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LECTURE 8:  INSTRUMENTAL VARIABLES AND NONRECURSIVE MODELS 
 

I. ENDOGENEITY BIAS (SPECIFICATION ERROR) 
II. FORMS OF ENDOGENEITY BIAS 
III. INSTRUMENTAL VARIABLES (IV) ESTIMATOR 
IV. WHAT ARE GOOD INSTRUMENTS? 

 
 
 
I. ENDOGENEITY BIAS (SPECIFICATION ERROR)  
 
The most important assumption for a general linear model is that the disturbance (ߝ) is uncorrelated with the 
predictor variable(s) (X).  If this assumption is violated OLS estimates of the model will be biased and 
inconsistent.   
 
Here is the equation for the correct model (Model I): 

 
ܻ ൌ ܺ	ߚ	  ௫ఌߪ	݀݊ܽ						ߝ	 	് 0  
 
ܼ௬ ൌ ௬ܲ௫ܼ௫  ௫ܲఌܼఌ,											݁ݎ݄݁ݓ	 ௬ܲ௫ ൌ ௫௬ߪ	 ⁄௬ߪ௫ߪ , 	 ௬ܲఌ ൌ ௬ఌߪ	 ⁄ఌߪ௫ߪ 	, 
     					ܼ௬ ൌ ݕ	 ⁄			,௬ߪ ܼ௫ ൌ ݔ	 ⁄௫ߪ , ܽ݊݀	ܼఌ ൌ ݕ	 ⁄ఌߪ  
 
If we incorrectly assumed that ߪ௫ఌ ൌ 0, then we have the wrong model (Model 
(II):   
 

Model I    ܻ ൌ ܺ	∗ߚ	  ௫ఌߪ		݄݊݁ݓ						ߝ	 ൌ 0 Here, ߚ∗ ൌ ௫௬ߪ ⁄௫ଶߪ   
 
Let’s begin with the correct model: 
 
ܻ ൌ ܺ	ߚ	   ߝ	
 
ሺܻܺሻܧ ൌ ሺܺଶሻܧ	ߚ	   ሻߝሺܺܧ	
 
௫௬ߪ ൌ ௫ଶߪ	ߚ	 	ߪ௫ఌ 
 
Therefore it follows that the correct ߚ in the population is 
 
௫௬ߪ ൌ ௫ଶߪ	ߚ	 	ߪ௫ఌ 
 
௫௬ߪ െ	ߪ௫ఌ ൌ  	௫ଶߪ	ߚ	
 
௫௬ߪ ⁄௫ଶߪ െ	ߪ௫ఌ ⁄௫ଶߪ ൌ 	ݐ݄ܽݐ	݁ݐܰ							ߚ	 ௫௬ߪ ⁄௫ଶߪ ൌ  ݁ݒܾܽ	݉ݎ݂	∗ߚ	
 
  
 
 
 
 
 
 
Aside: we can also express the incorrect parameter in terms of the correct parameter and the correlation between X and ε.  
Note that	ߩ௫ఌ ൌ ௫ఌߪ	 ⁄ఌߪ௫ߪ :   
∗ߚ ൌ 	ߚ  ఌߪ	௫ఌߩ ⁄௫ߪ  

X Y 

ε 

σxε  

β 

∗ߚ ൌ 	ߚ  ௫ఌߪ ⁄௫ଶߪ  

ߚ ൌ ∗ߚ െ ௫ఌߪ ⁄௫ଶߪ  
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Therefore, the degree to which the bivariate regression coefficient is wrong depends on the correlation between X and ε, and 
the size of the error variance	ߪఌଶ.   
 
It follows that the OLS estimator ߚመ∗ of ߚ∗ under Model II is unbiased and efficient, as we have learned.  But for 
Model I, the OLS estimator ߚመ∗ of ߚ is biased: 
 
ሻ∗ߚሺܧ ൌ 	ߚ  ௫ఌߪ ⁄௫ଶߪ  
 
and inconsistent (biased as the sample size goes to infinity): 
 
∗ߚ	݈݉݅ ൌ 	ߚ  ௫ఌߪ ⁄௫ଶߪ  
  
  
II. FORMS OF ENDOGENEITY BIAS 
 
Economists refer to the problem that  ߪ௫ఌ ് 0 as endogeneity bias.  The reason is that when X is exogenous—that 
is, truly predetermined with respect to the system of equations being estimated—then ߪ௫ఌ ൌ 0 must hold.  Note 
that controlled experiments manipulate the values of X, either randomly assigning values of X or fixing the values 
of X.  In either case, ߪ௫ఌ ൌ 0.  When we are unable to assume the values of X are either fixed or determined by a 
process exogenous to our system of equations, then it becomes possible that the disturbance is correlated with the 
values of X—i.e., ߪ௫ఌ ് 0.  There are two categories of endogeneity bias:  (1) unobserved heterogeneity (or 
omitted variable bias), and (2) reciprocal causation.   
 
Unobserved Heterogeneity 
 
When the problem of omitted-variable bias arises because of the omission of time-invariant (stable) covariate(s), 
the problem is referred to as unobserved heterogeneity.   
 
Aside:  I think the term arose in the context of time-series or event history data, in which one wants to distinguish state 
dependence (the effect of lagged dependent variables) from unobserved heterogeneity (the effect of omitted and unobserved 
individual characteristics).  For example, in models of individual unemployment over time, over time dependence (stability) 
in unemployment could be due to state dependence in which previous spells of unemployment (undermines health and 
demoralizes the individual) or unobserved heterogeneity, in which some unmeasured characteristics of the individual (such as 
genetic endowment) puts individuals at risk of unemployment at all times.   
 
We know from our regression course that an omitted variable will bias the estimate of a regression coefficient 
when each of two conditions hold:  (1) the omitted variable Z has a non-zero effect on Y, when controlling for 
other regressors (Xs), and (2) the omitted variable Z is correlated with included regressors (X).  If (2) holds but 
(1) does not, OLS is still unbiased and inefficient.  If (1) holds but (2) does not, OLS is still unbiased but is no 
longer efficient (since Z is now pooled with ε).  This is easy to show by starting with our bivariate regression 
equation and adding a confounding variable Z: 
 

 
ܻ ൌ ܺߚ  ܼߛ   ߝ
 
ሺܻܺሻܧ ൌ ሺܺଶሻܧߚ  ሺܼܺሻܧߛ   ሻߝሺܺܧ
 
௫௬ߪ ൌ ௫ଶߪ	ߚ	 	ߪߛ௫௭ 
 
௫௬ߪ െ ௫௭ߪߛ ൌ  ௫ଶߪ	ߚ	

 
ߚ ൌ ሺߪ௫௬ ⁄௫ଶሻߪ െ ሺߪߛ௫௭ ⁄௫ଶሻߪ  

X Y 

ε 

β 

Z 
γ 
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The first term on the right-hand side is the bivariate regression coefficient ߚ௬௫ ൌ ሺߪ௫௬ ⁄௫ଶሻߪ ; that is, it is the wrong 
population parameter contaminated with omitted variable bias.  The second term is the ratio of the covariance 
between the confounder Z and the regressor X divided by the variance in X.  Therefore, 
 
ߚ ൌ ௬௫ߚ െ ሺߪߛ௫௭ ⁄݈݁݀݉	݃݊ݎݓ	݄݁ݐ	݉ݎ݂	݂݂݊݁݅ܿ݅݁ܿ	݊݅ݏݏ݁ݎ݃݁ݎ	݁ݐܽ݅ݎܽݒܾ݅	݄݁ݐ	ݏ݅	௬௫ߚ	݁ݎ݄݁ݓ					௫ଶሻߪ  
 
Here we can see clearly that if either ߛ ൌ 0 (meaning the counfounder Z has no effect on Y) or ߪ௫௭ ൌ 0 (meaning 
the confounder is uncorrelated with X, then our bivariate regression coefficient ߚ௬௫ ൌ  is correct in the ߚ

population.  It follows that in either of these situations ߛ ൌ 0 or ߪ௫௭ ൌ 0, our OLS estimator  ߚመ௬௫ will be an 
unbiased and consistent estimator of ߚ.  If neither holds, OLS will give a biased estimate of ߚ. 
 
