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STATISTICAL POWER IN 
NONRECURSIVE LINEAR 
MODELS 

William T Bielby* 
Ross L. Matsuedat 

In nonrecursive models, estimates of simultaneous relation- 
ships are often subject to high sampling variability. In this 
paper, we apply classical procedures for computing statistical 
power to the issue of sampling variability in estimates of recip- 
rocal causal effects. Using a model of married women's atti- 
tudes regarding work and family size as an example, we show 
how the power to detect nonrecursive relationships depends on 
the model's parametric structure. Specifically, we show how the 
power of statistical tests depends on the strength of instrumental 
variables, the number of overidentifying restrictions, and the 
covariation among disturbances. We conclude by discussing 
the implications of our results for applications of nonrecursive 
models in the social sciences. 

1. INTRODUCTION 

Social scientists are often interested in estimating reciprocal 
causal relationships among variables measured contemporaneously. 

An earlier version of this paper was presented at the 1987 Annual Meet- 
ings of the American Sociological Association, Chicago. This research was sup- 
ported in part by the Academic Senate of the University of California, Santa 
Barbara, and the Graduate School of the University of Wisconsin-Madison. 

*University of California, Santa Barbara 
tUniversity of Wisconsin, Madison 
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168 WILLIAM T. BIELBY AND ROSS L. MATSUEDA 

For example, economists attempt to estimate simultaneous relation- 
ships among sets of supply-and-demand equations (Liu 1963), soci- 
ologists seek to disentangle the reciprocal influence of one peer on 
another (Duncan, Haller, and Portes 1968), and demographers try to 
determine whether childbearing determines labor force participa- 
tion, or vice versa (Waite and Stolzenberg 1976; Smith-Lovin and 
Tickamyer 1978; Cramer 1980). In principle, such reciprocal effects 
can be routinely estimated using nonrecursive estimators such as 
two-stage least squares (2SLS), three-stage least squares (3SLS), and 
maximum likelihood (ML). In practice, however, researchers often 
find that nonrecursive models provide estimates of simultaneous rela- 
tionships that are subject to high sampling variability, making it diffi- 
cult to rule out chance in drawing inferences. Thus, researchers are 
unable to draw definitive conclusions about crucial relationships. 

In single-equation linear models and in recursive multiple- 
equation models, the problem of high sampling variability typically 
arises because of multicollinearity or small sample size. However, 
sampling variability can be a more serious problem in nonrecursive 
models. Even with relatively large samples and exogenous variables 
that are only modestly correlated, estimates of relationships among 
endogenous variables can be quite unstable; i.e., they can have 
large amounts of sampling variability. The problem, sometimes 
called weak empirical identification or poor instrumental variables, 
is usually handled informally, using rules of thumb and ad hoc 
indexes. In this paper, we argue that the problem can be viewed as 
one of statistical power and can be addressed by classical methods 
for protecting against type II error, the error of failing to reject a 
false null hypothesis. 

We proceed in four steps. First, we review estimation and 
testing within nonrecursive models and provide an intuitive explana- 
tion of the problem of high sampling variability in estimates of recip- 
rocal effects. We focus on full-information estimation, using 3SLS to 
present analytical results. Second, we show how statistical power can 
be calculated using a power function for a test of general linear 
constraints. Third, we present calculations that show how the power 
to detect nonrecursive relationships depends on the parametric struc- 
ture of the model. As an example, we use a model of married 
women's attitudes regarding work and family size. We conclude by 
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STATISTICAL POWER IN NONRECURSIVE LINEAR MODELS 169 

discussing the implications of our results for applications of nonrecur- 
sive models in the social sciences. 

2. NONRECURSIVE MODELS: ESTIMATION 

To set up the analyses presented below, we first briefly review 
estimation of nonrecursive models by the method of 3SLS. We focus 
on 3SLS for three reasons. First, power is a function of the estima- 
tor's asymptotic covariance matrix, and for the 3SLS estimator, that 
matrix can be expressed in terms of moments among exogenous and 
endogenous variables. Since moments can be expressed in terms of 
parameters of the model, 3SLS estimation allows us to explore how 
parametric structure influences power. Second, the asymptotic co- 
variance matrix for the 3SLS estimator is identical to that for the full- 
information maximum likelihood (FIML) estimator (Theil 1971, p. 
526); therefore, all of our results apply to nonrecursive models esti- 
mated by FIML methods.1 Third, conceptualizing estimation as a 
three-stage process provides insights into the sources of sampling 
variability that are not as apparent when estimation is approached 
from the principle of maximum likelihood. 

Consider the following system of simultaneous equations: 

yi = Byi + rxi + Ei, (1) 

where yi is a vector consisting of the ith observation on p jointly 
determined endogenous variables, xi is the ith observation on g exoge- 
nous variables, E is a vector of disturbances for the p equations, and B 
and r are coefficient matrices of order p x p and p x g, respectively. 
The model assumes that E(Ei) = 0, E(xiEi') = 0, and E(EiEi') = I. We 
assume that formal conditions for identification hold in all models 
discussed below (Theil 1971, pp. 489-95). In addition, we assume that 
the structural disturbances are multinormally distributed. 

1The equivalence of FIML and 3SLS holds only for simultaneous equa- 
tion models in observable variables and not for the more general covariance 
structure model with latent variables. In general, the FIML asymptotic covari- 
ance matrix cannot be expressed directly in terms of observable moments. Thus, 
the relationship between power and parametric structure in such models cannot 
be explored with closed expressions relating asymptotic covariances to observ- 
able moments and parametric structure (see Matsueda and Bielby 1986 for 
details). 
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170 WILLIAM T. BIELBY AND ROSS L. MATSUEDA 

For the jth equation in the set of p equations, all n observa- 
tions can be represented as 

y = Yjfij + Xj'yj + Ej (2) 

or as 

yj = Z-81 + Ej, (3) 

where Zj = [Yj Xj and 8j' = [1j' yj']. In these expressions, yj is an n x 
1 vector of observations of the jth dependent variable; Yj is an n x p 
matrix of observations of the p1 endogenous variables in equation j; 
Xj is an n x gj matrix of observations of the gj exogenous variables in 
the equation; and PJ and yj are coefficient vectors of order pj x 1 and 
gj x 1, respectively. Given the disturbance specification for the sys- 
tem, it follows that E(E1) = 0, E(X'Ej) = 0, and E(EjEj') = o1j1. 

