 13).