Longitudinal data (e.g., panel data) gives the researcher more leverage over the problem of unobserved 
heterogeneity.  If there is sufficient variation over time (compared to across individuals), one can estimate fixed-
effects models to help eliminate unobserved heterogeneity. The idea here is that each individual is her own control 
and one examines within-individual, across-time variation in the dependent variable. With cross-sectional data, 
solutions are more difficult. Obviously, the best solution would be to measure the relevant variables and include 
them in the regression equation.  Or design a randomized experiment in which the researcher randomly assigns 
individuals to values of X.  Another potential solution would be to use instrumental variables methods, but this 
assumes that an instrumental variable exists. 
 
One can often characterize different kinds of modeling problems as an issue of omitted variable bias or 
unobserved heterogeneity.   
 
Sample Selection Bias.  James Heckman won the Nobel Prize in Economics largely on his work on sample 
selection bias.  Heckman showed that sample selection bias can be conceptualized as an omitted variable 
problem—the omitted variable is “propensity to be in the sample”—and therefore, the problem can be addressed 
using instrumental variables.   
 
Aside:  Heckman’s classic example was estimating gender differences in returns to education in wage equations.  He noted 
that because many women are housewives and out of the labor force, the sample of women for which returns to education is 
estimated is a biased sample of all women.  This isn’t a problem if we are only interested in returns to education for working 
women.  Typically, however, in estimating the role of gender, we want to equalize the samples and ask the hypothetical:  
what would returns to education be if all women were in the labor force (like all men are, more or less).  Heckman’s solution 
is to estimate a selection equation for the propensity to be in the labor force, and then include that variable in the wage 
equation to eliminate the correlation of this propensity and wages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Missing and not at Random.  It follows that when one has missing data that cannot be assumed to be missing 
at random, one can conceptualize the problem as an omitted-variable bias, in which the omitted-variable is the 
propensity of the value to be non-missing.  In principle, an instrumental variables approach could be followed.   
 

Wages

Education 

OLS on truncated sample 

True population slope 

Women out of the labor force 
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Random Measurement Error.  Similarly, random measurement error in variables can be conceptualized as a 
missing value problem in which the omitted variable is propensity to respond perfectly to the measuring 
instrument. 
 
Non-Compliance in a Randomized Experiment.  Finally, non-compliance in a randomized experiment can be 
conceived of as an omitted-variables problem, in which the omitted variable is propensity to remain in the 
assigned group (treatment or control).   
 
Non-Recursive Effects (Simultaneity Bias) 
 
When we have a non-recursive relationship—that is the arrow goes in both directions—applying equation-by-
equation OLS yields biased and inconsistent parameter estimates.  An example is diagrammed below: 
 
 
Y1 = B12 Y2 + U 
 
Y2 = B21 Y1 + V 
 
 
 
 
 
You can see that in the Y1 equation, the endogenous regressor Y2 is correlated with V, which is correlated with U, 
and therefore, E(Y2 U) ≠ 0, which violates the OLS assumption, rendering OLS estimates of B12 biased and 
inconsistent.  This particular model has another problem:  it is underidentified.  There are three observed moments 
(the variances and covariances of Ys), but five parameters to be estimated.   
 
A related special case of this model would be one in which the arrow is going in one only one direction but the 
errors are correlated: 
 
 
Y1 = ε1  
 
Y2 = B21 Y1 + ε2 
 
 
 
 
 
 
Here again, E(Y1 ε2) ≠ 0, and therefore, using OLS to estimate B21 will yield biased and inconsistent estimates.  
Note that if these are time series data, and B is he lagged effect of Y on itself, this describes a situation of a lagged 
endogenous predictor in the presence of serial correlation, which yields an OLS estimate of Bt,t-1 that is biased and 
inconsistent. 
 
 
 
 
 
 
 
 
 

Y1 

Y2 

U 

V 

B12 B21 σuv 

Y1 Y2 

ε1 

B21 

σε1ε2

ε
2

Yt-1 Yt 

εt-1 

Bt,t-1 

ρ

ε
t
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Z 

X 
 

ε 

III. INSTRUMENTAL VARIABLES (IV) ESTIMATOR 
 
Instrumental variables were discovered by the economist Phillip Wright in 1928 (with the possible help of his son, 
the geneticist Sewall Wright), rediscovered by Rejersøl in 1945, who 
named them using a term coined by Frisch.   The logic of instrumental 
variables (IV) is based on the violation of the OLS assumption that 
௫ఌߪ ൌ 0, due to endogeneity.  The solution is to find another 
exogenous variable—termed an “instrumental variable”—that is 
correlated with X but uncorrelated with ε.  This IV then can stand in 
for X.  More precisely, because the IV is uncorrelated with ε, the 
variance shared between the IV and X will be uncorrelated with ε.  Then if we use this “shared variance” as a 
variable “standing in” for X, we can run the regression on the new variable and obtain consistent estimates of the 
effect of X.  In the path diagram, Z is an instrument for X, which allows us to overcome the bias from the 
correlation between U and ε, which violates the assumption that E(X ε) = 0.   
 
 
 
 
 
 
 
 
 
 
 
 
 
This Venn diagram shows that we want to use the overlapping variance between Z and X as a “stand-in” for X.  
Because Z is uncorrelated with ε, the overlapping variance between Z and X will be uncorrelated with ε.   
 
Aside:  A two-step approach, such as 2SLS literally does this:  (1) Estimate a first stale model ܺ ൌ ܼߛ	  ܷ, and then 
compute the predicted values of X, ܺ ൌ  Note that ܺ is orthogonal to U and corresponds to the hatched region on the  .ܼߛ	
Venn diagram.  (2) Estimate a second stage model, replacing X with ܺ,  ܻ ൌ ߚ	 ܺ    .ߝ
 
 Let’s look more closely at this model using the tools we have used thus far: 
 

ܻ ൌ ܺߚ	  ܺ																				ߝ ൌ ܼߛ	  ܷ 
 
In this model, we have three observed variables and therefore (3 x 4)/2 = 6 observed moments and 6 parameters 
,ߛ) ,ߚ ,௫ଶߪ ,ఌଶߪ ,௨ଶߪ -ఌ௨).  Because Z has a nonzero effect on X and a zero direct effect on Y, the model is justߪ
identified.  Again, Z, the instrumental variable, is standing in for X and purging X of its correlation with ε.  If we 
made the incorrect assumption that ߪఌ௨ ൌ 0, we would incorrectly assume ߚ ൌ ௫௬ߪ ⁄௫ଶߪ .  We can compute the 
correct equation for ߚ in terms of population moments by multiplying the Y equation by Z and taking 
expectations: 

ሺܻܼሻܧ ൌ ሺܼܺሻܧߚ	   ሻߝሺܼܧ
 

௬௭ߪ ൌ ௫௭ߪߚ   ௭ఌߪ
 
If Z has a direct effect on Y, it is not an instrumental variable for X and then ߪ௭ఌ ് 0.  In that case, the equation 
for ߚ would be problematic: 

ߚ ൌ
௬௭ߪ
௫௭ߪ

െ
௭ఌߪ
௫௭ߪ

 

 

X Y

ε

β
Z

γ

U
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But if Z is a proper instrument for X, then ߪ௭ఌ ൌ 0 and ߪ௫௭ ് 0, and we can obtain an expression for ߚ in terms of 
moments: 
 

ߚ ൌ ௬௭ߪ ⁄௫௭ߪ  
 
Aside:  note that when we discussed a simple three-variable, two-equation model with no direct effect (Model II from Lecture 
3), we found that the overidentifying restriction meant there were two ways of expressing one of the parameters in terms of 
moments:   
ଷଶߚ ൌ

ଷଵߪ ଶଵൗߪ ൌ ଷଶߪ ଶଶൗߪ   
which implies two ways of estimating ߚଷଶ from sample moments: 
ଷଵݏ ଶଵൗݏ 	ݎ ଷଶݏ ଶଶൗݏ  
We argued that the second estimator, the OLS estimator, is preferred 
because it is efficient.  Note that the first estimator is the IV estimator 
considered here! 
 