Given expression (3), the p structural equations for all n obser- 
vations combined can be expressed as 

y = Z8 + E, (4) 

where 

Yi zi ?... ? 81 rl 

y=LY2 9Z oZo2 ... 0 =1 ,', e= '-2 

In the above expressions, y and E are each np x 1 matrices, Z is np x 
q, and 8 is q x 1, where q is the total number of coefficients in the 
system ([p1 + gj], summed over all p equations). 

2.1. The 2SLS Estimator 

The coefficient vector for the jth equation, 8j, can be esti- 
mated consistently with the 2SLS estimator: 

dj= (Aj'Aj)-<Aj'yj, (5) 

where Aj = X(X'X)-<X'Zj (Theil 1971, p. 451). Matrix Aj can also be 
expressed as [Yj Xj], where Yj is X(X'X-'X 'Y1 or the predicted value 
of right-hand-side endogenous variables obtained from the reduced- 
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STATISTICAL POWER IN NONRECURSIVE LINEAR MODELS 171 

form regression.2 Thus, equation (5) is equivalent to OLS estimation 
for the second-stage regression of y, on Yj and Xj. The asymptotic 
covariance matrix of the 2SLS estimator is 

V(d1) = ojj(Aj'A1)<1 (6) 

which is simply the OLS computation for the covariance matrix of 
the second-stage estimates. 

2.2. The 3SLS Estimator 

The 3SLS estimator for 8 (with known E) is 

6= (Z'[Y-' 0 X(X'X)-1X'Z)-1Z'[ 1 ? X(X'X<1X']y (7) 

were 0 is the Kronecker product operator. The asymptotic covari- 
ance matrix for the 3SLS estimator (Theil 1971, pp. 510-12)3 is 

V(6) = (Z'[Y- 0 X(X'X)-X']Z)-1 (8) 
For any two-equation system (i.e., when p = 2), the asymp- 

totic covariance matrix can be expressed as follows (Theil 1971, p. 
515): 

0"'A'Al .1 ?2A A2A -1 

V(;) = , (9) 
[o-1A2:A1 c22A2A2 -1 

where ofjk is the (j,k) element of X-1. Computationally, 3SLS is 
equivalent to joint GLS estimation of the p second-stage equations 

2Since Zj = [Yj Xj], Aj can be expressed as 

Aj = [X(X'X)-'X'Yj X(X'X)-1X'Xj]. 
However, the first term in Aj, X(X'X)-'X'Y1, is equivalent to XPj, where Pj is the 
OLS estimate of the reduced-form coefficient vector for the right-hand-side 
endogenous variables. Thus, XP = Yj or the predicted values for Yj from the 
first-stage regression. The second term in Aj, X(X'X)->X'XI, is equal to Xj, since 
Xj is perfectly predicted from the full set of exogenous variables in X. Therefore, 
Aj= [Yj Xj]. 

3When X is unknown, estimators of 8 and V(s) are obtained by replacing 
X with S, the sample disturbance covariances computed from 2SLS residuals. In 
this paper we are interested in calculations of statistical power given specific 
parameter values under the null hypothesis. In calculating power, the investiga- 
tor assumes specific values for all parameters, including E. Consequently, our 
results are based on expressions for known E. 
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172 WILLIAM T. BIELBY AND ROSS L. MATSUEDA 

as a seemingly unrelated regression system (Zellner 1962; Theil 
1971, p. 510). 

In a two-equation system, the asymptotic covariance matrix 
for ;1, the estimator of the coefficients of the first equation, is 

V(4;1) = 1,[A'Al + {p2/(1 - p2)}A*f-, (10) 

where V = A1 (I - A2(A2 A2)1A2 )A1 and p is u12/(of11of22), the 
correlation between E and E2 (Theil 1971, p. 515). The second term 
in brackets in equation (10) vanishes if either p = 0 or the model is 
just-identified (Theil 1971, p. 511). In either case, the 3SLS and 
2SLS estimators are identical, with covariance matrix o-r1(A' Al)-1. 

Insight into sources of sampling variability in the two-equation 
case can be gained by viewing A1 and A2 as the right-hand-side vari- 
ables of second-stage estimation equations. If the model is just- 
identified or if p = 0, then V(8 1) = o_11([Yi1 X1]'[Y1 Xl])_l is simply the 
OLS variance-covariance matrix computed from the second-stage 
regression. In this situation, all the results obtained by Bielby and 
Kluegel (1977) for the general linear model apply to the second-stage 
regression. In particular, the sampling variability of 81 will increase 
as Y1 becomes increasingly collinear with X1. Below, we explore how 
that collinearity varies as a function of the model's parameters. 

When p differs from zero and the model is over-identified, the 
sampling variability of J31 decreases as both p2 and the generalized 
variance of A* increase. But A* is equivalent to the sum-of-squares 
and cross-products matrix of the second-stage right-hand-side vari- 
ables in the first equation after they have been residualized on the 
second-stage right-hand-side variables of the second equation. In 
other words, for an over-identified model with correlated distur- 
bances, sampling variability in estimates of the coefficients of equa- 
tion (1) will increase with (a) collinearity between the exogenous 
variables unique to the Yi equation and the remaining exogenous 
variables in the model and (b) collinearity between Y1 and the Y2 

equation second-stage right-hand-side variables, Y2 and X2.4 Below, 

4In a two-equation seemingly unrelated regression model, the relative 
efficiency of GLS over equation-by-equation OLS is a decreasing function of the 
canonical correlations between the exogenous variables in the two equations 
(Theil 1971, pp. 322-23). Thus, the relative efficiency of 3SLS over 2SLS can be 
expressed as a decreasing function of the canonical correlations between A1 and 
A2. 
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we explore how these conditions vary as a function of the model's 
parameters. 

