Estimation in Structural Equation Modeling
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M odel estimation and evaluation are integral parts of
any application of structural equation modeling (SEM).
Quality of model parameter estimates, their associated
standard error estimates, and overall model fit statistics
depend on the choice of appropriate estimation meth-
ods. Desirable properties of estimators include asymp-
totic consistency, unbiasedness, and efficiency. An es-
timator is consistent if it approaches the true parameter
as sample size increases toward infinity, unbiased if its
expected value equals the parameter that it estimates
(i.e., the average of estimates from an infinite num-
ber of independent samples from the same population
will equal the population parameter), and efficient if
its variability is the smallest among ¢onsistent estima-
tors. Some estimators are also asymptotically normally
distributed, allowing adequate significance testing of
individual parameters using the z-test.

SAMPLE DATA AND MODEL PARAMETERS

The basic elements of data for SEM analyses are sam-
ple variances and covariances of observed variables.
Given a hypothesized SEM model, individu al observed
variables can be written as a function of unknown pa-
rameters (i.e., path coefficients or factor loadings) and
other observed or latent variables in the model. These
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functions describe structural relations (or causal hy-
potheses) among the variables and are referred to as
“gructural equations.” From the set of structural equa-
tions, variances and covariances of observed variables
can be expressed in terms of unknown parameters in
the model, such as path coefficients, factor loadings,
and variances and covariances of latent variables. These
variances and covariances are model-specific and are
called model-implied variances and covariances.

As an example, suppose that a simple four-variable
two-factor confirmatory factor analysis (CFA) model,
as depicted in Figure 10.1. is being estimated from 2
sample variance—cavariance matrix (see upper half of
Table 10.1). The factors of interest are reading (F,) and
mathematics (1) Reading is indicated by basic wor
reading (X,) and reading comprehension (X;) scores:
Mathematics is indicated by caleulation (X4) and rea-
soning (X,) scores. There are four structural equations
(ones that stipulate {he causal relationship among vari-
ables) for the model in Figure 10.1, one for each ob-
served variable: X, = 1% F; + Sy Xo=Mhy * Fy 8y Xa
=1 * F,+ 8, and Xy = Az * F, + By In the equations,

the Xs represent factor loadings, and the &'s represent 8

measurement errors. The equations suggest that cach
observed variable (outcome) is a function of a common
factor (cause) and a unique measurement error (athef
unspecified causes). Two loadings are fixed to 1 10 set
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FIGURE 10.1. A CFA model with unknown model param-
eters.

the scale for the factors (i.e., F; takes the scale of X;; F,
takes the scale of X;).

. Assuming independence between latent factors and
measurement errors, variances (V) and covariances
(C) among the observed variables can be expressed
in terms of model parameters based on the structural
equations using covariance algebra—for example,

V(X)) =CX, X)=C(*F +8,1*F +3)=V({)
L +V(E). C(X,, X)) = CAL* Fy + 8, Ay * F +8) = M
. * V(F)) because the §'s are uncorrelated in the model.
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The complete set of model-implied variances and cova-
riances for this example are arranged in a matrix form,
parallel to the sample counterpart, and shown in the
lower half of Table 10.1. The model parameters to be
estimated for this CFA model include factor loadings,
factor variances, covariance between the two factors,
and variances of measurement errors. Readers who
wish to learn more about covariance algebra can con-
sult Bollen (1989, pp. 21-23). However, standard SEM
software programs will calculate the model-implied
variance—covariance matrix given.a user-supplied path
diagram or a set of structural equations.

GENERAL ESTIMATION PROCEDURES

Model parameters (6, which is a generic notation for
all unknown parameters in the model) are estimated by
minimizing some form of discrepancy between a sam-
ple variance—covariance matrix (S) and model-implied
variance-covariance matrix [Z(8)]. This is similar (o
the ordinary least squares (OLS) estimation in regres-
sion in which the sum of squared differences between
observed and predicted values for individual observa-
tions is minimized. The difference is that observations
in regression are individual scores, while observations
in SEM are sample variances and covariances.
Moreover, a closed-form solution (one that can be
obtained analytically) is available for regression, but
it is often unavailable for SEM: SEM generally relies

TABLE 10.1. Sample and Model-Implied Variance—Covariance Matrices for the Model in Figure 10.1

X1 XZ XS X4
Sample variance—covariance ma}riﬂ
X 211.60 - - -
X, 178.78 247.32 — -
X 12512 158.87 236.12
X, 116.85 163.21 181.20 227.78
Model-implied variance-covariance matrix [Z(6)]

X V(Fy) + V(&) == - —
X Ay * V(Fy) Aot * Mgy * VIF)) + V(8) = —
Xa CFy, Fa) = Ony Aot * g V(F,) + V(33)
X4 )"42 b ¢21 )‘21 b }"42 * ¢21 XAZ * V(FZ) )“42 * 7"42 * V(FZ) + V(84)

Note. — indicates redundant symmetric values.
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on iterative procedures to solve for unknown param-
eters in the modelEducated guesses of parameter val-
ues. known as starting or initial values (ﬁu), which are
usually supplied by standard SEM programs, are used
{0 start the iterative process. An intermediate model-
implied variance—covariance matrix can then be calcu-
lated by substituting the unknown parameters with their
initial values [2(8,)]. Minimizing the discrepancy be-
tween the sample and the intermediate model-implied
variance—covariance matrices will provide a new set of
parameter estimates. This new set of parameter esti-
mates will replace the old set of initial values, and the
process repeats until changes in parameter estimates
between adjacent iterations become acceptably small.
The rules used to stop the iterative process are called
“convergence criteria.” When convergence criteria are
met, the model is said to have converged, and the last
set of parameter estimates is taken to be the final solu-
tion for the unknown parameters. Parameter estimates
for the above example arc shown in Table 10.2.
Different estimation methods or estimators mini-
mize different functions of the discrepancy between
S and £(0), called fit or discrepancy functions (F). A

{I. FUNDAMENTALS

model fit statistic is T= (N~ 1) * F, where N is sample
size, and F is the minimum of the fit function when
the model converges. When assumptions of estimators
are met, T often approximately follows a ¥* distribution
with degrees of freedom (dfy equal to the number of
unique variances and covariances minus the number of
estimated model parameters. Therefore, overall fit of
the model to data can be assessed using a ¥? test. The
asymptotic variance—covariance matrix of an estima-
tor, if it exists, provides standard error estimates of in-
dividual parameter estimates for significance tests.

