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LECTURE 4: THE GENERAL LISREL MODEL

L QUICK REVIEW OF A LITTLE MATRIX ALGEBRA.
II. A SIMPLE RECURSIVE MODEL IN LATENT VARIABLES.
III. THE GENERAL LISREL MODEL IN MATRIX FORM.

A. SPECIFYING STRUCTURAL EQUATIONS.

B. COMPUTING MOMENTS IN TERMS OF PARAMETERS.

In this lecture, we want to lay out the general LISREL model in matrix form. To do this, we need to review a little
elementary matrix algebra. I'll then lay out a simple example in scalar algebra, and show how it is represented in
matrix algebra. We'll conclude by computing moments in terms of parameters to get the LISREL model. Here's
what we'll end up with: £ = %(0), where
Ay, =B)TToI"+ WU - B)‘1'A’y + 0, AyA—-B)'TPA,
Z(0) =
Ay ®T'(01 = B)™' A/ A, @A+ Of
I QUICK REVIEW OF A LITTLE MATRIX ALGEBRA.

Matrix order:

(rows X columns)

col 1 col2
row 1 [ S11 S12]
=row 2| S21 S22
X
(rxe) row 3Ls31 32
3 x2

A few common matrices
Square matrix contains the same number of rows and columns (r x c¢), which is the matrix's order.

S S11 S12 S13
S21 S22 S23

(Bx3) S31 S32 S33

Triangular matrix contains zeros either above or below the diagonal:

T [tn 0 o0
=|t t 0
3 X 3 21 22 l
( ) t31 U3z 33

Diagonal matrix is a square matrix with off-diagonal elements all equal to zero:

D [dn 0 Ol

(3x3) 0 0 dy

Identity matrix is a diagonal matrix with ones on the diagonal:

I [1 0 1]
=10 1 O

3x3

( ) 0 0 1
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A symmetric matrix, such as a covariance or correlation matrix, is one in which each row is identical to its
corresponding column. The transpose of a symmetric matrix is the matrix: S'=S.

S [311 a b l
= a 522 c
(3x3) b ¢ su

Transpose (interchanges rows and columns):

0 ,
OPR ] S LR
(3x%x2) 021 (2x3) 0 0 vy
V32
1. (A)Y=A (transpose of the transpose of a matrix is the matrix)

Addition and subtraction (must have same order p x q):

B _ P11 312] I =[1 0 [-B _ 1-B1 b2 ]
(2x2) B21 B2z (2x2) 0 1 (2x2) —B21  1—Po

Properties of addition and subtraction:

1. A+B=B+A Commutative
2. (A+B)+C=A+B+0) Associative
3. (A+B)=A"+B Transpose

Multiplication (must be conformable): A B=2C
(pxq) (qxt) (pxt)

cB [C Bi1 € P2

], where c is a scalar

(sz)z CPar € P2
[x1 X vy’ X1Y1 X1Y2 X1)3
X=|% ] Y'=[D1 Y2 V3] =[X2Y1 X2Y2 X2Y3
X3 Bx1(1x3) Xoy, X3V2 X3Ys
B _[Bu ﬁ12] ' _[ru T V13]
(2X2)  1Ba1 Paz (Z%x3) lyar Y2z Va3

B r_ P11V11 + Bi2Yar  BiiViz + Bi2V22  BuVis + ﬁ127’23]
(2x2)(2x3) Ba1V11 t B22V21  B21V12 + B22V22  Ba1Yis + BazV2s

Properties of multiplication:

1. (AB)=B'A’ A'B'=(BA) (ABC)=C'B'A' Transpose
2. (AB)C=ABCOC) Associative
3. AB#BA Non-communative (except in special cases)

4. AB+C)=AB+AC Distributive
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5. TA=A AI=A Identity Matrix (square diagonal matrix with ones on the diagonal, zeros elsewhere)

Trace is the sum of diagonal elements (square matrices only):
n
tr(S) = z Sii
i=1

S [511 S12

ex2) s sl O =50t

Properties of trace:

1. tr(S) = tr(S") Trace of a matrix is equal to the trace of its transpose
2. r(SX)=tr(XS) Communative (assuming they're conformable)
3. tr(S + %) =1tr(S) + tr(X) Distributive (assuming they're conformable)

Determinant (of a square matrix)

[S1] = 54 (determinant of a scalar is equal to the value of the scalar by definition)

S11 S12
S21 S22

S| = | | = S11S22 — S12521  (subtract cross-products)

S$11 S12 S13
S21 S22 S23
S31 S32 S33

IS| = = $11522533 — 512521533 T 512523531 — 513522531 T $13521532 — 511523532

For larger matrices, it gets complicated:

1. Find the minors, which are the determinants of submatrix S;; when the ith row and jth column have been
removed. In the above 3 x 3 example:

|S: |_|522 523|—s S $338
11| = = -
S3p  Saz 22533 23532
S11 S13
|S22] = | | = 511533 — 513531
S31 S33

etc, for all nine minors...
2. Transform each minor into a cofactor by changing the sign according to:
(1) |54 when i + j = even, sign is positive; when i + j = odd, sign is negative
3. Place these cofactors into a matrix of cofactors:
+S11l =812 +[S13]

C=|-151l +IS22l —IS2l
+1S31]  —I1532]  +]S33]
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Then take any single row or column and multiply each element of S (the original 3 x 3 matrix) by its corresponding
element in C, and sum the resulting products. Let’s take row one of C and multiply each element by its
corresponding element in S (note the signs in C):

51115111 = 5121812] + 513151317511 (522533 — S23532) — 512(S21533 — S23531) + S13(S21532 — 522531)
Multiply this out and obtain:
= S11 822 833 - S12 821 S33 1 S12 823 831 - 813 S22 831 T 813 S21 832 - S11 823 S32
Properties of Determinants:
1. |S' =|S| The determinant of the transpose of a square matrix is the matrix.
2. If S has two identical rows or columns, |S| =0
3. If S has a zero row or column, |S| =0

4. |S 2| = |S| |Z| The determinant of the product of two square matrices is equal to the product of their
determinants.

5. For a diagonal matrix, D, determinant is the product of the diagonal elements: [[iL, d;;

6. For a lower triangular matrix (zeros above the diagonal), T, determinant is the product of the diagonal
elements: [T, t;;

7. If the elements of a single row or column of a square matrix S are multiplied by a scalar C, the determinant is
equal to ¢ |S|. If every element is multiplied by the constant, then |c S| = c™ |S].

Inverse of a square matrix:
The inverse of a matrix is the matrix analogue of scalar division.
The inverse of a square matrix S is that matrix S that yields an identity matrix when multiplied by S:
SS!=S1S=1 where | = identity matrix (ones on diagonals; zeros elsewhere)
The inverse matrix can be expressed as:
S1=(1/|S)(adj S)  whereadj S= C'": the adjoint matrix is the transpose of the matrix of cofactors

The inverse of a matrix can be obtained in four steps: Minor Cofactor Transpose Determinant. For a 2 x 2 matrix
it is easy:

S [511 512]=[i ‘Zl

(2x2) LS S22
[522 521] [ S22 _521] [ S22 _512] 1 [ S22 _512]
- - -
S12 S11 —S12 S11 —S21 Su1 S11S22 — S12521 L7S21 S11
(1) Minor  (2) Cofactor (3) Transpose (4) Determinant
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For our example,

[2 1] [2 —1] [2 —4] 1 [2 —4] _r1 —2]

- - -—_— =

4 3 —4 3 -1 3 B -@dHMmit-1 3 ¥ 1%
()Minor (2) Cofactor (3) Transpose (4) Determinant (5) Inverse
To check these results, premultiply the result by the original matrix and we should get an identity matrix:

[3 4” 1 —2] _ [(3)(1) + W% =2+ (4)(11/2)] _ [3 +2 -6+ 6] _ [1 0
1 2l 1Tl OO +@EFEw) OE)+@aw)] T li-1 —2+431 7o 1

Properties of Inverses:
L (S)!'=(SY) inverse of transpose of S is equal to the transpose of the inverse
2. (ST)y'=x!S! Distributive property
(ABQO)y!'=C!'B! A"
3. (cS)'=1/c S where cis ascalar

4. For a diagonal matrix with d; on the diagonal, the inverse is a diagonal matrix with 1/d;i on the diagonal.

R IO R P
= 22 = 22
Gx3) 1o 0 di Gx3) | 0 1/dss

5. If |S| =0, S! does not exist -- because we cannot divide by zero -- and S is said to be a singular matrix. A
nonsingular matrix has an inverse. E.g., (X'X)! does not exist if |X'X| = 0, such as when it has a zero row or
column or has two columns or rows that are identical. The latter occurs in the case of perfect collinearity in
multiple regression, and = (X'X)" X'Y cannot be defined. And, empirically, as |X'X| gets closer and closer to
zero, (X'X)™!' gets smaller and smaller, and o (X'X)"!' gets bigger and bigger, causing standard errors to get bigger
and bigger.

6. BB=1  where B is an idempotent matrix
I1. A SIMPLE RECURSIVE MODEL IN LATENT VARIABLES.
A. REPRESENTATION IN SCALAR ALGEBRA.