3. NONRECURSIVE MODELS: 
THE GENERAL LINEAR HYPOTHESIS 

AND THE POWER OF STATISTICAL TESTS 

Any linear hypothesis within a nonrecursive system of equa- 
tions can be expressed as HO: RB = c, where R is a t x q matrix (of 
rank t) composed of coefficients for t constraints among the q parame- 
ters, and c is a t x 1 matrix of constants. The test statistic is 

v= (c - RS)'[RVR']-J(c - RS), (11) 

where V is short for V(S). Under the null hypothesis, the test statis- 
tic, v, is asymptotically distributed as a chi-square variate with t 
degrees of freedom (Judge et al. 1985, p. 614). Following Gallant 
and Jorgenson (1979), it can be shown that under the alternative 
hypothesis HA: R8 = c, v is asymptotically distributed noncentral chi 
square with noncentrality parameter5 

7= (c - R8)'[RVR']-'(c - R8). (12) 

Using equations (8) and (12), we can compute the statistical 
power of the test of t constraints by specifying the model under the 
alternative hypothesis and calculating values for V and r. Given r, we 
can obtain power from tables for the noncentral chi-square distribu- 
tion (Hayman, Govindarajulu, and Leone 1970). Those tables were 
used to construct Figure 1, which shows the relationship between 
statistical power and the noncentrality parameter r for both one- and 
two-degrees-of-freedom tests, given type I error rates of .05 and 
.001. The figure indicates how large the noncentrality parameter 
must be to achieve a certain level of protection against type I and 
type II errors. For example, for a one-degree-of-freedom test, to 
achieve a type II error of .90, the noncentrality parameter must be 

5For a derivation of the noncentrality parameter of the likelihood-ratio 
test statistic for nonlinear simultaneous equation systems estimated by maxi- 
mum likelihood, see Gallant and Holly (1980). More generally, this result was 
independently applied to linear covariance structure models by Satorra and Saris 
(1985) and Matsueda and Bielby (1986). As noted above, the results for 3SLS 
presented here are asymptotically equivalent to maximum likelihood results 
(Theil 1971, pp. 525-26). 
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1.00 , = 

0.90 - . 

0.80 _ 

0.70 .05 1 df 

0.60 1 /' 

0.40 .001 1 df 

0.30 /' 

0.20 , 

0.10 

0.00 
0 5 10 15 20 25 30 35 40 

Noncentrality Parameter, r 

FIGURE 1. Power as a function of the noncentrality parameter, T. 

just over 10 at a = .05 and just over 20 at a = .001. For a two- 
degrees-of-freedom test, the corresponding noncentrality parame- 
ters must be 13 and 24. Furthermore, to achieve type I and type II 
error rates of .05 (a = .05 and power = .95), the noncentrality 
parameter must be at least 13 for the one-degree-of-freedom test and 
16 for the two-degrees-of-freedom test. 

For a given nonrecursive model, once sample size, null and 
alternative hypotheses, and level of protection against type I error 
have been specified, the noncentrality parameter-and therefore the 
power of the test-is a function of the variance-covariance matrix V, 
which in turn is a function of the model's parameters. Accordingly, 
power of tests within nonrecursive models can be computed in four 
steps: 

1. Given the values of a model's parameters under the alternative 
hypothesis, the implied moments among endogenous and exoge- 
nous variables are computed. 
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2. Those moments are used to compute V, according to equation 
(8) or (for a two-equation model) equation (9). 

3. The noncentrality parameter r is computed using equation (12).6 
4. Given r, power is obtained from tables of the noncentral chi- 

square distribution. Equivalently, power can be obtained from 
computerized representations of those tables, such as LIS- 
POWER under LISREL VII (Joreskog and Sorbom 1989). 

In the analyses below, we examine the impact of parametric structure 
on power and vary a parameter of the model across a range of values. 
Steps 1-4 are repeated for each specific value of the parameter of 
interest. 

4. PARAMETRIC STRUCTURE AND STATISTICAL POWER 

The power to detect parameters of a simultaneous equation 
model is influenced by the overall parametric structure of the model. 
In the single-equation linear model, y = Xi + ., the noncentrality 
parameter for the general linear hypothesis RoI = c is 

r = (c - RO)'[RVR']-1(c - R), (13) 

where V = o-,,(X'X)-1. Thus, for the classical linear model, power is a 
function of the disturbance variance, (ree the degree to which parame- 
ters depart from the hypothesized linear relationship, c - Ri, and 

61n analyses below, computations for the first three steps were obtained 
from matrix expressions using GAUSS statistical software (Edlefsen and Jones 
1986) described in the appendices. Alternatively, the noncentrality parameter 
can be computed in LISREL using the procedure described by Matsueda and 
Bielby (1986, pp. 132-33): The alternative model is fit to the implied moments; 
the asymptotic covariance matrix V is computed from the correlation of esti- 
mates and standard errors produced by LISREL; and the noncentrality parame- 
ter is computed from equation (12). Our procedure for computing the noncen- 
trality parameter differs from the approximation suggested by Satorra and Saris 
(1985) and J6reskog and S6rbom (1989), which is biased asymptotically. Their 
approximation to the noncentrality parameter is the chi-square statistic obtained 
by fitting the model under the null hypothesis to the moments implied by the 
alternative model. For models that can be represented by equation (1), our 
procedure is tractable and asymptotically unbiased. Our approach can be intrac- 
table for more complex covariance structure models with latent variables, but 
the biased approximation is always tractable. On this point, see Satorra and 
Saris (1985, pp. 85-89) and Matsueda and Bielby (1986, pp. 148-52). 
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176 WILLIAM T. BIELBY AND ROSS L. MATSUEDA 

the moments among the exogenous variables, X'X (Bielby and 
Kluegel 1977). 

Despite the similarity of equations (12) and (13), the impact of 
parametric structure on power is considerably more complicated in a 
nonrecursive model than in a single-equation model, because in the 
former case, the variance-covariance matrix, V, is a function of mo- 
ments involving endogenous right-hand-side variables (see equations 
(8)-(10)). These moments are not exogenous to the model and are 
therefore functions of the model's parameters. Thus, the power of a 
test regarding the parameters of one equation is typically a function 
of parameters of other equations in the model. 

In this section we present results from simulations that show 
how the power of selected tests varies as a function of several fea- 
tures of the parametric structure of the model. First is the strength of 
instrumental variables. Specifically we examine power as a function 
of the strength of the effect in the second equation of exogenous 
variables excluded from the first equation. Second, we examine statis- 
tical power as a function of the number of instrumental variables (or 
over-identifying restrictions). Specifically, we compare power calcula- 
tions for a just-identified model (with one exogenous variable ex- 
cluded from each of two equations) with calculations for an over- 
identified model (with two exclusions in each equation). Finally, we 
compute statistical power as a function of the strength of the recipro- 
cal relationship between two endogenous variables and the degree of 
covariation between the structural disturbances. 