In the following, we introduce some popular estima-
tion methods used in SEM, including the maximum
likelihood family, least squares family, and Bayesian
method. We also briefly review empirical findings
about these methods and illustrate the importance of
choosing estimation methods in consideration of com-
monly encountered conditions in practice. For concern
of space, we limit our discussion to basic covariance
structure models and estimation methods that are rela-
tively more widely used and studied. Our selection of
estimation methods is by no means inclusive or com-

prehensive.

TABLE 10.2. Parameter Estimates for the Model in Figure 10.1
Unstandardized Standardized
parameter gstimates Standard errors parameter estimates
Factor loadings
X4 12 79
X5 (Aay) 1.34* 15 .99
X3 1a .87
Xy (Mg2) 1.02* 10 .90
Factor variances and covariance
V(Fy) 133.21* 29.73 1
V(F,) 177.23* 3478 1
C(Fy, Fy) OF &y 118.71* 24.92 17
Error variances
V(8,) 78.39* 15.09 37
V(3,) 7.39 18.35 03
V(35) 58.89* 14.95 .25
42.52* 14.28 19

V(&)
ayalues are fixed to 1 to setthe scale of latent factors.
*Estimates are significantly different from 0 at the .05 level.
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10. Estimation in SEM

MAXIMUM LIKELIHOOD ESTIMATORS

Contemporary SEM appears to originate from econo-
metrics, psychometrics, and mathematical statistics
(Biclby & Hauser, 1977). Karl G. Joreskog is often
credited for unifying path analysis from econometrics
and factor analysis from psychometrics into a gen-
eral framework of covariance structure analysis (e.g.,
Bielby & Hauser, 1977). Lawley (1940) was the first
to apply maximum likelihood (ML) estimation in fac-
tor analysis, but the iterative numerical procedure used
by Lawley and several others (e.g., Bargmann, 1957;
Enimett, 1949) was not very successful. A major break-
through came in the 1970s when Joreskog and his col-
leagues (Joreskog, 1977, Joreskog & Lawley, 1968) in-
troduced a numerical solution for ML factor analysis
and developed the LISREL (LInear Structural RELa-
tions) software program (Joreskog & van Thillo, 1973).
The availability of the LISREL program has played a
significant role in popularizing SEM. ML remains the
most well known and widely used estimator to date.
The fit function for ML given by Bollen (1989) is shown
in Equation 10.1.

F,, =log|5(0) | +tr(SE™(0) ~log|S|-p (101)

In Equation 10.1, log()) is the natural logarithm func-
tion, tr(.) is the trace function, and p is the number of
observed variables. Under the assumption of multivari-
ate normality of observed variables and a correct model
specification, the ML estimator is asymptotically con-
sistent, unbiased, efficient, and normally distributed,
and the model fit statistic (7, ) is asymptotically dis-
tributed as 2 with df = p(p + 1)/2 — ¢, where ¢ is the
number of model parameters estimated.

The ML estimator tends to produce relatively un-
biased parameter estimates (provided that the proper
covariance matrix is analyzed and that the model is
correctly specified) but inflate model ¥? and deflate
standard error estimates under non-normality (e.g.,
Bollen, 1989, pp. 417-418; Chou, Bentler, & Satorra,
1991; Finch, West, & MacKinnon, 1997). Fortunately,
arobust asymptotic covariance matrix for the estimated
Parameters, from which robust standard errors can be

- Obtained, and corrections to the model fit statistic (T

lo-better approximate the reference ¥? distribution are
documented in Satorra and Bentler (1988, 1994). The 2

- torrection entails adjusting the mean of the test statistic

dlone, resulting in the Satorra—Bentler scaled statistic,
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or adjusting both the mean and variance resulting in
the Satorra—Bentler adjusted statistic (Fouladi, 2000).
The Satorra—Bentler scaled 2 statistic is available in
most specialized SEM software programs. Both ver-
sions of adjustment are available in Mplus (Muthén &
Muthén, 1998-2010) with the mean-adjusted version
labeled as MLM and mean- and variance-adjusted ver-
sion as MLMYV. Little is known about the performance
of MLMYV, perhaps because it is not available in most
SEM programs other than Mplus. .

More recently, Asparouhov and Muthén (2005)
developed another more general robust ML estima-
tor (called MLR in Mplus) based on Skinner’s (1989)
pseudo-ML method and by using adjustments similar
to those of Satorra and Bentler (1988) to deal with com-
plex sampling designs. Initial evidence provided by
the authors seems to support its use for survey data.
Additionally, MLR can be used for non-normal data
(Muthén & Muthén, 1998-2010, p. 484).

Another variant of ML developed by Finkbeiner
(1979) to handle missing data is referred to as the full-
information maximum likelihood (FIML) estimator.
Assuming data are missing at random (MAR), FIML
maximizes a modified log-likelihood function that
makes use of all available individual observations (e.g.,
Enders, 2006, pp. 322-323). Therefore, raw individual
data are required for FIML. This approach to handling
missing data is logically appealing because there is no
need to make additional assumptions for imputation
and no loss of observations. It is regarded as one of the
state-of-the-art treatments of missing data (Schafer &
Graham, 2002). It has also been found to work bet-
ter than listwise deletion in simulation studies (Kline,
2010, p. 59).

LEAST SQUARES ESTIMATORS

Before the availability of LISREL, OLS estimation (i.e.,
multiple regression technique) had been used to de-
rive estimates for recursive path models (e.g., Blalock,
1964; Duncan, 1966). However, the capability of OLS
is very limited because it cannot deal with nonrecur-
sive path models or measurement models (Kline, 2005,
p. 159). Therefore, the use of OLS in SEM is very rare
nowadays.

The two-stage least squares (2SLS) estimation meth-
od can be considered an extension of the OLS method

for handling nonrecursive models and models with la-
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tent variables. The 2SLS method often involves the use

of instrumental variables. An instrumental variable has

a direct effect on a “proh]ematic" causal variable (i.e.,

one that is correlated with the equation’s disturba nee),

but no direct effect on the endogenous variable (Kline,

2010, p. 156). See Figure 10.2 for a conceptual illus-

tration of an instrumental variable (/) for a *problem-

atic” causal variable (X) in predicting an endogenous
variable (¥). In the enclosed part of Figure 10.2, X is

a “problematic” predictor because it is correlated with
the disturbance of Y (D). The variable / is an appropri-
ate instrumental variable for X because it has a direct
effect on X but not on Y. The 2SLS estimator applies
multiple regressions in two stages. In the first stage,
the “problematic” causal variable is regressed on the
instrumental variable(s) (ie., X = Py + B/ + e for the
example, where the [i's are regression coefficients, and
¢ is the error term for X). In the second stage, the en-
dogenous variable is regressed on the predicted value
of the “problematic” causal variable from the first stage
(ie,¥Y=m,+ 1|:|,-‘7f +y for the example, where the T's are
regression coefficients, and u is the error term for ¥).
The purpose of this two-stage process is to replace the
“problematic” causal variable with its predicted value
(predicted by the instrumental variables) that is un-
correlated with the equation’s disturbance. Since not
all parameters are estimated simultaneously, 2SLS is
a limited-information method. Limited-information
methods may be less susceptible to spreading of
model misspecification to other equations than full-
information estimation methods such as ML (Bollen,
Kirby, Curran, Paxton, & Chen, 2007).