When we draw a sample and attempt to estimate ߚ from sample data, we cannot assume that the sample estimate 
of ߪ௭ఌ, ݏ௭ఌ ൌ 0, and we cannot assume that the sample estimate of ߪ௫௭, ݏ௫௭ ് 0.  We can, however, assume that 
each holds asymptotically, as the sample size approaches infinity.  That is, ݈݉݅	ݏ௭ఌ ൌ 0 and ݈݉݅	ݏ௫௭ ് 0.  
Therefore, it follows that the instrumental variables estimator ߚመூ is biased in finite samples: 
 

E(ߚመூሻ ൌ ߚ
௦ഄ
௦ೣ

 

 
However, ߚመூ is consistent: 

መூߚ	݈݉݅ ൌ  ߚ	
 

Finally, the asymptotic variance of ߚመூ can be shown to be: 
 

መூሻߚሺݎܽݒ	ܿ݅ݐݐ݉ݕݏܽ ൌ
ఌଶߪ

௫ଶߪ݊
	 ∙ 	

1
௭௫ଶߩ

 

 

	݁ݎ݄݁ݓ
ఌଶߪ

௫ଶߪ݊
௭௫ଶߩ	݀݊ܽ	መைௌߚ	݂	݁ܿ݊ܽ݅ݎܽݒ	݄݁ݐ	ݏ݅	 ൌ

௫௭ߪ
௭ߪ௫ߪ

	 

 
The square root of the asymptotic variance of	ߚመூ is the asymptotic standard error.  Therefore, we can see that 
more the variance of X is explained by Z, the smaller the asymptotic standard error of the IV estimator.  A weak 
instrument is one with a low correlation with X and results in an estimate ߚመூ with a large sampling variability.  A 
strong instrument will result in a more precise estimate.  Note that, for a somewhat weak instrument, this 
imprecision can be offset if n is larger, the variance of X is larger, or the error variance is smaller.  In general, we 
don’t have access to the population error variance ߪఌଶ	and observed moments ߪ௫௭, ,௫ߪ  and have to estimate them	௭ߪ
from sample data, and therefore, we must estimate the asymptotic standard error.  
 
Aside:  Startz and Nelson discovered a very interesting property for IV estimators.  When the correlation between X and Z 
tends toward zero, the estimate is not only inefficient, but also inconsistent. 
 
The instrumental variable estimator can be generalized to the multivariate case.  In the above model, if we had 
multiple instruments for X, we would obtain a more precise estimator 	ߚመூ because the explained variance of X 
would be greater and asymptotic standard errors smaller.  This would also yield overidentifying restrictions, 
which can be subjected to empirical test.  If we have an endogeneity problem for multiple Xs, we would need at 
least one instrument for every problematic X for the model to be identified.  Having fewer that one instrument for 
each problematic X means that the model is underidentified; having exactly one instrument for every problematic 
X means he model is just-identified, and having more than one instrument for an X means the model is 

ε3

β32 
X1

β21

ε2 

X
2
 X

3
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overidentified.  In the multivariate case, strong instruments are highly-correlated with X after controlling for other 
predictors of X that are required in a properly-specified model.  Most SEM software provide ML estimates of 
identified models using instrumental variables.  ML estimates are consistent and asymptotically efficient. 
 
IV. WHAT ARE GOOD INSTRUMENTS? 
 
Remember that a good instrument is one that is (1) strongly exogenous (2) strongly correlated with X—even after 
controlling for other exogenous determinants of X, and (3) uncorrelated with the disturbance ε, meaning it has no 
direct effect on Y once other relevant variables are controlled.  The third requirement—sometimes referred to as 
an “exclusion restriction” because we have excluded it from the Y-equation—is the most difficult.  One needs 
strong a priori theoretical or substantive knowledge to make this exclusion restriction.  A strong case can be made 
for an instrument whose values have been assigned by the researcher, for example, via randomization.  In the 
treatment effects literature, when there is noncompliance to treatment conditions in a randomized experiment, the 
random assignment to treatment can be used as an instrument for the 
actual treatment experienced.  By virtue of random assignment, the 
treatment assignment will not be correlated with an outcome, 
controlling for actual treatment experienced.  This has been the model 
used to estimate the effects of the Moving to Opportunity 
experimental effects, in which families were randomly-assigned to 
treatment of being given vouchers to move out of bad neighborhoods. 
 
For example, suppose we randomly-assigned individuals to a treatment condition of having a job versus a control 
group that does not receive a job.  But some subjects quit their jobs, a form of noncompliance that will bias the 
experimental results.  If one were only interested in the treatment of giving subjects the opportunity to have a job, 
then OLS estimates will be unbiased.  But if we are really interested in the experience of having a job, then OLS 
will be biased as in the diagram above, in which Z is the random assignment to jobs, X is the actual experience of 
having a job (including quitting).  Z should have no effect on Y once we control for X.  Z should also have a 
strong effect on X, assuming that most subjects complied.  Therefore Z is likely to be a very strong instrument for 
X. 
 
Other examples from economics attempt to identify instruments that appear to be relatively random.  For 
example, during the latter months of the Vietnam era, military service was determined in part by a lottery, 
providing a strong instrumental variable for the effect of military experience on various outcomes, such as health, 
wages, etc.  Because part of military service is determined by a random process orthogonal to ε, and part is 
determined voluntarily or by another process such as draft dodging, going to college, or having a health problem 
(which could be correlated with ε, we can use the lottery assignment as an instrumental variable.  In a study of the 
effects of teen child-bearing on future earnings, critics argued that teen mothers are likely very different from non-
teen mothers in ways that are unmeasured—such as having a stronger propensity to have unprotected sex.  To 
address this problem, Hotz used miscarriages during the teenage years as an instrumental variable for teen 
motherhood.  His argument was that compared to unprotected sex as a determinant of teen childbearing, 
miscarriages are relatively random and less likely to affect future earnings directly when controlling for teen 
childbearing.  Another example from economics is to use sales taxes as an instrument for cigarette prices in 
models of cigarette consumption.   
 
V. A JUST-IDENTIFIED NON-RECURSIVE (SIMULTANEOUS EQUATIONS) MODEL 
 
 
1.  X3 = B31 X1 + B34 X4 + U 
 
2.  X4 = B41 X1 + B43 X3 + V 
 

X Y

ε

β 
Z

γ

U
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10 PARAMETERS:  B31 , B34 , B42 , B43 , σ11 , 
σ22 , σ12 , σUU , σVV , σUV  
 
10 MOMENTS K (K-1)/2 = 5 (6)/2 = 10 
 

11

21 22

51 55



 

 



 
 
 
 
 
 


 



 

      5 x 5 
 
COMPUTE MOMENTS ALMOST IN 
TERMS OF PARAMETERS 
 

For example, multiply the X3 equation by X1: 
 
E(X1X3) = B31 E(X1

2) + B34 E(X1X4) + E(X1U) 
 

1.  1434113113  BB   

2.  2434123123  BB   

3.  1343124214  BB   

4.  2343224224  BB   

For purposes of computing regression coefficients, these are the important ones.  Others are: 
 

 UBB 33434133133    

 UBB 44434143134     

 UUUU B   4343  

 UVVV B   4343  

 VBB 33343234234    

 VBB 43443244244    

 UVUU B   3434  

 VVVV B   3434  

 
From the above, we can see why using equation-by-equation OLS will yield biased and inconsistent estimates of parameters.  
Our two original equations are: 
 
  X3 = B31 X1 + B34 X4 + U 
  X4 = B41 X1 + B43 X3 + V 
 
The usual OLS assumptions require that E(X4U) = σ4U = E(X3V) = σ3V = 0.  But from above, we have 

  UVUU B   3434   

  UVVV B   4343  

   
This suggests that the key OLS assumption required for unbiasedness could be violated if either the first or second terms in 
the two equations above are non-zero.  We probably can’t expect σUV = 0 because the omitted variables for an endogenous 
variable that is reciprocally related to another endogenous variable are very likely to be similar (e.g., omitted characteristics 
in supply and demand or husband’s household labor and wive’s household labor).  Clearly, we don’t expect either B34 or B43 
to be zero, since that is what we’re most interested in substantively.  But what about the remaining term, covariances between 

X1 

 

X3 

X4 

U 

V B42 

B31 

B34 B43 σ21 
σuv 

Husband’s 
Housework 

Wive’s 
Housework 

Husband’s 
Income 

Wive’s 
Income 
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the disturbance term and the dependent variable in the other equation?  We have expressions for each:  

UUUU B   4343  and VVVV B   3434 .  Let’s substitute these two equations for σ3V and σ4U, respectively into 

the equations above them: 

  UVUUUU BB   )( 434434  

  UVVVVV BB   )( 343343  

Now we can see when the OLS assumptions of our two original equations for X3 and X4 are violated.  Let’s assume that we 
cannot assume that B34 or B43 is zero, since we are substantively interested in their magnitudes.  First, take the X3 equation:  
when will the OLS assumption that σ4U = 0 be violated?  If we cannot assume that B34 or B43 is zero, then σ4U (σ3V) will be 
zero only when σ4U (σ3V) is zero (uh, okay) and σUV is zero and σUU (σVV) is zero.  When will all three of these variances be 
zero?  Perhaps in bizarro-world.  It is unlikely that σUV is zero: When things simultaneously affect each other, you would 
think that the omitted variables in each equation would have some similarity (e.g., supply and demand, husbands’ and wives’ 
household work).  But more importantly, it makes absolutely no sense to assume that σUU (σVV)is zero – that’s part of our 
structural model, and the part that allows for uncertainty.   So, it’s very, very unlikely that the OLS assumptions hold.  
Therefore OLS methods will not work and alternatives (2SLS, 3SLS, ML) are required to get optimal estimates.   
 