4.1. The Hypothetical Model 

Our example is a hypothetical nonrecursive model of married 
women's attitudes regarding (a) the desirability of working outside 
the home while one's children are young and (b) the desirability of 
having a large family. Below, we refer to these as work attitude and 
family attitude, respectively. We assume that they are measured on 
the same metric and that they are negatively related to one another. 
The model, diagrammed in Figure 2, has two endogenous variables 
(work attitude and family attitude) and five exogenous variables 
(woman's years of schooling, woman's work experience, husband's 
occupational status, husband's educational status, and number of 
siblings). Hypothetical baseline values for a just-identified model are 
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B 0 ~-.20 
[-.40 0 2 

r- [ 20 .15-.40 .10 01 -.30 0 -.15-.20 .201' 
[.60-.10 I 

[E-.io .50 
1 -.10 .34 .55-.25 

-.10 1 -.02-.08-.30 
Xx= .34-.02 1 .62-.03 

.55-.08 .62 1 -.04 
L -.25-.30-.03-.04 1 

To simplify the selection of baseline parameter values, we have re- 
scaled the exogenous variables to standard-deviation units (variances 
of one). However, results presented below do not depend on scaling 
of the measured variables.7 

The model is just-identified and assumes that Y15 and 722 are 
zero, i.e., that number of siblings has no effect on work attitude and 
that work experience has no effect on family attitude.8 Values for a 
baseline over-identified model are identical to those above except 
that 714 and 723 are assumed to equal zero. 

Given these baseline parameter values, the just-identified 
model is "weakly" identified, in the sense that estimates of 12 and /21 

are subject to substantial sampling variability. This is reflected in the 
low statistical power of tests of each of these parameters. For exam- 
ple, for a sample size of 1,000, a type I error rate (a) of .05, and a 
just-identified model, the power to detect /812 = -0.20 with a one- 
degree-of-freedom (nondirectional) t test is only .39. For a type I 
error rate of a = .001, the power to detect /812 = -0.20 is just .05.9 

7The coefficients of the models reported below are not fully standard- 
ized, since the variance of each endogenous variable is a function of the parame- 
ters of the model and cannot be fixed at one. 

8The model is just-identified if parameters to be estimated include all 
elements of I (the covariance matrix among disturbances), all elements of lxx 
(the covariance matrix among exogenous variables), the off-diagonal elements 
of B, and the nonzero elements of F. 

9We obtained these figures as follows. First, we generated implied mo- 
ments from the baseline parameter values and sample size. Second, we used 
these moments to compute V from equation (9). Third, given V, we used equa- 
tion (12) to compute the noncentrality parameter r of 2.581. Fourth, we referred 
to power tables for one degree of freedom and r = 2.581 to obtain power at a = 
.05 and at a = .001. 
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FIGURE 2. Hypothetical nonrecursive model. An asterisk indicates that the coefficient is set to zero for the over-identified model. 
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The corresponding power to detect 1.21 = -0. 40 is 0.82 when a = .05 
and 0.34 when a = .001. 

We examine three tests of the reciprocal causal relationship 
between Yi and Y2. Each represents a test typically conducted in the 
evaluation of nonrecursive models. First, we examine the one- 
degree-of-freedom test of a single coefficient relating the two endoge- 
nous variables (fl12 = 0). This test determines whether one endoge- 
nous variable has any effect on the other. Second, we examine the 
two-degrees-of-freedom test that the reciprocal effects between the 
two variables are jointly zero (fy12 = f321 = 0). This evaluates whether 
there is any relationship in either direction between the endogenous 
variables. Third, we examine the one-degree-of-freedom test that 
the difference between the coefficients is zero (1.12 - f321 = 0). This 
test of whether the causal effect is larger in one direction or the other 
is of considerable interest in research on fertility and labor force 
participation (Lehrer and Nerlove 1986). 

4.2. Power and the Strength of Instrumental Variables 

We noted above that in a just-identified model, the sampling 
variability of estimates of reciprocal effects increases with the collin- 
earity between predicted endogenous and exogenous variables on 
the right-hand side of the second-stage regression. Thus, in our exam- 
ple of a just-identified model, the sampling variability of the estimate 
of f12 increases as 92 becomes collinear with x1 through X4. Since 92 is a 
linear function of all five exogenous variables, the reduced-form 
effect of x5 on Y2 iS the only source of nonredundant variation in 92. 
For given values of 312 and f321, the degree to which 92 varies indepen- 
dently of x1 through X4 is determined by the structural coefficient Y25* 
As 725 approaches zero, 92 approaches perfect collinearity with x1 
through X4. Conversely, as the magnitude of Y25 increases, the sam- 
pling variability of the estimate of f312 decreases. Thus, in our hypo- 
thetical example, we interpret Y25 as an index of the strength of x5 as 
an instrumental variable for the first equation. 

To index the degree of collinearity in the second-stage regres- 
sion, we can use either the proportion of variance explained in 92 by 
x1 through X4 (Cramer 1980) or the corresponding variance-inflation 
factor, 1/(1 - R2) (Chaterjee and Price 1977). However, these are 
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merely descriptive indices. Neither takes into account how sample 
size influences sampling variability, nor are these R2 measures sensi- 
tive to all of the parameters that influence sampling variability 
(Maddala 1988, pp. 228-29). Thus, these measures are of limited use 
in addressing the problem of sampling variability within the context 
of formal statistical inference. By defining the issue as protection 
against type I and type II error, we can systematically analyze how 
sample size, parametric structure, and type I error rates affect infer- 
ence in nonrecursive models. 

Figure 3 shows the power of a one-degree-of-freedom chi- 
square test of 1312 as a function of the strength of the instrumental 
variable x5. The null hypothesis, /312 = 0, is contrasted with the alter- 
native hypothesis, /312 = -0.20. For the just-identified model, the 
solid line shows that the noncentrality parameter, r, increases curvi- 
linearly with Y25, the structural effect of x5 on Y2*10 (See Appendix A 
for a description of the GAUSS program that produced the computa- 
tions upon which Figure 3 is based.) According to Figure 3, Y25 has to 
approach 0.4 before the noncentrality parameter exceeds 10, roughly 
the value at which power reaches .90 for a = .05. Given the parame- 
ter values in the hypothetical just-identified model, when a = .001, 
Y25 must approach 0.6 before r exceeds 24, roughly the value at which 
power reaches .99. Thus, for a sample size of 1,000, the effect of x5, 
the instrumental variable, on Y2, the right-hand-side endogenous vari- 
able, must be considerable if we are to have a reasonable probability 
of detecting a value of /312 = -0.20. At the baseline value of Y25 = .20, 

10For the special case of the one-degree-of-freedom test of J312 in the just- 
identified model, the relationship between Y25 and r can be expressed analyti- 
cally. The sampling variance of the estimate of J(12 computed from the second- 
stage regression is 