We have two substantive equations:

m=yn & +
Mm=y1& +pam+&

and six measurement equations:

X1 =M1 &+ vi=Aimte
= & +& Y2 = m+e
V3=Apmtes
Y4 = 2t &4
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Assume we're in deviation scores, so all
observed variables (and latent variables) have
expected values of zero, and make the usual
assumptions of disturbances (zero expected
values, mutually uncorrelated, and uncorrelated
with independent variables in its equations).
Note we have six observed variables, and
therefore, 21 observed moments -- [k (k + 1)]/2
=(6) (7)/2=21.

To keep track of the number of variables, let's
let

p = number of y variables (observed measures
of endogenous latent variables ns)

q = number of x variables (observed measures
of exogenous latent variables &s)

n = number of & variables (unobserved

exogenous variables)

ED

&

Y11
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}\xll

m = number of n variables (unobserved endogenous variables)

INCOME/

M

G
BZI
Y21
N,
1
}Ly32 1

Y2
? Y3 4

(a2}
N}
E——
O

In our model, we have p=4,q=2,n=1, m=2. Furthermore, our model has 15 parameters:

Se1?, Y11, Y21, Bat, 6c1%, 6022, Axits Ayit, Aysz, Os12, Os2%, Get2, Gea?, Gea2, Oed’.

That implies six tetrad difference overidentifying restrictions, of the following form:

Oy2x2 Oylx1 = Oy2x1 Oyix2.

I11.

A. SPECIFYING STRUCTURAL EQUATIONS.

THE GENERAL LISREL MODEL IN MATRIX FORM.

Let's express our model in matrix form. Start with the substantive equations:

n = B n +7T & +
(mx1) @Mxm)(mxI)(mxn)(nx1l) (mx1)
M1 0 .812 .813 .Blm_ N1 Y11 Yia
up 321 0 ﬁ13 ﬂZm N2 Vo1 Yoo
ns | = Bzx Pz O Bzm ns |
hm —.Bml ﬁmz ﬁm3 0 | Im ' :
(mx1) (m x m) (mx1) (mx n)

In our model above, we have:
m=yu&+&

Mm=y1& +pam+&

Yin 3t
Yon &

$3
Youn | 5n

én

(nx1)(mx1)

&
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Therefore, in matrix form we have:
m 0 01[m Y11 ¢1
= + [&]+
yp B21 01172 Y21 ¢
2x1) (2x2)2x1) @xHIx)@2x1)
Aside: if we included (1, in the model, it would be a non-recursive model.

It will be useful later to express our substantive model in a way that isolates 1 on the left-hand side. We can do that
with a little matrix manipulation:

n=Bn+T &+ (

(mx1) (mxm)(mx1) (mxn)(nx1) (mxl1)

n-Bn =T¢ +¢
(mx1) (mx1) (mx1) (mxl)

I-B)n =I' ¢ + ¢

(mxm)(mx1) ( mx1) (mx1)

n=«d-B'Te¢+ 9

(mx1) (mxm) (mx1)  (mx1)

We can take the transpose of n, which will be useful later:

=@ &+ O (-B'  (AB)=BA
W= 9+ O] A-BY (A+BY=A+B
=@ '+ 0 (-B' (ABY=BA

Let's express our measurement models in matrix form. First our model for the Xs:

X = A g + )

(@x1)  (qxn) (nx1) (@x1)

NI ERIRER

Yol a2 A2 LA || %] | %
= +

X3 A O RN I

: ) : :

| xg | »/15;; )lf;;) /15;2_ e, ] Ls, ]

@x1) (@xn) mx1) (gx1)

In our example, we have:
X1 =M1 &+
x= & +6

X1 /‘lg’? 61
=L e

@x1l)  @xDdx1) @2x1)
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For our measurement model of ys, we have the following:

Yy = N n + €
exD (pxm) (mx 1) (px1)

[ V17 '/1531) /1%) /1532 MMy 17
Y2 /1%31) /1%) A?T?L N2 &2
= +
Y3 : T : M3 €3
: ® o || ‘

L Vg -/lpJ; ’1103; ’1173;71- LM d LéEp ]
(px1) (pxm) (mx1) (px1)

In our example, we have:

yi=A1 Mt
y2=mte
V3=l Mt e
ya= Mt e

In matrix form we get:

[ 3’1] /1?1) 0 &

Y2 1 0 [ 771] &
= +

Y3 0 A%) M2 £3

Ly, ] 0 1
4x1) 4x2) @2xD@Ex1)

This gives us matrix representations for slope parameters (A, v, and ). But we need representations of the error
variances for &, {, 9, and ¢ as well.