Variants of the 2SLS estimator have been developed
since the 1950s in econometrics in the context of si-
multaneous equation models (e.g., Basmann, 1957).
Joreskog (1983) also proposed a 9SLS estimator to esti-
mate starting values for the LISREL program (Joreskog
& Sorbom, 1993). The 2SLS estimator developed by

FIGURE 10.2. A conceptual illustration of an instrumental
variable (J) for a “problematic” causal variable (X).
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Bollen (1996a, 1996b, 2001) is probably the most gen-
eral in that “it permits correlated errors across equa-
tions, . . . estimates intercepls, and provides asymptotic
covariance matrix of the estimator for significance test-
ing” and that it is equivalent to other versions of 25L8
under certain conditions (Bollen et al., 2007, p. 54).
According to Bollen and colleagues (2007), the 25L§
estimator is consistent, asymptotically unbiased, as-
ymptotically normally distributed, and asymptotically
efficient among limited information estimators, and the
version proposed by Bollen (1996a, 1996b, 2001) pro-
vides an accurate asymplotic covariance matrix with-
out assuming normality of observed variables.

One advantage is that the 2515 estimator does not
require a specialized SEM program (0 implement it
Researchers can use any software programs that have
2SLS procedures or that perform OLS regression; how-
ever, rescarchers may need to make proper adjustments
to the estimates of the standard errors manually (Bollen,
1996a). Moreover, Bollen and Bauer (2004) developed
an automatic algorithm to help select model-implied in-
strumental variables and provided a Statistical Analy-
sis Software (SAS)/interactive matrix language (IML)
macro to implement it.

‘Both OLS and 2SLS are noniterative, limited-
information estimation methods, and the computation
of parameter estimates does not require any starting
values. Full-information least squares estimation meth-
ods that simultaneously estimate all parameters are
generally iterative and require starting values Lo suc-
cessively minimize a particular fit function of the dif-
ference between the vector of elements in the sample
variance and covariance matrix (s) and the vector of
elements in the model-implied variance and covariance
matrix [6(8)]. The s and o(0) vectors are of order p (p
+ 1)/2 containing unique elements from S and Z(0), re-
spectively. The fit function that the least squares family
minimizes has the general form of Equation 10.2.

Fig () =[s~ (@)W '[s—o(8)] (10.2)
Equation 10.2 defines a family of estimation methods
sometimes known as generalized least squares (c.g-
Anderson & Gerbing, 1988) or weighted least squares
(e.g., Bollen, 1989, p. 425: Kline, 2003, p. 159). How-
ever, for the purpose of this chapler, we use these terms
for specific methods discussed later rather than as @
family of methods.

Different least squares estimation methods employ
different weight matrices, W’s, which are p(p + 1)/2
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by p(p + 1)/2 square matrices. If an identity matrix ()
is used as W, for example, the estimation method is re-
duced to the unweighted least squares method (ULS).
ULS is a consistent estimator, and it makes no distribu-
tional assumption about the observed variables (Bol-
len, 1989, p. 112). However, it requires all observed
variables to be measured on the same scale, and it is
generally less efficient than the ML estimator (Kline,
2010, p. 176).

Expositions of the normal theory-~based general-
ized least squares (GLS) method appeared in the 1970s
(e.g., Anderson, 1973; Browne, 1974; J6reskog & Gold-
berger, 1972). One form of the fit function for GLS is

Fos(8) =3 tr({[S—X(8)]V'}*), where V=S isap by
p square matrlx Note that when V is chosen to be 3(6)

, minimizing this form of the fit function leads to the
normal theory-based ML (Lee & Jennrich, 1979). Ac-
cording to Bollen (1989, pp. 428-429), Fg; s has been
shown to be equal to Equation 10.2 by Browne (1974)
and can be considered a special case of Equation 10.2.
Using the more general form of Equation 10.2, the
weight matrix, W, for GLS contains elements that are
functions of the second-order product moments around
the mean, [We; 51 gh = SigSin T+ SunSjp L2, 2 b, Where s,
represents the covariance between observed varlables I
and g. Like ML, GLS assumes multivariate normality
or no excessive kurtosis (Browne, 1974) and is consis-
tent, asymptotically unbiased, asymptotically normally
distributed, and asymptotically efficient among full-
information estimators.

The weighted least squares (WLS) estimator pro-
posed by Browne (1984) relaxes the distributional as-
sumption and is referred to as Browne's asymptotically

distribution-free (ADF) method. In spite of this name,
it should be noted that Browne’s ADF method is not the

only one that makes no distributional assumptions. A
number of other methods, including the 2SLS and the
ULS methods mentioned earlier, also do not make dis-
tributional assumptions. The WLS estimator uses the
asymptotic covariance matrix of sample variances and
Covariances as its weight matrix with a typical element
Consisting of estimates of the second- and fourth-order
Product moments around the mean, (Wwislijgn = Sijen —
Sy 12 j, g 2 h, where

DX, - X)X

y. o]
“i,l'i!.ﬁ 2R

Xy =X )X, ~ X )X, - X,)

N

and N ig sample size. Under correct model specification
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and multivariate normality, the individual elements of
WGLS and Wy, ¢ will converge in probability to 0,0, +

0;, (Hu, Bentler, & Kano, 1992). Research has shown
that WLS has a strict requirement on sample size and
may produce large amounts of bias with small samples
(e.g., Hoogland & Boomsma, 1998).

