
Some New Features in LISREL 9

August 14, 2012

1



Contents

1 Continuous Variables without Missing Values 3

1.1 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Example: Nine Psychological Variables (NPV) . . . . . . . . . . . . 3

1.1.2 Creating a LISREL Data System File . . . . . . . . . . . . . . . . . 4

1.1.3 Estimating the Model by Maximum Likelihood . . . . . . . . . . . 6

1.1.4 Testing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.5 Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.6 Estimation Using Data in Text Form . . . . . . . . . . . . . . . . . 12

1.1.7 Modifying the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.8 Analyzing Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Structural Equation Models for Latent Variables . . . . . . . . . . . . . . . 17

1.2.1 Example: Attitudes to Drinking and Driving (DRINK) . . . . . . . 17

2 Continuous Variables with Missing Values 19

2.1 Treatment of Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Latent Curve Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Example: Treatment of Prostate Cancer (PSAVAR) . . . . . . . . . 21

2.2.2 Data Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Ordinal Variables without Missing Values 30

3.1 Ordinal Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Example: Attitudes Toward Science and Technology (SCITECH) . 31

3.1.2 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Estimation Using Adaptive Quadrature . . . . . . . . . . . . . . . . 35

3.1.4 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 36

4 Ordinal Variables with Missing Values 37

4.1 Example: Measurement of Political Efficacy (EFFICACY) . . . . . . . . . 37

4.1.1 Data Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Estimating Models by FIML Using Adaptive Quadrature . . . . . . 42

4.1.3 Estimation by Robust Diagonally Weighted Least Squares (RDWLS) 46

5 Appendix 47

5.1 General Covariance Structures . . . . . . . . . . . . . . . . . . . . . . . . 47

6 References 52

2



Structural equation modelling (SEM) was introduced initially as a way of analyzing a
covariance or correlation matrix. Typically, one would read this matrix into LISREL and
estimate the model by maximum likelihood. If raw data was available without missing
values, one could also use PRELIS first to estimate an asymptotic covariance matrix to
obtain robust estimates of standard errors and chi-squares.

Modern structural equation modeling is based on raw data. For examples based on
covariance and correlation matrices, see Jöreskog & Sörbom (2003a-b). If raw data is
available in a LISREL system file or in a text file one can read the data into LISREL and
formulate the model using either SIMPLIS syntax or LISREL syntax and, if requested,
LISREL 9 will automatically perform robust estimation of standard errors and chi-square
goodness of fit measures under non-normality. It is no longer necessary to estimate an
asymptotic covariance matrix with PRELIS and read this into LISREL. The estimation
of the asymptotic covariance matrix and the model is now done in LISREL9. If the data
contain missing values, LISREL 9 will automatically use FIML to estimate the model.
Alternatively, users may choose to impute the missing values by EM or MCMC and estimate
the model based on the imputed data. All this works for both continuous and ordinal
variables.

Here SIMPLIS syntax will be used to illustrate all examples. Tha data files and syntax files
for these examples are given in the folder \LISREL 9 Examples\ls9ex. The corresponding
syntax in LISREL syntax are also given in that folder. Thus, npv1a.spl is a SIMPLIS syntax
file and npv1b.lis is the corresponding input file in LISREL syntax.

1 Continuous Variables without Missing Values

1.1 Confirmatory Factor Analysis

1.1.1 Example: Nine Psychological Variables (NPV)

To illustrate all the different cases and the different steps in the analysis the classical example of
confirmatory factor analysis of nine psychological variables (NPV) from the Holzinger-Swineford
(1939) study will be used. The nine variables is a subset of 26 variables administered to 145
seventh- and eighth-grade children in the Grant-White school in Chicago. The nine tests are
(with the original variable number in parenthesis):

VIS PERC Visual Perception (V1)

CUBES Cubes (V2)

LOZENGES Lozenges (V4)

PAR COMP Paragraph Comprehension (V6)

SEN COMP Sentence Completion (V7)

WORDMEAN Word meaning (V9)
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ADDITION Addition (V10)

COUNTDOT Counting dots (V12)

SCCAPS Straight-curved capitals (V13)

It is hypothesized that these variables have three correlated common factors: visual perception
here called Visual, verbal ability here called Verbal and speed her called Speed such that the
first three variables measure Visual, the next three measure Verbal, and the last three measure
Speed. A path diagram of the model to be estimated is given in Figure 1.

Suppose the data is available in a text file npv.dat with the names of the variables in
the first line. The first few lines of the data file looks like this1

’VIS PERC’ CUBES LOZENGES ’PAR COMP’ ’SEN COMP’ WORDMEAN ADDITION COUNTDOTS SCCAPS
33 22 17 8 17 10 65 98 195
34 24 22 11 19 19 50 86 228
29 23 9 9 19 11 114 103 144
16 25 10 8 25 24 112 122 160
30 25 20 10 23 18 94 113 201
36 33 36 17 25 41 129 139 333
28 25 9 10 18 11 96 95 174
30 25 11 11 21 8 103 114 197
20 25 6 9 21 16 89 101 178
27 26 6 10 16 13 88 107 137
32 21 8 1 7 11 103 136 154

1.1.2 Creating a LISREL Data System File

For most analysis with LISREL it is convenient to to work with a LISREL data system file
of the type .lsf. LISREL can import data from many formats such as SAS, SPSS, STATA,
and EXCEL. LISREL can also import data in text format with spaces (*.dat or *.raw),
commas (*.csv) or tab characters (*.txt) as delimiters between entries. The data is then
stored as a LISREL data system file .lsf. First we illustrate how to import a text file with
spaces as delimiters. The procedure is the same for all other types of files. Importation of
data from external sources is described in the PRELIS Guide.

Since the data in this example is a text file with spaces as delimiters, an easy way to
create a .lsf file is by running the following simple PRELIS syntax file

DA NI=9

RA=NPV.DAT LF

CO All

OU RA=NPV.LSF

LF is a new PRELIS option to tell PRELIS that the labels are in the first line(s) of the data
file.

1If a name contains spaces or other special characters, put the name within ’ ’ as shown.
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Figure 1: Confirmatory Factor Analysis Model for Nine Psychological Variables
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1.1.3 Estimating the Model by Maximum Likelihood

With the npv.lsf file on hand, one can estimate the model by normal theory maximum
likelihood2. The first SIMPLIS file is (see file npv1a.spl):

Estimation of the NPV Model by Maximum Likelihood

Raw Data from File npv.lsf

Latent Variables: Visual Verbal Speed

Relationships:

’VIS PERC’ - LOZENGES = Visual

’PAR COMP’ - WORDMEAN = Verbal

ADDITION - SCCAPS = Speed

Path Diagram

End of Problem

One can also include a line

Path Diagram

to display path diagrams with parameter estimates, standard errors, and t-values.
The output file npv1a.out shows several sections which are new in LISREL9. The sample

covariance matrix S is given as

Covariance Matrix

VIS PERC CUBES LOZENGES PAR COMP SEN COMP WORDMEAN
-------- -------- -------- -------- -------- --------

VIS PERC 47.801
CUBES 10.013 19.758

LOZENGES 25.798 15.417 69.172
PAR COMP 7.973 3.421 9.207 11.393
SEN COMP 9.936 3.296 11.092 11.277 21.616
WORDMEAN 17.425 6.876 22.954 19.167 25.321 63.163
ADDITION 17.132 7.015 14.763 16.766 28.069 33.768
COUNTDOT 44.651 15.675 41.659 7.357 19.311 20.213
SCCAPS 124.657 40.803 114.763 39.309 61.230 79.993

Covariance Matrix

ADDITION COUNTDOT SCCAPS
-------- -------- --------

ADDITION 565.593
COUNTDOT 293.126 440.792
SCCAPS 368.436 410.823 1371.618

After the covariance matrix the following lines are given

2The term normal theory maximum likelihood is used to mean that the estimation of the model is based
on the assumption that the variables have a multivariate normal distribution.
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Total Variance = 2610.906 Generalized Variance = 0.106203D+17

Largest Eigenvalue = 1734.725 Smallest Eigenvalue = 3.665

Condition Number = 21.756

The total variance is the sum of the diagonal elements of S and the generalized variance
is the determinant of S which equals the product of all the eigenvalues of S. The largest
and smallest eigenvalues of S are also given. These quantities are useful in principal com-
ponents analysis. The condition number is the square root of the ratio of the largest and
smallest eigenvalue. A small condition number indicates multicollinearity in the data. If
the condition number is very small LISREL gives a warning. This might indicate that one
or more variables are linear or nearly linear combinations of other variables.

LISREL9 gives parameter estimates, standard errors, Z-values, P -values and R2 for the
measurement equations as follows

LISREL Estimates (Maximum Likelihood)

Measurement Equations

VIS PERC = 4.678*Visual, Errorvar.= 25.915, R2 = 0.458

Standerr (0.622) (4.566)

Z-values 7.525 5.675

P-values 0.000 0.000

CUBES = 2.296*Visual, Errorvar.= 14.487, R2 = 0.267

Standerr (0.407) (1.974)

Z-values 5.642 7.339

P-values 0.000 0.000

LOZENGES = 5.769*Visual, Errorvar.= 35.896, R2 = 0.481

Standerr (0.748) (6.637)

Z-values 7.711 5.409

P-values 0.000 0.000

PAR COMP = 2.922*Verbal, Errorvar.= 2.857 , R2 = 0.749

Standerr (0.236) (0.587)

Z-values 12.355 4.870

P-values 0.000 0.000

SEN COMP = 3.856*Verbal, Errorvar.= 6.749 , R2 = 0.688

Standerr (0.332) (1.161)

Z-values 11.630 5.812

P-values 0.000 0.000
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WORDMEAN = 6.567*Verbal, Errorvar.= 20.034, R2 = 0.683

Standerr (0.568) (3.407)

Z-values 11.572 5.880

P-values 0.000 0.000

ADDITION = 15.676*Speed, Errorvar.= 319.868, R2 = 0.434

Standerr (2.005) (48.586)

Z-values 7.819 6.584

P-values 0.000 0.000

COUNTDOT = 16.709*Speed, Errorvar.= 161.588, R2 = 0.633

Standerr (1.746) (38.034)

Z-values 9.568 4.248

P-values 0.000 0.000

SCCAPS = 25.956*Speed, Errorvar.= 697.900 , R2 = 0.491

Standerr (3.106) (116.121)

Z-values 8.357 6.010

P-values 0.000 0.000

By default LISREL standardizes the latent variables. This seems most resonable since the
latent variables are unobservable and have no definite scale. The correlations among the
latent variables, with standard errors and Z- values are given as follows

Visual Verbal Speed

Visual 1.000

Verbal 0.541 1.000

(0.085)

6.377

Speed 0.523 0.336 1.000

(0.094) (0.091)

5.582 3.687

These estimates have been obtained by maximizing the likelihood function L under multi-
variate normality. Therefore it is possible to give the log-likelihood values at the maximum
of the likelihood function. It is common the report the value of −2ln(L), sometimes called
deviance, instead of L. LISREL9 gives the value −2 ln(L) for the estimated model and for
a saturated model. A saturated model is a model where the mean vector and covariance
matrix of the multivariate normal distribution are unconstrained.
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The log-likelihood values are given in the output as

Log-likelihood Values

Estimated Model Saturated Model

--------------- ---------------

Number of free parameters(t) 21 45

-2ln(L) 6707.266 6655.724

AIC (Akaike, 1974)* 6749.266 6745.724

BIC (Schwarz, 1978)* 6811.777 6879.677

*LISREL uses AIC= 2t - 2ln(L) and BIC = tln(N)- 2ln(L)

LISREL9 also give the values of AIC and BIC. These can be used for the problem of selecting
the “best” model from several a priori specified models. One then chooses the model with
the smallest AIC or BIC. The original papers of Akaike (1974) and Schwarz (1978) define
AIC and BIC in terms of ln(L) but LISREL9 uses −2 ln(L) and the formulas:

AIC = 2t− 2ln(L) , (1)

BIC = tln(N)− 2ln(L) , (2)

where t is the number of free parameters in the model and N is the total sample size.

