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More than a decade ago, methods for modeling the structure of relationships among 
variables with systems of equations began to diffuse among sociologists. Expositions 
and applications have typically referred to causal models or path analysis, and we 
use those terms and structural equation models interchangeably. We prefer the latter 
term, since we do not attempt to impose a specific definition of cause. Rather, we 
take the heuristic view that the meaning of cause resides in the mechanisms thought 
to be embodied in an equation system. On this matter we are in substantial agree­
ment with the French econometrician Malinvaud (1966): "A model is the formal 
representation of the notions that we have about a phenomenon." We think that 
efforts to impose a narrow definition of cause or effect on the potential application 
of structural equation models are unproductive (Lindsey 1973; Guttman, unpub­
lished manuscript 1976). Sociologists speak of "causal models" because the term 
provides a convenient description of what a structural equation system does. 

In early sociological discussion of these models, Simon (1975) and Blalock (1961, 
1962, 1964) employed systems of equations to derive predictions about zero-order 
and partial correlations. Boudon (1965) noted that coefficients of the system of 
equations could be estimated and interpreted; in general, such coefficients are not 
partial correlations. A year earlier, Duncan & Hodge (1964) had estimated coeffi­
cients of a two-equation model of educational and occupational attainment. Indeed, 
it appears to have been the fruitful application of structural equation models to 
research in social stratification [as exemplified in the work of Blau & Duncan (1967)] 
rather than an increased statistical sophisticiation among sociologists. that accounts 
for the rapid diffusion of the use of causal models throughout the discipline. By the 
late 1960s. a number of expository papers (Duncan 1966. Heise 1968. Land 1968) 
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138 BIELBY & HAUSER 

and elementary applications (8. Duncan 1967; Sewell & Shah 1967, 1968; Spaeth 
1968; Werts 1968; Sewell, Haller & Portes 1969) of path analysis had appeared. 

The substance and style of this work originated in the exposition of path analysis 
by the geneticist Wright (1934, 1954, 196Oa), primarily through Duncan's (1966) 
expository paper. Wright's "principle of path analysis" provides an algorithm for 
expressing moments of the joint distribution of observable variables in terms of 
structural parameters. The isomorphism between path diagrams and systems of 
structural equations was exploited by Wright in both deductive and inductive appli­
cations of path analysis. The path diagram has continued to be a significant aid in 
teaching, exposition, and interpretation of structural equation models. Most of 
Wright's work expresses variables in standard form-as departures from the mean 
in standard deviation units-and path analysis is sometimes identified with this 
convention. However, as Wright ( l96Oa) himself has pointed out, the method of 
path analysis does not require the use of standardized variables. 

Wright's applications of path analysis covered a wide range of issues in genetics, 
psychology, and economics (1923, 1925, 1934). Wright (1934;204-13) was well 
aware of problems of statistical estimation and inference, and he anticipated later 
developments with respect to overidentification (1934), simultaneity (1960b), and 
unobserved variables (1925, 196Oa). See Goldberger (1972) for a detailed apprecia­
tion of Wright's methodological contributions. Wright's perspective on path analy­
sis is reflected in Li's recent (1975) introductory text. Through the early 1970s, the 
influence of Wright's approach on sociologists was evident both in expository treat­
ments of more complex models (Blalock 1969a, 1970, 1971; Costner 1969, 1971; 
Duncan 1968, 1969, 1972; Heise 1969; Land 1970; Althauser & Heberlein 1970; 
Althauser, Heberlein & Scott 1971) and in more sophisticated empirical applications 
(Duncan, Haller & Portes 1968; Hodge & Treiman 1968; Siegel & Hodge 1968; 
Hauser 1969a, b, 1971; Siegel 1970; Duncan, Featherman & Duncan 1972). Some 
of this work incorporated specifications of simultaneous causation and latent vari­
ables that were later given better statistical treatment. 

The accessibility of a variety of models and techniques for estimation and infer­
ence has increased since the early 1970s. The distinction between population and 
sample has been observed more carefully, and more reliance has been placed upon 
general analytic approaches to statistical estimation and inference. The period has 
been one of self-teaching among individual sociologists and for the discipline as a 
whole. It has been characterized by rediscovery, review, and exposition of ideas 
developed in other fields, with perhaps a few innovations. 

The development of structural equation modeling within the sociological literature 
is no less important to the field because it derives from econometrics, psychometrics, 
and mathematical statistics. Indeed, sociology has provided the arena for a synthesis 
of the diverse approaches to structural models in econometrics and psychometrics. 
The substantive application of structural models to educational and socioeconomic 
inequality and the associated issues of measurement have contributed to a useful 
recombination of classical econometric treatments of structure with factor-analytic 
approaches. The empirical paper by Duncan, Haller & Portes (1968) was an impor­
tant stimulus to this work because its interpretation of the influence of peers on 
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STRUCTURAL EQUATION MODELS 139 

ambition combined the economic notion of simultaneity with the use of unobserved 
variables. Hauser (1971) used econometric psychometric notions of structure in 
models of academic achievement and aspiration; these ideas were further developed 
by Hauser & Goldberger (1971; also see Wold 1975). Subsequent work in social 
stratification (Bielby, Hauser & Featherman 1976, Chamberlain 1976) has applied 
models synthesizing econometric and psychometric approaches to structure such as 
those developed by Joreskog (1970a, 1973, 1976b). The econometric/psychometric 
synthesis is discussed in detail by Goldberger (1971, 1972). Beyond stimulating the 
synthesis of statistical models developed elsewhere, the development of structural 
equation modeling by sociologists has also led to its diffusion in psychological and 
educational research (Werts & Linn 1970, Anderson & Evans 1974). 