COMPUTE SOME PARAMETERS IN TERMS OF MOMENTS: 
 
Start with the two normal equations for X3, equations (1) and (2) above.  There are two equations and two unknowns (B31 and 
B34): 

 1434113113  BB   

2434123123  BB   

Isolate B31 in each of the two equations: 

 3111143413 /)( BB      

 3112243423 /)( BB      

Set the two equations equal, and solve for B34: 

1224342311143413 /)(/)(  BB     Cross-multiply: 

24113423111412341312  BB    By subtraction, put B34 on the left side 

13122311141234241134   BB   Factor out B34 

131223111412241134 )(  B   Isolate B34 by division 

 

1. 
14122411

13122311
34 





B  

Use the same two equations, but now obtain an equation for B31: 

2. 
14122411

23142413
31 





B  

 
Now take the normal equations for X4, equations (3) and (4).  Again two equations and two unknowns (B42 and B43): 

1343124214  BB   

2343224224  BB   

Follow the logic above to obtain the following: 

3. 
22132312

22142412
43 





B  

2. 
22132312

24132314
42 





B  

 
Aside:  If we did not have access to population moments, we could substitute sample moments sij and obtain moment 
estimators for each of the four parameters.  These estimators would be equivalent to an instrumental variable (IV) estimator. 
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14122411

13122311
34

ˆ
ssss

ssss
B




  
14122411

23142413
31

ˆ
ssss

ssss
B




  
22132312

22142412
43

ˆ
ssss

ssss
B




  
22132312

24132314
42

ˆ
ssss

ssss
B




  

 
THE REDUCED FORM: 
 
We can compute the reduced form for our two equations in the usual way, by substituting for the endogenous variables until 
we can express our dependent variable wholly in terms of exogenous variables: 
 
X3 = B31 X1 + B34 X4 + U 
X4 = B42 X2 + B43 X3 + V 
 
X3 = B31 X1 + B34 (X4) + U     Substitute for X4 
X3 = B31 X1 + B34 (B42 X2 + B43 X3 + V) + U  Multiply 
 
X3 = B31 X1 + B34 B42 X2 + B34B43 X3 + B34V + U Note that X3 on the right side is endogenous. Let’s put it on the left side 
by subtraction 
X3 - B34B43 X3 = B31 X1 + B34 B42 X2 + B34V + U 
(1- B34B43 )X3 = B31 X1 + B34 B42 X2 + B34V + U We can isolate X3 by division: 
 

1. 



U

BB

UVB
X

BB

BB
X

BB

B
X

3

4334

34
2

32

4334

4234
1

4334

31
3 111











  

 
X3 =  π31 X1      +  π32 X2     + π3U 

 
We can do the same for X4: 
 

2. 



V

BB

VUB
X

BB

B
X

BB

BB
X

4

4334

43
2

42

4334

42
1

41

4334

3143
4 111











  

     X4 =    π41 X1       +    π42 X2 +    π4V 

 
There are four reduced form coefficients (π31, π32, π41, π42) and four structural-form regression coefficients (parameters) (B43, 
B31 , B34 , B41), which suggests one way of computing structural parameters in terms of reduced-form parameters. 
 
If we take the first term of equation (2) and divide it by the first term of equation (1), we can express B43 in terms of reduced-
form coefficients: 

43
4334

31

4334

3143
3141 11

B
BB

B

BB

BB



  

Likewise, divide the second term of equation (1) by the second term of equation (2) and we get an expression for B34 in terms 
of reduced-form coefficients: 

34
4334

42

4334

4234
4232 11

B
BB

B

BB

BB



  

 
Given that we have expressions of B43 and B34 in terms of reduced-form parameters, we can express the multiplier effect, 1 - 
B34 B43, in terms of reduced form parameters: 

3142

4132
4334 11




 BB  
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We can use the above equation to substitute for 1 - B34 B43 to get expressions for B31 and B42 in terms of reduced-form 
parameters: 
 
From the first term of reduced-form equation (1), we substitute the denominator: 

)1(
1 3142

4132
31

4334

31
31 


 


 B

BB

B
 

413431
42

4132
31

3142

4132
3131 )1( 








 BB    (because B34 = π32 / π42) 

And, using the second term of reduced-form equation (2), we again substitute the denominator to get an expression of B42 in 
terms of reduced-form parameters: 
 

324342
31

4132
42

3142

4132
4242 )1( 








 BB     

 
ESTIMATION FROM SAMPLE DATA: 
 
For our just-identified model, there are two equivalent methods of obtaining consistent estimates of our parameters from 
sample data.  The first follows from the method of moments, and is the instrumental variable estimator noted above: 
 

14122411

13122311
34

ˆ
ssss

ssss
B




  
14122411

23142413
31

ˆ
ssss

ssss
B




  
22132312

22142412
43

ˆ
ssss

ssss
B




  
22132312

24132314
42

ˆ
ssss

ssss
B




  

 
The second method uses a two-step method involving the reduced form coefficients: 
 
1.  Estimate the reduced-form equations of endogenous variables on exogenous variables using OLS: 

UXXX 32321313 ˆˆˆ    

VXXX 42421414 ˆˆˆ    

 
Compute predicted values for endogenous variables X3 and X4: 

2321313 ˆˆˆ XXX    

2421414 ˆˆˆ XXX    

2.  Plug in the predicted values, 43
ˆ,ˆ XX , into the right hand side of the structural equations: 

 

UXBXBX  4341313
ˆ  

VXBXBX  3432424
ˆ  

 
Now estimate these equations using OLS – this is the “second stage” of two-stage least-squares estimation: 

UXBXBX  4341313
ˆˆˆ  

VXBXBX  3432424
ˆˆˆ  

Then adjust the standard errors to take into consideration that you estimated the first stage equations to get predicted values 
for X3 and X4. 
 
It is instructive to examine the 
mechanics of this estimation 
method.   
 
 
 

X1 

X2 

X3 

X4 

U 

V B42 

B31 

B34 B43 σ21 
σuv 
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Looking at the path diagram, we can see that the problem of estimation involves a violation of OLS assumptions.   
 

UXBXBX  4341313  

VXBXBX  3432424  

 
Recall that the problem of estimating the model using OLS had to do with the assumption that the disturbance of an equation 
is uncorrelated with the exogenous variables.  This is not a problem for exogenous (instrumental) variables X1and X2 but is 
problematic for the non-recursive relationship among endogenous predictors (σ4U = σ3V = 0).  Violations of this assumption 
cause OLS estimates to be biased and inconsistent.  The fact that the OLS assumption for the instrumental variables holds 
provides the key to the solution of the problem of estimation. 
 
Consider the X3 equation.  The problem is that X4 is correlated with U in part because of σUU being non-zero and in part 
because of σUV being non-zero (in addition to B43 and B34 being non-zero).       

  UVUUUU BB   )( 434434  

So, part of X4, which affects X3 is correlated with U and part is uncorrelated with U.  If we could eliminate the portion of X4 
that is correlated with U (i.e., σ4U), then OLS would work fine because now the “new” X4 would be orthogonal to U (σ4U = 0).  
How do we construct the new X4?  Well, we know X1 is uncorrelated with U and we know it has a non-zero effect on X3—
that is, we assume B31 is non-zero (that’s why X1 is in the equation!).  It follows that if X1 is also correlated with X4, then 
perhaps we could capitalize on their “overlapping variance” to purge X1 of its correlation with U.  We can do this by first 
regressing X4 on X1 (as well as X2) using OLS: 

1.  vXXX 42421414     

where )1/()( 4334434 BBVUBV  is the reduced-form disturbance as above.  Call this the “first stage regression.”  