Var(1312) = 0_102MlY2) 

where M1 = (I - X1(X' X1)-<X' ), so the noncentrality parameter is 

= p12/0f11)(92'1W2)- 

Further, YM2 = r2X'M1X1rr + ut X(X'X)-lX'M1X(X'X)-lX'u2 + 2'T2X'u2, 
where 'Tr2 is the second row of the matrix of reduced-form coefficients, (I - 
B)-'F. The term 2,rr2X'u2 is linear in Y25, while the term 'lT2X'M1XlT2' is quadratic 
in Y25. 
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FIGURE 3. Noncentrality parameter r as a function of Y25: One-df test, 812 = 0. 

a sample size of 3,874 would yield a noncentrality parameter of 10 for 
a power of approximately .9 at a = .05.11 

Figure 3 shows that the one-degree-of-freedom test is slightly 
more powerful for the over-identified model than for the just- 
identified model. The gain in power is relatively small because X4 is 
also a relatively weak instrumental variable (Y24 = -0.2). Thus, we 
can conclude that for the hypothetical model posed in Figure 2, the 
probability of detecting an effect of family attitude on work attitude 
is weak even when two exogenous variables can be excluded from 
each structural equation. 

Figure 4 shows the noncentrality parameter as a function of 
the strength of the instrumental variable x5 for the two-degrees-of- 
freedom test that ,f12 and f321 are jointly zero (i.e., f312 = 0 and,lf21 = 0). 
The noncentrality parameter is evaluated at baseline values of the 
reciprocal effects of -0.20 for I312 and -0.40 for /321. 

11The noncentrality parameter, r, is proportional to sample size n. For n 
= 1,000, r = 2.581 at Y25 = 0.20. Therefore, r is 10 when n = (10/2.581) x 1,000 
= 3,874. 
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FIGURE 4. Noncentrality parameter r as a function of Y25: Two-df test, 812 = 821 = 0. 

According to Figure 4, the power to reject the hypothesis of 
no reciprocal causation depends decisively on whether the model is 
over- or just-identified. For a two-degrees-of-freedom test at a = 
.05, power reaches .90 when the noncentrality parameter is approxi- 
mately 12.5. At a = .001, power does not reach .90 until the noncen- 
trality parameter is 24. For the just-identified model, the noncen- 
trality parameter approaches 12.5 at Y25 = 0.44 and 24 at Y25 = 0.61. 
Therefore, for the just-identified model, reciprocal causation will not 
be detected at a reasonable level of type II error unless x5 is a strong 
instrument for the first equation. This is because x2, the instrumental 
variable for the second equation, is a weak instrument (Y12= 0.15). 
Thus, estimates of both /12 and /21 are subject to substantial sampling 
variability when Y25 iS small. 

In contrast, for the over-identified model at a = .001, the 
power to reject the null hypothesis of no reciprocal causation exceeds 
.999 regardless of the strength of x5 as an instrumental variable.12 We 

'2The power of a two-degrees-of-freedom test at a = .001 exceeds .999 
when the noncentrality parameter reaches 46. 
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have already noted in the over-identified model, both X4 and x5 are 
weak instruments for the first equation. However, X3 is a strong 
instrument for the second equation (y13 = -0.4). The standard error 
of the estimate of ,X21 is reduced by nearly 80 percent when X3 is added 
as an instrument for the Y2 equation. Thus, the strong protection 
against type II error in the over-identified model is due to the preci- 
sion with which we can estimate fy21, even when ,X12 cannot be esti- 
mated precisely. 

We conclude from these results that statistical power varies in 
complicated ways with the hypothesis being tested, with the strength 
of the instrumental variables, and with the identification of the 
model. In the hypothetical model posed here, the likelihood of de- 
tecting the causal impact of Y2 on Yi is low, regardless of whether the 
model is just- or over-identified, unless the instrument for the Yi 
equation is quite strong (indeed, implausibly strong for the substan- 
tive example considered here). In contrast, the likelihood of reject- 
ing the hypothesis of no reciprocal causation between Yi and Y2 is high 
for the over-identified model, regardless of the strength of the instru- 
ment for the Yi equation. 

This conclusion is reinforced when we examine the prob- 
ability of detecting whether the causal relationship among the en- 
dogenous variables is stronger in one direction than the other. The 
null hypothesis is fy12 - fy21 = 0, and the alternative is fy12 = -0.2 
and fy21 = -0.4. Figure 5 shows that for the just-identified model, 
the noncentrality parameter is less than 2.0, regardless of the 
strength of the instrument (x5) for the Yi equation. In other words, 
with a just-identified model, we must have a sample of over 5,000 
to have a reasonable likelihood of detecting a difference between 
P812 and fy21 (when the actual population values are -0.2 and -0.4, 
respectively). 

In contrast, in the over-identified model, the probability of 
detecting the difference between f312 and f321 rises sharply with Y25' the 
strength of x5 as an instrument for the first equation. Nevertheless, 
even in the over-identified model, a noncentrality parameter of 10 is 
not reached until Y25 exceeds 0.45. Thus, given a sample size of 1,000, 
two over-identifying restrictions, the parameter values in our base- 
line model, and weak to modest instruments for the Yi equation, we 
have little chance of detecting whether causal effects are stronger in 
one direction than in the other. 
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FIGURE 5. Noncentrality parameter T as a function of Y25: One-df test, 112 - 1821 = 0' 

4.3. Power and the Size of Reciprocal Effects 

To examine how the size of reciprocal effects influences the 
power of various tests, we assume an alternative hypothesis, 112 = 

0.51821, and compute the noncentrality parameter as a function of 812* 
All other parameters (except /321) are set to their baseline values for 
the just- and over-identified models. Figure 6 shows the influence of 
reciprocal effects on power for the one-degree-of-freedom test of the 
null hypothesis that 1312 = 0 and for the hypothesis that 1321 = 0. 

Again, because of the differential strength of the instruments 
for the two equations, over-identification is much more consequen- 
tial for the test of 1321 than for the test of 1812. For a type I error rate of 
.05, the power to reject 121 = 0 exceeds .90 (i.e., the noncentrality 
parameter exceeds 10) when 1312 and 1321 are as small as -0.05 and 
-0.10, respectively, for the over-identified model. For the just- 
identified model, the same level of power is not reached until 112 and 
1321 are -0.23 and -0.46, respectively. 