The recent sociological literature on structural equation models has been of 
uneven quality. Powerful statistical models have often been applied inappropriately 
or unpersuasively to empirical data. Some have argued that this reflects a faddish 
tendency of journal editors and reviewers to encourage quantitative empirical analy­
ses regardless of substantive merit (Coser 1975). On the other hand, one might count 
it a virtue that poor theories and sloppy empirical work become more obvious when 
exposed by an explicit model. Some methodological developments, presented as 
innovative and useful, have in our opinion been unoriginal, misdirected, or simply 
incorrect. An unfortunate paper has sometimes stimulated refinements or extensions 
of equally questionable value. Many issues in structural equation modeling involve 
advanced mathematical statistics. Our methodological literature would be less er­
ror-prone if we let those problems be addressed by persons with advanced training. 
The fact is that sociologists are mining a well-developed territory, and naive readers 
should be skeptical of both the appearance of sophistication and claims to innova­
tion. 

There has been a substantial lag between the exposition of new or more powerful 
methods and sound empirical applications of them. For example, there have been 
many more expositions than substantive applications of models containing unob­
servable variables (Costner & Schoenberg 1973, Hauser 1973, Alwin & Tessler 1974, 
Otto & Featherman 1975. Mason et aI1976). Yet there are some encouraging signs. 
The specification of structural equation models and the values of their parameters 
have increasingly become the focus of important substantive debates. This is espe­
cially true of social stratification, where the use of causal models diffused early and 
rapidly. Jencks et al (1972) and the economist Bowles and his colleagues (Bowles 
1972, Bowles & Nelson 1974, Bowles & Gintis 1976) have employed structural 
equation models to reassess earlier work of Duncan and others (Blau & Duncan 
1967, Duncan, Featherman & Duncan 1972) on the determinants of economic 
success. Structural models have in turn been used to criticize these reassessments 
(Sewell 1973; Hauser & Dickinson 1974; Taylor 1973; Jencks 1973, 1974; 01neck 
1977; Bielby, Hauser & Featherman 1976). Also, there has been a lengthy and 
sometimes heated controversy about the identifiability and the magnitude of struc­
tural parameters in models of hereditary and environmental effects on cognitive 
ability (Wright 1934; Jencks et al 1972; Jensen 1972, 1975; Jinks & Eaves 1974; 
Hogarth 1974; Rao, Morton & Yee 1974; Goldberger 1977). 
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140 BIELBY & HAUSER 

The recent appearance of a number of texts on structural equation models written 
by or for sociologists (Van de Geer 1971, Namboodiri, Carter & Blalock 1975, 
Duncan 1975a, Heise 1975) is another encouraging development. This should result 
in increased exposure of sociologists to causal models and more competent use of 
the models within the discipline. Van de Geer uses path diagrams as an aid to 
mathematical exposition of techniques of multivariate analysis. Namboodiri, Carter 
& Blalock include introductory reviews of recursive and nonrecursive models and 
measurement error in their exhaustive treatment of linear models and experimental 
design. Heise exposits elementary statistical ideas and uses ftowgraphs to present a 
condensed and comprehensive catalog of issues in structural equation modeling and 
systems analysis (also see Davis 1975). Duncan presumes the statistical competence 
of the reader and gives an integrated overview of the specification, identification, and 
interpretation of structural equation models. Many topics in structural equation 
modeling-especially methods of statistical inference and estimation-are devel­
oped in more detail and, indeed, may be more accessible in texts written for other 
fields. Thorough treatments of the classical econometric simultaneous equation 
model may be found in texts by Rao & Miller (1971), Wonnacott & Wonnacott 
(1970), Johnston (1972), Theil (1971), Pindyck & Rubinfeld (1976), and Goldberger 
(1964). Statistical issues in factor analysis are discussed in detail by Lawley & 
Maxwell (197 1). 

SCOPE OF THE REVIEW 

The theme of structural models could be interpreted to cover a variety of topics that 
this review ignores. We limit our discussion to systems of equations describing 
causally interpreted structures. We ignore the descriptive use of multivariate analy­
sis for data reduction and decomposition; for example, see the texts by Tatsuoka 
(1971), Hope (1969), Cooley & Lohnes (1971), and Morrison (1967). While we do 
not discuss issues of classical test theory and psychometric measurement (Lord & 
Novick 1968, Bohmstedt 1970), the same measurement issues arise in the context 
of structural equation models containing unobserved variables (Joreskog 1971a, 
Heise & Bohrnstedt 1970, Alwin 1977). 

Furthermore, we do not cover issues of structure arising in single-equation mod­
els; specifically, we have not reviewed the voluminous literature on the general linear 
model that has appeared over the past decade. Excellent overview articles on the 
general linear model include those by Cohen (1968), Fennessey (1968), and Bohrn­
stedt & Carter (1971). The text by Searle (1971) contains a thorough conceptual 
treatment, and applications are emphasized by Kerlinger & Pedhazur (1973), while 
both issues are dealt with adequately in the recent book by Cohen & Cohen (1975). 
However, many issues like functional form, autocorrelation (Hibbs 1974), and 
aggregation (Hannan 1971, Hannan & Burstein 1974) can be interpreted as prob­
lems of structural specification and estimation. 

The literature on the general linear model is especially useful in elaborating 
assumptions used for estimation and inference in structural equation models and 
procedures for overcoming violations of those assumptions. The researcher must 
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STRUCTURAL EQUATION MODELS 141 

appreciate the assumptions required in structural modeling. Analysts who are un­
able or unwilling to make the necessary assumptions are referred to recent develop­
ments in discrete multivariate analysis. (For a comprehensive introduction, see 
Bishop, Fienberg & Holland 1975; Goodman 1972a, b.) Recursive, simultane­
ous, and latent causation have also been treated in the discrete case (Goodman 
1973a, b, 1974). 