1.1.4 Testing the Model

Various chi-square statistics are used for testing structural equation models. If normality
holds and the model is fitted by the maximum likelihood (ML) method, one such chi-
square statistic is obtained as N times the minimum of the ML fit function, where N is
the sample size. An asymptotically equivalent chi-square statistic can be obtained from a
general formula developed by Browne (1984) and using an asymptotic covariance matrix
estimated under multivariate normality, see Section 5.1. These chi-square statistics are
denoted C1 and C2(NT), respectively. They are valid under multivariate normality of the
observed variables and if the model holds.

For this analysis, LISREL9 gives the two chi-square values C1 and C2_NT as

Degrees of Freedom For (C1)-(C2) 24

Maximum Likelihood Ratio Chi-Square (C1) 51.542 (P = 0.0009)

Browne’s (1984) ADF Chi-Square (C2_NT) 48.952 (P = 0.0019)

1.1.5 Robust Estimation

The analysis just described assumes that the variables have a multivariate normal distri-
bution. This assumption is questionable in many cases. Although the maximum likelihood
parameter estimates are considered to be robust against non-normality, their standard er-
rors and chi-squares are affected by non-normality. It is therefore recommended to use
the maximum likelihood method with robustified standard errors and chi-squares, which is
called Robust Maximum Likelihood. To do so just include a line
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Robust Estimation

anywhere between the second line and the last line, see file npv2a.spl. This gives the
following information about the distribution of the variables.

Total Sample Size = 145

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. Skewness Kurtosis Minimum Freq. Maximum Freq.
-------- ---- -------- ------- -------- ------- ----- ------- -----
VIS PERC 29.579 6.914 -0.119 -0.046 11.000 1 51.000 1

CUBES 24.800 4.445 0.239 0.872 9.000 1 37.000 2
LOZENGES 15.966 8.317 0.623 -0.454 3.000 2 36.000 1
PAR COMP 9.952 3.375 0.405 0.252 1.000 1 19.000 1
SEN COMP 18.848 4.649 -0.550 0.221 4.000 1 28.000 1
WORDMEAN 17.283 7.947 0.729 0.233 2.000 1 41.000 1
ADDITION 90.179 23.782 0.163 -0.356 30.000 1 149.000 1
COUNTDOT 109.766 20.995 0.698 2.283 61.000 1 200.000 1
SCCAPS 191.779 37.035 0.200 0.515 112.000 1 333.000 1

This shows that the range of the variables are quite different, reflecting the case that
they are composed of different number of items. For example, PAR COMP has a range of
1 to 19, whereas SCCAPS has a range of 112 to 333. This is also reflected in the means
and standard deviations.

LISREL9 also gives tests of univariate and multivariate skewness and kurtosis.

Test of Univariate Normality for Continuous Variables

Skewness Kurtosis Skewness and Kurtosis

Variable Z-Score P-Value Z-Score P-Value Chi-Square P-Value

VIS PERC -0.604 0.546 0.045 0.964 0.367 0.833
CUBES 1.202 0.229 1.843 0.065 4.842 0.089

LOZENGES 2.958 0.003 -1.320 0.187 10.491 0.005
PAR COMP 1.995 0.046 0.761 0.447 4.559 0.102
SEN COMP -2.646 0.008 0.693 0.489 7.483 0.024
WORDMEAN 3.385 0.001 0.720 0.472 11.977 0.003
ADDITION 0.826 0.409 -0.937 0.349 1.560 0.458
COUNTDOT 3.263 0.001 3.325 0.001 21.699 0.000
SCCAPS 1.008 0.313 1.273 0.203 2.638 0.267

Relative Multivariate Kurtosis = 1.072
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Test of Multivariate Normality for Continuous Variables
Skewness Kurtosis Skewness and Kurtosis

Value Z-Score P-Value Value Z-Score P-Value Chi-Square P-Value
------ ------- ------- ------- ------- ------- ---------- -------
11.733 5.426 0.000 106.098 3.023 0.003 38.579 0.000

It is seen that the hypothesis of zero skewness and kurtosis is rejected for LOZENGES,
SEN COMP, WORDMEAN, and COUNTDOT.

The output file npv2a.out gives the same parameter estimate as before but different
standard errors. As a consequence, also t-values and P -values are different. The parameter
estimates and the two sets of standard errors are given in Table 1.1.5.

Table 1: Parameter Estimates, Normal Standard Errors, and Robust Standard Errors

Parameter Standard Errors
Factor Loading Estimates Normal Robust
VIS PERC on Visual 4.678 0.622 0.691
CUBES on Visual 2.296 0.407 0.374
LOZENGES on Visual 5.769 0.748 0.723
PAR COMP on Verbal 2.992 0.236 0.249
SEN COMP on Verbal 3.856 0.332 0.330
WORDMEAN on Verbal 6.567 0.568 0.571
ADDITION on Speed 15.676 2.005 1.824
COUNTDOT on Speed 16.709 1.746 1.769
SCCAPS on Speed 25.956 3.106 3.066
Factor Correlations
Verbal vs Visual 0.541 0.085 0.093
Verbal vs Speed 0.523 0.094 0.099
Verbal vs Speed 0.336 0.091 0.114

If the observed variables are non-normal, one can use the same formula from Browne
(1984) using an asymptotic covariance matrix (ACM)3 estimated under non-normality. This
chi-square, often called the ADF (Asymptotically Distribution Free) chi-square statistic,
is denoted C2(NNT) in LISREL 94. It has been found in simulation studies that the ADF
statistic does not work well because it is difficult to estimate the ACM accurately unless
N is huge, see e.g, Curran, West, & Finch (1996).

Satorra & Bentler (1988) proposed another approximate chi-square statistic C3, often
called the SB chi-square statistic, which is C1 multiplied by a scale factor which is es-
timated from the sample and involves estimates of the ACM both under normality and
non-normality. The scale factor is estimated such that C3 has an asymptotically correct

3The ACM is an estimate of the covariance matrix of the sample variances and covariances. Under
non-normality this involves estimates of fourth-order moments.

4In previous versions of LISREL, C2(NT) and C2(NNT) was called C2 and C4, respectively.
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mean even though it does not have an asymptotic chi-square distribution. In practice, C3

is conceived of as a way of correcting C1 for the effects of non-normality and C3 is often
used as it performs better than the ADF test C2(NT) in LISREL, particularly if N is not
very large, see e.g., Hu, Bentler, & Kano (1992).

Satorra & Bentler (1988) also mentioned the possibility of using a Satterthwaite (1941)
type correction which adjusts C1 such that the corrected value has the correct asymptotic
mean and variance. This type of fit measure has not been much investigated, neither for
continuous nor for ordinal variables. However, this type of chi-square fit statistic has been
implemented in LISREL9, where it is denoted C4. The formulas for C1–C4 are given in the
Appendix.

For our present example, C1–C4 appear in the output as

Degrees of Freedom For (C1)-(C3) 24

Maximum Likelihood Ratio Chi-Square (C1) 51.542 (P = 0.0009)

Browne’s (1984) ADF Chi-Square (C2_NT) 48.952 (P = 0.0019)

Browne’s (1984) ADF Chi-Square (C2_NNT) 64.648 (P = 0.0000)

Satorra-Bentler (1988) Scaled Chi-square (C3) 50.061 (P = 0.0014)

Satorra-Bentler (1988) Adjusted Chi-square (C4) 35.134 (P = 0.0056)

Degrees of Freedom For C4 16.844

C1 and C2(NT) are the same as before but with robust estimation LISREL9 also gives
C2(NNT), C3 and C4 so that one can see what the effect of non-normality is. In particu-
lar,the difference C2(NNT)− C2(NT) can be viewed as an effect of non-nomality.

Note that C4 has its own degrees of freedom which is different from the model degrees
of freedom. LISREL 9 gives the degrees of freedom for C4 as a fractional number and uses
this fractional degrees of freedom to compute the P -value for C4.

1.1.6 Estimation Using Data in Text Form

Since the original data is given in text form in this example, it is not necessary to use a
lsf file to analyze tha data. One can read the text data file npv.dat directly into LISREL
using the following SIMPLIS syntax file, see file npv3a.spl.

Estimation of the NPV Model by Robust Maximum Likelihood

Using text data with Labels in the first line

Raw Data from File NPV.DAT

Continuous ’VIS PERC’ - SCCAPS

Latent Variables: Visual Verbal Speed

Relationships:

’VIS PERC’ - LOZENGES = Visual

’PAR COMP’ - WORDMEAN = Verbal

ADDITION - SCCAPS = Speed

Robust Estimation

Options: RS SC MI

Path Diagram

End of Problem
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The Optionsline can be used to request additional output, see the SIMPLIS Syntax
Guide. In this case, RS means residuals and standardized residuals, SC means completely
standardized solution, and MI means modification indices.

1.1.7 Modifying the Model

The output file npv3a.out gives the following information about modification indices

The Modification Indices Suggest to Add the

Path to from Decrease in Chi-Square New Estimate

ADDITION Visual 8.5 -6.85

COUNTDOT Verbal 8.3 -4.91

SCCAPS Visual 27.8 23.94

SCCAPS Verbal 10.7 11.01

This suggests that the fit cam be improved by adding a path from Visual to SCCAPS. If
this makes sense, one can add this path, see file npv3aa.spl and rerun the model. This
gives a solution where

SCCAPS = 16.559*Visual + 16.274*Speed, Errorvar.= 620.929, R2 = 0.547

Standerr (3.675) (3.336) (97.603)

Z-values 4.506 4.879 6.362

P-values 0.000 0.000 0.000

and the chi-squares are now

Degrees of Freedom for (C1)-(C3) 23

Maximum Likelihood Ratio Chi-Square (C1) 28.293 (P = 0.2049)

Browne’s (1984) ADF Chi-Square (C2_NT) 27.898 (P = 0.2197)

Browne’s (1984) ADF Chi-Square (C2_NNT) 31.701 (P = 0.1065)

Satorra-Bentler (1988) Scaled Chi-square (C3) 28.221 (P = 0.2075)

Satorra-Bentler (1988) Adjusted Chi-square (C4) 20.437 (P = 0.2342)

Degrees of Freedom for C4 16.656

indicating a good fit.