Because inverting the full-weight matrix of WLS is
computationally demanding, and it is likely the culprit
for the poor performance of WLS with less than large
samples, diagonally weighted least squares methods,
in which only diagonal elements of the WLS weight
matrix are kept in the weight matrix, are often used to
lessen the computational burden. A version of the di-
agonally weighted least squares (DWLS) estimator is
available in LISREL, beginning in version 7 (Joreskog
& Sorbom, 1988). Two other versions known as mean-
adjusted WLS (WLSM) and mean- and variance-
adjusted WLS (WLSMV; Muthén, 1993; Muthén, du
Toit, & Spisic, 1997) are available in Mplus (Muthén &
Muthén, 1998-2010).

DWLS estimators can be and are often used when
some or all observed endogenous variables are non-
normal and categorical. They are commonly used with
alternative correlations that estimate association be-
tween latent response variables for ordinal data (i..,
polychoric correlation between categorical variables, or
polyserial correlation between categorical and continu-
ous variables). WLSM and WLSMYV were specifically
developed for categorical variable methodology and
were referred to as robust WLS estimators by Muthén
and colleagues (1997). A robust asymptotic covari-
ance matrix for the estimated parameters and correct-
ed model 2 test statistics similar to those of Satorra
and Bentler (1994) are available for these estimators.
WLSM differs from WLSMYV in the adjustment to the
model ¥? test statistic and in their degrees of freedom.
Degrees of freedom for WLSMV are estimated from
the sample, and they can vary from sample to sample
for the same model.

BAYESIAN ESTIMATION

According to Dunson, Palomo, and Bollen (2005), there
is a long history of Bayesian methods in factor analysis
and general SEM models. The eagliest work on factor
analysis models (Martin & McDonald, 1975) was cited
by the authors in the 1970s, and that on general SEM
models (Bauwens, 1984), in the 1980s. Recent develop-
ments of Bayesian estimation in SEM have focused on
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the use of Markov Chain Monte Carlo (MCMC) meth-
ods to handle complex cases, including nonlinear struc-
tural models and multilevel data (Dunson et al., 2005).
Bayesian methods take a completely different per-
spective on estimation, in that they assume true model
parameters are random and unknown, whereas in ML,
truc parameters are considered fixed and unknown but
their estimates are random (Arbuckle, 1995-2009). In
the Bayesian framework, parameters’ prior distributions
are combined with empirical data likelihood based on
Bayes's theorem to form posterior distributions for pa-
rameter estimates. Since analytical approaches to ob-
taining posterior distribution are most often impracti-
cal due to the difficulty of estimating high-dimensional
integrals, empirical approximations are adopted by
simulating values based on Monte Carlo procedures.
Regular Monte Carlo procedures that draw indepen-
dent samples may not be feasible because posterior dis-
wributions are often of an unknown form. Under such
circumstances, MCMC can be used to draw dependent
samples from a series of distributions that is in the limit
equal to drawing from the stationary posterior distribu-
tion (Gilks, Richardson, & Spiegelhalter, 1996). More
details about Bayesian estimation in SEM can be found
in Kaplan and Depaoli, Chapter 38, this volume.
Compared to the frequentist approach (i.e., ML and
1.S), Bayesian estimation has a few advantages. First,
ML and LS confidence intervals assume that parameter
estimates are asymptotically normal, whereas Bayesian
credibility intervals are based on percentiles of the pos-
terior distribution, which is not restricted to any fixed
form. Second, when models are computationally intrac-
table for ML, the Bayesian method can come 1o the res-
cue. Hence, the Bayesian method can simply be viewed
as a computational tool to obtain parameter estimates
(Muthén & Muthén, 1998-2010). A disadvantage of the
Bayesian method is that it is computationally intensive
and may take a long time to obtain a solution with an
acceptably low level of Monte Carlo error (Dunson et
al., 2005).

SOFTWARE PROGRAMS THAT PERFORM
THE DIFFERENT ESTIMATION METHODS

There are a number of software programs that estimate
SEM models. We chose the four most frequently used
programs (Amos 18: Arbuckle, 2009; EQS 6.1: Bentler,
2005: LISREL 8.8: Joreskog & Strbom, 2006; Mplus
6: Muthén & Muthén, 2010) and briefly describe their
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similarities and differences in terms of their estimation
capacities.

Estimators that are available in all four software
programs include ML, FIML, GLS, ULS, and WLS or
ADE ML and GLS assume either multivariate normal-
ity or no excessive kurtosis of observed variables. ML
is the default estimator for all four programs when ob-
served endogenous variables are continuous. When raw
data are analyzed, missing code is provided, and when
ML is requested, these programs produce FIML solu-
tions. When data distributions deviate from multivari-
ate normality, different estimation options are available
in different programs.

The robust ML approach, that is, using regular ML
for model estimation, along with robust standard errors
and scaled model 2 of Satorra and Bentler (1988, 1994)
to evaluate model fit, is a popular choice for non-normal
continuous data. It is available in LISREL 8.8 (by in-
cluding an asymptotic covariance matrix of the vari-

ances and covariances estimated by PRELIS), EQS 6.1
(with METHOD = ML, ROBUST), and Mplus 6 (with
ESTIMATOR = MLM), but not in Amos 18. Boot-
strapping is available in Amos 18, so that one can esti-
mate standard errors and model fit statistics empirically
by applying this resampling technique on the sample
data at hand. Moreover, when the keyword ROBUST is
used in BQS 6.1, the program provides three additional
residual-based test statistics, including Browne’s (1984)
original residual-based %, the Yua n—Bentler extension
of Browne’s residual-based 3 test for small samples
(Bentler & Yuan, 1999; Yuan & Bentler, 1998), and an
even more radical modification of Browne’s test called
the Yuan—Bentler residual-based F-statistic (Yuan &
Bentler, 1998). Another robust ML estimator for non-
normal or cluster data, called MLR, is currently avail-
able only in the Mplus 6 program.

The ADF estimator can also be considered for model
estimation with non-normal conlinuous data when the
sample size is very large (i.e., in the thousands). ADF
or WLS is available in all four programs. LLISREL 8.8
provides ADF solutions when an asymptotic covari-
ance matrix estimated by PRELIS is submitted as input
and the WLS option is requested. Mplus 6 also uses the
keyword WLS, while EQS 6.1 uses AGLS and Amos I8
uses ADF for Browne’s (1984) ADF estimator. More-
over, EQS 6.1 provides two different adjustments (O the
model test statistic called the Yuan-—Bentler corrected
arbitrary distribution generalized least squares (AGLS)
test statistic (Yuan & Bentler, 1997b) and the Yuan—
Bentler AGLS F-statistic (Yuan & Bentler, 1999). I
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addition, it provides corrected standard error estimates
(Yuan & Bentler, 1997a) for small samples.