SPECIFICATION OF STRUCTURAL EQUATION MODELS 

A structural equation model specifies the process underlying the joint distribution 
of a set of observable variables. In this section we discuss the specification of these 
models; identification, estimation, and hypothesis testing are reviewed in later sec­
tions. The idea that structural parameters are fundamental or invariant appears 
throughout the literature. According to Goldberger: 

By structural equation models I refer to stochastic models in which each equation repre­
sents a causal link, rather than a mere empirical association . . .  Generally speaking the 
structural parameters do not coincide with coefficients of regressions among observable 
variables, but the model does impose constraints on those regression coefficients. As a 
consequence, we face subtle issues of identification and draw upon elaborate methods of 
statistical inference. (1972:979) . . . .  the search for structural parameters is a search for 
invariant features of the mechanisms that generate observable variables. Invariant fea­
tures are those which remain stable-or vary individually-over the set of populations 
in which we are interested. When regression parameters have this invariance, they are the 
proper objects of research, and regression is an appropriate tool. But when, as appears 
to be the case in many social science areas, regression parameters lack this in variance, 
the proper objects of research are more fundamental parameters; and statistical tools 
which go beyond conventional regression are required. ( 1973a:6). 

A similar conceptualization of structural equation models is expressed by Duncan: 

The structural form of the model is that parameterization-among the various possible 
ones-in which the coefficients are (relatively) unmixed, invariant, and autonomous . . .  
if the coefficients in the model are indeed relatively invariant across populations, some­
what autonomous, and not inseparable mixtures of the coefficients that "really" govern 
how the world works-then your model is actually in the "structural" form. (1975a:1 51). 

Duncan's statement introduces an important qualification of the view expressed by 
Goldberger: "correct" specification is not an all-or-nothing proposition. It is possi­
ble to specify a reasonable structural model characterized by parameters that are 
orderly or well-behaved combinations of parameters of a more elaborate model that 
better represents underlying causal mechanisms. Indeed, successful applications 
often involve the initial specification of a basic model, followed by conceptual and 
empirical developments that encourage the elaboration of that model; for example, 
see Duncan, Feathennan & Duncan (1972). 

Explicit references to fundamental mechanisms or to invariant and autonomous 
parameters almost never appear in sociological expositions and applications of 
structural equation models, although these notions usually motivate the use of the 
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142 BIELBY & HAUSER 

models. Often, causal models are first applied to a given research problem because 
earlier models of analysis are believed to misrepresent underlying processes. Subse­
quently, more complex models are introduced to represent underlying structures 
more accurately. For example, Costner (1971) and Blalock (1971) have argued that 
structural models with unobservable variables more accurately represent the pro­
cesses underlying experiments than do the traditional statistical designs for experi­
mentation like those based on analysis of variance or analysis of covariance. Their 
suggestions were later elaborated and applied by Alwin & Tessler (1974). 

The issue of invariance has been raised explicitly in discussion of the appropriate­
ness of standardized parameters in structural equation models (Blalock 1967, 
Schoenberg 1972, Duncan 1975a, Kim & Mueller 1976). Suppose parameters are 
to be compared across populations. If there exists a meaningful metric (unstandard­
ized) specification, then comparisons of standardized parameters involve insepara­
ble combinations of more fundamental metric parameters. Duncan (1975a:�5) 
similarly argues the inappropriateness of interpreting multiple correlation coeffi­
cients as structural parameters. However, Hargens (1976) notes that standardized 
parameters may be invariant when metric parameters are not. 

Structural equation models have been used to represent a variety of causal sys­
tems. We offer a brief review of such models that illustrates some of their features. 

Recursive Models in Observable Variables 
Models in observable variables can be expressed by the following system of equa­
tions: 

rYi EXi + Ui 
(L XL) (L XI) (L X K) (K XI) (L XI), I. 

where Xi represents the ith observation of K exogenous variables, Yi the ith observa­
tion of L endogenous variables, Ui the structural disturbances for the ith observa­
tion in each of L structural equations, and rand B the structural coefficients. In 
a recursive system, r is lower-triangular, each structural disturbance is stochasti­
cally independent of the exogenous and predetermined endogenous variables in each 
equation, and the L structural disturbances do not covary with one another. The 
path diagram in Figure lA shows a simple recursive model with two exogenous 
variables (XI and X2) and two endogenous variables (YI and Y2)' The unidirectional 
arrows correspond to structural coefficients, and the curved two-headed arrow 
indicates the possibility of unanalyzed correlation between the exogenous variables. 
The negative sign of 'Y 21 compensates for the placement of all endogenous variables 
on the left-hand side of Equation I; disturbances are assigned unit slopes. (Readers 
who are unfamiliar with matrix notation may find it helpful to write out the struc­
tural equations corresponding to the path diagrams in Figure 1; for example, see 
Hauser & Goldberger 1971, Joreskog 1976b, and Long 1976). 

Recursive models can routinely be estimated by ordinary least-squares and are 
relatively easy to interpret (Finney 1972, Lewis-Beck 1974, Alwin & Hauser 1975). 
Several writers have succumbed to the temptation of producing "novel" decomposi­
tions of variance in recursive models. This subject has been exploited thoroughly, 
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VI' VI 

1321 � 
Yz 

-----Vz 

Figure IA: A recursive model in observable variables. 

and is of limited substantive utility (Duncan 1970). One reason for special caution 
in the interpretation of recursive models is their tendency to yield plausible estimates 
of parameters even when they are grossly misspecified. 

Nonrecursive Models in Observable Variables 
A nonrecursive model allows simultaneous or reciprocal causation between endoge­
nous variables. The model can still be expressed by Equation I, but r is no longer 
constrained to be lower-triangular nor need the structural disturbances be mutually 
uncorrelated. Figure IB shows a simple two-equation nonrecursive model in observ­
able variables. 

The econometric literature dealt extensively with identification, estimation, and 
inference in nonrecursive models (Goldberger 1964, Theil 1971, Johnston 1972). 
While the possibility of mutual causation suggests appealing structural representa­
tions of sociological ideas (Stinchcombe 1968), seldom do the underlying theories 
and research designs permit the specification of identifiable nonrecursive models 
(Duncan 1975a:88-90). However, there have been some sound sociological applica­
tions of nonrecursive models in observable variables (Mason & Halter 1968, Henry 
& Hummon 1971, Land 1971, Hauser 1971, Anderson 1973, Kohn & Schooler 1973, 
Beck 1974, Pugh 1976); see Erlanger & Winsborough (1976) for a simple didactic 
treatment of such models. 

