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 LECTURE 3: A SIMPLE STRUCTURAL MODEL WITH UNOBSERVED VARIABLES 
 
I. WHAT'S SO STRUCTURAL ABOUT STRUCTURAL MODELS? 
II. CONSEQUENCES OF MEASUREMENT ERROR IN LINEAR MODELS 
III. SPECIFICATION OF A WALKING DOG MODEL. 
IV. MOMENTS IN TERMS OF PARAMETERS AND VICE-VERSA. 
V. ESTIMATION AND TESTING. 
 
I.  WHAT'S SO STRUCTURAL ABOUT STRUCTURAL MODELS? 
 
We can now say something about the term “structure” in structural equation models.  Note that the covariance 
structure models we've been working with could be used in a non-structural way, as merely a useful description of 
some sample data, or as a description of a set of variables in a population (often regression models are used in this 
way).  But we are hoping to do a little more with our models than mere description of either a sample or a 
population.  We want to get at an underlying structure, represented by our equations, and containing parameters that 
are in some sense “invariant.”  Take our Model I from last lecture as a simple example: 

 
X1 = Father's Income, 
X2 = Education 
X3 = Offspring's Income 

 
 
The structural equations are: 
 
X2 = β21 X1 + ε2 
X3 = β31 X1 + β32 X2 + ε3 

 
In matrix form, the complete model (moments in terms of parameters) is: 
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We hope that a structural model holds not for just one sample or one population, but for several or all populations of 
interest.  Thus, if a model only held for a given population at a given moment in time and space, so that we'd have to 
change the model completely at the next moment in time—or if tiny changes in the population caused the model to 
fail—the model would not be of too much more utility than using the observed sample covariances to describe the 
population.  We hope that some property of the model would be invariant across some time span and across some 
populations.  Thus, a human capital model that only held for white males in the U.S. in 1950 would be much less 
useful than an alternative model that held also held for females, minorities, all western nations, and the period of late 
capitalism.   
 
Note that this logic corresponds to what most social scientists are concerned with—identifying patterns of social 
action and interaction that tends to persist over time and space.  Whenever we are specifying and testing models and 
doing model-based inference—as opposed to pure description, prediction, or forecasting—we are searching for 
invariant patterns or structure, which corresponds to our theoretical understanding of the phenomenon,  and which 
we assume generated the sample data.   
 
With this in mind, Duncan (1975) points out, if we changed the variance of X1, which is an unanalyzed quantity in 
the model, we would change each and every covariance (and variance) in the model.  (You can see this by noting 
that the expressions for σ32 and σ33 each contain σ21, which is a function of σ11.)  Since we would be changing each 
variance of the model, we would necessarily be changing every standardized parameter and R2 as well.  However, 
we wouldn't be changing the structural parameters of the model -- particularly the βs.  In other words, they would be 
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invariant with respect to changes in σ11.  Because σ11 is exogenous to the model, it can be changed easily, by 
manipulating the assignments of subjects to treatments if it's an experiment, or moving to a different population 
(such as across race) that has less variation on X2 (father's occupation), or in the case of drawing sample data, 
stratifying X1 and varying the sampling from strata. The fact that the βs do not change when we change σ11 gives 
them a property of invariance that the observed covariances and correlations (and standardized coefficients) lack.  
The same holds for changing the variances of the disturbances:  the covariances and correlations (and standardized 
coefficients) will change, but the βs will remain invariant. 
 