When categorical variables are declared in LISREL
8.8 (PRELIS), Mplus 6, or EQS 6.1, all three programs
estimate thresholds for categorical variables, polychor-
ic/polyserial correlations among observed variables,
and an asymptotic covariance matrix before estimat-
ing structural model parameters. The programs differ
in the ways these matrices are computed. LISREL 8.8
estimates polychoric/polyserial correlations using Ols-
son’s (1979) procedure. EQS 6.1 uses a partition maxi-
mum likelihood approach (PML; Lee, Poon, & Bentler,
1995; Poon & Lee, 1987), while Mplus 6 employs the
limited-information likelihood approach of Muthén
(1984). The default estimator for categorical variables
is WLSMYV in Mplus 6; robust ML with robust statis-
tics based on the Lee and colleagues’ (1995) optimal
weight matrix is the default estimator in EQS 6.1. LIS-
REL 8.8 provides a robust ML solution with Satorra—
Bentler scaled statistics by default when a polychoric
matrix and asymptotic covariance matrix calculated by
PRELIS are submitted as input. Instead of using ML or
ADF estimation, Amos 18 only allows Bayesian esti-
mation when non-numeric data (i.e., ordered categori-
cal) are declared.

Bayesian estimation is currently available only in
Mplus 6 and Amos 18. Both programs use MCMC as
the sampling algorithm. To request Bayesian estima-
tion in Mplus 6, “ESTIMATOR = BAYES” should be
specified. Mplus 6 allows different types of Bayes point
estimates; users can request mean, median, or mode
of the posterior distribution by specifying “POINT =
MEAN,” “POINT = MEDIAN,” or “POINT = MODE,”
tespectively. By default, Amos 18 provides the poste-
rior mean and median for point estimates. The state-
ments used by the four software programs to request
the different estimation methods discussed above are
Summarized in Appendix 10.1.

EMPIRICAL FINDINGS
-ABOUT DIFFERENT ESTIMATION METHODS

Al{hougll Equation 10.2 can be considered the general
fit function for normal theory ML, normal theory GLS,
and Browne’s ADF or WLS, these estimators are not
fiecessarily equivalent. When multivariate normality
Of observed variables does not hold or sample size is
Stall, 7, ¢ will not be equivalent to Fy, g or Fpg (Yuan
& Chap, 2005). Unfortunately, multivariate normality
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of observed variables, assumed by ML and GLS, is
rarely satisfied (e.g., Micceri, 1989), and sample sizes
required by the theoretically correct ADF estimator
under non-normality are often unavailable in practice.
It is unlikely that these estimators will be equivalent in
realistic conditions. The choice of estimation method
becomes essential because it will affect evaluation of
model fit and parameter estimates (Bentler & Dudgeon,
1996). Users have to rely on empirical findings about
different estimators in various practical conditions to
inform their choice in applications of SEM.

Estimators for Continuous Variables

When continuous observed variables are not normal-
ly distributed, robust ML estimators (i.e., ML with
Satorra—Bentler scaled statistics) appear to work better
than Browne’s ADF estimator, especially when sample
sizes are not large (e.g., Chou et al., 1991; Curran, West,
& Finch, 1996; Hu et al., 1992). Sample sizes required
for ADF to work satisfactorily increase for larger mod-
els, increasingly non-normal distribution of observed
variables, or both. The required sample size is often un-
realistic for many social and behavioral fields. Hu and
colleagues (1992), for example, found that the sample
size required for ADF to work well for a 15-variable,
three-factor CFA model was 5,000 under a symmetrical
but highly kurtotic distribution. The Satorra—Bentler
scaled ¥2, however, has been shown repeatedly to work
fairly well relative to the ML and ADF %2 across vari-
ous levels of non-normality and sample size (e.g., Chou
et al., 1991; Curran et al., 1996; Hu et al., 1992).
Among the modified model fit test statistics for ML,
Yuan and Bentler (1998) found that both the Satorra—
Bentler scaled y? and the Yuan—Bentler residual-based
x2 performed well under a variety of conditions at sam-
ple sizes-of 200 or above. When sample size was 120
or smaller, however, Bentler and Yuan (1999) found the
Type 1 error rate of the Satorra—Bentler scaled %2 to be
inflated two to four times the nominal level, while that of
the Yuan—Bentler residual-based ¥? was too conserva-
tive (underrejected correct models). The Yuan—Bentler
residual-based F-test was found to perform better than
the Satorra—Bentler scaled % test, Browne’s residual
test, and the Yuan-Bentler residual-based y2 test under
various levels of non-normality and very small sample
conditions (N < p(p + 1)/2 or Nut < 3.64:1, where ¢ is
the number of estimated model pmeters; Bentler
& Yuan, 1999). Because the theoretical null distribu-
tion of the Satorra—Bentler scaled statistic is unknown,
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Bentler and Yuan recommend using the Yuan-Bentler
residual-based y* or the Yuan—Bentler residual-based
Fitest for non-normal data when the sample size is
medium to large [N > p(p + [)/2]. The Yuan-Bentler
residual-based F-test is recommended when the sample
size is very small [df SN = p(p + D/2] regardless of
sampling distribution (Bentler & Yuan, 1999).

Fouladi (1999) suggested that gmall-sample perfor-
mance of Satorra and Bentler's (1988, 1994) test sta-
tistics could be improved by incorporating a Bartlett
(1950) correction. In a large simulation study, Nevitt
and Hancock (2004) examined the performance of a
number of modified model fit test statistics for non-
normal data under various ratios of sample size o
number of estimated model parameters (N:f ranged
from 1:1 to 10:1, with N’s ranging from 35 10 1,290)
and sampling distributions (skewness = 3, kurtosis <
21). The authors found that the Satorra—Bentler scaled
statistic exhibited inflated Type I error rate at small
sample sizes (Vif = 10:1) but the Bartlett-corrected
version provided good Type 1 error control and supe-
rior power compared to other test statistics in nearly
all sample size and distribution conditions they inves-
tigated. However, the Satorra—Bentler adjusted statis-
tic and its Bartlett-corrected version tended to provide
low tejection rates for both correctly and incorrectly
specified models (Nevitt & Hancock, 2004). Regarding
the residual-based test gtatistics, the authors found the
performance of the Yuan—Bentler 12 and F-test statis-
tics to be “erratic, controlling Type I error rates under
some conditions and failing under others” (Nevitt &
Hancock, 2004, p. 468). As a result, the authors recom-
mended the Bartlett-corrected Satorra—Bentler scaled
statistic for evaluating model fit with gmall samples.