Models with Unobservable Variables 
It is useful to specify unobservable or latent variables in two contexts: (a) concrete 
variables, e.g. age and annual earnings, are subject to measurement error induced 
by factors like faulty recall and other response biases or inaccurate coding and 
record-keeping; (b) accurately measured variables are thought to reflect variation 

( ' 

1311 YI ' U) 

-1112 -lIZ1 

1322 x2 • Y2 Vz 

Figure IB: A nonrecursive model in observable variables. 
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144 BIELBY & HAUSER 

in an underlying theoretic construct that is inherently unobservable. For example, 
this occurs in domain sampling, where measured variables, e.g. mental abilities or 
political attitudes, are regarded as instances of a theoretical variable. It is difficult 
in practice to distinguish between these two interpretations, both of which may 
occur in the context of a single structural model. From a statistical point of view, 
the two are treated in the same way. (For a contrasting view, see Burt 1973, 1976). 

Structural relationships among unobservable variables can be expressed in a way 
that parallels our treatment of observables: 

r17i = 

(L XL) (L X 1) 
B�i + 

(L X K) (K X 1) 
�i 

(L XI)' 2. 

where vector T/; represents the ith case of L unobservable endogenous variables, 
c; the ith case of K unobservable exogenous variables, and C; the ith case of L 
structural disturbances. As in models containing only observable variables, the 
structural relationships among latent variables may be recursive or nonrecursive, 
depending upon the configuration of rand covariation among structural distur­
bances. A measurement structure relates latent variables to their observable in-
dicators: 

Yi J.l.y + AyT/i + OJ 
(P X 1) (P X 1) (P X L)(L X 1 )  (P XI), 3. 

Xj f.1x + Ax� + €j 
(Q X 1) (Q X 1) (Q X K) (K X 1) (Q XI) ' 4. 

Equations 3 and 4 specify that the P measurements in Yh are linear functions of 
L latent endogenous variables plus a vector of means, ""Y' and a vector of distur­
bances, 8i' A similar structure relates the Q indicators of exogenous variables to 
K latent exogenous variables and a vector of disturbances. Under this specification, 
the disturbances in the measurement of Equations 3 and 4 are independent of the 
disturbances in the structural Equations 2. The structural and statistical properties 
of this model and computational methods for estimation and inference have been 
developed by Karl Joreskog (1973, 1976b); also see the expository review by Long 
(1976). In a typical application, multiple indicators are specified for each latent 
variable, so P exceeds Land Q is greater than K. Each row of Ay and Ax contains 
only one nonzero parameter, that is, no observable variable is an indicator of more 
than one latent variable. Also, the structural disturbances of the measurement 
equations are mutually independent. These specifications are highly restrictive, and 
under some conditions they may be relaxed. For example, observables may indicate 
more than one latent variable, and selected correlations may exist among the distur­
bances in the measurement equations. Moreover, correlations between errors and 
latent variables may be represented by nonunit coefficients in Ay and /\..X (Bielby, 
Hauser & Featherman 1977). 

The path diagram in Figure Ie represents a confirmatory factor model (Joreskog 
1970a) in which there are two indicators for each of three latent variables. In this 
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STRUCTURAL EQUATION MODELS 145 

Figure IC' A confirmatory factor model. 

special case, the model is specified completely by Equation 4. We have already 
referred to the extensive sociological discussion of this and similar models that was 
initiated by Costner ( 1969) and Blalock ( l969a, 1970). Considering the effort de­
voted to the exposition of such models, we were surprised to find only a few 
numerical illustrations in methodological papers (Hauser & Goldberger 1971, 
Althauser, Heberlein & Scott 1971, Costner & Schoenberg 1973, Burt 1973) and no 
extended substantive applications. However, as we note below, there have been more 
interesting applications of less restrictive models. The model has proven useful in 
representing and correcting Campbell & Fiske's ( 1959) intuitive exposition of vali­
dation by the "multitrait-multimethod matrix" (Alwin 1974, Kalleberg & Kluegel 
1975, Morgan 1975). 

Equations 2,3, and 4 are required to describe the model specified in Figure ID. 
In the model, there is a fully recursive structure among the four latent variables. 
Thus the structural portion of the model isjust-identified-the moments among the 
latent variables provide just enough information to determine the structural parame-

Y2 -62 

1322 

Figure ID; A recursive model in unobservable variables. 
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146 BIELBY & HAUSER 

ters uniquely. Two indicators for each latent variable comprise a measurement 
structure that is overidentified: it constrains the population moments among observ­
able variables. The specification and estimation of models with just-identified and 
overidentified structural relationships among latent variables have been discussed by 
Joreskog (1970a) and by Werts, Joreskog & Linn (1973). In research on social 
stratification, such models have been applied in the assessment of survey response 
error (Siegel & Hodge 1968, Jencks et aI 1972, Bowles 1972, Bowles & Nelson 1974, 
Mason et a11976, Bielby, Hauser & Featherman 1976), in the measurement of global 
family effects on achievement (Jencks et al 1972, Duncan, Featherman & Duncan 
1972, Bowles 1973, Hauser & Featherman 1976, Olneck 1977), in locating the social 
and psychological sources of alienation (Otto & Featherman 1975), and in testing 
the validity of scales of occupational status (Featherman, Jones & Hauser 1975). 
Similar models have also been applied to attitude-behavior consistency (Alwin 
1973), to the measurement of job satisfaction (KalIeberg 1974), and to the validation 
of experimental manipulations (Alwin & Tessler 1974). 