1.1.8 Analyzing Correlations

Factor analysis was mainly developed by psychologists for the purpose of identifying mental
abilities by means of psychological testing. Various theories of mental abilities and various
procedures for analyzing the correlations among psychological tests emerged.

Following this old tradition, users of LISREL might be tempted to analyze the correlation
matrix of the nine psychological variables instead of the covariance matrix as we have
done in the previous examples. However, analyzing the correlation matrix by maximum
likelihood (ML) is problematic in several ways as pointed out by Cudeck (1989), see also
Appendix C in Jöreskog,et.al. (2003). There are three ways to resolve this problem:
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Approach 1 Use the covariance matrix and ML as before and request the completely
standardized solution (SC)5 as was done on the Options line in file npv3a.spl. This
gives the completely standardized solution in matrix form as

Completely Standardized Solution

LAMBDA-X

Visual Verbal Speed

-------- -------- --------

VIS PERC 0.677 - - - -

Cubes 0.517 - - - -

LOZENGES 0.694 - - - -

PAR COMP - - 0.866 - -

SEN COMP - - 0.829 - -

WORDMEAN - - 0.826 - -

ADDITION - - - - 0.659

COUNTDOT - - - - 0.796

SCCAPS - - - - 0.701

PHI

Visual Verbal Speed

-------- -------- --------

Visual 1.000

Verbal 0.541 1.000

Speed 0.523 0.336 1.000

THETA-DELTA

VIS PERC Cubes LOZENGES PAR COMP SEN COMP WORDMEAN

-------- -------- -------- -------- -------- --------

0.542 0.733 0.519 0.251 0.312 0.317

ADDITION COUNTDOT SCCAPS

-------- -------- --------

0.566 0.367 0.509

The disadvantage with this alternative is that one does not get standard errors for
the completely standardized solution.

5LISREL has two kinds of standardized solutions: the standardized solution (SS) in which only the latent
variables are standardized and the completely standardized solution (SC) in which both the observed and
the latent variables are standardized.

14



Approach 2 Use the following PRELIS syntax file to standardize the original variables
(file npv2.prl):

RA=NPV.LSF

SV ALL

OU RA=NPVstd.LSF

SV is a new PRELIS command to standardize the variables. One can standardize
some of the variables by listing them on the SV line. npv2.prl produces a new
lsf file NPVstd.lsf in which all variables has sample means 0 and sample standard
deviations 1.

Then use NPVstd.LSF instead of NPV.LSF in npv2a.spl to obtain a completely stan-
dardized solution with robust standard errors.

Approach 3 Use the sample correlation matrix with robust unweighted least squares
(RULS) or with robust diagonally weighted least squares (RDWLS) This will use
an estimate of the asymptotic covariance matrix of the sample correlations to obtain
correct asymptotic standard errors and chi-squares under non-normality.

The following SIMPLIS command file demonstrates the Approach 3, see file npv4a.spl:

Estimation of the NPV Model

by Robust Diagonally Weighted Least Squares

Using Correlations

Raw Data from File NPV.LSF

Analyze Correlations

Latent Variables: Visual Verbal Speed

Relationships:

’VIS PERC’ - LOZENGES = Visual

’PAR COMP’ - WORDMEAN = Verbal

ADDITION - SCCAPS = Speed

Robust Estimation

Options: DWLS

Path Diagram

End of Problem

Note the added line

Analyze Correlations

This gives the standadrdized solution as

LISREL Estimates (Robust Diagonally Weighted Least Squares)

VIS PERC = 0.726*Visual, Errorvar.= 0.472 , R2 = 0.528

Standerr (0.0707) (0.195)

Z-values 10.272 2.424
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P-values 0.000 0.015

CUBES = 0.481*Visual, Errorvar.= 0.769 , R2 = 0.231

Standerr (0.0810) (0.183)

Z-values 5.938 4.204

P-values 0.000 0.000

LOZENGES = 0.677*Visual, Errorvar.= 0.541 , R2 = 0.459

Standerr (0.0687) (0.190)

Z-values 9.862 2.851

P-values 0.000 0.004

PAR COMP = 0.863*Verbal, Errorvar.= 0.255 , R2 = 0.745

Standerr (0.0326) (0.175)

Z-values 26.440 1.459

P-values 0.000 0.145

SEN COMP = 0.836*Verbal, Errorvar.= 0.302 , R2 = 0.698

Standerr (0.0350) (0.176)

Z-values 23.908 1.719

P-values 0.000 0.086

WORDMEAN = 0.823*Verbal, Errorvar.= 0.323 , R2 = 0.677

Standerr (0.0361) (0.176)

Z-values 22.777 1.839

P-values 0.000 0.066

ADDITION = 0.611*Speed, Errorvar.= 0.627 , R2 = 0.373

Standerr (0.0658) (0.184)

Z-values 9.291 3.407

P-values 0.000 0.001

COUNTDOT = 0.711*Speed, Errorvar.= 0.494 , R2 = 0.506

Standerr (0.0584) (0.185)

Z-values 12.178 2.668

P-values 0.000 0.008

SCCAPS = 0.842*Speed, Errorvar.= 0.290 , R2 = 0.710

Standerr (0.0584) (0.193)

Z-values 14.423 1.508

P-values 0.000 0.131
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Correlation Matrix of Independent Variables

Visual Verbal Speed

-------- -------- --------

Visual 1.000

Verbal 0.535 1.000

(0.084)

6.336

Speed 0.571 0.379 1.000

(0.086) (0.086)

6.637 4.384

1.2 Structural Equation Models for Latent Variables

1.2.1 Example: Attitudes to Drinking and Driving (DRINK)

In a study designed to determine the predictors of drinking and driving behavior among 18- to
24-year-old males, the model shown in the path diagram in Figure 1.2.1 was proposed.

The latent variables shown in the figure are as follows:

Attitude attitude toward drinking and driving

Norms social norms pertaining to drinking and driving

Control percieved control over drinking and driving

Intention intention to drink and drive

Behavior drinking and driving behavior

Attitude is measured by five indicators X2-X5, Norms is measured by three indicators X6-X8,
Control is measured by four indicators X9-X12, Intension is measured by two indicators Y1-Y2,
and behavior is measured by two indicators Y3-Y4. Fictitious data based on the theory of planned
behavior (Ajzen, 1991) is given in file drinkdata.lsf.

This example illustrates a possible strategy of analysis. Begin by testing the measurement
model for Attitude, see file drink11a.spl.

Drinking and Driving

Testing the Measurement Model for Attitude

Raw Data from File drinkdata.lsf

Latent Variables Attitude

Relationships

X1-X5 = Attitude

Path Diagram

End of Problem
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Figure 2: Conceptual Path Diagram for Attitudes to Drinking and Driving

Note that although the data file drinkdata.lsf contains many variables, LISREL automat-
ically selects the subset of variables used in the model.

To test the measurement model for Attitude and Norms simultaneously, add Norms in
the list of Latent Variables and add the line, see file drink12a.spl.

X6-X8 = Norms

To test the measurement model for Attitude, Norms, and Control simultaneously, add
Control in the list of Latent Variables and add the line, see file drink13a.spl.

X9-X12= Control

Finally, to test the measurement model for all latent variables simultaneosly, add Intention
and Behavior in the list of Latent Variables and add the two lines, see file drink14a.spl.

Y1-Y2 = Intention

Y3-Y4 = Behavior

If any of these analysis shows a large modification index for an indicator, the measure-
ment model must be reconsidered and modified. For example, suppose there is a large
modification index for the path from Attitude to X8. This might mean that X8 is not
entirely an indicator of Norms but to some extent also a measure of Attitude. If this idea
makes sense then the model should be modified by letting X8 be a composite measure of
both Norms and Attitude.

One can now test the full model in Figure 1.2.1 by adding the two lines, see file drink15a.spl.
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Intention = Attitude - Control

Behavior = Intention

defining the structural relationships among the latent variables The full SIMPLIS command
file is now

Drinking and Driving

Raw Data from File drinkdata.lsf

Latent Variables Attitude Norms Control Intention Behavior

Relationships

Y1-Y2 = Intention

Y3-Y4 = Behavior

X1-X5 = Attitude

X6-X8 = Norms

X9-X12= Control

Intention = Attitude - Control

Behavior = Intention

Robust Estimation

Path Diagram

End of Problem

According to Browne & Cudeck (1993) one can use the following fit measures, see file
drink15a.out:

Root Mean Square Error of Approximation (RMSEA) 0.0282

90 Percent Confidence Interval for RMSEA (0.0196 ; 0.0363)

P-Value for Test of Close Fit (RMSEA < 0.05) 1.00

to conclude that the model fits at least approximately.

2 Continuous Variables with Missing Values

2.1 Treatment of Missing Values

Missing values and incomplete data are almost unavoidable in in social, behavioral, med-
ical and most other areas of investigation. One can distinguish between three types of
incomplete data:

• Unit nonresponse, for example, a person does not respond at all to an item in a
questionnaire.

• Subject attrition, for example, when a person falls out of a sample after some time
in a longitudinal follow-up study.

• Item nonresponse, for example, a person respond to some but not all items in a
questionnaire.
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The literature, e.g., Schafer (1997) distinguishes between three mechanisms of nonre-
sponse.

MCAR Missing completely at random

MAR Missing at random

MNAR Missing not at random

Let zij be any element on the data matrix. Informally, one can define these concepts as

MCAR Pr(zij = missing) does not depend on any variable in the data.

MAR Pr(zij = missing) may depend on other variables in the data but not on zij.
Example: A missing value of a person’s income may depend on his/her age and
education but not on his/her actual income.

MNAR Pr(zij = missing) depends on zij. Example: In a questionnaire people with
higher income tend not to report their income.

LISREL has several ways of dealing with missing values:

1. Listwise deletion

2. Pairwise deletion

3. Imputation by matching

4. Multiple imputation

• EM

• MCMC

5. Full Information Maximum Likelihood (FIML)6

Of these methods the first three are ad hoc procedures whereas the last two are based
probability models for missingness. As a consequence, the ad hoc methods may lead to
biased estimates under MAR and can only be recommended under MCAR.

Listwise deletion means that all cases with missing values are deleted. This leads to a
complete data matrix with no missing values which is used to estimate the model. This
procedure can lead to a large loss of information in that the resulting sample size is much
smaller than the original. Listwise deletion can give biased, inconsistent, and inefficient
estimates under MAR. It should only be used under MCAR.

Pairwise deletion means that means and variances are estimated using all available data
for each variable and covariances are estimated using all available data for each pair of

6Of course, the maximum likelihood (ML) used earlier is also a full information maximum likelihood
method. However, it is convenient to use the term ML for the case of complete data and the term FIML
for the case of missing data.
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variables. These means, variances and covariances are then combined to form a mean
vector and a covariance matrix which are used to estimate the model. While some efficiency
is obtained compared to listwise deletion, it is difficult to specify a sample size N to be
used in the estimation of the model, since the variances and covariances are all based on
different sample sizes and there is no guaranty that the covariance matrix will be positive
definite which is required by the maximum likelihood method. Although pairwise deletion
is available in LISREL, it is not recommended. Its best use is for data screening for then it
gives the most complete information about the missing values in the data.