In contrast, the probability of detecting departures from the 
null hypothesis, 112 = 0, is weak regardless of whether the model is 

This content downloaded from 128.95.71.159 on Wed, 9 Apr 2014 20:45:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STATISTICAL POWER IN NONRECURSIVE LINEAR MODELS 185 

60 

50 B1 

Overidentifiled 
Just-identified 

40 

30 /1 
1- ~~~~~~ II ~~~~~Overidentified 

,' Just-identified 
20 

0 -0.05 -0.1 -0.15 -0.2 -0.25 -.3 -0.35 -0.4 -0.45 -0.5 

B12= 5*321 

FIGURE 6. Noncentrality parameter T as a function of f312 0 5*1321 One-df tests, /312 = 0 
and 1821 = 0. 

over-identified. For the over-identified model and a type I error rate 
of .05, the power to reject I12 = 0 does not exceed .90 until 812 and f21 
are -0.30 and -0.60, respectively. Thus, for the hypothetical model 
posed here, we would have a difficult time detecting an effect of 
family attitude on work attitude even when there is a sizeable effect 
in the population. In contrast, there is a high probability that we 
would detect even a small effect in the other direction (work attitude 
on family attitude) in the over-identified model. 

Figure 7 reveals that the chances of detecting whether the 
reciprocal effect is larger in one direction than in the other are low 
unless the difference between the effects is quite large. The null 
hypothesis is the one-degree-of-freedom test p12 - P21 = 0, and again 
the alternative is 812 = 0.5 821, with the noncentrality parameter com- 
puted across a range of values for P12. For the just-identified model, 
the noncentrality parameter does not exceed 10 until P12 = -0.43 and 
P21 = -0.86. Even in the over-identified model, the noncentrality 
parameter does not exceed 10 until the reciprocal effects are -0.31 
and -0.62, despite the precision with which P21 is estimated. 
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In sum, given the baseline values of our hypothetical model 
and a sample size of 1,000, our ability to detect reciprocal causal 
effects between work attitude and family attitude is limited. The only 
effect that we are likely to detect with a minimally acceptable level of 
certainty is the effect from attitude about working mothers (Yi) to 
attitude about large families (Y2), and then only if the model is over- 
identified. Detecting whether the causal effect is greater in one direc- 
tion than in the other is especially problematic unless the effects are 
quite large. This is because of weak instruments for the Yi equation. 

4.4. Power and the Size of the Disturbance Correlation 

Equation (10) above shows that for an over-identified model, 
the sampling variability of 3SLS coefficient estimates decreases as 
the absolute value of p, the correlation among structural distur- 
bances, increases. Thus, the power of a one-degree-of-freedom test 
of a hypothesis about a single coefficient increases as p departs from 
zero. This is illustrated by the solid line in Figure 8 for the test of the 
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FIGURE 8. Noncentrality parameter r as a function of correlation between disturbances: 
One-df tests, f612 = 0 and 1312 - f821 = 0' 

null hypothesis 812 = 0. The noncentrality parameter for the over- 
identified baseline model was computed as a function of the distur- 
bance covariance over the range -0.5 to +0.5, which corresponds to 
a range of -0.913 to +0.913 for the correlation between the struc- 
tural disturbances. 

Given the particular baseline parameters we chose, the distur- 
bance covariation has little effect on the power to detect 812 under the 
alternative hypothesis 812 = -0.20. The noncentrality parameter 
computed at p = 0 (r = 3.75) is 89 percent as large as that computed 
at I p I = 0.916 (T- = 4.212). According to Figure 1, at a type I error 
rate of .05, the power of the test is close to .50, regardless of the size 
of the disturbance correlation. 

The disturbance correlation is more consequential for the 
one-degree-of-freedom test of the difference between the coeffi- 
cients, which corresponds to the null hypothesis 1312 - I321 = 0. For 
that test (under the over-identified baseline model), the noncen- 
trality parameter increases with p at an increasing rate. At p = 
-0.913 the noncentrality parameter (r = 3.01) is only 56 percent as 
large as it is at p = +0.913 (r = 5.39). At a type I error rate of .05, 
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the corresponding probabilities of rejecting the null hypothesis are 
.42 and .64, respectively. 

The power of a test on a single coefficient will always be 
lowest when p = 0, given any specific values of the other parameters 
in an over-identified model. However, the power to detect depar- 
tures from I12 - /21 = 0 need not necessarily increase with p. The 
sampling variability of /812 - 821 iS 

Var(,312) + Var(8321) - 2CoV(131241321). 

In our particular example, the sampling covariance increases with p, 
thereby decreasing the sampling variability of the difference between 
the coefficient estimates (and increasing the power of the test). More- 
over, in our example, the sampling covariance dominates the sam- 
pling variances in the above expression. That is, the rate at which the 
sampling covariance increases as p ranges from -0.916 to 0 (which 
reduces the sampling variability of the difference) more than offsets 
the increases in the sampling variability of 312 and 821 over the same 
range. 

Finally, equation (10) implies that the impact of the distur- 
bance correlation on sampling variability (and therefore power) is 
contingent upon A*, which in turn depends on the strength of instru- 
mental variables. Consequently, the sensitivity of T to chnages in p 
should be greater for the test of 8y21 than for the test of y12' since the Y2 
equation has stronger instruments than the Yi equation. This is appar- 
ent when we compare Figure 9 with Figure 8. The proportionate 
change in the noncentrality parameter is indeed greater for the test 
of I321 = 0 (against the alternative I321 = -0.40). For that test, the 
noncentrality parameter evaluated at p = 0 (T- = 158.51) is 84 percent 
as large as that computed at I p I = 0.916 (r = 189.05). 

In sum, in an over-identified model, the sampling variability 
of 3SLS estimates of individual coefficients decreases with the magni- 
tude of the covariance between structural disturbances, thereby in- 
creasing the power of tests on individual coefficients.13 However, for 
a test of coefficients from more than one equation, the impact of the 
error covariance on statistical power is contingent upon the overall 
parametric structure of the model. 

13The relative efficiency of 3SLS compared with 2SLS also increases with 
the magnitude of the covariance between structural disturbances. 
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FIGURE 9. Noncentrality parameter i as a function of correlation between disturbances: 
One-df test, /321 = 0. 

5. SUMMARY AND CONCLUSIONS 

In nonrecursive models, sampling variability and the probabil- 
ity of detecting causal effects among endogenous variables can de- 
pend on the parametric structure of the model in ways quite different 
from what sociologists encounter in classical regression and recursive 
structural equation models. Depending on the hypothesis tested, the 
power of the test can vary in complicated ways with the strength of 
the instrumental variables, with the number of over-identifying re- 
strictions, and with the covariation among disturbances. Conse- 
quently, rules of thumb regarding appropriate sample sizes, magni- 
tudes of coefficients that are substantively significant, and so on, can 
be grossly misleading. The likelihood of detecting asymmetric causal 
relationships, a central issue in research on fertility behavior (Smith- 
Lovin and Tickamyer 1978; Rindfuss, Bumpass, and St. John 1980) 
and on work and family interaction (Berk and Berk 1978; Bielby and 
Bielby 1989), can be especially problematic. 