11
E($) _ @ _ $21 P2 B
mx1(1xn) nxn : . where E(& &) = ¢nn
¢n1 ¢n2 ¢nn
F/)ll
E(3) _

lp.21 lpzz Where E(chm) = lpmm

(mx1(Axm) mxm

l/)ml lpmz lpmm‘
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E (868" _ 0 _
(@x D1 xq) qxq

E(e€h _ 6, _
(x D1 xp) pXp

6
911

)
921

)
02,

rQ<
011

£
621

&
1051

For the model above, these matrices will be

P

1x1 = [¢11]
¥ B [ll)n ]
mxm 0 Yz
011
0, _ 0 6%
pXxXp 0 0 6%
0 0 0 064,

63,
022 Oa
05,
b2 Opp ]
@5 _ Qfl
2X2 0 o
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B. COMPUTING MOMENTS IN TERMS OF PARAMETERS.

where E(548q) = 65,

where E(g €)= 65,

Let's find expressions of moments in terms of parameters. Begin with the input covariance matrix. We have a

vector of Xs and Ys:

X1 Y1
X2 Y2

X Yy
gx1 %3] px17|Ys
Xq Yq

Now, compute covariances:
2
Ox,

2
ZXX Oxpx, Ox;,

E(XX) = 3 =

laqul quxz

Xl
1xXgqg

=[x1 x;

!

>
E(YY):p)Y(Yp=

YI

Uy 1

O-J/ZJH

layph

! r

x(’J] 1><p=[y1 Y2

ayz

Oypy2

Vo]
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[0951311 Oxiy, = GX1)’p] [GY1X1 Oyix, == GJ’ﬁq]
o o . O g o - O
oot X2Y1 X2Y2 X2¥Vp ) Y2X1 Y2X2 Y2Xq
E(XYy) = "%V = E(Yx)=_"% =
qxp pxq
Oxgyr Oxqyz = Oxgyp Oypxs  Oypx, = Oyyxg

Let's put these results together by partitioning our vector of variables into x and y:

Y1

Y2

Y Vo

A _|exD] _

+ox1| X |7

qgx1 X1

X2

| xq |
Y Yy’ 2.4
7 7 B (pxl)[ v’ % ]_ (pxp) (P%Xq)
[+ > x@+] | , |lAxp) Axal Xy’ X'
l(qxl)J l(qXP) (q><q)J

Now that we have X, let's compute moments in terms of parameters to obtain X(0). Let's begin with the lower right-
hand partition of X, ¥, which gives covariances among the xs. Begin with the x equation:

X = A & + 1)
(gx 1 (@xn)  (nx1) (ax 1
We can take the transpose of x: (A+B)=A"+B'
X' — E_,’ Ax' + 9 (A B)v =B'A'
(Ixq) (I'xm) (nxq (Ixq)

Multiply these together:

xx' = AEEA! + 88+ ALY +  JEA!
(axq)  (gxn)(nx1)(1xn)(nxq) (qxq)  (qxm)(nx1)(1xq) (gx1)(1xn)(nxq)
Take expectations: 0

E(xx") = AxE(EE) AL +E@d) + AE(d) + E@® &) A
(qxq)  (gxn)(nxn)(nxq) (axq)

> Ak @AY+ O
(qxq) (gqxn) (nxn) (nxq) (gxq)

10
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We can get an expression for Zxy, the covariances between xs and ys, by multiplying our x equation by our y
equation and taking expectations:

Yy = Ny n + €
ex1 (pxm) (mx1) Px1)

Take the transpose of y:

yv — nv Ayv + ¢
(Ixp) (I'x m) (mxp) (Ixp)

XY = A EN A+ e+ AEE + 3w A
(@D(Ixp) (@m)xD(Ixm)mxp)  (@xD)(Ixp)  (qn)(@xl)(Ixp)  (qx1)(Ixm)(mxp)

Exy) = Ac BEm) Ay + E@e) + A E@Ge) +  E@n) Ay
(axp)  (axn) (axD)(Ixm)(mxp)  (ax1)(1xp) (axn) (nxD)(1xp)  (gx1)(1xm) (mxp)

So= Ax EEM)AS
(qxp) (gqxn) (nxm) (mxp)

We need an expression for E(§ 1'):

o=@+ a-By

(Ixm)  (Ixn)(nxm) (Ixm) (mxm)

& =& @I +0) (I-BF

(mx1)(1xm) (nx1)(1xn)(nxm) (1xm) (mxm)

E@n) = [EEHT + EECOHIA-B)"

(nxm) (nxn) (nxm) (nx1)(nxm) (mxm)