Imputation means that real values are substituted for the missing values. Various ad.hoc.
procedures for imputation have been suggested in the literature. One such is imputation
by matching which is available in LISREL. It is based on the idea that individuals who have
similar values on a set mathing variables may also be similar on a variable with missing
values. This will work well if the matching variables are good predictors of the variable
with missing values.

Methods 4 and 5 are both based on the assumption of multvariate normality and missing-
ness under MAR. Method 4 uses multiple imputation methods to generate a complete data
matrix. The multiple imputation procedure implemented in LISREL is described in details
in Schafer (1997) and uses the EM algorithm and the method of generating random draws
from probabilty distributions via Markov chains (MCMC). Formulas are given in Section
??. The EM algorithm generates one single complete data matrix whereas the MCMC
method generates several complete data matrices and uses the average of these. As a con-
sequence, the MCMC method is more reliable than the EM algorithm. In both cases, the
complete data matrix can be used to estimate the mean vector and the covariance matrix
of the observed variables which can be used to estimate the model. However, in LISREL 9
it is not necessary to do these steps separately as they are done automatically as will be
described in what follows.

Method 5 is the default method in LISREL9 when there are missing data. This is the
recommended method for dealing with the problem of missing data. So this is described
first.

If the variables have a multivariate normal distribution all subsets of the variables also
have that distribution. So the likelihood function for the observed values can be evaluated
for each observation without using any missing values. Formulas are given in Section ??.

2.2 Latent Curve Models

2.2.1 Example: Treatment of Prostate Cancer (PSAVAR)

A medical doctor offered all his patients diagnosed with prostate cancer a treatment aimed at
reducing the cancer activity in the prostate. The severity of prostate cancer is often assessed
by a plasma component known as prostate specific antigen (PSA), an enzyme that is elevated
in the presence of prostate cancer. The PSA level was measured regularly every three months.
The data contains five repeated measurements of PSA. The age of the patient is also included
in the data. Not every patient accepted the offer initially and several patients chose to enter
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the program after the first occasion. Some patients, who accepted the initial offer, are absent
at some later occasions for various reasons. Thus there are missing values in the data.

The aim of this study is to answer the following questions: What is the average initial
PSA value? Do all patients have the same initial PSA value? Is there an overall effect of
treatment. Is there a decline of PSA values over time, and, if so, what is the average rate
of decline? Do all patients have the same rate of decline? Does the individual initial PSA
value and/or the rate of decline depend on the patient’s age?

This is a typical example of repeated measurements data, the analysis of which is some-
times done within the framework of multilevel analysis. It represents the simplest type
of two-level model but it can also be analyzed as a structural equation model, see Bollen
& Curran (2006). In this context it illustates a mean and covariance structure model
estimated from longitudinal data with missing values.

The data file for this example is psavar.lsf, where missing values are shown as -9.0007.

In this kind of data it is inevitable that there are missing values. For example, a patient
may be on vacation or ill or unable to come to the doctor for any reason at some occasion
or a patient may die and therefore will not come to the doctor after a certain occasion. It
is seen in that

• Patients 9 and 10 are missing at 3 months

• Patient 15 is missing at 3 and 6 months

• Patient 16 is missing at 0, 3, and 12 months

In the following analysis it is assumed that data are missing at random (MAR), although
there may be a small probability that a patient will be missing because his PSA value is
high.

7If the data is imported from an external source which already have a missing value code, the missing
values will show up in the lsf file as -999999.000, which is the global missing data code in LISREL.
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2.2.2 Data Screening

Whenever one starts an analysis of a new data set, it is recommended to begin with a data
screening. To do so click on Statistics at the top of the screen and select Data Screening
from the Statistics menu. This will reveal the follwing information about the data.

Number of Missing Values per Variable

PSA0 PSA3 PSA6 PSA9 PSA12 Age

-------- -------- -------- -------- -------- --------

17 14 13 12 11 0

This table says that there are 17 patients missing initially, 14 missing at 3 months, 13 at 6
months, etc.

Distribution of Missing Values

Total Sample Size = 100

Number of Missing Values 0 1 2 3

Number of Cases 46 43 9 2

This table says that there are only 46 patients with complete data on all six occasions.
Thus, if one uses listwise deletion 54% of the sample will be lost. 43 patients are missing
on one occasion, 9 patients are missing at two occasions, 2 patients are missing on three
occasions. This table does not tell on which occasions the patients are missing. The next
table gives gives more complete information about the missing data patterns.
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Missing Data Map

Frequency PerCent Pattern

46 46.0 0 0 0 0 0 0

9 9.0 1 0 0 0 0 0

8 8.0 0 1 0 0 0 0

2 2.0 1 1 0 0 0 0

8 8.0 0 0 1 0 0 0

2 2.0 1 0 1 0 0 0

2 2.0 0 1 1 0 0 0

9 9.0 0 0 0 1 0 0

1 1.0 1 0 0 1 0 0

1 1.0 1 1 0 1 0 0

1 1.0 0 0 1 1 0 0

9 9.0 0 0 0 0 1 0

1 1.0 1 0 0 0 1 0

1 1.0 1 1 0 0 1 0

The columns under Pattern correspond to the variables in the order they are in psavar.lsf.
A 0 means a non-missing value and a 1 means a missing value. Recall that the last variable
is the patient’s age. This has no missing values. Here one can see for example that two
patients are missing at both 0 and 3 months and another patient is missing at 6 and 9
months.

The following information about the univariate distributions of the variables have been
obtained using all available data for each variable,i.e., 83 patients for PSA0, 86 patients for
PSA3, etc.

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. Skewness Kurtosis Minimum Freq. Maximum Freq.
-------- ---- -------- ------- -------- ------- ----- ------- -----

PSA0 31.164 5.684 0.068 -0.852 19.900 1 44.100 1
PSA3 30.036 6.025 -0.248 -0.732 14.500 1 42.100 1
PSA6 27.443 6.084 -0.335 -0.961 13.700 1 37.600 1
PSA9 25.333 6.391 -0.331 -1.066 10.600 1 36.200 1
PSA12 23.406 6.306 -0.309 -1.069 9.600 1 35.800 1
Age 55.450 7.896 -0.329 -0.234 32.000 1 70.000 1

It is seen that the mean age is 55.45 years and that average initial PSA value is 31.164
with a minimum at 19.9 and maximum at 44.1. At 12 months the corresponding values
are 23.406, 9.6, and 35.8, respectively. Thus there is some evidence that the PSA values
are decreasing over time.

The model to be estimated is

yit = ai + biTt + eit (3)

i = 1, 2, . . . , N individuals (4)
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Tt = Time at occasion t = 1, 2, . . . , ni (5)

ai = α + γazi + ui (6)

bi = β + γbzi + vi (7)

zi = Covariate observed on individual i (8)(
ui

vi

)
∼ N(0,Φ) (9)

eit ∼ N(0, σ2
e) (10)

yit = (α + βTt + γazi + γbTtzi) + (ui + viTt + eit) (11)

An interpretation of this is as follows. Each patient has his own linear growth curve8,
represented by (3) which is the regression of yit on time with intercept ai and slope bi

varying across patients. In principle, the intercepts ai and slopes bi could all be different
across patients. It is of interest to know if the intercepts and/or the slopes are equal across
patients. The four cases are illustrated in Figure 3. If there is variation in intercepts and/or
the slopes across patients, one is interested in whether a covariate zi (in this case age) can
predict the intercept and/or the slope.

Path diagrams for the models without and with a covariate are illustrated in Figures 4
and 5, respectively, with Tt = t− 1 for four occasions.

The model in Figure 4 can be estimated with FIML using the following SIMPLIS syntax
file (psavar1a.spl):

Linear Growth Curve for psavar Data

Raw Data from File psavar.LSF

Latent Variables: a b

Relationships

PSA0 = 1*a 0*b

PSA3 = 1*a 3*b

PSA6 = 1*a 6*b

PSA9 = 1*a 9*b

PSA12 = 1*a 12*b

a b = CONST

Equal Error Variances: PSA0 - PSA12

Path Diagram

End of Problem

There are two latent variables a and b in the model. They represent the intercept and
slope of the patients linear growth curves. The objective is to estimate the mean vector
and covariance matrix of a and b and the error variance of the psa meaures. The error
variance is assumed to be the same at all occasions.

In the current example, a and b are latent variables, and the line in the input file
psavar1a.spl

8In general, the growth curves are not restricted to be linear, but can be quadratic, cubic, or other
types of functions of time, see Jöreskog, Sörbom, Du Toit, & Du Toit (2003).
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Figure 3: Four Cases of Intercepts and Slopes

a b = CONST

specifies that the means of a and b should be estimated.

The output gives the following information

--------------------------------

EM Algorithm for missing Data:

--------------------------------

Number of different missing-value patterns= 14

Effective sample size: 100

Convergence of EM-algorithm in 9 iterations

-2 Ln(L) = 1997.49237

Percentage missing values= 13.40

The EM algorithm is first used to estimate a saturated model where both the mean vector
and covariance matrix are unconstrained. This also gives the value −2 ln(L) = 1997.4924.
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Figure 4: Path Diagram for a Linear Curve Model with Four Occasions

These are used to obtain starting values for the FIML method. After convergence the
FIML method gives the following information about the fit of the model.

Global Goodness of Fit Statistics, FIML case

-2ln(L) for the saturated model = 1997.492

-2ln(L) for the fitted model = 2008.601

Degrees of Freedom = 14

Full Information ML Chi-Square 11.108 (P = 0.6775)

Root Mean Square Error of Approximation (RMSEA) 0.0

90 Percent Confidence Interval for RMSEA (0.0 ; 0.0775)

P-Value for Test of Close Fit (RMSEA < 0.05) 0.844

The FIML estimates of the model parameters are given as

Covariance Matrix of Independent Variables

a b

-------- --------

a 30.899

(4.613)

6.698

b 0.302 0.004

(0.108) (0.005)

2.811 0.728
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Mean Vector of Independent Variables

a b

-------- --------

31.934 -0.742

(0.571) (0.019)

55.920 -39.869

The conclusions from this analysis are

• The average initial PSA value is 31.9 with a variance of 30.9.

• Thus, the initial PSA value varies considerably from patient to patient

• The effect of treatment is highly significant.