Our results suggest several ways in which sociological applica- 
tions of nonrecursive models can be improved. For example, sociolo- 
gists should be more sensitive to the issue of type II error when 
interpreting results from nonrecursive models. As our example illus- 
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trates, having a viable substantive rationale for restrictions that iden- 
tify a model's parameters does not guarantee that valid inferences 
will be drawn from estimates of those parameters. An effect of an 
endogenous variable that is formally identified can often be difficult 
to detect, even when the sample size is large by sociological stan- 
dards. Without explicitly assessing the type II error rate, sociologists 
are likely to conclude incorrectly that effects are absent (or symmet- 
ric) more often than they realize. 

Sociological applications of nonrecursive models should sys- 
tematically address the issue of type II error in tests of hypotheses 
concerning the effects of endogenous variables. For example, a re- 
searcher conducting such an analysis with our hypothetical model 
would be confronted with several issues. First, she or he would proba- 
bly conclude that a sample of 1,000 is too small to assess (a) the effect 
of family attitude on work attitude and (b) asymmetry in the recipro- 
cal relationship between the endogenous variables. Second, the re- 
searcher would note that the probability of detecting a causal effect 
of work attitude on family attitude depends decisively on whether 
the additional restriction that renders the Y2 equation over-identified 
(Y23 = 0) can be justified substantively. Indeed, depending on the 
researcher's loss function regarding the trade-off between bias and 
efficiency, she or he might conclude that the substantial gain in 
power obtained by imposing the over-identifying restriction more 
than offsets the bias introduced by small departures from the restric- 
tion in the population. As Figures 5-7 illustrate, depending upon the 
hypothesis, the potential gain in power due to the addition of a 
strong instrument can be comparable to that of a very substantial 
increase in sample size. 

Of course, the specific findings presented in Figures 3-9 de- 
pend upon the values of the baseline parameters we have chosen. Had 
we chosen lower correlations among exogenous variables, smaller 
disturbance variances, or more over-identifying restrictions, the 
power of the statistical tests we examined would have been greater. 
The analysis of statistical power is always problem-dependent. To 
specify null and alternative hypotheses completely requires the specifi- 
cation of plausible values of the model's parameters under both sets of 
circumstances. If, for example, an analyst were to choose values for 
exogenous moments based on consistent sample estimates of those 
moments, then power calculations would be contingent upon those 
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sample values. In a substantive area different from the one we have 
chosen, sample sizes, collinearity among exogenous variables, and the 
magnitudes of effects could be quite different, yielding very different 
calculations of statistical power. 

Nevertheless, the procedures we have presented are widely 
applicable. Indeed, they apply to any model that can be specified in 
terms of the classical textbook econometric model described in equa- 
tion (1). These include nonrecursive models with more than one 
equation, fully recursive models, and seemingly unrelated regres- 
sion models, among others. The same four steps that we have used 
here to compute power can be applied to any of these models, and 
the GAUSS program described in the appendices can be modified 
to accommodate any of these specific instances of the classical simul- 
taneous equation model. Moreover, equations (8) and (12) allow 
the researcher to express the mathematical relationship between a 
model's parameters and the noncentrality parameter for a statistical 
test. 

Our analyses open several areas for future research. One is to 
explore more formally the trade-offs between bias and efficiency 
according to different loss functions when an exogenous variable is 
known to have a very strong effect on one endogenous variable and 
(at most) a small effect on another endogenous variable. Another is 
to examine the impact of multiple indicators on the probability of 
detecting effects in nonrecursive models. We have shown elsewhere 
that for recursive models, additional indicators can have an impact 
on power that is comparable to a substantial increase in sample size 
(Matsueda and Bielby 1986). The extension of these results to 
nonrecursive models would allow researchers to evaluate the relative 
costs and benefits of increased sample size versus additional indica- 
tors during the design stage of a research project. 

APPENDIX A 
A GAUSS PROGRAM FOR COMPUTING 

NONCENTRALITY PARAMETERS 

For any test of parameters in a linear structural equation 
model, the associated noncentrality parameter can be expressed as 
a function of the asymptotic covariance matrix, V, of the estimator 
for the model's coefficients, as in equation (12) above. In this paper 
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we exploit the fact that for a 3SLS estimator of a simultaneous 
equation model, V can be expressed in terms of moments among 
the observable variables, which in turn can be expressed in terms of 
the model's parameters. The GAUSS program in Appendix B 
shows how we have computed the relationship between a model's 
parameters and the noncentrality parameters associated with vari- 
ous statistical tests. 

The program applies to the just-identified model in Figure 2 
and the analysis of power as a function of the strength of the instru- 
mental variables. It computes the noncentrality parameters associ- 
ated with the three tests, 1312 = 0, I312 = /21 = 0, and I312 - 1321 = 0, as a 
function of parameter Y25* Specifically, all parameters of the model 
other than Y25 are set to values that correspond to the alternative 
hypothesis, while Y25 is varied from 0.05 to 0.95 in increments of 0.05. 
For each value of Y25 (i.e., for each iteration of the loop), the pro- 
gram computes the implied moments, the 3SLS asymptotic covari- 
ance matrix, and the three noncentrality parameters of interest. The 
four columns of numbers in Appendix C are the output of the pro- 
gram. They are plotted as the solid lines in Figures 3, 4, and 5. We 
computed the over-identified model by changing the gamm= expres- 
sion to let Y14 = Y23 = 0 and by changing the let rowsxl and let rowsx2 
expressions to reflect the two additional exclusions of exogenous 
variables. 

We computed power as a function of the size of reciprocal 
effects by modifying the program to iterate on f21 and setting 812 
equal to 0.5/321. Finally, we computed power as a function of the size 
of the disturbance correlation by modifying the program to iterate on 
0'12. 