Besides model fit test statistics (9 or F-test), other
it indices that are functionally related to model ¥* are
often used to evaluate model fit, and standard error es-
timates are used to test parameter estimates for statis-
tical significance. vYu and Muthén (2002) showed that
model fit indices (root mean square €rror of approxi-
mation [RMSEA], Tucker—Lewis index [TLI], and
comparative fit index [CFI]) based on Satorra—Bentler

scaled 32 performed better than those based on regular
ML and ADF under moderate to severe pon-normality
and small sample size conditions. Nevitt and Hancock
(2000) also reported improved performance of adjust-
ed RMSEA based on Satorra—Bentler scaled 3¢ when
models were properly specified for non-normal data.
Similarly, robust standard errors of Satorra and Bentler
(1088, 1994) have been found to show less negative bias
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than those of regular ML and ADF (Chou & Bentler,
1995; Chou et al., 1991).

Compared to the robust ML approach for continu-
ous non-normal data, Nevitt and Hancock (2001) found
that the bootstrapping approach (with Amos) did not
work well with small samples (N = 100 or N:t = 5:1).
When sample size was al least 200, bootstrapping pro-
vided better Type | error control but lower power than
did the Satorra—Bentler scaled statistic under severe
non-normality (skewness = 3, kurtosis = 21). More-
over, bootstrapped standard errors were somewhat less
biased but more variable than Satorra—Bentler robust
standard errors when sample size was not small (Nevitt
& Hancock, 2001).

Estimators for Ordered
Categorical Variables

When approximately normal ordinal variables with at
least five categories are (reated as continuous and ana-
lyzed with normal theory ML, research has shown that
model %* and fit indices are not greatly misleading, but
parameter estimates are slightly underestimated, and
standard error estimates are negatively biased (e-g., Ba-
bakus, Ferguson, & Joreskog, 1987; Muthén & Kaplan,
1085). When non-normal ordinal variables are treated
as continuous and analyzed with normal theory ML,
model-data fit is anderestimated (e.g., Green, Akey,
Fleming, Hershberger, & Marquis, 1997; West, Finch,
& Curran, 1995), and negative bias in parameter and
standard error estimates is more severe (e.g., Babakus
et al., 1987; Muthén & Kaplan, 1985). The performance
of the normal theory ML estimator is worse as the
number of categories decreases, level of non-normality
increases, and samnple size decreases (e.g., Babakus et
al., 1987; Bollen, 1989; Dolan, 1994).

Because analyzing a polychoric/po]yscria] matrix
leads to consistent estimators of parameters with any
fit functions (Bollen, 1089), alternative estimation
methods for categorical data in SEM usually begin
with estimating polychoric."polyscriul correlations, as-
suming underlying normality of latent response vari-
ables. Dolan (1994) found that ML with a polychoric
matrix provided better parameter estimates than ML
with Pearson matrix for symmetrically distributed vari-
ables with up to seven categories. Coenders, Satorri,
and Saris (1997) also found that analyzing a polychoric
matrix worked better than analyzing a Pearson matrix
when normality of latent response variables held, evenl
though intervals between categories of ordinal vari-
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ables were unequal (the authors called this “high trans-
formation error,” p. 273).

However, a polychoric or polyserial correlation may
provide a biased estimate of the latent association when
normality of latent response variables is violated or
when the cell size of the bivariate frequency table is
sparse (e.g., Olsson, 1979). Although researchers have
found polychoric/polyserial correlations to be fairly
robust to moderate non-normality of latent response
variables (I skewness| < 1.25 and Ikurtosis| < 375;e.g.,
Coenders et al., 1997; Flora & Curran, 2004), they are
not robust to severe non-normality (e.g., skewness =5,
kurtosis = 50 Flora & Curran, 2004).

Among estimation methods used on polychoric/
polyserial matrices, WLSMV has been found to per-
form better than the full WLS (e.g., Flora & Curran,
2004, who used Mplus for WLS; Berkovits & Hancock,
2000, who used EQS for WLS). Moreover, Muthén and
colleagues (1997) found that WLSMV outperforms
WLSM in Type I error control. However, WLSMV ap-
peared to be slightly more sensitive to small samples
than robust ML with Satorra-Bentler scaled statistics
(Lei, 2009). Lei (2009) found that when sample size
was at least 250 (N: > 10:1), robust ML and WLSMV
performed similarly regardless of level of score skew-
ness. When sample size was 100 (N:r < 10:1) and ordi-
nal variables were moderately skewed (skewness = 2.3,
kurtosis = 5.3), however, WLSMYV provided a slightly
higher percentage of invalid rejections, a lower percent-
age of valid rejections, and more negatively biased stan-
dard error estimates than did ML with Satorra—Bentler
scaled slatistics. Lei also found the Satorra-Bentler
scaled 72 test to be generally more powerful than the
Yuan—Bentler residual-based F-test (at N> p(p + 1)/2),
although they provided similar Type I error rates.

SUMMARY OF EMPIRICAL FINDINGS

In summary, when simultaneously considering both
model test statistics, and parameter and standard error
estimates, the literature suggests that normal theory
ML with the Satorra and Bentler (1988, 1994) scaled
statistics would work better than ML without scaling
for continuous variables when normality of variables
is violated; it would also work better than the ADF
estimator when sample size is not very large. Among
methods for improving the model fit test statistic, the
Satorra—Bentler scaled y* appears to perform com-
parably to the Yuan—Bentler residual-based tests and
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bootstrapping when sample size is not too small (N 2
200 or N:t > 10:1). When sample size is very small
(N < 200 or Nt < 10:1), incorporating a Bartlett cor-
rection to the Satorra—Bentler scaled x? statistic may
improve the accuracy of model evaluation, and it ap-
pears to work more consistently than the Yuan—Bentler
residual-based F-test.

For categorical observed variables, polychoric/poly-
serial correlation is recommended for analysis unless
normality of the underlying scales is severely violated
(e.g., skewness = 5, kurtosis = 50; examined by Flora
& Curran, 2004) or the expected bivariate frequencies
are small (Olsson, 1979). WLSMYV or robust ML with
a Satorra—Bentler scaled statistic on polychoric/polyse-
rial correlations would work better than full WLS for
ordinal variables at realistic sample sizes. The robust
ML approach appears to perform similarly to WLSMV
when sample size is not too small (e.g., Nz = 10:1) but
may perform better than WLSMV when the sample
size is small (e.g., N = 100 or N:t < 10:1). In general,
full WLS estimators are not recommended for either
continuous or ordinal variables, unless the sample size
is extremely large.