The path diagram in Figure IE is similar to that in Figure 10, except the 
structural portion of the model is ajust-identified nonrecursive model in which each 
of two latent endogenous variables is affected by one of the two latent exogenous 
variables. Duncan, Haller & Portes (1968) first applied a nonrecursive model with 
latent variables, long before the general model and techniques for estimation had 

been developed. Similar models of the development of adolescent aspiration have 
been estimated in several student populations by Hout & Morgan (1975). Duncan 
& Featherman (1973) estimated a complex nonrecursive model of latent psychologi­
cal factors in occupational achievement in a Detroit sample. Williams has developed 
nonrecursive models of the influence of parent-child interaction on intellectual 
development (1976) and of teacher-expectation effects on high school students 
(1975). Kohn & Schooler (1976) have complemented their earlier analysis (1973) 
of the reciprocal effects of job complexity and the intellectual flexibility of male 
workers with a model based on panel data in which the same reciprocally interacting 
variables appear as latent constructs. 

While the measurement Equations 3 and 4 and our examples suggest that observ­
abIes appear as indicators (reflections or effects) of latent variables, the specification 

Y2 -- 62 

Figure J E: A non recursive model in unobservable variables. 
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STRUCTURAL EQUATION MODELS 147 

can be adapted to models where observables appear as causes oflatent variables. For 
example, Hauser (1973) specified a model of student aspirations in which social 
influence was a consequence of the diverse expectations of parents, teachers, and 
peers (also see Hauser 1971). Blalock (1969b;42-43) discussed "multiple indicator­
multiple cause" models (also see Wold 1975); their statistical properties have been 
elaborated by Hauser & Goldberger (1971) and by Joreskog & Goldberger (1975); 
also see Kenny (1974). 

Models for Panel Data 

Methodological prescriptions for the analysis of panel data-repeated observations 
of one or more variables on several units of analysis-provide an interesting case 
study of issues of specification in structural equation models. Several psychologists 
had suggested that "cross-lagged correlations" be used to detect causation in two­
wave, two-variable panel observations (Campbell & Stanley 1963, Pelz & Andrews 
1964). The notion underlying this proposal was that over an appropriate interval 
of causation, the earlier measure of the cause would be more highly correlated with 
the later measure of the effect than the earlier measure of the effect would be 
correlated with the later measure of the cause. This suggestion was appealingly 
consonant with the tendency of sociological researchers to believe that the specifica­
tion of cause and effect is easily resolvable in longitudinal data. 

Heise (1970) argued that assumptions about the causal structures underlying the 
interpretation of panel data be made explicit in a structural equation model (also 
see Goldberger 1971). Heise proposed a simple recursive model for two-wave, 
two-variable panel analysis in which each variable at the second time was regressed 
on both prior measures. (A recursive model can incorporate a form of two-way 
causation by incorporating lagged effects; we restrict the term "nonrecursive" to 
instantaneous reciprocal causation.) He demonstrated that the logic of cross-lagged 
panel correlation was only valid under highly restrictive conditions. Without benefit 
of an explicit model, Rozelle & Campbell (1969) had also suggested limitations of 
the cross-lagged correlation technique. Duncan (1969) elaborated this observation 
by showing that no fewer than nine recursive or nonrecursive models in observable 
variables could be specified with two-wave, two-variable panel data. Also, he noted 
that the model might be specified to include simple measurement error or latent 
variables. Kenny (1973) formally elaborated some conditions under which a latent 
factor could be postulated as an alternative to causation among observable variables. 
In two later papers, Duncan (1972, 1975b) gave an exhaustive algebraic treatment 
(with some numerical examples) of recursive two-wave, two-variable models with 
and without latent factors and measurement error. The implication to be drawn 
from the large number of models that may be specified in even the two-wave, 
two-variable case is that taking repeated observations is absolutely no guarantee of 
valid causal interpretation. 

As in the two-wave, two-variable case, several authors have exposited models for 
repeated measures of a single variable. In this case attention has focused on the 
implications of measurement error for the interpretation of change. In the case of 
three measurements of the same variable, Heise (1969) showed that a zero-order 
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148 BIELBY & HAUSER 

causal chain in the latent variable could be specified by assuming a temporally 
constant correlation between the indicator and the latent variable. [Similar restric­
tions on standardized coefficients were used by Duncan (1969, 1972, 1975b).] He 
used this model to argue that test-retest correlations combine separable elements of 
reliability and stability. 

Wiley & Wiley (1970) argued that it was more realistic to assume invariant 
components of error variance in the indicators than to assume constant reliability 
as Heise had done, because reliability varies both with true variance and error 
variance. Werts, Joreskog, & Linn (1971) showed that observations at four or more 
time points permitted a test of the restrictions imposed by Heise and by Wiley & 
Wiley. Joreskog (1970b) provides a general treatment of zero-order causal chain 
models with measurement error. 

Blalock (1970) specified two- and three-wave, zero-order chain models with mul­
tiple indicators of a single unobservable variable at each time. While noting the 
Wileys' argument about constant error variances, Blalock did not exploit this in his 
algebraic treatment, which followed that of Heise. Hannan, Rubinson, & Warren 
(1974) extended Blalock's discussion to recursive models with two and three latent 
variables and multiple indicators of those variables in two- and three-wave panel 
models. They noted that when both substantive and measurement structures are 
elaborated, no easy generalizations follow from the simpler models treated earlier. 
For example, it may be very difficult to evaluate the identifiability of structural 
parameters in complex models. Consequently, aside from statistical efficiency, ad 
hoc estimation procedures for overidentified models are unsatisfactory. Hannon, 
Rubinson & Warren discuss some models in which measurement quality changes 
systematically over time, but these changes are specified to occur in (standardized) 
reliabilities rather than in error variances. 