• The PSA value decreases by 0.7 per quarter (0.23 per year) and this rate of decrease
is the same for all patients.
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Figure 5: The Linear Curve Model with Covariate

To estimate the model in Figure 5 one can just add Age on the lines for a and b. The
SIMPLIS syntax file is psavar2a.spl:

Linear Model with Covariate for psavar Data

Raw Data from File psavar.LSF

Latent Variables: a b

Relationships

PSA0 = 1*a 0*b

PSA3 = 1*a 3*b

PSA6 = 1*a 6*b
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PSA9 = 1*a 9*b

PSA12 = 1*a 12*b

a b = CONST Age

Let the Errors on a and b correlate

Equal Error Variances: PSA0 - PSA12

Path Diagram

End of Problem

However, since we already know that all patients have the same slope b, it is not meaningful
to predict b from Age. Thus instead of the line

a b = CONST Age

one should use, see file psavar2aa.spl

a = CONST Age

b = CONST 0*Age

The prediction equation for the intercept a is estimated as

a = 15.288 + 0.300*Age, Errorvar.= 25.818, R2 = 0.177

Standerr (3.709) (0.0662) (3.911)

Z-values 4.121 4.533 6.601

P-values 0.000 0.000 0.000

Thus, the intercept a depends on age. The intercept increases by 0.30 per year of age, on
average.

There is an alternative method of estimation, based on the same two assumptions. One
can use multiple imputation to obtain a complete data set and then analyze this by maxi-
mum likelihood or robust maximum likelihood method. Since the sample size N = 100 is
small it is best to use maximum likelihood.

For the model in the last analysis the SIMPLIS syntax will be, see file psavar3a.spl:

Linear Model with Covariate for psavar Data

Estimated by ML using Multiple Imputation

Raw Data from File psavar.lsf

Multiple Imputation with MC

Latent Variables: a b

Relationships

PSA0 = 1*a 0*b

PSA3 = 1*a 3*b

PSA6 = 1*a 6*b

PSA9 = 1*a 9*b

PSA12 = 1*a 12*b

a = CONST Age

b = CONST 0*Age
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Let the Errors of a and b correlate

Equal Error Variances: PSA0 - PSA12

Path Diagram

End of Problem

The only difference between this input file and psavar2aa.spl is the line

Multiple Imputation

which has been added. The output gives the following estimated equation for a:

a = 15.000 + 0.306*Age, Errorvar.= 26.020, R2 = 0.183

Standerr (3.570) (0.0637) (3.849)

Z-values 4.202 4.798 6.761

P-values 0.000 0.000 0.000

which is very similar to previous results.

An advantage of this approach is the one can get more measures of goodness of fit:

Log-likelihood Values

Estimated Model Saturated Model

Number of free parameters(t) 9 27

-2ln(L) 1787.430 1764.336

AIC (Akaike, 1974)* 1805.430 1818.336

BIC (Schwarz, 1978)* 1828.877 1888.675

Goodness of Fit Statistics

Degrees of Freedom for (C1)-(C2) 18

Maximum Likelihood Ratio Chi-Square (C1) 23.095 (P = 0.1870)

Browne’s (1984) ADF Chi-Square (C2_NT) 22.807 (P = 0.1981)

Estimated Non-centrality Parameter (NCP) 5.095

90 Percent Confidence Interval for NCP (0.0 ; 21.634)

Minimum Fit Function Value 0.231

Population Discrepancy Function Value (F0) 0.0509

90 Percent Confidence Interval for F0 (0.0 ; 0.216)

Root Mean Square Error of Approximation (RMSEA) 0.0532

90 Percent Confidence Interval for RMSEA (0.0 ; 0.110)

P-Value for Test of Close Fit (RMSEA < 0.05) 0.426

3 Ordinal Variables without Missing Values

3.1 Ordinal Variables

Observations on an ordinal variable represent responses to a set of ordered categories, such
as a five-category Likert scale. It is only assumed that a person who selected one category
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has more of a characteristic than if he/she had chosen a lower category, but we do not know
how much more. Ordinal variables are not continuous variables and should not be treated
as if they are. It is common practice to treat scores 1, 2, 3, . . . assigned to categories as
if they have metric properties but this is wrong. Ordinal variables do not have origins
or units of measurements. Means, variances, and covariances of ordinal variables have no
meaning. The only information we have are counts of cases in response vector. To use
ordinal variables in structural equation models requires other techniques than those that
are traditionally employed with continuous variables.

There are many methods available for estimating structural equation models with ordinal
variables, see e.g., Jöreskog & Moustaki (2001), Yang-Wallentin, Jöreskog, & Luo (2010)
or Forero, Maydeu-Olivares, & Gallardo-Pujol (2011) and references given there. There are
essentially two types of methods. One is a full information maximum likelihood method
(FIML) using a probit, logit, or other link function. The other method fits the model to
a matrix of polychoric correlation or covariance matrix using some fit function like like
ULS or DWLS. The focus is here on the two methods: FIML and DWLS. These methods
are illustrated using exploratory and confirmatory factor analysis models, but any LISREL
model can be used, even those involving a mean structure.

3.1.1 Example: Attitudes Toward Science and Technology (SCITECH)

In the Eurobarometer Survey 1992, citizens of Great Britain were asked questions about Science
and Technology. The questions are given below.

1. Science and technology are making our lives healthier, easier and more comfortable [COM-
FORT].

2. Scientific and technological research cannot play an important role in protecting the
environment and repairing it [ENVIRON].

3. The application of science and new technology, will make work more interesting [WORK].

4. Thanks to science and technology, there will be more opportunities for the future gener-
ations [FUTURE].

5. New technology does not depend on basic scientific research [TECHNOL].

6. Scientific and technological research do not play an important role in industrial develop-
ment [INDUSTRY].

7. The benefits of science are greater than any harmful effects it may have [BENEFIT].

Note that the items COMFORT, WORK, FUTURE, and BENEFIT have a positive question
wording, whereas the items ENVIRON, TECHNOL, and INDUSTRY have a negative question
wording.

The response alternatives were strongly disagree, disagree to some extent, agree to some
extent, and, strongly agree. These were coded as 1, 2, 3, 4, respectively. The data file is
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scitech.lsf. Missing values have been deleted beforehand, see Batholomew et.al. (2002).
This data set is used here to illustrate the case of no missing values. The sample size is
392. Exploratory factor analysis is illustrated first.

3.1.2 Exploratory Factor Analysis

To perform an exploratory factor analysis of ordinal variables by the FIML method, open
the file scitech.lsf and select EFA of Ordinal Variables in the Statistics Menu. This
shows the following window

Then select the variables to be analyzed, tick the box Logistic, for example, and insert 2
for Number of Factors. Then click Run.

The output file scitech.out gives the following unrotated and rotated factor loadings:

Unrotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

COMFORT 0.764 0.000 0.416

ENVIRON 0.237 0.817 0.277

WORK 0.669 -0.404 0.388

FUTURE 0.847 -0.323 0.179

TECHNOL 0.234 0.832 0.252

INDUSTRY 0.462 0.716 0.274

BENEFIT 0.713 -0.225 0.441
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Varimax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

COMFORT 0.719 0.259 0.416

ENVIRON -0.054 0.849 0.277

WORK 0.767 -0.153 0.388

FUTURE 0.906 -0.016 0.179

TECHNOL -0.062 0.862 0.252

INDUSTRY 0.192 0.830 0.274

BENEFIT 0.747 0.030 0.441

Promax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

COMFORT 0.710 0.240 0.416

ENVIRON -0.086 0.852 0.277

WORK 0.774 -0.175 0.388

FUTURE 0.908 -0.041 0.179

TECHNOL -0.094 0.866 0.252

INDUSTRY 0.161 0.826 0.274

BENEFIT 0.747 0.010 0.441

Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.000

Factor 2 0.064 1.000

Reference Variables Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

COMFORT 0.738 0.273 0.416

ENVIRON 0.006 0.851 0.277

WORK 0.757 -0.140 0.388

FUTURE 0.906 0.000 0.179

TECHNOL 0.000 0.865 0.252

INDUSTRY 0.251 0.837 0.274

BENEFIT 0.750 0.043 0.441
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Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.000

Factor 2 -0.089 1.000

The first solution is the standardized unrotated solution which is a transformation of
the standardized solution obtained by the FIML procedure. The second solution is the
varimax solution of Kaiser (1958). Both of these are orthogonal solutions, i.e., the factors
are uncorrelated. The third solution is the promax solution of Hendrickson & White (1964).
This is an oblique solution, i.e., the factors are correlated. The varimax and the promax
solutions are transformations of the standardized unrotated solution and as such they are
still maximum likelihood solutions. The fourth solution is the TSLS solution obtained in
reference variables form as described the Technical Appendix. The reference variables are
chosen as those variables in the promax solution that have the largest factor loadings in
each column. In this case the reference variables are FUTURE and TECHNOL.

The Promax-Rotated Factor Loadings and the Reference Variables Factor Loadings sug-
gest that there are two nearly uncorrelated factors and that Factor 1 is a Positive factor,
having large loadings on the positively worded items COMFORT, WORK, FUTURE, and
BENEFIT and Factor 2 is a Negative factor having large loadings on the negatively worded
items ENVIRON, TECHNOL, and INDUSTRY. Three other files are also produced in this
analysis: SCITECH.POM, BIVFITS.POM and MULFITS.POM. The first of these
gives estimates of unstandardized factor loadings and thresholds and their standard errors.
The other two give detailed information about the fit of the model.

The file SCITECH.POM give the following unstandardized parameters and standard
errors

Unstandardized Thresholds Alpha^(i)_a

COMFORT -5.015 -2.744 1.535

ENVIRON -3.429 -1.243 1.002

WORK -2.941 -0.905 2.279

FUTURE -4.998 -2.125 1.885

TECHNOL -4.164 -1.482 1.086

INDUSTRY -4.695 -2.507 0.461

BENEFIT -3.379 -1.006 1.705

Unstandardized Factor Loadings Beta_ij

COMFORT 1.184 0.000

ENVIRON 0.450 1.552

WORK 1.074 -0.649

FUTURE 2.002 -0.763

TECHNOL 0.467 1.656

INDUSTRY 0.882 1.366

BENEFIT 1.073 -0.339
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Standard Errors for Unstandardized Thresholds Alpha^(i)_a

COMFORT 0.589 0.240 0.173

ENVIRON 0.304 0.173 0.172

WORK 0.251 0.147 0.227

FUTURE 0.600 0.331 0.307

TECHNOL 0.376 0.195 0.195

INDUSTRY 0.444 0.243 0.168

BENEFIT 0.290 0.143 0.179

Standard Errors for Unstandardized Factor Loadings Beta_ij

COMFORT 0.187 0.000

ENVIRON 0.222 0.228

WORK 0.192 0.191

FUTURE 0.434 0.298

TECHNOL 0.253 0.272

INDUSTRY 0.252 0.233

BENEFIT 0.172 0.188

3.1.3 Estimation Using Adaptive Quadrature

The above FIML approach to analyze ordinal variables is only intended for exploratory
factor analysis with one or two factors. For other cases one can use the following SIMPLIS
syntax file instead, see file scitech2a.spl:

Raw Data from file SCITECH.lsf

$ADAPQ(8) LOGIT

Latent Variables Factor1 Factor2

Relationships

COMFORT - BENEFIT = Factor1

ENVIRON - BENEFIT = Factor2

Set the covariance between Factor1 and Factor2 to 0

End of Problem

This uses adaptive qudrature to evaluate the integrals involved.