This implies that R2s and standardized coefficients lack the property of invariance, and are thus limited in describing 
underlying structure and making cross-population comparisions.  Standardized population parameters, pyx = β σx/σy, 
are a function of the variance of the independent and dependent variables, and the estimates are a function of the 
corresponding sample variances,  ෠ܲyx  = ߚመsx/sy.  Similarly, the R2 for the model is dependent on a combination of 
moments and parameters R2 = 1 - sε11/s11, where sε11 = (N - 1)/(N - K) (s11 - ߚመ31 s11 - ߚመ12 s12 - ... -  ߚመ1K s1K).  Note that 
the R2 is not a parameter of the model, but a summary of parameters and moments, and thus it is unlikely to be 
invariant across populations.  Social scientists are notorious for making the error of comparing standardized 
coefficients and R2s across populations.  Thus, a difference in unstandardized parameters is often telling us about 
differences in underlying structure across populations, whereas differences in standardized coefficients could be due 
not to differences in structure, but rather differences in observed sample moments.  In the applied literature, social 
scientists also tend to overemphasize the desirability of having large R2s.  It is desirable ceteris paribus –given one 
has the correct model and has estimated invariant parameters.  A low R2  may suggest that a model is misspecified, 
but if a model is properly-specified, it may simply mean that the phenomenon is not highly-structured.  Moreover, a 
high R2 may suggest that a model has succeeded in identifying structure, but that is not necessarily so—there are 
many ways of artifically inflating R2s in unmeaningful ways without using a structural model (e.g., add correlated 
regressors, aggregate the data, add regressors that are part of the dependent variable, use aggregate time-series data, 
etc.).  In other words, an R2 has no necessary connection to structure. 
 
As noted above, a model that only fit a single population in a single point in time is much less useful than one that 
described the population in different time periods, or described a family of similar but different populations.  The 
parameters of our structural model, the βs, would remain relatively invariant across different populations that varied 
only in the variances of the exogenous variables (e.g., σ11) and the disturbance variances.  The covariances would 
change, but that change is a kind of “surface” change, since the structural parameters remain invariant.  A “deeper” 
structural change would occur if the βs themselves changed.  For example, one could envision a simple human 
capital model of returns to education operating identically in advanced western democracies, but begin to change 
when the democracies turned to socialism.  This would represent a fundamental structural change that is 
theoretically more meaningful than mere changes in observed covariances (see Duncan pp. 51-57 and 149-168).  
 

Aside: Hierarchical (multi-level) linear models are random coefficient models in which the βs are assumed to 
be random variables drawn from a known (e.g., normal) distribution, with a certain mean and variance.  Thus, 
the βis vary across some unit (like nations) according to a probability distribution.  As random variables, they 
are treated as the dependent variables in a second equation where the subscript i refers to the unit, like nations:  
βi = γ Xi + εi. 

 
We can list out different forms of social change, ranging from superficial to deeply structural: 
 

1. Random fluctuations in the data due to sampling error (within an invariant structural model). 
2. Variation due to changes in the variance of exogenous variables (within an invariant structural model). 
3. Variation due to changes in the above, plus changes in disturbance variances (within an invariant structural 

model). 
4. Structural changes in the values of the structural parameters βs. 
5. Structural changes in the specification of the structural model itself, requiring new or different structural 

parameters (e.g., structural differentiation in a biological organism). 
 
Our simple human capital model was specified on individuals—predicting the income of individuals as a function of 
father's occupation and offspring's education.  But the mechanisms by which father's occupation and education 
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translate into income is not an individual process.  It implicates a family system, an educational system, and a labor 
market system.  Thus, one could argue that the underlying structure (if indeed, the model captures structure) is a 
social structure. 

 
Aside:  Note the tradeoff in internal and external validity in seeking to identify structure in a randomized 
experiment versus a structural model on nonexperimental data.  In the former, the disturbance term arises 
solely due to randomization, effects have a causal interpretation, since we've assigned treatments, conditional 
on the experimental setting, but we often have little confidence that such effects would hold in naturally-
occurring populations of interest.  In the latter, we have confidence that effects would hold in naturally-
occurring populations, since we observe assignment to exogenous variables in natural settings, but must make 
a leap of faith that the model—and in particular, the disturbance specification—is correctly specified to allow 
us to talk about structure.  In the econometrics and social statistics literatures there is a controversy over the 
relative merits of using structural (selection) models to estimate program effects versus using randomized 
field experiments. 