Although the program has been set up for a system with five 
exogenous variables, it can easily be modified to accommodate any 
two-equation system by changing the dimensions of the appropriate 
matrices. Moreover, the program can be generalized to more than 
two equations by using the more general expression in equation (8) 
instead of equation (9) to compute the asymptotic covariance matrix. 
Further, the effects of other parameters on power can be assessed by 
modifying the program to iterate on the parameter of interest. Fi- 
nally, the effect on power of different baseline parameter values can 
be assessed by changing the entries in step 1, part 1. 
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APPENDIX B 
GAUSS PROGRAM FOR COMPUTING NONCENTRALITY 
PARAMETERS AS A FUNCTION OFY25, JUST-IDENTIFIED 

MODEL 

/* program to compute noncentrality parameter for test of */ 
/* general linear hypothesis in a simultaneous equations */ 
/*context. William T. Bielby and Ross L. Matsueda, 7/90 */ 

/* this version computes tau as a function of gamma25 */ 
/* for the just-identified model-see Figure 3, 4, 5 */ 
format 6,3; 
output file = c:\power\generic.out reset; 
outwidth 250; 
n= 1000; 

/* Step 1, part 1: SPECIFY PARAMETER VALUES */ 
/* this is set up to iterate on gamma25 */ 
let sdx[5,1]=1 1 1 1 1; 
dx = diagrv(eye(5) ,sdx); 
/* above is s.d. of x's */ 
let rx[5,5]= 

1 -.10 .34 .55 -.25 
-.10 1 -.02 -.08 -.30 
.34 -.02 1 .62 -.03 
.55 .08 .62 1 -.04 

-.25 -.30 -.03 -.04 1 
/* above is correlation of x's */ 
sigxx= dx*rx*dx; 
gamm25= .05; 
b21 = .400; 
b12 = .200; 
do while gamm25 <1.0; 
/* above iterates on parameter of interest */ 
gamm=( .200- .150- -.400- .100- .000)1 

(-.300- .000- -.150- -.200- gamm25); 
/* above is initial gamma matrix, we'll iterate on gamma25 */ 
beta = (1-b12) I (b21 -1); 
let see[2,2]=.600 -.100 -.100 .500; 
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/* above are beta and psi matrices (LISREL IV notation) */ 
seinv=invpd(see); 
seinvl l=seinv[1,1]; 
seinv22=seinv[2,2]; 
seinvl2=seinv[1 ,2]; 

/* Step 1, part 2: COMPUTE ENDOGENOUS MOMENTS */ 
sigyx=inv(beta) *gamm*sigxx; 
sigyy=inv(beta)*gamm*sigxx*gamm'*(inv(beta))' + 
inv(beta) *see* (inv(beta))'; 
sigxy= sigyx'; 
vary= diag(sigyy); 
dy=eye(2). *sqrt(vary); 
ryx= inv(invpd(dy) *beta*dy) *invpd(dy) *gamm*dx*rx; 
ryy= invpd(dy) *sigyy*inv(dy); 
let rowsxl= 1 2 3 4 ; /* x variables included in eq 1 */ 
let rowsyl=2; /* y vars included in equation 1 */ 
sxyl=submat(sigxy,O,rowsyl); /* cov matrix of eq 1 x vars w 
/* eq 1 y vars 
sylx = sxyl'; 
sxlx=submat(sigxx,rowsxl,O); /* cov matrix of eq 1 x vars w 
/* all x vars */ 
xxinv=invpd(sigxx); 
/* similar computations for equation 2 follow */ 
let rowsx2 = 1 3 4 5; 
let rowsy2= 1; 
sxy2 = submat(sigxy,O,rowsy2); 
sy2x = sxy2'; 
sx2x= submat(sigxx,rowsx2,0); 

r=(ryy-ryx) I (ryx'-rx); 
std=(diag(dy) I diag(dx))'; 
/* above are correlations and standard deviations */ 
/* can be output to LISREL 

/* Step 2: COMPUTE VARIANCE-COVARIANCE */ 
/* MATRIX OF 3SLS ESTIMATOR */ 
/* what follows is 3sls asymptotic covariances following Theil */ 
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/* zl includes eq 1 rght hnd vars, z2 includes eq 2 rght hnd vars 
szlx=sylx | sxlx; /* var-cov matrix of zl vars with all x vars */ 
sz2x=sy2x sx2x; /* var-cov matrix of z2 vars with all x vars */ 
all ==n*szlx*xxinv*szlx'; 
al2=n*szlx*xxinv*sz2x'; 
a22 = n * sz2x * xxinv * sz2x'; 
covest =invpd((seinvl 1 * al 1 - seinv12* a12) 
| (seinvl2*al2'-seinv22*a22)); /* see Theil, p. 515, top */ 
stderr = sqrt(diag(covest)); 
varbl2=covest[l,l]; 
varb2l = covest[6,6]; 
bl2=beta[1,2]; 
b2l =beta[2,1]; 

/* Step 3: COMPUTE NONCENTRALITY PARAMETERS */ 
/* FOR VARIOUS TESTS */ 
taul =bl2*bl2/varbl2; 
tau2=b2l *b2l/varb2l; 

/* create submatrix for tests on b2l and bl2 */ 
rowscv= 1-6; 
vr= submat(covest,rowscv,rowscv); 

/* compute 2 df tau for bl2 = b2l = 0 */ 
tau2df=(bl2-b2l)*invpd(vr)*(bl2 b2l); 
h=(l--1); 

/* compute ldf tau for bl2 - b2l = 0 */ 
taudiff=(h*(bl2 I b2l))'*invpd(h*vr*h')*(h*(bl2 b2l)); 

/* OUTPUT */ 
/* create output vector of all parameters to plot */ 
outpar = gamm25 - tau 1 - tau2df- taudiff; 

print /mO /rd /ml outpar; 
gamm25 = gamm25 + .05; 
endo; 
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APPENDIX C 
OUTPUT OF GAUSS PROGRAM 

Noncentrality Parameter, - 

(1) (2) (3) 
Y25 812 =? 812 =821 =? 012 -821 = 

0.050 0.161 7.777 0.144 
0.100 0.645 8.398 0.455 
0.150 1.452 9.343 0.769 
0.200 2.581 10.612 1.020 
0.250 4.033 12.204 1.206 
0.300 5.808 14.121 1.340 
0.350 7.906 16.361 1.438 
0.400 10.326 18.926 1.511 
0.450 13.068 21.814 1.567 
0.500 16.134 25.026 1.610 
0.550 19.522 28.562 1.644 
0.600 23.233 32.422 1.671 
0.650 27.266 36.606 1.693 
0.700 31.622 41.114 1.711 
0.750 36.301 45.946 1.726 
0.800 41.303 51.101 1.739 
0.850 46.627 56.581 1.750 
0.900 52.274 62.384 1.759 
0.950 58.243 68.511 1.768 
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