Under Joreskog's (1973, 1976b) model of linear structural relations (LISREL), 
a large class of the panel models can be described and estimated efficiently. Joreskog 
& Sorbom (1976b) exposit a number of examples in detail. Hargens, Reskin &. 
Allison (1976) use LISREL to reexamine the appropriateness of a zero-order chain 
model in a latent variable to represent change in scientific productivity. While such 
a model fits well, it provides implausibly high stability in the latent variable and 
implausibly low error variance in the observed variable. Better results were obtained 
when they respecified the model to include an autoregressive process in the distur­
bances. Finally, Wheaton et al (1977) also emphasized the interplay between specifi­
cation of substantive and measurement structures. In this way they elaborate the 
important observation made in several of the earlier papers: there are no stock or 
universal models for analyzing panel data. In addition, they present examples of the 
efficient estimation and testing of overidentified models. Like Hargens, Reskin & 
Allison (1976) they used the LISREL scheme to specify parameters of the measure­
ment model in terms of structural coefficients and error variances rather than 
reliabilities. Thus. the development of models for the analysis of panel data clearly 
shows an evolution from naive intuitive prescription, through algebraic exposition 
of simple and highly restrictive models, to flexible application and sound statistical 
inference based on a very general analytic model. 
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IDENTIFICATION 

STRUCTURAL EQUATION MODELS 149 

The parameters of a structural equation model are the structural coefficients and the 
moments of exogenous variables and disturbances. Parameters are identified when 
they are uniquely determined by population moments of observable variables. When 
a structural parameter (or combination of parameters) is identified by more than one 
function of observable population moments, the structural model imposes con­
straints (overidentifying restrictions) on those momentS. In this case the parameter 
(or combination of parameters) is overidentified, and the overidentifying restrictions 
must hold in the population when the specified model is correct. When a parameter 
is not uniquely determined by population moments, that is, when more than One 
value of the parameter is consistent with a given set of population moments, the 
parameter is underidentified. It is useful to think of identification of parameters and 
functions of parameters, not identification of models, for in a given model some 
parameters may be overidentified and others, underidentified (Joreskog 1970b, Dun­
can 1975a:84-86). 

While the concept of identification is straightforward, it is difficult to assess the 
identifiability of structural parameters in complex models. Of course, there must be 
at least as many moments (variances and covariances) among observable variables 
as there are structural parameters in a model, or some of the parameters cannot be 
identified. However, this "order" condition is only necessary, not sufficient, for 
identification. Again, it is possible to specify a structural model where the number 
of moments among observable variables greatly exceeds the number of structural 
parameters, but some parameters are not identified. 

By definition, the identifiability of a structural parameter can be established 
conclusively by expressing it as function of the moments among observable vari­
ables. In addition, the exercise of deriving such functions can also make explicit the 
overidentifying restrictions imposed by the structural model. Such functions were 
typically obtained in the early literature of path analysis, and ad hoc estimates of 
parameters were computed from sample analogues to those functions. This was 
accompanied by confusion over the estimation of overidentified parameters. In 
complex models, the observable moments are sometimes complicated nonlinear 
functions of structural parameters, and, as Hannan. Rubinson, & Warren (1974:309) 
have noted, it is likely to be tedious, if not impossible, to solve for the parameters 
directly. . ... 

As computer programs for maximum-likelihood estimation of structural equation 
models have become available, the presentation of structural parameters as func­
tions of population moments has become less frequent. The expository paper by 
Joreskog & Sorbom ( l976b) is an exception to this trend. However, it is dangerous 
to rely on the computer to resolve problems of identification, for the iterative 
numerical methods used in these programs will sometimes yield plausible estimates 
of underidentified parameters (for example, see Burt 1973, Fig. 5 and 8). 

An obverse algebraic procedure for establishing identification may be less cumber­
some: Express the moments in terms of structural parameters. If it can be demon­
strated that two distinct values of a parameter reproduce the same moments, then 
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150 BIELBY & HAUSER 

by definition the parameter is underidentified. See Wheaton et al (1977) for several 
applications of this idea. However, in a complex model, this procedure too can be 
troublesome, and it is less likely to expose overidentifying restrictions than is the 
procedure of expressing parameters as functions of population moments. 

Other criteria for the assessment of identification have been developed for specific 
classes of structural equation models. Parameters of recursive models in observable 
variables (with uncorrelated structural disturbances) are always identified; a formal 
proof is presented by Land (1973). The order and rank conditions discussed in 
econometrics texts (Theil 1971; Goldberger 1964, Johnston 1972, Wonnacott & 
Wonnacott 1970) apply to identification in nonrecursive models in observable vari­
ables where no constraints are imposed upon structural disturbances. Joreskog 
(1969) discusses sufficient conditions for identification in confirmatory factor analy­
sis (but see the comment by Dunn 1973). Wiley (1973) presents sufficient conditions 
for identification in a structural model with mUltiple indicators of unobserved 
variables and random measurement error. Nonrecursive models with unobservable 
variables require a blending of psychometric and econometric approaches to identifi­
cation that are discussed by Goldberger (1971). Geraci (1976) shows how overiden­
tifying restrictions in the conventional nonrecursive econometric model may 
identify measurement error in a single indicator of an exogenous variable. Duncan 
(1975a) shows how multiple indicators of eltogenous and endogenous variables may 

or may not identify structural parameters in a nonrecursive model. 
Identification of structural parameters is not an all-or-nothing proposition. Dun­

can ( l975b:89) and others have noted that an instrumental variable (a variable that 
does not enter a given structural equation. but whose moments identify parameters 
of that equation) is useful in estimation only if it has a nontrivial indirect effect on 
the endogenous variable. Instrumental variables that are weakly associated with 
endogenous variables lead to "weakly identified" structural parameters, and in this 
respect problems of identification and estimation are merged. for example, see 
Heyns's (1977) review of Hauser (1971:77-80) or Nolle (1973). 