Note also that this first stage regression is the reduced-form regression for X4. Compute the predicted scores from this 
regression, 

4X̂ :  2421414
ˆ XXX     

Note that the predicted score for X4 is “purged” of the reduced-form disturbance term, and consequently purged of the 

problem terms, B34, U, and V.  Now use OLS to estimate the structural form equation for X3, but using 4X̂ in place of X4.  

Call this the “second stage regression:” 

2. UXBXBX  4341313
ˆ  

Now we need to adjust the standard errors to take into consideration that we estimated a first stage regression to get predicted 
values for X4.  Computer packages that use 2SLS will do this adjustment.  Of course, we can also do the same for the X3 

equation to get 2SLS estimators.  (Do this yourself.)   
 
The 2SLS estimator is consistent but inefficient.  A more efficient estimator can be obtained by applying Zellner’s (1962) 
seemingly unrelated regression GLS in a third stage to adjust the estimator for the covariance between U and V.  This is 
termed 3SLS, which gives consistent and asymptotically efficient parameter estimates.  Note that 3SLS is asymptotically 
equivalent to ML using LISREL 8 for non-recursive models in observables.  They are each “system” estimators in that they 
estimate all equations as a single system.  Like all “system” estimators, they have the advantage of providing asymptotically 
efficient estimates, but the drawback that misspecification in one portion of the model can “spill over” and bias estimates in 
another portion.   
 
VI. A PARTIALLY IDENTIFIED MODEL: 
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Often in empirical applications we are interested in an effect of X3 on X4 but want to control for the biasing effect of possible 
reciprocal causation—that is, that X4 may affect X3, even though we are not interested in estimating the latter coefficient.  All 
we would need is an instrument for the variable we’re interested in—in this case, X3.  As an example, suppose I’m interested 
in estimating the effect of reciprocated exchange in 2002 on collective efficacy in 2002 (B43 in the diagram) but I’m worried 
that it will be biased because of reciprocal causation:  Collective efficacy in 2002 may simultaneously affect exchange in 
2002.  I happen to have measured exchange in 1990 and, under the assumptions that (1) exchange in 1990 affects exchange in 
2002; exchange in 2002 affects collective efficacy in 2002; and exchange in 1990 does not affect collective efficacy in 2002 
net of exchange in 2002, I can estimate B43. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3 31 1 32 2 34 4X B X B X B X U     

VXBXBX  3432424  

 
If we look at the X3 equation, it is obvious that neither X1 nor X2 qualify as instruments for X4 necessary to estimate B34:  X1 
is not causally-related to X4 and while X2 is related to X4, it is also related to X3.  Thus, we cannot estimate B34.  Looking at 
the X4 equation, however, we have an instrument for X3, namely X1, which is causally related to X3 and excluded from the X4 
equation.  Consequently, we can estimate B43, the coefficient of interest, even in the presence of reciprocal causation between 
X3 and X4.  That estimator will appear as above:   

43 41 31
ˆ ˆ ˆB   , or equivalently, 

22132312

22142412
43

ˆ
ssss

ssss
B




  

Note that using the counting rule this model is under-identified:  there are 10 moments and 11 parameters.  We can estimate 
the model if we don’t try to disentangle B34 from σuv, but pool them into one term (call it σuv*).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

AN EXAMPLE OF NEIGHBORHOOD EXCHANGE AND COLLECTIVE EFFICACY 
 

X1 

X2 

X3 

X4 

U 

V B42 

B31 

B34 B43 σ21 
σuv 

B32 

X1 

X2 

X3 

X4 

U 

V B42 

B31 

B43 σ21 
σuv* 
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Model I: 
 
Here is a LISREL run estimating the a  model  like the first one above, in which I have reasonably identified B12 using lagged 
Exchange 1990 as an instrumental variable for Exchange 2003, but have arbitrarily identified B21 using Percent Hispanic as 
an instrumental variable.  Note this model is empirically underidentified and very unstable. 
 
The following lines were read from file C:\529 examples\soccap1a.spl: 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a 
 DA NI=9 NO=99 MA=CM 
 CM 
 * 
 0.064 
 0.029  0.023 
 0.022  0.013  0.013 
 -0.129 -0.036 -0.033  0.625 
 0.165  0.061  0.051 -0.528  0.888 
 -0.005 -0.001 -0.002  0.016 -0.025  0.002 
 -0.223 -0.079 -0.054  1.023 -1.248  0.033  3.956 
 0.168  0.101  0.082 -0.265  0.327 -0.008 -0.119  0.895 
 -0.081 -0.056 -0.044  0.093 -0.071 -0.001 -0.142 -0.409 0.416 
   
 LA 
 * 
 COLL02 EXCHAN02 EXCHAN90 CONDIS CONAFF2 PHISP ASIMM RESSTAB DENSITY 
 SE 
 COLL02 EXCHAN02 EXCHAN90 CONDIS CONAFF2 PHISP ASIMM RESSTAB DENSITY 
 MO NY=2 NX=7 BE=FU,FI GA=FU,FR PS=FU,FI FI 
 Fi BE 2 1 
 FR BE 1 2 
 FI GA 1 1 
 Fr GA 2 4 
 FR PS 1 1 PS 2 2 PS 2 1 
 OU ME=ML SE TV SC PC 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
                           Number of Input Variables  9 
                           Number of Y - Variables    2 
                           Number of X - Variables    7 
                           Number of ETA - Variables  2 
                           Number of KSI - Variables  7 
                           Number of Observations    99 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
         Covariance Matrix        
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.06 
 EXCHAN02       0.03       0.02 
 EXCHAN90       0.02       0.01       0.01 
   CONDIS      -0.13      -0.04      -0.03       0.62 
  CONAFF2       0.17       0.06       0.05      -0.53       0.89 
    PHISP      -0.01       0.00       0.00       0.02      -0.03       0.00 
    ASIMM      -0.22      -0.08      -0.05       1.02      -1.25       0.03 
  RESSTAB       0.17       0.10       0.08      -0.27       0.33      -0.01 
  DENSITY      -0.08      -0.06      -0.04       0.09      -0.07       0.00 
 
         Covariance Matrix        
 
               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
    ASIMM       3.96 
  RESSTAB      -0.12       0.90 
  DENSITY      -0.14      -0.41       0.42 
 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
 Parameter Specifications 
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         BETA         
 
              COLL02   EXCHAN02 
            --------   -------- 
   COLL02          0          1 
 EXCHAN02          2          0 
 
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB 
            --------   --------   --------   --------   --------   -------- 
   COLL02          0          3          4          5          6          7 
 EXCHAN02          9         10         11          0         12         13 
 
         GAMMA        
 
             DENSITY 
            -------- 
   COLL02          8 
 EXCHAN02         14 
 
         PSI          
 
              COLL02   EXCHAN02 
            --------   -------- 
   COLL02         15 
 EXCHAN02         16         17 
  
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
 Number of Iterations =129 
 
 LISREL Estimates (Maximum Likelihood)                            
 
         BETA         
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02        - -       1.21 
                         (0.33) 
                           3.67 
  
 EXCHAN02     -15.16        - - 
            (135.10) 
               -0.11 
  
 
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02        - -      -0.11       0.03      -0.82       0.01       0.00 
                         (0.03)     (0.03)     (0.36)     (0.01)     (0.03) 
                          -3.70       1.25      -2.30       1.11       0.09 
  
 EXCHAN02      11.67      -1.01       1.08        - -      -0.11       0.92 
             (99.69)     (9.34)     (9.52)                (0.79)     (7.74) 
                0.12      -0.11       0.11                 -0.13       0.12 
  
 
         GAMMA        
 
             DENSITY    
            -------- 
   COLL02       0.00 
              (0.03) 
                0.11 
  
 EXCHAN02      -0.58 
              (4.74) 
               -0.12 
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         Covariance Matrix of Y and X             
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.06 
 EXCHAN02       0.03       0.02 
 EXCHAN90       0.02       0.01       0.01 
   CONDIS      -0.13      -0.04      -0.03       0.62 
  CONAFF2       0.16       0.06       0.05      -0.53       0.89 
    PHISP       0.00       0.00       0.00       0.02      -0.03       0.00 
    ASIMM      -0.22      -0.08      -0.05       1.02      -1.25       0.03 
  RESSTAB       0.17       0.10       0.08      -0.27       0.33      -0.01 
  DENSITY      -0.08      -0.06      -0.04       0.09      -0.07       0.00 
 