The line

$ADAPQ(8) LOGIT

specifies that the adaptive quadrature procedure is to be used. One can specify the number
of quadrature points to be used in the adaptive quadrature procedure and the link function.
Follow the following guidelines to specify the number of quadrature points:

• For models with one latent variable, use 8 quadrature points

• For models with two or three latent variables, use 5-10 quadrature points
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• For models with four or five quadrature points, use 5-6 quadrature points

• For models with six to ten latent variables use 3-4 quadrature points

The following link functions are available

• LOGIT

• PROBIT

• LOGLOG

• CLL (Complimentary log-log)

The adaptave quadrature gives a more accurate solution than scitech.out. But the
unstandardized parameters are essentially the same in this case.

This output file also gives the following information:

Number of quadrature points = 8

Number of free parameters = 34

Number of iterations used = 8

-2lnL (deviance statistic) = 5822.09128

Akaike Information Criterion 5890.09128

Schwarz Criterion 6025.11419

3.1.4 Confirmatory Factor Analysis

This FIML approach will now be used to illustrate a confirmatory factor analysis. Use the
the file scitech3a.spl:

Raw Data from file scitech.lsf

$ADAPQ(8) LOGIT

Latent Variables Positive Negative

Relationships

COMFORT WORK FUTURE BENEFIT = Positive

ENVIRON TECHNOL INDUSTRY = Negative

End of Problem

This gives

Number of quadrature points = 8

Number of free parameters = 29

Number of iterations used = 24

-2lnL (deviance statistic) = 5841.79954

Akaike Information Criterion 5899.79954

Schwarz Criterion 6014.96613
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The difference between the two deviance statistics is 5841.800 − 5822.091 = 18.29. If this
is used as a chi-square with 5 degrees of freedom, the confirmatory factor model is rejected
in favor of the exploratory two-factor model. This means that not all of the seven specified
zero factor loadings are zero. One can relax the loading of COMFORT on Negative, see file
scitech4a.spl. This gives a good two-factor solution with a small but significant loading of
COMFORT on Negative. The deviance for this model is −2 ln L = 5833.559, corresponding
to a chi-square of 11.468 with 4 degrees of freedom which is significant at the 1% level. This
result can be interpreted as follows. Some fraction of people who generally have a positive
attitude to science and technology will respond in the Strongly Disagree or Disagree to
Some Extent categories to the COMFORT item.

4 Ordinal Variables with Missing Values

To illustrate the analysis of ordinal variables in this section some data from the Political
Action Survey will be used. This was a cross-national survey designed and carried out to
obtain information on conventional and unconventional forms of political participation in
industrial societies (Barnes & Kaase, 1979).

The first Political Action Survey was conducted between 1973 and 1975 in eight coun-
tries: Britain, West Germany, The Netherlands, Austria, the USA, Italy, Switzerland, and
Finland. New cross-sections including a panel were obtained during 1980–81 in three of
the original countries: West Germany, The Netherlands, and the USA. All data was col-
lected through personal interviews on representative samples of the population 16 years
and older9.

The Political Action Survey contains several hundred variables. For the present purpose
of illustration the six variables representing the operational definition of political efficacy
will be used. These item have been previously analyzed by Aish & Jöreskog (1990), Jöreskog
(1990), and Jöreskog & Moustaki (2001, 2006), among others To begin with we use the
data from the first cross-section of the USA sample.

4.1 Example: Measurement of Political Efficacy (EFFICACY)

The conceptual definition of political efficacy is the feeling that individual political action
does have, or can have, an impact upon the political process (Campbell, et al., 1954). The
operational definition of political efficacy is based on the responses to the following six
items:10

NOSAY People like me have no say in what the government does

9The data was made available by the Zentralarchiv für Empirische Sozialforschung, University of
Cologne. The data was originally collected by independent institutions in different countries. Neither
the original collectors nor the Zentralarchiv bear any responsibility for the analysis reported here.

10These are the questions that were used in the USA. In Britain, the same questions were used with
Congress in Washington replaced by Parliament. In the other countries the corresponding questions were
used in other languages.
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VOTING Voting is the only way that people like me can have any say about how the gov-
ernment runs things

COMPLEX Sometimes politics and government seem so complicated that a person like me
cannot really understand what is going on

NOCARE we don’t think that public officials care much about what people like me think

TOUCH Generally speaking, those we elect to Congress in Washington lose touch with the
people pretty quickly

INTEREST Parties are only interested in people’s votes but not in their opinions

Permitted responses to these statements were

AS agree strongly

A agree

D disagree

DS disagree strongly

DK don’t know

NA no answer

These responses were coded 1, 2, 3, 4, 8, 9, respectively. The data used here is the USA
sample from the 1973 the Political Action Survey which was a cross-national survey designed
and carried out to obtain information on conventional and unconventional forms of political
participation in industrial societies (Barnes & Kaase, 1979). The data file is efficacy.dat,
a text file with spaces as delimiters.

4.1.1 Data Screening

Most raw data from surveys are downloaded from large files at data archives and stored
on media like diskettes or tapes for analysis. The data file may contain many variables
on many cases. Before doing more elaborate analysis of the data, it is important to do a
careful data screening to check for coding errors and other mistakes in the data. Such a
data screening will also reveal outliers and other anomalies, and detect if there are specific
patterns of missing values in the data. The data screening gives a general idea of the
character and quality of the data. To get a complete data screening of all values in the
data file, use the following PRELIS command file, see efficacy1.prl:

Screening of Efficacy Data

DA NI=6

LA

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
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RA=EFFICACY.DAT

CL NOSAY-INTEREST 1=AS 2=A 3=D 4=DS 8=DK 9=NA

OU

PRELIS determines the sample size, all distinct data values for each variable and the
absolute and relative frequency of occurrence of each value. The output file shows that
there are 1719 cases in the data, that there are six distinct values on each variable, labeled
AS, A, D, DS, DK, and NA, and the distribution of the data values over these categories.

The results are presented in compact form in Table 2.

Table 2: Univariate Marginal Distributions

Frequency Percentage
AS A D DS DK NA AS A D DS DK NA

NOSAY 175 518 857 130 29 10 10.2 30.1 49.9 7.6 1.7 0.6
VOTING 283 710 609 80 26 11 16.5 41.3 35.4 4.7 1.5 0.6
COMPLEX 343 969 323 63 9 12 20.0 56.4 18.8 3.7 0.5 0.7
NOCARE 250 701 674 57 20 17 14.5 40.8 39.2 3.3 1.2 1.0
TOUCH 273 881 462 26 60 17 15.9 51.3 26.9 1.5 3.5 1.0

INTEREST 264 762 581 31 62 19 15.4 44.3 33.8 1.8 3.6 1.1

Note that there are more people responding Don’t Know on Touch and Interest.

Obviously, the responses Don’t Know and No Answer cannot be used as categories for
the ordinal scale that goes from Agree Strongly to Disagree Strongly. To proceed with the
analysis, one must first define the Don’t Know and No Answer responses as missing values.
This can be done by adding MI=8,9 on the DA line. In additon by adding RA=EFFICAY.LSF

on the OU line, one will obtain a LISREL data system file EFFICACY.LSF which will
serves as a basis for furter analysis. The PRELIS command file now looks like this, see file
efficay2.prl:

Creation of a lsf file for Efficacy Data

DA NI=6 MI=8,9

LA

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

RA=EFFICACY.DAT

CL NOSAY-INTEREST 1=AS 2=A 3=D 4=DS

OU RA=EFFICACY.LSF

The first 15 lines of efficacy.lsf looks like tihs
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Note that missing values now appear as -999999.000 which is the global missing value code
in LISREL.

To perform a data screening of efficacy.lsf, select Data Screening in the Statistics
menu. This gives the following results.

The distribution of missing values over variables are given first.

Number of Missing Values per Variable

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

39 37 21 37 77 81

It is seen that there are only 21 missing values on COMPLEX whereas there are 77 and 81
on TOUCH and INTEREST, respectively. As we already know that most of the missing values
on TOUCH and INTEREST are Don’t Know rather than No Answer responses, it seems that
these items are considered by the respondents to be more difficult to answer.

Next in the output is the distribution of missing values over cases.

Distribution of Missing Values

Total Sample Size = 1719

Number of Missing Values 0 1 2 3 4 5 6

Number of Cases 1554 106 26 18 4 2 9

It is seen that there are only 1554 out of 1719 cases without any missing values. The other
165 cases have one or more missing values. With listwise deletion this is the loss of sample
size that will occur. Most, or 106, of the 165 cases with missing values have only one
missing value. But note that there are 9 cases with 6 missing values, i.e., these cases have
either not responded or have responded Don’t Know to all of the six items. These 9 cases
are of course useless for any purpose considered here.

The next two tables of output give information about sample sizes for all variables and all
pairs of variables. These sample sizes are given in abslute numbers as well as in percentages.
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Effective Sample Sizes

Univariate (in Diagonal) and Pairwise Bivariate (off Diagonal)

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

-------- -------- -------- -------- -------- --------

NOSAY 1680

VOTING 1658 1682

COMPLEX 1670 1674 1698

NOCARE 1655 1656 1675 1682

TOUCH 1620 1627 1635 1622 1642

INTEREST 1619 1621 1632 1622 1598 1638

This table gives the univariate and bivariate sample sizes. Thus, there are 1680 cases with
complete data on NOSAY but only 1638 cases with complete data on INTEREST. There are
1658 cases with complete data on both NOSAY and VOTING but only 1598 cases with complete
data on both TOUCH and INTEREST.

The same kind of information, but in terms of percentage of missing data instead, is given
in the following table.

Percentage of Missing Values

Univariate (in Diagonal) and Pairwise Bivariate (off Diagonal)

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

-------- -------- -------- -------- -------- --------

NOSAY 2.27

VOTING 3.55 2.15

COMPLEX 2.85 2.62 1.22

NOCARE 3.72 3.66 2.56 2.15

TOUCH 5.76 5.35 4.89 5.64 4.48

INTEREST 5.82 5.70 5.06 5.64 7.04 4.71

The next lines give all possible patterns of missing data and their sample frequencies. Each
column under Pattern corresponds to a variable. A 0 means a complete data and a 1
means a missing data.

Missing Data Map

Frequency PerCent Pattern

1554 90.4 0 0 0 0 0 0

16 0.9 1 0 0 0 0 0

12 0.7 0 1 0 0 0 0

1 0.1 1 1 0 0 0 0

4 0.2 0 0 1 0 0 0

11 0.6 0 0 0 1 0 0

31 1.8 0 0 0 0 1 0
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1 0.1 0 1 0 0 1 0

2 0.1 1 1 0 0 1 0

1 0.1 0 1 1 0 1 0

4 0.2 0 0 0 1 1 0

1 0.1 0 0 1 1 1 0

32 1.9 0 0 0 0 0 1

1 0.1 0 1 0 0 0 1

1 0.1 1 1 0 0 0 1

1 0.1 1 0 1 0 0 1

5 0.3 0 0 0 1 0 1

2 0.1 1 0 0 1 0 1

1 0.1 0 0 1 1 0 1

1 0.1 1 0 1 1 0 1

14 0.8 0 0 0 0 1 1

4 0.2 1 0 0 0 1 1

4 0.2 0 1 0 0 1 1

2 0.1 1 1 0 0 1 1

1 0.1 0 1 1 0 1 1

1 0.1 0 0 0 1 1 1

2 0.1 0 1 1 1 1 1

9 0.5 1 1 1 1 1 1

Thus, there are 1554 cases or 90.4% with no missing data, there are 16 cases or 0.9%
with missing values on NOSAY only, and 1 case with missing values on both NOSAY and
VOTING, etc. Note again that there are 9 cases with missing values on all 6 variables.