Also, bounded values of underidentified structural parameters may sometimes be 
obtained by varying constraints on a subset of structural parameters. The remaining 
parameters may be determined subject to each set of constraints. Such a sensitivity 
analysis may prove useful if an underidentified parameter of substantive interest is 
narrowly bounded. This procedure has been treated formally by Marschak & An­
drews (1944), Nerlove (1965), Zellner (1972), Genberg (1972), and Rothenberg 
(1973) in the econometric literature, and more recently by sociologists Land & 
felson (1976). for example. Siegel & Hodge (1968) used this approach to bound 
estimates of measurement error in socioeconomic variables. It was used by Hauser 
(1969a) to obtain bounded estimates of the effects of teachers' discrimination on 
academic achievement. Duncan, Featherman, & Duncan (1972) estimated a model 
of the influence of motivation in the stratification process under a series of assump­
tions about the validity of retrospective measurements of ambition and work orien­
tation. Jencks et al (1972: Append. A) and Goldberger (1977) used this method to 
assess effects of heredity and environment on cognitive ability. Jencks et al (1972: 
Append. B) also generated bounded estimates of the influence of ability. family 
background. and schooling on economic success. 
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ESTIMATION AND TESTING 

Identified and overidentified structural parameters may be estimated from sample 
moments, and overidentifying restrictions may be tested by assessing the degree to 
which those restrictions are violated by sample moments. Principles of statistical 
inference are involved in both estimation and testing, and the most important 
contributions in this area have been made by persons with advanced training in 
mathematical statistics. Indeed, issues of statistical inference in structural equation 
models were virtually ignored by sociologists until they were raised in the early 
1970s by econometricians (e. g. Goldberger 1970) and psychometricians (e. g. 
Joreskog I 970a, 1973). 

An early and persisting flaw in sociological treatment of overidentifying restric­
tions was the tendency to interpret tests of restrictions as tests of a model as a whole 
(Duncan 1975a:46-S0). The most extreme form of this tendency is the belief that 
tests of overidentifying restrictions can resolve the causal ordering among variables 
[see Rehberg, Schafer & Sinclair (1970) and the corrective comment by Alwin & 
Mueller (1971)]. 

The statistical treatment of overidentifying restrictions in structural equation 
models was first introduced to sociologists in the case of recursive models in observ­
able variables. Blalock (1964) suggested that partial correlations be used to test 
restrictions on structural coefficients in three- and four-variable models. Duncan 
(1966) recommended that when structural coefficients took on negligible values, 
they could be set equal to zero and the equations reestimated by ordinary least­
squares (also see Heise 1968). Boudon (1968) proposed that squared errors of 
reproduced correlations be minimized to estimate overidentified recursive models. 
However, Goldberger (1970) demonstrated that Boudon's estimators were less 
efficient statistically (i. e. had greater sampling variability) than those obtained by 
ordinary least-squares. 

Most econometric texts (Goldberger 1964:3S4-SS, Johnston 1972:377-80) discuss 
the consistency and efficiency of ordinary least-squares estimators for just-identified 
and overidentified recursive models with uncorrelated structural disturbances. Max­
imum-likelihood estimation leads to tests of overidentifying restrictions that are 
straightforward extensions of testing procedures under the general linear model. 
Statistical issues of estimation and testing in recursive models in observables were 
summarized by Land (1973). Recent attempts by sociologists to develop new proce­
dures for hypothesis testing in simple recursive models have yielded results equiva­
lent or nearly identical to the well-known maximum-likelihood procedures 
(McPherson & Huang 1974, Specht 1975, Specht & Warren 1975). 

In estimating models containing unobservable variables, sociologists initially fol­
lowed Wright in obtaining ad hoc estimators from sample analogs of equations 
relating parameters to population moments. Typically, alternative estimates for 
overidentified parameters were either arbitrarily ignored (Hodge & Treiman 1968, 
Hauser 1969b, Blalock 1970, Land 1970) or arbitrarily averaged (Duncan, Haller 
& Portes 1968, Hauser 1969a, Duncan, Featherman & Duncan 1972). Similarly, 
overidentifying restrictions were evaluated by qualitative assessments of the degree 
to which "consistency criteria" were violated (Costner 1969, Blalock 1970, AI-
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thauser, Heberlein & Scott 1971, Van Valey 1971, Sullivan 1974). Hauser & Gold­
berger (1971) drew the attention of sociologists to the efficient estimation techniques 
that had been developed for overidentified confirmatory factor models and multiple­
indicator, multiple-cause models. Their suggestion that efficient estimators of the 
parameters of overidentified models could be interpreted as approximately weighted 
averages of conflicting estimators was elaborated by Goldberger (1973b). 

Joreskog has developed statistical methods for confirmatory factor models 
(1970a), including models with overidentifying restrictions on the factor moments, 
and for cross-population comparisons of these models (1971b). A computer pro­
gram (COFAMM) for maximum-likelihood estimation of these models is available 
(Joreskog & Sorbom 1976a). Joreskog's (1973) general model for a linear structural 
equation system subsumes recursive and nonrecursive models in observable and 
unobservable variables (see Equations 2, 3, and 4 above). Maximum-likelihood 
estimates may be obtained under this specification, and a computer program (LIS­
REL) is available (Joreskog and van Thillo 1973). The LISREL model includes all 
of the features of the confirmatory factor models, but the program is limited to 
estimation and testing in a single population. Under these models, the maximum­
likelihood procedures yield parameter estimates, standard errors, and a likelihood 
ratio test statistic. The latter statistic has degrees of freedom equal to the number 
of overidentifying restrictions in the model and permits a global test of those 
restrictions; that is, it contrasts the constraints imposed by the model (the null 
hypothesis) with an unrestricted moments matrix. In a series of hierarchical models, 
that is, a set of models in which restrictions are successively added or eliminated, 
the likelihood-ratio statistics may be compared to test the significance of the restric­
tions imposed at each level of the hierarchy. Joreskog has described (1970a:241) and 
applied (1969, 1971a) this feature of maximum-likelihood test statistics (also see 
Werts, Joreskog & Linn 1973), and there have been several applications of it in the 
sociological literature (Werts, Joreskog & Linn 1971, Mason et al 1976, Bielby, 
Hauser & Featherman 1976). Mayer & Younger (1974) exposited the same idea, 
apparently without recognizing its earlier development and application. 