         Covariance Matrix of Y and X             
 
               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
    ASIMM       3.96 
  RESSTAB      -0.12       0.90 
  DENSITY      -0.14      -0.41       0.42 
 
         PHI          
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
 EXCHAN90       0.01 
  
   CONDIS      -0.03       0.62 
  
  CONAFF2       0.05      -0.53       0.89 
  
    PHISP       0.00       0.02      -0.03       0.00 
  
    ASIMM      -0.05       1.02      -1.25       0.03       3.96 
  
  RESSTAB       0.08      -0.27       0.33      -0.01      -0.12       0.90 
  
  DENSITY      -0.04       0.09      -0.07       0.00      -0.14      -0.41 
  
 
         PHI          
 
             DENSITY    
            -------- 
  DENSITY       0.42 
  
 
         PSI          
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02       0.01 
              (0.00) 
                3.75 
  
 EXCHAN02       0.12       3.25 
              (1.09)    (56.57) 
                0.11       0.06 
  
 
         Squared Multiple Correlations for Structural Equations   
 
              COLL02   EXCHAN02    
            --------   -------- 
                0.99       1.04 
 
 NOTE: Rý for Structural Equatios are Hayduk's (2006) Blocked-Error Rý 
 
         Reduced Form                 
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.73      -0.07       0.07      -0.04      -0.01       0.06 
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              (0.20)     (0.02)     (0.02)     (0.37)     (0.01)     (0.02) 
                3.70      -2.75       3.01      -0.11      -0.61       2.50 
  
 EXCHAN02       0.60       0.03       0.03       0.64      -0.02       0.05 
              (0.15)     (0.02)     (0.02)     (0.27)     (0.01)     (0.02) 
                4.10       1.82       1.77       2.34      -2.22       2.63 
  
 
         Reduced Form                 
 
             DENSITY    
            -------- 
   COLL02      -0.04 
              (0.03) 
               -1.26 
  
 EXCHAN02      -0.03 
              (0.02) 
               -1.54 
  
 
         Squared Multiple Correlations for Reduced Form           
 
              COLL02   EXCHAN02    
            --------   -------- 
                0.79       0.67 
 
 
                           Goodness of Fit Statistics 
 
                              Degrees of Freedom = 0 
                 Minimum Fit Function Chi-Square = 0.0 (P = 1.00) 
        Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 1.00) 
 
                  The Model is Saturated, the Fit is Perfect ! 
 
         Covariance Matrix of Parameter Estimates     
 
              BE 1_2     BE 2_1     GA 1_2     GA 1_3     GA 1_4     GA 1_5    
            --------   --------   --------   --------   --------   -------- 
   BE 1_2       0.11 
   BE 2_1      -8.82   18251.02 
   GA 1_2      -0.01       0.64       0.00 
   GA 1_3       0.00      -0.36       0.00       0.00 
   GA 1_4      -0.03     -22.47       0.00       0.00       0.13 
   GA 1_5       0.00      -0.28       0.00       0.00       0.00       0.00 
   GA 1_6      -0.01       0.68       0.00       0.00       0.00       0.00 
   GA 1_7       0.01      -0.87       0.00       0.00       0.00       0.00 
   GA 2_1       7.00  -13462.80      -0.49       0.24      16.26       0.21 
   GA 2_2      -0.62    1260.94       0.05      -0.02      -1.55      -0.02 
   GA 2_3       0.61   -1285.26      -0.04       0.03       1.59       0.02 
   GA 2_5      -0.05     105.00       0.00       0.00      -0.13       0.00 
   GA 2_6       0.47   -1044.04      -0.03       0.02       1.31       0.01 
   GA 2_7      -0.29     637.85       0.02      -0.01      -0.80      -0.01 
   PS 1_1       0.00      -0.08       0.00       0.00       0.00       0.00 
   PS 2_1       0.06    -147.29       0.00       0.00       0.18       0.00 
   PS 2_2       3.69   -7642.58      -0.27       0.15       9.41       0.12 
 
         Covariance Matrix of Parameter Estimates     
 
              GA 1_6     GA 1_7     GA 2_1     GA 2_2     GA 2_3     GA 2_5    
            --------   --------   --------   --------   --------   -------- 
   GA 1_6       0.00 
   GA 1_7       0.00       0.00 
   GA 2_1      -0.54       0.67    9938.99 
   GA 2_2       0.05      -0.06    -930.31      87.26 
   GA 2_3      -0.05       0.06     947.83     -88.75      90.62 
   GA 2_5       0.00       0.00     -77.37       7.23      -7.38       0.63 
   GA 2_6      -0.03       0.05     769.59     -72.11      73.51      -6.02 
   GA 2_7       0.02      -0.02    -470.15      44.04     -44.94       3.68 
   PS 1_1       0.00       0.00       0.06      -0.01       0.01       0.00 
   PS 2_1       0.00       0.01     108.61     -10.18      10.37      -0.85 
   PS 2_2      -0.28       0.37    5637.52    -528.02     538.20     -43.97 
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         Covariance Matrix of Parameter Estimates     
 
              GA 2_6     GA 2_7     PS 1_1     PS 2_1     PS 2_2    
            --------   --------   --------   --------   -------- 
   GA 2_6      59.85 
   GA 2_7     -36.44      22.47 
   PS 1_1       0.00       0.00       0.00 
   PS 2_1       8.43      -5.15       0.00       1.19 
   PS 2_2     437.19    -267.10       0.03      61.68    3200.54 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
         Correlation Matrix of Parameter Estimates    
 
              BE 1_2     BE 2_1     GA 1_2     GA 1_3     GA 1_4     GA 1_5    
            --------   --------   --------   --------   --------   -------- 
   BE 1_2       1.00 
   BE 2_1      -0.20       1.00 
   GA 1_2      -0.56       0.16       1.00 
   GA 1_3      -0.47      -0.10       0.48       1.00 
   GA 1_4      -0.23      -0.47       0.04       0.46       1.00 
   GA 1_5       0.63      -0.17      -0.62       0.00      -0.06       1.00 
   GA 1_6      -0.82       0.15       0.52       0.26       0.21      -0.58 
   GA 1_7       0.62      -0.19      -0.43      -0.31      -0.02       0.49 
   GA 2_1       0.21      -1.00      -0.17       0.09       0.46       0.18 
   GA 2_2      -0.20       1.00       0.18      -0.09      -0.46      -0.18 
   GA 2_3       0.19      -1.00      -0.15       0.12       0.47       0.17 
   GA 2_5      -0.18       0.98       0.11      -0.08      -0.47      -0.07 
   GA 2_6       0.19      -1.00      -0.15       0.10       0.47       0.16 
   GA 2_7      -0.18       1.00       0.15      -0.11      -0.47      -0.15 
   PS 1_1       0.83      -0.16      -0.47      -0.39      -0.19       0.52 
   PS 2_1       0.18      -1.00      -0.15       0.11       0.47       0.15 
   PS 2_2       0.20      -1.00      -0.16       0.10       0.47       0.17 
 
         Correlation Matrix of Parameter Estimates    
 
              GA 1_6     GA 1_7     GA 2_1     GA 2_2     GA 2_3     GA 2_5    
            --------   --------   --------   --------   --------   -------- 
   GA 1_6       1.00 
   GA 1_7      -0.23       1.00 
   GA 2_1      -0.16       0.20       1.00 
   GA 2_2       0.15      -0.19      -1.00       1.00 
   GA 2_3      -0.15       0.18       1.00      -1.00       1.00 
   GA 2_5       0.12      -0.16      -0.98       0.98      -0.98       1.00 
   GA 2_6      -0.13       0.19       1.00      -1.00       1.00      -0.98 
   GA 2_7       0.15      -0.14      -0.99       0.99      -1.00       0.98 
   PS 1_1      -0.68       0.52       0.18      -0.17       0.16      -0.15 
   PS 2_1      -0.13       0.18       1.00      -1.00       1.00      -0.98 
   PS 2_2      -0.15       0.19       1.00      -1.00       1.00      -0.98 
 
         Correlation Matrix of Parameter Estimates    
 
              GA 2_6     GA 2_7     PS 1_1     PS 2_1     PS 2_2    
            --------   --------   --------   --------   -------- 
   GA 2_6       1.00 
   GA 2_7      -0.99       1.00 
   PS 1_1       0.15      -0.15       1.00 
   PS 2_1       1.00      -1.00       0.16       1.00 
   PS 2_2       1.00      -1.00       0.17       1.00       1.00 
 