AN ILLUSTRATION

To illustrate the use and performance of various esti-
mators for non-normal variables, we created several
simulated data sets with the desired data characteristics
(continuous vs. ordinal non-normal data, and small vs.
large sample sizes). A simple 18-variable, two-factor
CFA model with simple structure is used for illustration
purposes. Population parameters, factor loadings, and
correlation between the two factors were taken from es-
timates of a large, actual data set. The two constructs of
interest are generalized anxiety (measured with eight
items) and depression (measured with 10 items). Origi-
nal item responses were on a 5-point scale. Respondents
were asked to rate brief descriptions of symptoms (e.g.,
“T have sleep difficulties,” “I feel helpless”) from 0 (not
at all like me) to 4 (extremely like me).

The number of unique sample variances and cova-
riances for 18 observed variables is 171 [i.e., 18 * (18
+ 1)/2]. The 18-variable, two-factor model has 134 df,
with 18 factor loadings, 18 error variances, and an in-
terfactor correlation (factor variances were fixed to 1
to scale the latent variables), resulting in a total of 37
parameters to be estimated. Two levels of sample size,
200 and 1,000, were included. Both sample sizes were
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greater than the number of unique sample variances
and covariances,.but the ratio of sample size to num-
ber of estimated parameters was less than 10 to 1 for a
sample size of 200 (about 5.4:1) and greater than 10 to
| for sample size of 1,000 (about 27:1). A sample size
of 1,000 is expected (o work well for robust ML with
Satorra—Bentler corrected statistics or with a Yuan—
RBentler residual-based * or F-test when observed vari-
ables are continuous non-normal, and for robust ML
and WLSMV analysis with polychoric matrix when
observed variables are ordinal non-normal. A sample
size of 200 (less than 10 observations per estimated pa-
rameter), however, may pose a challenge for these esti-
mators, Nevertheless, a sample size of 1,000 might still
be 100 small for normal theory ML and full WLS * to
behave well when observed variables are non-normal in
either continuous or ordinal form.

A large level of non-normality (all indicators had
univariate skewness = 3, kurtosis = 21) was simu-
lated for continuous observed variables to challenge
the robust ML approach. For ordinal variables, either
non-normality of latent response variables (univariate
skewness = 3, kurtosis = 21) with low transformation
error (i.e., equal interval between categories with cut
points for categorization at —75, —.25, .25, and 73) or
multivariate normal latent response variables with high
transformation error (unequal interval and asymmetric
categorization at cut points 67, 1.28, 1.645, and 2.05)
was simulated. The former resulted in univariate nega-
tive skewness (average = —064) and negative Kurtosis
(average = —46) of the observed ordinal variables and
the latter univariate positive skewness (average = 2.34)
and positive kurtosis (average = 5.16). If normality of
latent response variables were important for using a
polychoric matrix, then parameler estimates produced
by analyzing a polychoric matrix (holding estimators
constant) would be expected to be worse in the first case
than in the second case despite the more severe level of
non-normality of the observed ordinal variables in the
second case.

The normal theory ML estimator, the full WLS (or
ADF) estimator, and the MLM with Satorra—Bentler
scaled o and fit indices based on scaled statistics were
used to estimate the model with Mplus 6 for continuous
observed variables. Residual-based model test statistics
based on ML were obtained from EQS 6.1 by fitting the
same model to the same continuous data sets. For ordi-
nal observed variables, solutions from normal theory
ML and MLM were requested from Mplus 6 by treat-
ing the 5-point ordinal variables as continuous to se¢ if
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ignoring the metric problem was robust to source (from
non-normal latent response variables or transformation
error) or level (small skewness and kurtosis vs. moder-
ate skewness and kurtosis) of observed non-normality.
A polychoric matrix of ordinal variables (PC) was ana-
lyzed with ML (referred to as ML + PC in Table 10.3)
and robust ML (labeled as MLM + PC in Table 10.3)
using EQS 6.1, as well as with full WLS and WLSMV
using Mplus 6.

Model fit statistics and bias of parameter estimates
(Average % bias and Average % absolute bias of model
parameters) based on one replication for the various
combinations of non-normality, sample size, and es-
timation methods are provided in Table 10.3. Bias of
standard error estimates could not be evaluated be-
cause only one replication for each cell was simulated
for illustration purposes.

As can be seen in Table 10.3, all ML ¥? without
adjustment rejected the true model incorrectly, as did
some fit indices based on unadjusted ML o at the small
sample size. As expected, Satorra—Bentler scaled 2
and fit indices based on the scaled 2?2 performed well for
continuous variables despite the Jarge departure from
normality. The Yuan—Bentler residual-based 2 and F-
test also performed well at both sample sizes for con-
tinuous non-normal variables, while Browne’s residual-
based 2 did not do well in the small-sample condition.
Furthermore, average % bias and average % absolute
bias of the ML parameter estimates across model pa-
rameters were small for continuous non-normal data.
The performance of the robust ML approach with ad-
justed model test statistics (with Satorra—Bentler scaled
22 or Yuan—Bentler ¥* or F-test) appeared to hold up
well under continuous non-normality even in the small-
sample condition (N = 200), with the ratio of sample
size to number of estimated parameters being just over
5 to 1. Consistent with findings from the literature, the
theoretically correct estimator under non-normality,
full WLS or ADF, performed worse than the robust
ML method in estimation of both model fit and model
parameters at either sample size.

For ordinal variables, the performance of the esti-
mation methods in parameter estimation appeared tO
depend on the source or magnitude of non-normality.
Treating ordinal variables as continuous and estimating
the model with normal theory ML produced a substan-
tial amount of negative bias (about 14% on average) in
parameter estimates, regardless of sample size, when
transformation error was high (asymmetrical catego-
rization with unequal intervals between adjacent cat-
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TABLE 10.3. Fit Statistics for Selected Estimation Methods under Different Non-Normal Variable
and Sample Size Conditions