The LISREL model subsumes the classical nonrecursive econometric model in 
observables (Joreskog 1973:93-99); for such models it yields "full-information maxi­
mum-likelihood" (FIML) estimates. Before programs for maximum-likelihood esti­
mation were widely available, econometricians had developed other estimation 
methods for overidentified models, e.g. two- and three-stage least-squares. While 
these methods are numerically simpler (allowing direct rather than iterative com­
putation), maximum-likelihood estimation is statistically at least as efficient (and 
generally more efficient). The other methods differ in the types of overidentifying 
restrictions they incorporate, the way they reconcile alternative estimates and (for 
those reasons) the efficiency of the estimators. Aside from statistical efficiency, 
procedures for hypothesis testing are not as well developed for the traditional 
econometric methods as in maximum-likelihood estimation. The several economet­
ric estimation techniques are developed in detail in econometric textbooks (Gold­
berger 1964, Theil 1971, Johnston 1972); also see Duncan (1975a) for an exposition 
of the principle of instrumental variable and two-stage least-squares estimation in 
nonrecursive models with and without unobservable variables. 
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The programs developed by Joreskog produce maximum-likelihood estimators 
only if the distribution of observable variables is multivariate normal. Little is 
known about the robustness of the statistical properties of the estimators with 
respect to violation of the multivariate normality assumption (Joreskog 1976a:16), 
although the computing algorithm remains a flexible and reasonable fitting criterion. 
Most of the large-sample statistical properties of FIML estimators can be shown not 
to depend upon the distributional assumption for the classical econometric model 
in observable variables (Goldberger 1964:352), but to our knowledge no similar 
results have been presented for complex models with unobservable variables. In 
addition to the robustness of existing computational procedures, a related area 
deserving further research is maximum-likelihood estimation procedures under dis­
tributional assumptions other than multivariate normality. Muthen (1976) presents 
some of the first research in this area, exploring maximum-likelihood estimation and 
testing procedures in models with dichotomous indicators of unobservable depen­
dent variables. 

As in other areas of applied statistics, use ofinferential statistics in structural 
equation modeling has focused on nominal probabilities of Type I error-rejecting 
a null hypothesis when it is true (Walster & Cleary 1970). However, the interpreta­
tion of a structural model seldom rests on a single test of a structural coefficient or 
of a global feature of the model. Almost always, there are several hypotheses about 
single coefficients or linear combinations of coefficients. In other cases, the test of 
one hypothesis is conditional upon the outcome of another, as when a hierarchy of 
likelihood-ratio tests is used to refine the specification of a model (Joreskog 1971a, 
Bielby, Hauser & Featherman 1976). Where mUltiple or conditional tests are carried 
out, true Type I error rates will be larger than nominal rates. McPherson (1976) has 
raised some of these issues in a critique of "theory trimming" in causal models. 
Standard procedures of simultaneous statistical inference such as those developed 
by Scheffe (1959) are reviewed by Miller (1966) and by Bielby & Kluegel (1917). 
Sequential estimation and inference has also been addressed by econometricians 
(Wallace & Ashar 1972, Bock, Yancey & Judge 1973). 

The probability of Type II error-failing to reject a null hypothesis when it is 
false-is virtually ignored in applications of structural equation models. Although 
rarely applied, power functions of some test statistics in the general linear model 
have been tabulated (Cohen 1969) and can be applied to recursive models in observ­
abies (Bielby & Kluegel 1977; also see Cleary, Linn & Walster 1970, Tretter & 
Walster 1975). However, little, if any, analysis exists of the power of tests for more 
complex simultaneous-equation models. 

CONCLUSION 

Since 1970, the sociological literature on structural equation modeling has shown 
two parallel trends. The treatment of specification, identification, and statistical 
inference has progressed. We now have general and flexible analytic models that 
have desirable and well-known statistical properties, and for which computer pro­
grams are available. While the use of structural equation models by sociologists has 
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increased greatly, most applications do not reflect recent methodological develop­
ments. We have referred to several exemplary uses of structural equation models. 
Yet most applications show little statistical skill beyond an introductory acquaint­
ance with multiple regression analysis, and some are inexcusably thoughtless in 
concept, sloppy in execution, or primitive in technique. 

This rapid diffusion of causal modeling in sociology has been strongly criticized. 
Some critics have shown a good deal less methodological acumen than the subjects 
of their criticism. For example, Boudon (1974:xv. 137-38) confuses the ability of 
a model to account for sample moments with its ability to account for interunit 
variance. Miller & Stokes (1975) purport to evaluate published applications of path 
analysis on the strength of a frequency distribution of standardized residual coeffi­
cients. As we have noted earlier, proportions of variance explained have little, if any, 
relevance to the validity of structural equation models. Two recent Presidential 
addresses to the American Sociological Association have offered pessimistic evalu­
ations of structural equation modeling (Coser 1975) and of quantitative sociology 
generally (Lee 1976). For further discussion, see the responses to Coser by Feather­
man (1976) and Treiman (1976), and Coser's (1976) reply to them. 

We do not share the pessimism of these critics. We see nothing unusual or 
reprehensible in the lag between the exegesis of structural equation methods and 
their application, even if the latter exhibits some of the undesirable characteristics 
of a fad. We think the quality of sociological applications is improving, and quantita­
tive sociology certainly has no monopoly on thoughtless or shoddy work. 

In his study of the development of structural equation modeling from 1962 to 
1971, Mullins (1973) characterizes it as "the new causal theory." Coser's (1975) 
critique of modeling is permeated by a similar notion, that modeling is associated 
with specific theoretical ideas. On the contrary, we believe that the methods are 
merely tools, that they may be useful in diverse areas of sociological inquiry. We 
do not feel compelled to defend structural equation models as being useful or 
legitimate; despite some criticisms, we feel these matters are no longer controversial. 
But, by the same token, we are not interested in discrediting any other method or 
style of research. When theories and methods of measurement are sufficiently ad­
vanced to make formalization of interpretations profitable, the methods discussed 
here may be quite attractive. 
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