 Non-Recursive Model of Obligations and Child-Centered Control:soccap1a          
 
 Standardized Solution            
 
         BETA         
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02        - -       0.73 
 EXCHAN02     -25.29        - - 
 
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
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            --------   --------   --------   --------   --------   -------- 
   COLL02        - -      -0.34       0.12      -0.14       0.11       0.01 
 EXCHAN02       8.77      -5.24       6.74        - -      -1.39       5.73 
 
         GAMMA        
 
             DENSITY    
            -------- 
   COLL02       0.01 
 EXCHAN02      -2.45 
 
         Correlation Matrix of Y and X            
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       1.00 
 EXCHAN02       0.76       1.00 
 EXCHAN90       0.76       0.75       1.00 
   CONDIS      -0.64      -0.30      -0.37       1.00 
  CONAFF2       0.69       0.43       0.47      -0.71       1.00 
    PHISP      -0.44      -0.15      -0.39       0.45      -0.59       1.00 
    ASIMM      -0.44      -0.26      -0.24       0.65      -0.67       0.37 
  RESSTAB       0.70       0.70       0.76      -0.35       0.37      -0.19 
  DENSITY      -0.50      -0.57      -0.60       0.18      -0.12      -0.03 
 
         Correlation Matrix of Y and X            
 
               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
    ASIMM       1.00 
  RESSTAB      -0.06       1.00 
  DENSITY      -0.11      -0.67       1.00 
 
         PSI          
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02       0.21 
 EXCHAN02       3.08     141.30 
 
         Regression Matrix Y on X (Standardized)      
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.33      -0.21       0.26      -0.01      -0.05       0.22 
 EXCHAN02       0.45       0.18       0.19       0.19      -0.21       0.28 
 
         Regression Matrix Y on X (Standardized)      
 
             DENSITY    
            -------- 
   COLL02      -0.09 
 EXCHAN02      -0.14 
 
                           Time used:    0.047 Seconds 
 

Model II: 
 
In the model below, I have pooled B21 with σuv, and focused on estimating B12, which is identified using lagged 
Exchange1990 as an instrument for Exchange 2003.  I am assuming that B21 is not identified.  Note that the estimates of 
B12—the parameter of interest—is identical in the two models.  Thus, even though the reciprocal effects in a true 
simultaneous equation model are not each identified, if you are interested in getting a consistent estimate of one effect—
which is identified—you can get a consistent estimator of the effect even when the other reciprocal effect is not identified and 
not estimable from the data. 
 
The following lines were read from file C:\529 examples\soccap1b.spl: 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b 
 DA NI=9 NO=99 MA=CM 
 CM 
 * 
 0.064 
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 0.029  0.023 
 0.022  0.013  0.013 
 -0.129 -0.036 -0.033  0.625 
 0.165  0.061  0.051 -0.528  0.888 
 -0.005 -0.001 -0.002  0.016 -0.025  0.002 
 -0.223 -0.079 -0.054  1.023 -1.248  0.033  3.956 
 0.168  0.101  0.082 -0.265  0.327 -0.008 -0.119  0.895 
 -0.081 -0.056 -0.044  0.093 -0.071 -0.001 -0.142 -0.409 0.416 
   
 LA 
 * 
 COLL02 EXCHAN02 EXCHAN90 CONDIS CONAFF2 PHISP ASIMM RESSTAB DENSITY 
 SE 
 COLL02 EXCHAN02 EXCHAN90 CONDIS CONAFF2 PHISP ASIMM RESSTAB DENSITY 
 MO NY=2 NX=7 BE=FU,FI GA=FU,FR PS=FU,FI FI 
 FI BE 2 1 
 FR BE 1 2 
 FI GA 1 1 
 FR GA 2 4 
 FR PS 1 1 PS 2 2 PS 2 1 
 OU ME=ML SE TV SC PC 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
                           Number of Input Variables  9 
                           Number of Y - Variables    2 
                           Number of X - Variables    7 
                           Number of ETA - Variables  2 
                           Number of KSI - Variables  7 
                           Number of Observations    99 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
         Covariance Matrix        
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.06 
 EXCHAN02       0.03       0.02 
 EXCHAN90       0.02       0.01       0.01 
   CONDIS      -0.13      -0.04      -0.03       0.62 
  CONAFF2       0.17       0.06       0.05      -0.53       0.89 
    PHISP      -0.01       0.00       0.00       0.02      -0.03       0.00 
    ASIMM      -0.22      -0.08      -0.05       1.02      -1.25       0.03 
  RESSTAB       0.17       0.10       0.08      -0.27       0.33      -0.01 
  DENSITY      -0.08      -0.06      -0.04       0.09      -0.07       0.00 
 
         Covariance Matrix        
 
               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
    ASIMM       3.96 
  RESSTAB      -0.12       0.90 
  DENSITY      -0.14      -0.41       0.42 
 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
 Parameter Specifications 
 
         BETA         
 
              COLL02   EXCHAN02 
            --------   -------- 
   COLL02          0          1 
 EXCHAN02          0          0 
 
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB 
            --------   --------   --------   --------   --------   -------- 
   COLL02          0          2          3          4          5          6 
 EXCHAN02          8          9         10         11         12         13 
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         GAMMA        
 
             DENSITY 
            -------- 
   COLL02          7 
 EXCHAN02         14 
 
         PSI          
 
              COLL02   EXCHAN02 
            --------   -------- 
   COLL02         15 
 EXCHAN02         16         17 
  
 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
 Number of Iterations = 31 
 
 LISREL Estimates (Maximum Likelihood)                            
 
         BETA         
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02        - -       1.21 
                         (0.33) 
                           3.67 
  
 EXCHAN02        - -        - - 
  
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02        - -      -0.11       0.03      -0.82       0.01       0.00 
                         (0.03)     (0.03)     (0.36)     (0.01)     (0.03) 
                          -3.70       1.25      -2.30       1.11       0.09 
  
 EXCHAN02       0.60       0.03       0.03       0.64      -0.02       0.05 
              (0.15)     (0.02)     (0.02)     (0.27)     (0.01)     (0.02) 
                4.10       1.82       1.77       2.34      -2.22       2.63 
  
         GAMMA        
 
             DENSITY    
            -------- 
   COLL02       0.00 
              (0.03) 
                0.11 
  
 EXCHAN02      -0.03 
              (0.02) 
               -1.54 
  
         Covariance Matrix of Y and X             
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.06 
 EXCHAN02       0.03       0.02 
 EXCHAN90       0.02       0.01       0.01 
   CONDIS      -0.13      -0.04      -0.03       0.62 
  CONAFF2       0.17       0.06       0.05      -0.53       0.89 
    PHISP      -0.01       0.00       0.00       0.02      -0.03       0.00 
    ASIMM      -0.22      -0.08      -0.05       1.02      -1.25       0.03 
  RESSTAB       0.17       0.10       0.08      -0.27       0.33      -0.01 
  DENSITY      -0.08      -0.06      -0.04       0.09      -0.07       0.00 
 
         Covariance Matrix of Y and X             
 
               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
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    ASIMM       3.96 
  RESSTAB      -0.12       0.90 
  DENSITY      -0.14      -0.41       0.42 
 
         PHI          
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
 EXCHAN90       0.01  
   CONDIS      -0.03       0.62 
  CONAFF2       0.05      -0.53       0.89 
    PHISP       0.00       0.02      -0.03       0.00 
    ASIMM      -0.05       1.02      -1.25       0.03       3.96 
  RESSTAB       0.08      -0.27       0.33      -0.01      -0.12       0.90 
  DENSITY      -0.04       0.09      -0.07       0.00      -0.14      -0.41 
  
         PHI          
 
             DENSITY    
            -------- 
  DENSITY       0.42 
  
         PSI          
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02       0.01 
              (0.00) 
                3.75 
  
 EXCHAN02       0.00       0.01 
              (0.00)     (0.00) 
               -1.69       6.75 
  
         Squared Multiple Correlations for Structural Equations   
 
              COLL02   EXCHAN02    
            --------   -------- 
                0.96       0.67 
 
 NOTE: Rý for Structural Equations are Hayduk's (2006) Blocked-Error Rý 
 
         Reduced Form                 
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.73      -0.07       0.07      -0.04      -0.01       0.06 
              (0.20)     (0.02)     (0.02)     (0.37)     (0.01)     (0.02) 
                3.70      -2.75       3.01      -0.11      -0.61       2.50 
  
 EXCHAN02       0.60       0.03       0.03       0.64      -0.02       0.05 
              (0.15)     (0.02)     (0.02)     (0.27)     (0.01)     (0.02) 
                4.10       1.82       1.77       2.34      -2.22       2.63 
  
 
         Reduced Form                 
 
             DENSITY    
            -------- 
   COLL02      -0.04 
              (0.03) 
               -1.26 
  
 EXCHAN02      -0.03 
              (0.02) 
               -1.54 
  
 
         Squared Multiple Correlations for Reduced Form           
 
              COLL02   EXCHAN02    
            --------   -------- 
                0.79       0.67 
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                           Goodness of Fit Statistics 
 
                              Degrees of Freedom = 0 
                 Minimum Fit Function Chi-Square = 0.0 (P = 1.00) 
        Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 1.00) 
 
                  The Model is Saturated, the Fit is Perfect ! 
 