2

Average % bias

Average % absolute bias

(df = 134) p CFI T RMSEA  of parameter estimates  of parameter estimates
Severely non-normal continuous variables
N =200
ML 337.52 .000 911 .898 .087 .08 5.88
MLMa 149.35 173 982 .980 .024 — —
WLS 398.44 .000 197 .769 .099 5.45 9.65
N =1,000
ML 395.39 .000 975 972 .044 a7 1.69
MLM® 150.55 156 995 .995 .01 — —
WLS 149.46 71 .949 942 011 -7.18 10.21
Ordinal variables with moderate observed non-normality
(MVN latent response variables + high transformation error)
N =200
ML 197.12 .000 .948 941 .049 -14.11 14.11
MLM 115.99 .867 1 1 .000 — —
ML+PC 478.67 .000 .854 .834 NA .06 4.60
MLM+PCe 130.74 564 1 1 NA — —
WLSMV 139.53 354 997 997 014 70 4.40
WLS NA NA NA NA NA NA NA
N =1,000
ML 238.39 .000 .983 .980 .028 -13.74 13.74
MLM 122.33 .756 1 1 .000 — —
ML+PC 49779 .000 .966 .961 NA 40 2.26
MLM-+PCo 135.28 .453 1 1 NA — —
WLSMV 128.38 .621 1 1 .000 .59 2.36
WLS 149.27 174 .996 995 011 5.09 6.32
Ordinal variables with mild observed non-normality
(severely non-normal latent response variables + low transfermation error)
N =200
ML 177.34 .007 .980 977 .040 1.67 3.30
MLM 164.97 .036 .985 983 .034 - —
ML+PC 276.52 .000 949 942 NA 749 7.90
MLM+PC2 158.69 072 994 993 NA — —
WLSMV 165.68 .033 994 .993 034 8.13 8.23
WLS NA NA NA NA NA NA NA
N=1,000
ML 163.22 .044 997 997 015 1.84 2,77
MLM 145.59 233 999 .999 .009 — —
ML+PC 273.94 .000 990 .988 NA 7.62 7.62
MLM+PCo 136.31 428 1 1 NA — s
WLSMV 154.32 a1 999 999 012 767 7.67
WLS 182.35 .004 994 994 019 11.61 11.61

Note. NA, not available; — indicates same as above. Balded fit statistics.indicate rejection of the mode! at their respective recommended
criteria (i.e., p < .05, CFl < .95, TLI < .95, RMSEA > .06); bolded average bias and average absolute bias of paranjeter estimates are

> 10%, a level considered unacceptable by Muthén et al. (1997).

%Yuan-Bentler y2 and F-test were not significant, but Browne's residual-based y2 was at p < .05.

bAll residual-based test statistics were not significant at p > .05.

¢ All residual-based test statistics were significant atp < .05.
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egories) or when observed skewness a nd kurtosis were
large (2.34 and 5.16, respectively). However, the same
approach produced fairly unbiaged parameter estimates
(< 5% on average) when transformation error was low
(symmetrical categorization with equal intervals be-
tween adjacent categories on severely non-normal la-
tent response variables) or when observed skewness and
Kkurtosis were low (—.64 and .46, respectively), regard-
less of sample size. Note that levels of transformation
error and of observed non-normality were confounded
in this example. That is, high transformation error hap-
pened to result in large observed non-normality, and
low transformation error happened to result in a low
level of observed non-normality. Analyzing PC instead
of a Pearson matrix with ML or WLSMV produced ac-
ceptable parameter estimates with a small amount of
bias (< 10% on average) in both levels of observed non-
normality. However, the amount of bias was notably
lower when normality of latent response variables held,
despite the larger level of observed skewness and kurto-
sis (average absolute bias < 5%) than when normality of
latent response variables was violated (average absolute
bias around 8%). Normality of latent response variables
appeared to be important when PC was analyzed. More
severe departure from normality than the magnitude
simulated here may bias parameter estimates to an un-
acceptable level.

Holding sample size and source of non-normality for
observed ordinal variables constant, robust ML analyz-
ing a polychoric matrix with Satorra—Bentler scaled
statistics performed similarly to WLSMYV in their esti-
mation of model fit and model parameters, both yield-
ing mostly accurate fit statistics about the true model
and an acceptable amount of bias in parameter esti-
mates. As expected, full WLS was inferior to WLSMV
in all cases. When the sample size was small, full WLS
failed to yield a solution; when it did produce a solution
at the larger sample size, its parameter estimates were
more biased than WLSMV estimates. A sample size of
1,000 did not appear to be large enough for full WLS to
outperform WLSMV.

Regardléss of the type of matrix analyzed, for or-
dinal variables or sample size (200 or 1,000), the
Satorra-Bentler scaling appeared to successfully re-
duce the inflation in model ¥? of the ML estimator and
would correctly retain the true model at the .05 sig-
pificance level in most cases by itself. Moreover, the
performance of Satorra-Bentler scaled y? for ML with
PC was more consistent than that of the residual-based

test statistics.

I, FUNDAMENTALS

Although no definitive conclusions can be made
from this single-replication simulation, it illustrates
the importance of choosing appropriate estimation
methods based on considerations of data characteris-
ics, including sample size or sample size per estimated
model parameter, metric of measured variables, and
distribution of variables. Our simulation results showed
that the default normal theory ML estimator in most
standard SEM programs did not work well when ob-
served variables were non-normally distributed; it
misinformed model-data fit regardless of the metric of
the observed variables and underestimated model pa-
rameters for ordinal variables with high tra nsformation
ertor or moderate level of observed non-normality. The
ML estimator with Satorra—Bentler scaled statistic per-
formed much better in informing model-data fit than
the regular ML model fit statistic regardless of the form
or magnitude of non-normality and sample size. Bias of
parameter estimates provided by the ML estimator was
small under continuous non-normality but large when
the metric of ordinal variables with high transforma-
tion error (or moderate observed non-normality) was
disregarded,

The metric of ordinal variables can be taken into
account by analyzing a polychoric/polyserial matrix.
Robust ML or WLSMV analysis of a polychoric ma-
trix performed well in informing model-data fit and
provided parameter estimates with a tolerably small
amount of bias, albeit biag of their parameter estimates
might be somewhat higher when normality of latent re-
sponse variables was severely violated (skewness = 3,
kurtosis = 21). Moreover, the theoretically correct WLS
or ADF estimator for non-normal data did not perform
well at realistic sample sizes compared 10 robust ML or
WLSMYV, as has been shown in previous studies.

Tn conclusion, results of this simple simulation ap-
pear to be consistent with findings reported in other
studies. Tt demonstrates differential performance of
different estimation methods that have been proposed,
recommended at some point, or used in appl ied research
under some common practical conditions. It elucidates
the importance of choosing estimation methods based
on careful considerations of data characteristics such as
sample size or sample size per estimated model param-
eter, metric of measured variables, and distribution of
variables. These considerations are imperative because
in real-life application in areas of social and behavioral
sciences, non-normality of observed variables is com-
mon (e.g., Micceri, 1989) and sample size is typically
not large.
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