This kind of information is very effective in detecting specific patterns of missingness in
the data. In this example there are no particular patterns of missingness. The only striking
feature is that there are more missing values on TOUCH and INTEREST. We know from the
first run that these are mainly Don’t know responses.

The rest of the output (not shown here) gives the distribution of the 1554 cases of the
listwise sample over the four ordinal categories for each variable. This shows that most
people answer either agree or disagree. Fewer people answer with the stronger alternatives.

4.1.2 Estimating Models by FIML Using Adaptive Quadrature

First we investigate whether the six items meusure one unidimensional latent variable and
we begin with FIML, see efficacy2a.spl:

Efficacy: Model 1 Estimated by FIML

Raw Data from file EFFICACY.LSF

$ADAPQ(8) PROBIT

Latent Variable Efficacy

Relationships

NOSAY - INTEREST = Efficacy

End of Problem
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The output gives the following factor loadings

NOSAY = 0.739*Efficacy, Errorvar.= 1.000, R2 = 0.353

Standerr (0.0407)

Z-values 18.154

P-values 0.000

VOTING = 0.377*Efficacy, Errorvar.= 1.000, R2 = 0.124

Standerr (0.0324)

Z-values 11.643

P-values 0.000

COMPLEX = 0.601*Efficacy, Errorvar.= 1.000, R2 = 0.265

Standerr (0.0375)

Z-values 16.042

P-values 0.000

NOCARE = 1.656*Efficacy, Errorvar.= 1.000, R2 = 0.733

Standerr (0.103)

Z-values 16.007

P-values 0.000

TOUCH = 1.185*Efficacy, Errorvar.= 1.000, R2 = 0.584

Standerr (0.0632)

Z-values 18.754

P-values 0.000

INTEREST = 1.361*Efficacy, Errorvar.= 1.000, R2 = 0.649

Standerr (0.0744)

Z-values 18.290

P-values 0.000

Note the small loading on VOTING. This indicates very low validity and reliability of
the VOTING item which might be explained as follows. If the six items really measure one
unidimensional trait Efficacy, then people who are high on Efficacy are supposed to disagree
or disagree strongly and people who are low on Efficacy should agree or agree strongly to all
items. If this is the case, there would be a positive association between the latent variable
Efficacy and each ordinal variable. But isn’t something wrong with VOTING? If one is high
on Efficacy and one believes that voting is the only way one can influence politics, then one
would agree or agree strongly to the VOTING statement. This fact in itself is sufficient to
suggest that the VOTING item should be excluded from further consideration.

The output also gives the following information:

Number of quadrature points = 8

Number of free parameters = 24
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Number of iterations used = 7

-2lnL (deviance statistic) = 19934.56514

Akaike Information Criterion 19982.56514

Schwarz Criterion 20113.22711

For the moment we note the value of the deviance statistic −2 ln L = 19934.465. Since
there is no value of −2 ln L for a saturated model, it is impossible to say wether this is
large or small in some absolute sense. The deviance statistic can therefore only be used to
compare different models for the same data.

The output also gives estiamates of the thresholds, their standard errors and z-values.
The thresholds are parameters of the model but are seldom useful in analysis of a single
sample.

Threshold estimates and standard deviations

-------------------------------------------

Threshold Estimates S.E. Est./S.E.

TH1_NOSAY -1.57282 0.05484 -28.67862

TH2_NOSAY -0.26243 0.03847 -6.82165

TH3_NOSAY 1.74605 0.05834 29.92866

TH1_VOTING -1.02350 0.03901 -26.23749

TH2_VOTING 0.24600 0.03301 7.45288

TH3_VOTING 1.78347 0.05658 31.52036

TH1_COMPLEX -0.96727 0.04174 -23.17335

TH2_COMPLEX 0.87494 0.04015 21.79122

TH3_COMPLEX 2.04308 0.06656 30.69345

TH1_NOCARE -2.01404 0.10803 -18.64379

TH2_NOCARE 0.35551 0.06034 5.89170

TH3_NOCARE 3.39121 0.16957 19.99895

TH1_TOUCH -1.49811 0.06756 -22.17305

TH2_TOUCH 0.84076 0.05430 15.48431

TH3_TOUCH 3.21173 0.13297 24.15415

TH1_INTEREST -1.65353 0.07801 -21.19712

TH2_INTEREST 0.56685 0.05494 10.31724

TH3_INTEREST 3.42422 0.15211 22.51147

It has been suggested in the political science literature that there are two components
of Political Efficacy: Internal Efficacy (here called Efficacy) indicating individuals self-
perceptions that they are capable of understanding politics and competent enough to par-
ticipate in political acts such as voting, and External Efficacy (here called Responsiveness
and abbreviated Respons) indicating the belief that the public cannot influence political out-
comes because government leaders and institutions are unresponsive (Miller, et al., 1980;
Craig & Maggiotto, 1982). With this view, NOSAY and COMPLEX are indicators of Efficacy
and TOUCH and INTEREST are indicators of Respons. The statement NOCARE contains

44



two referents: public officials and people like me. This statement might elicit perceptions
of the responsiveness of government officials to public opinion generally, in which case the
emphasis is on the political actors, or it might express the opinions of people like me in
which case the emphasis is on the respondent. In the first case, NOCARE measures Respons;
in the second case, it measures Efficacy. I will therefore consider NOCARE as a complex
variable, i.e., as a variable measuring both Efficacy and Respons or a mixture of them. This
is Model 2. A SIMPLIS command file for Model 2 is, see file efficacy3a.spl:

Efficacy: Model 2 Estimated by FIML

Raw Data from file EFFICACY.LSF

$ADAPQ(8) PROBIT GR(5)

Latent Variables Efficacy Respons

Relationships

NOSAY - NOCARE = Efficacy

NOCARE - INTEREST = Respons

End of Problem

This gives the following estimated factor loadings

NOSAY = 0.916*Efficacy, Errorvar.= 1.000, R2 = 0.456

Standerr (0.0601)

Z-values 15.253

P-values 0.000

VOTING = 0.461*Efficacy, Errorvar.= 1.000, R2 = 0.175

Standerr (0.0385)

Z-values 11.981

P-values 0.000

COMPLEX = 0.686*Efficacy, Errorvar.= 1.000, R2 = 0.320

Standerr (0.0455)

Z-values 15.091

P-values 0.000

NOCARE = 0.821*Efficacy + 0.903*Respons, Errorvar.= 1.000, R2 = 0.723

Standerr (0.131) (0.108)

Z-values 6.275 8.339

P-values 0.000 0.000

TOUCH = 1.333*Respons, Errorvar.= 1.000, R2 = 0.640

Standerr (0.0778)

Z-values 17.138

P-values 0.000
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INTEREST = 1.607*Respons, Errorvar.= 1.000, R2 = 0.721

Standerr (0.107)

Z-values 14.996

P-values 0.000

Note that the loading of NOCARE on Efficacy is almost as large as that on Respons.

The correlation between the two components Efficacy and Respons is estimated as 0.75
as shown in the next part of the output:

Correlation Matrix of Independent Variables

Efficacy Respons

-------- --------

Efficacy 1.000

Respons 0.752 1.000

(0.030)

25.051

The correlation 0.75 is highly significant meaning that it is significant from 0. But more
interestingly it is also significant from 1. An aproximate 95% confidence interval for the
correlation is from 0.69 to 0.81.

This model has two more parameters than the previous model. The deviance statistic
for this model is 19858.061 as shown in the next part of the output:

Number of quadrature points = 8

Number of free parameters = 26

Number of iterations used = 17

-2lnL (deviance statistic) = 19858.06108

Akaike Information Criterion 19910.06108

Schwarz Criterion 20051.61154

The difference between the deviance statistic for this model and the deviance statistic for
the unidimensional model is 19934.565-19858.061=76.504, which suggests that Model 2 fits
the data much better than Model 1.

4.1.3 Estimation by Robust Diagonally Weighted Least Squares (RDWLS)

An alternative approach to estimate models for ordinal variables from data with missing
values is to impute the missing values first and then estimate the model by Robust Un-
weighted Least Squares (RULS) or Robust Diagonally Weighted Least Squares (RDWLS),
see Yang-Wallentin, Jöreskog, & Luo (2010) or Forero, Maydeu-Olivares, & Gallardo-Pujol
(2011). This can be done for Model 2 using the following SIMPLIS syntax file, see file
efficacy4a.spl:
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Efficacy: Model 2 Estimated by Robust Diagonally Weighted Least Squares

Raw Data from file EFFICACY.LSF

Multiple Imputation with MC

Latent Variables Efficacy Respons

Relationships

NOSAY COMPLEX NOCARE = Efficacy

NOCARE - INTEREST = Respons

Robust Estimation

Method of Estimation: Diagonally Weighted Least Squares

Path Diagram

End of Problem

This approach is much faster than the FIML approach especially for large number of vari-
ables.

5 Appendix

5.1 General Covariance Structures

The majority of LISREL models are estimated using maximum likelihood (ML) method.
This estimation method is appropriate for variables that are continuous, and at least ap-
proximately normally distributed. In many research problems the variables under study
are neither normal nor even approximately continuous and the use of ML is not valid. An
important technical development has been in extending the class of estimation methods to
procedures that are correct when used with many different kinds of variables. This more
general approach to estimation includes ML, GLS, and ULS and other methods as special
cases. But it also applies to very different statistical distributions.

The statistical inference problem associated with all kinds of structural equation models,
including factor analysis models, can be formulated very generally and compactly as follows.
For the orginal formulation see, e.g., Browne (1984) and Satorra (1989).

Let Vec(S) be the column vector formed by the columns of S stringed under each other.
Thus, Vec(S) is of order k2 × 1. Since S is a symmetric matrix, the covariance matrix of
Vec(S) is singular. Therefore, it is convenient to work with s instead, where s is a vector
of the non-duplicated elements of S:

s′ = (s11, s21, s22, s31, s32, . . . , ) . (12)

The relationship between s and Vec(S) is

s = K′Vec(S) , (13)

where K is a matrix of order k2× 1
2
k(k+1). Each column of K has one nonzero value which

is 1 for a diagonal element and 1
2

for a non-diagonal element. The reverse relationship of
(13) is

Vec(S) = K(K′K)−1s = Ds , (14)
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where D = K(K′K)−1 is the duplication matrix, see Magnus & Neudecker (1988).