 
         Covariance Matrix of Parameter Estimates     
 
              BE 1_2     GA 1_2     GA 1_3     GA 1_4     GA 1_5     GA 1_6    
            --------   --------   --------   --------   --------   -------- 
   BE 1_2       0.11 
   GA 1_2      -0.01       0.00 
   GA 1_3       0.00       0.00       0.00 
   GA 1_4      -0.03       0.00       0.00       0.13 
   GA 1_5       0.00       0.00       0.00       0.00       0.00 
   GA 1_6      -0.01       0.00       0.00       0.00       0.00       0.00 
   GA 1_7       0.01       0.00       0.00       0.00       0.00       0.00 
   GA 2_1      -0.02       0.00       0.00       0.01       0.00       0.00 
   GA 2_2       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_3       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_4      -0.01       0.00       0.00      -0.04       0.00       0.00 
   GA 2_5       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_6       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_7       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 1_1       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 2_1       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 2_2       0.00       0.00       0.00       0.00       0.00       0.00 
 
         Covariance Matrix of Parameter Estimates     
 
              GA 1_7     GA 2_1     GA 2_2     GA 2_3     GA 2_4     GA 2_5    
            --------   --------   --------   --------   --------   -------- 
   GA 1_7       0.00 
   GA 2_1       0.00       0.02 
   GA 2_2       0.00       0.00       0.00 
   GA 2_3       0.00       0.00       0.00       0.00 
   GA 2_4       0.00       0.01       0.00       0.00       0.08 
   GA 2_5       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_6       0.00       0.00       0.00       0.00       0.00       0.00 
   GA 2_7       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 1_1       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 2_1       0.00       0.00       0.00       0.00       0.00       0.00 
   PS 2_2       0.00       0.00       0.00       0.00       0.00       0.00 
 
         Covariance Matrix of Parameter Estimates     
 
              GA 2_6     GA 2_7     PS 1_1     PS 2_1     PS 2_2    
            --------   --------   --------   --------   -------- 
   GA 2_6       0.00 
   GA 2_7       0.00       0.00 
   PS 1_1       0.00       0.00       0.00 
   PS 2_1       0.00       0.00       0.00       0.00 
   PS 2_2       0.00       0.00       0.00       0.00       0.00 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
         Correlation Matrix of Parameter Estimates    
 
              BE 1_2     GA 1_2     GA 1_3     GA 1_4     GA 1_5     GA 1_6    
            --------   --------   --------   --------   --------   -------- 
   BE 1_2       1.00 
   GA 1_2      -0.56       1.00 
   GA 1_3      -0.47       0.48       1.00 
   GA 1_4      -0.23       0.04       0.46       1.00 
   GA 1_5       0.63      -0.62       0.00      -0.06       1.00 
   GA 1_6      -0.82       0.52       0.26       0.21      -0.58       1.00 
   GA 1_7       0.62      -0.43      -0.31      -0.02       0.49      -0.23 
   GA 2_1      -0.46       0.26       0.21       0.10      -0.29       0.37 
   GA 2_2       0.10      -0.42      -0.16       0.02       0.20      -0.11 
   GA 2_3       0.04      -0.14      -0.42      -0.19      -0.12       0.03 
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   GA 2_4      -0.16       0.13      -0.08      -0.38      -0.14       0.12 
   GA 2_5      -0.11       0.21      -0.11      -0.02      -0.41       0.13 
   GA 2_6       0.25      -0.18      -0.03      -0.07       0.20      -0.42 
   GA 2_7      -0.16       0.14       0.09      -0.03      -0.16      -0.02 
   PS 1_1       0.83      -0.47      -0.39      -0.19       0.52      -0.68 
   PS 2_1      -0.90       0.51       0.42       0.20      -0.57       0.74 
   PS 2_2       0.00       0.00       0.00       0.00       0.00       0.00 
 
         Correlation Matrix of Parameter Estimates    
 
              GA 1_7     GA 2_1     GA 2_2     GA 2_3     GA 2_4     GA 2_5    
            --------   --------   --------   --------   --------   -------- 
   GA 1_7       1.00 
   GA 2_1      -0.28       1.00 
   GA 2_2       0.11      -0.22       1.00 
   GA 2_3       0.03      -0.09       0.31       1.00 
   GA 2_4      -0.15       0.35      -0.18       0.36       1.00 
   GA 2_5      -0.12       0.24      -0.44       0.39       0.18       1.00 
   GA 2_6      -0.03      -0.55       0.22      -0.15      -0.16      -0.26 
   GA 2_7      -0.43       0.36      -0.20      -0.05       0.27       0.23 
   PS 1_1       0.52      -0.38       0.08       0.03      -0.13      -0.09 
   PS 2_1      -0.56       0.41      -0.09      -0.04       0.15       0.10 
   PS 2_2       0.00       0.00       0.00       0.00       0.00       0.00 
 
         Correlation Matrix of Parameter Estimates    
 
              GA 2_6     GA 2_7     PS 1_1     PS 2_1     PS 2_2    
            --------   --------   --------   --------   -------- 
   GA 2_6       1.00 
   GA 2_7       0.29       1.00 
   PS 1_1       0.21      -0.14       1.00 
   PS 2_1      -0.23       0.15      -0.89       1.00 
   PS 2_2       0.00       0.00       0.12      -0.25       1.00 
 
 Unbiased Model of Obligations and Child-Centered Control:soccap1b               
 
 Standardized Solution            
 
         BETA         
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02        - -       0.73 
 EXCHAN02        - -        - - 
 
         GAMMA        
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02        - -      -0.34       0.12      -0.14       0.11       0.01 
 EXCHAN02       0.45       0.18       0.19       0.19      -0.21       0.28 
 
         GAMMA        
 
             DENSITY    
            -------- 
   COLL02       0.01 
 EXCHAN02      -0.14 
 
         Correlation Matrix of Y and X            
 
              COLL02   EXCHAN02   EXCHAN90     CONDIS    CONAFF2      PHISP    
            --------   --------   --------   --------   --------   -------- 
   COLL02       1.00 
 EXCHAN02       0.76       1.00 
 EXCHAN90       0.76       0.75       1.00 
   CONDIS      -0.64      -0.30      -0.37       1.00 
  CONAFF2       0.69       0.43       0.47      -0.71       1.00 
    PHISP      -0.44      -0.15      -0.39       0.45      -0.59       1.00 
    ASIMM      -0.44      -0.26      -0.24       0.65      -0.67       0.37 
  RESSTAB       0.70       0.70       0.76      -0.35       0.37      -0.19 
  DENSITY      -0.50      -0.57      -0.60       0.18      -0.12      -0.03 
 
         Correlation Matrix of Y and X            
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               ASIMM    RESSTAB    DENSITY    
            --------   --------   -------- 
    ASIMM       1.00 
  RESSTAB      -0.06       1.00 
  DENSITY      -0.11      -0.67       1.00 
 
         PSI          
 
              COLL02   EXCHAN02    
            --------   -------- 
   COLL02       0.21 
 EXCHAN02      -0.12       0.33 
 
         Regression Matrix Y on X (Standardized)      
 
            EXCHAN90     CONDIS    CONAFF2      PHISP      ASIMM    RESSTAB    
            --------   --------   --------   --------   --------   -------- 
   COLL02       0.33      -0.21       0.26      -0.01      -0.05       0.22 
 EXCHAN02       0.45       0.18       0.19       0.19      -0.21       0.28 
 
         Regression Matrix Y on X (Standardized)      
 
             DENSITY    
            -------- 
   COLL02      -0.09 
 EXCHAN02      -0.14 
 
                           Time used:    0.016 Seconds 
 
 