E¢n) = @ I'0-B)"

(nxm) (nxn) (nxm) (mxm)
Now replace E(§ 1) above:

So= Ax @ T (I-BY'Ay
(qxp)  (qun)(nxn)(nxm) (mxm) (mxp)

We can take the transpose of Xxy: (ABC)=C'B' A’

Sh= Ay, I-By' T @ A/
(pxq) (pxm) (mxm) (mxn)(nxn)(nxq)

Finally, we can express the covariance matrix of ys, Zyy, in terms of parameters. Begin with our equation for y and
its transpose y'":

= Ay n + €
(px1) (pxm) (mx1) (px1)
yv — nv Ayv + ¢
(Ixp) (I'xm) (mx p) (Ixp)

"
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Multiply the two equations together:

yy =A mn At oeed + Ayme + e Ay
(pxp)  (pxm) (mxD)(Ixm)(mxp) ~ (pxp) ~ (pxm) (mx1)(1xp)(px1)(1xm)(mxp)

Take expectations:

E(yy) =Ay Emn) Ay + E(eg) + AyEme) + E(en) A/
(pxp) (pxm) (mxm) (mxp) (pxp)  (pxm) (mxp) (pxm) (mxp)

Zy= Ay EmM) A + O
(pxp) (pxm) (mxm) (mxp) (pxp)

We need an expression for E(n n'). Start with our equations for n and n":

n=1-By' T &+ 0

(mx1) (mxm) (mxn)(nx1) (mxl)

N=E '+ 0 a-B

(Ixm) (Ixn)(nxm) (1xm) (mxm)

Emm)=E{[d-B)'(@T & + OI[E I'" + O A-B"]}

(mx1)(1xm) (mxm) (mxn)(nx1) (mx1) (1xn)(nxm) (Ixm) (mxm)

Emn)=I-By'E[(T & + OI[(¢E I" + O 1a-B)™

(mx1)(1xm) (mxm) (mxn)(nx1) (mx1) (1xn)(nxm) (Ixm)  (mxm)

Emm)=(I-By'E[(T & & I+ (¢ + T &C + ¢ g mia-p"
(mx1)(1xm) (mxm) (mxn)(nx1)(1xn)(nxm)  (mx1) (I1xm) (mxn) (nx1)(1xm) (mx1)(1xn)(nxm) (mxm)

Emn)=(1-By' T EEE&) I't ECL) + T EE ¢)+ EC &) IMId-By"

(mx1)(1xm) (mxm) (mxn)(nxl)(Ixn)(nxm) (mx1)(Ixm) (mxn) (nxl)(1xm) (mx1)(Ixn)(nxm) (mxm)

EmM)=1-B'T & I' + ¥) (I-B)"

mxm mxm (mxn)(nxn)(nxm) (mxm) (mxm)
Now replace E(n 1) above to get Zyy:

3= Ay[(I-B'(@T @ I' + ¥)(I-B)"]A) + O
(pxp) (pxm) (mxm) (mxn)(nxn)(nxm) ~(mxm) (mxm)  (mxp)  (pxp)

Now, let's put these results together in our partitioned matrix of observable moments, X:

2:YY 2:YX ,
xp) (x| [A,Ad-B)*Tor'+¥)I-B A +060, A, (I-B)'TdA,

Lyx Lxx A, @T'(1 — B) T A Ay @A)+ O
(@xp) (@xq)
) _ 2(0)
P+q) xXp+q) P@P+a) xXp+q)

This is the specification of the LISREL model, which is what we set out to show back on page 1.

12
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The above equations specify the observed population moments, Z, in terms of the parameters of the general LISREL
(covariance structure) model, £(0). It is precisely the same kind of equation we've been expressing this semester,
beginning with a bivariate regression model.

Note that in empirical applications—as before—we don't have access to the population moments X, but have to rely
on sample moments, S. In that case, we can use the above population equation to express the sample moments in
terms of sample estimates of the model's parameters:

SYY SYX _q
@xp) x| |[A,a-B1@Edr+ ?)1-B)"A,+ 8, A, - B) I ®A,
l Syx Sxx J A, M0 - B)'A, A, ® R, + 05
(@gxp) (@xq)
S _ 2(6)
@+ xp+q) P+ xXp+q)

As before, for just-identified or over-identified recursive models in observables, we can rely on the method of
moments to obtain estimates of parameters in the matrix on the right-hand side. But for more complicated over-
identified models, we need a way of reconciling more than one way of computing parameters from sample moments.
And there is the additional problem of obtaining correct standard errors and test statistics for the estimates. We'll
rely mainly on the principle of maximum likelihood for this.
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