Similarly, let σ = K′Vec(Σ) be the corresponding vector of the non-duplicated elements
of Σ and suppose that

σ = σ(θ) , (15)

is a differentiable function of a parameter vector θ. For example, in a LISREL model, θ is
a vector of all independent parameters in all parameter matrices Λy, Λx, B, Γ, Φ, Ψ, Θε,
Θδ, and Θδε but models which are not LISREL models can also be used. For an example
see Jöreskog & Sörbom (1999), pp 347–348).

The sample vector s has a limiting normal distribution when N → ∞. Browne (1984)
showed that

N
1
2 (s− σ)

d−→ N(0,Ω) , (16)

where
d→ denotes convergence in distribution. Under general assumptions about the dis-

tribution of the observed variables, the elements of the covariance matrix Ω are given by
(Browne, 1984, eq. 2.2)

ωghij = σghij − σghσij , (17)

where
σghij = E[(zg − µg)(zh − µh)(zi − µi)(zj − µj)] , (18)

is a fourth order central moment, and

σgh = E[(zg − µg)(zh − µh)] . (19)

Under normality
ωghij = σgiσhj + σgjσhi , (20)

which can be written in matrix form as

Ω = 2K′(Σ⊗Σ)K , (21)

where ⊗ denotes a Kronecker product. Note that under normality Ω is a function of Σ
only so that no fourth order moments are involved.

Let W be a consistent estimate of Ω. In analogy with (17) – (19), the elements of W
are obtained as

wgh,ij = mghij − sghsij , (22)

where

mghij = (1/N)
N∑

a=1

(zag − z̄g)(zah − z̄h)(zai − z̄i)(zaj − z̄j) (23)

is a fourth-order central sample moment.

Under normality we use the estimate

W = 2K′(Σ̂⊗ Σ̂)K , (24)

in analogy with (21). Whenever it is necessary to distinguish the general W defined by
(22) from the specific W in (24), the notation WNT is used for W in (24) and WNNT for
the general W in (22).
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To estimate the model, consider the minimization of the fit function

F (s, θ) = [s− σ(θ)]′V[s− σ(θ)] (25)

where V is either a fixed positive definite matrix or a random matrix converging in prob-
ability to a positive definite matrix V. The fit functions available in LISREL are Un-
weighted Least Squares (ULS)11, Generalized Least Squares (GLS), Maximum Likelihood
(ML), Diagonally Weighted Least Squares (DWLS), and Weighted Least Squares (WLS).
They correspond to taking V in (25) as

ULS : V = K′(I⊗ I)K (26)

GLS : V = D′(S−1 ⊗ S−1)D (27)

ML : V = D′(Σ̂−1 ⊗ Σ̂−1)D (28)

DWLS : V = DW = [diagW]−1 (29)

WLS : V = W−1 (30)

The matrix V̄ is unkown for all methods except ULS but can be estimated by V̂, where

ULS : V̂ = V (31)

GLS : V̂ = W−1
NT (32)

ML : V̂ = W−1
NT (33)

DWLS : V̂ = [diagWNNT]−1 (34)

WLS : V̂ = W−1
NNT (35)

Note that

W−1
NT = [2K′(Σ̂⊗ Σ̂)K]−1 =

1

2
D′(Σ̂−1 ⊗ Σ̂−1)D =

1

2
VML , (36)

as shown by Browne (1977, equations 20 and 21).

The fit function for ML is usually written

F[S,Σ(θ)] = ln | Σ | +tr(SΣ−1)− ln | S | −k (37)

but Browne (1974) showed that minimizing F with V in (28) and minimizing (37) are
equivalent. Minimizing F with V in (28) can be interpreted as ML estimated by means of
iteratively reweighted least squares in which Σ̂ is updated in each iteration. Both of these
fit functions have a minimum at the same point in the parameter space, namely at the ML
estimates. However, the minimum value of the functions are not the same.

All fit functions are non-negative and equal to zero only for a saturated model, where
Σ̂ = S.

11The ULS fit function was orginally defined in Jöreskog & Sörbom (1988) as
∑k

i=1

∑k
j=1(sij − σij)2,

which translate the matrix V in (26).
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Under multivariate normality of the observed variables, ML and GLS estimates are asymp-
totically equivalent in the sense that they have the same asymptotic covariance matrix.
There is no advantage in using GLS except when σ(θ) is a linear function. In practice ML
is most often used.

Under non-normality, WLS, also called ADF, see Browne (1984), is in principle the best
method since it is valid for any non-normal distribution for continuous variables. But in
practice this method does not work well because it is difficult to determine W (and hence
W−1) accurately unless N is huge.

Let θ̂ be the minimizer of F (s, θ) and let θ0 be a unique minimizer of F (σ, θ). We assume
here that the model holds so that F (σ, θ0) = 0. See Browne (1984), Satorra (1989), and
Foss, Jöreskog & Olsson (2011) for the case where the model does not hold.

Let

∆ =

[
∂Σ

∂θ′

]
θ0

. (38)

Then
NACov(θ̂) = (∆′V∆)−1∆′VΩV∆(∆′V∆)−1 , (39)

which can be estimated as

NEst[ACov(θ̂)] = (∆̂′V̂∆̂)−1∆̂′V̂WV̂∆̂(∆̂′V̂∆̂)−1 , (40)

where ∆̂ is ∆ evaluated at θ̂. The standard errors reported by LISREL for each parameter
are obtained from the diagonal elements of (40).

Two special cases are of particular interest:

• Under normality and with methods GLS or ML, V̂ = W−1
NT and W = WNT, so that

(40) reduces to
NEst[ACov(θ̂) = (∆̂′V̂∆̂)−1 , (41)

which is the estimated Fisher Information Matrix.

• Under non-normality and with method WLS, V̂ = W−1
NNT and W = WNNT, so that

(40) reduces also to (41).

To test the model under multivariate normality, one can use

C1 = N [log | Σ̂ | +tr(SΣ̂−1)− log | S | −k] . (42)

Although C1 can be computed for any V, i.e., any fit function in (26)–(30), its natural use
is with ML. Then C1 is the likelihood ratio χ2 statistic. Under multivariate normality C1

has an asymptotic χ2 distribution with

d = s− t (43)

degrees of freedom if the model holds. Recall that s = (1/2)k(k + 1) and t is the number
of independent parameters in the model.

50



The matrix ∆ is of order s × t. If t < s, there exists an an orthogonal complement ∆c

of order s× d to ∆ such that ∆′∆c = 0. Let ∆̂c be ∆c evaluated at θ̂. To test the model
for any fit function, Browne (1984) developed a general formula:

C2(W) = N(s− σ̂)′[∆̂c(∆̂
′
cW∆̂c)

−1∆̂
′
c](s− σ̂) (44)

This is Browne’s ADF chi-square statistic (Browne, 1984, equation 2.20a). If WNNT is
available, LISREL 9 computes both C2(WNT) and C2(WNNT). Otherwise, LISREL 9 gives
only C2(WNT). In the first case, an advantage is that one can compare C2(WNNT) and
C2(WNT). The difference can be interpreted as an effect of non-normality. C2(WNT) is
valid for all methods with V̂ defined in (31)–(34) under normality. C2(WNNT) is valid
for the same methods under non-normality. Under general assumptions C2(WNNT) has
an asymptotic χ2 distribution with d degrees of freedom if the model holds. With the
ML method, C1 and C2(WNT) are asymptotically equivalent under multivariate normality.
It has been found in simulation studies that C2(WNNT) does not work well under non-
normality, see e.g, Curran, West, & Finch (1996). This is probably because the matrix
WNNT is often unstable unless the sample size N is huge

As a remedy for the poor behaviour of C1 and C2(WNT) under non-normality, Satorra
& Bentler (1988) developed an alternative test procedure. Let

U = V̂ − V̂∆̂(∆̂
′
V∆̂)−1∆̂

′
V̂ . (45)

By Khatri’s (1966) lemma, U can also be written as

U = ∆̂c(∆̂
′
cV̂

−1∆̂c)
−1∆̂

′
c (46)

Under non-normality the asymptotic distribution of C1 and C2(WNT) is not known but
Satorra & Bentler (1988) invokes Theorem 2.1 of Box (1954) to conclude that C1 and
C2(WNT) are asymptotically distributed as a linear combination of χ2’s with one degree
of freedom where the coefficients of the linear combination are the non-zero eigenvalues
of UW. Based on this result Satorra & Bentler (1988) suggest a scale factor for C1 and
C2(WNT) such that this statistic has the correct asymptotic mean d. Let

h1 = tr(UWNNT) = tr[(∆̂
′
cV̂

−1∆̂c)
−1(∆̂

′
cWNNT∆̂c)] . (47)

Note that for GLS and ML, this is

h1 = tr(UWNNT) = tr[(∆̂
′
cWNT∆̂c)

−1(∆̂
′
cWNNT∆̂c)] , (48)

but (47) is valid also for ULS and DWLS. The scale factor to be multiplied is d/h1. In
LISREL 9 we apply this scaling to C1 if the ML method is used and define12

C3 = (d/h1)C1 . (49)

For all other methods we apply the scale factor to C2(WNT) and define

C3 = (d/h1)C2(WNT) . (50)

12In previous versions of LISREL we applied this scaling to C2(WNT) for all methods.
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Although C3 does not have an asymptotic χ2 distribution under non-normality, it is often
used as an approximate chi-square. C3 is called the Satorra-Bentler scaled chi-square or
the Satorra-Bentler mean adjusted chi-square. It has been found to work well in practice
as it outperforms C2(WNNT) under non-normality, see e.g, Curran, West, & Finch (1996).

To get an even better approximation to a χ2 distribution Satorra & Bentler (1988) suggest
a mean and variance adjusted statistic. This is a Satterthwaite (1941) type of adjustment.
Let

h2 = tr(UWNNTUWNNT) . (51)

Using (46), h2 may be written

h2 = tr[(∆̂
′
cV

−1∆̂c)
−1(∆̂

′
cWNNT∆̂c)(∆̂

′
cV

−1∆̂c)
−1(∆̂

′
cWNNT∆̂c)] , (52)

so that only matrices of order d× d are involved. Let

d′ = h2
1/h2 , (53)

and define
C4 = (d′/h1)C = (h1/h2)C , (54)

where C = C1 for ML and C = C2(WNT) for all other methods. Regard C4 as a an
approximate chi-square with d′ degrees of freedom. In LISREL 9 we give d′ with three
decimals and use this fractional degrees of freedom to compute the P -value for C4.
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Foss, T, Jöreskog, K.G., & Olsson, U.H. (2011) Testing structural equation models: The
effect of kurtosis. Computational Statistics and Data Analysis, 55, 2263–2275.

Hendrickson, A.E. & White, P.O. (1964) Promax: A quick method for rotation to oblique
simple structure. British Journal of Mathematical and Statistical Psychology, 17,
65-70.

Holzinger, K., & Swineford, F. (1939) A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph no. 48. Chicago: University of
Chicago Press.

Hu, L., Bentler, P.M., & Kano, Y. (1992) Can test statistics in covariance structure
analysis be trusted? Psychological Bulletin, Vol. 112, 351–362.
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