 
But how do we know when we have a structural model with parameters that have some invariance?  And how do we 
construct such a model?  The answer to these questions takes us out of the realm of covariance structure analysis.  
The proper specification of a structural model is a substantive theoretical question.  Whether a model is structural 
model depends on the state of the theoretical knowledge of the phenomenon of interest.  As Duncan (1975) notes, 
often there is no structural model underlying variables of a given substantive area, and the area is waiting for a 
theory that will invent the proper variables that get at structure.  Whether your model really represents structure must 
be judged in the context of the state of theoretical knowledge of the substantive area, including judgements of 
whether the assumptions of the model seem plausible, whether it is plausible to treat parameters as invariant, and 
whether more plausible alternative models exist.  But the method cannot "reveal" structure to us from sample data— 
claims of TETRAD advocates (Glymour et al. 1988) notwithstanding (although we can rule out some possibilties).  
It cannot tell us which way causality flows or which variables are needed or how disturbances should be specified.  
These questions are answered by the accumulation of empirical knowledge combined with our theoretical 
understanding of the phenomenon.  Structural equation models are only a tool for formalizing such theoretical 
knowledge in a parsimonious mathematical representation (model), and conditional on the strength of that 
knowledge and the resulting specification, estimating and testing the parameters of such a model.  Duncan (1975, p. 
150) offers some sage advice: 
 

Do not undertake the study of structural equation models (or, for that matter, any topic in sociological 
methods) in the hope of acquiring a technique that can be applied mechanically to a set of numerical data with 
the expectation that the result will automatically be "research." 

 
The single most important problem in the use of structural models is having a sufficiently strong substantive theory 
(and using it properly) to get at the underlying structure of a social process.  One could make a strong argument (as 
Freedman 1987, 1991 does) that contemporary social science theory is not strong enough to specify truly structural 
models, and that our models do not get at invariant causal processes.   
 
II. THE CONSEQUENCES OF MEASUREMENT ERROR IN LINEAR MODELS. 
 
Much of the popularity of covariance structure analysis derives from its ability to estimate linear models with 
variables measured with error.  We will reach two conclusions here:  (1) random measurement error in independent 
variables causes the OLS estimator to be biased (and inconsistent) and inefficient, and estimated standard errors to 
be biased; (2) random measurement error in dependent variables results in OLS being unbiased but inefficient, with 
biased estimates of standard errors. 
 

A. RANDOM MEASUREMENT ERROR IN AN INDEPENDENT VARIABLE. 
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Consider the following two models: 

We've seen Model II before, and we know that b = σxy/σx
2 and σu

2 = σy
2 - b2 σx

2.  Model I assumes that X, our 
observed independent variable is measured with random error.  We specify X as a linear combination of X*, an 
unobservable variable, plus a random measurement error ε.  Think of X* as the “true” variable that would result if 
we could measure X perfectly.  We have two equations (assume we're in deviation scores): 
 
X = X* + ε  
 
Y = γ X* + ζ 
 
The first equation is a linear measurement equation, expressing the observed variable X as a function of the true 
score plus a random measurement error.  The second is the substantive structural model, such as returns to 
education.  Let's assume that E(ε) = E(ζ) = 0 and E(ε ζ) = E(X* ε)= E(X* ζ) = E(X ζ) = E(y ε) = 0.  Later, when we 
try to estimate parameters from sample moments and do inference, we'll need to assume εiN(0,σε

2), ζiN(0,σζ
2), so 

let's just do so now.  We have three moments σx
2, σy

2, and σyx, and four parameters (σx
2, σx*

2, σζ
2, γ).  We have more 

parameters than moments (and normal equations) and thus the model is underidentified.  We'll be able to express 
moments in terms of parameters, but not vice-versa, without additional information on the parameter values.  (This 
also implies that we won't be able to estimate parameters from sample data without additional information.)  For 
now, let's assume we know the values of the population parameters (and so could express parameters uniquely in 
terms of moments).  We'll show what happens if we compute parameters using incorrect Model II instead of the 
correct Model I.  Before doing that, it will be useful to give the standardized version of the first equation: 
 
X = X* + ε  X/σx = (σx*/σx) X*/σx*+ (σε/σx) ε/σε 
 
Standardized:  Zx = Pxx* Zx* + Pxε Zε  where Zx = X/σx, Zx* = X*/σx*, Zε = ε/σε, Pxx* = ρxx* = σx*/σx, Pxε = σε/σx. 
 
Back to the unstandardized equations.  We can compute moments in terms of parameters for Model I: 
 
1. σx

2 = σx*
2 + σε

2 which implies that σx*
2 = σx

2 - σε
2  

 
The true score variance is the observed variance minus the error variance. 
 
2. σy

2 = γ2 σx*
2 + σζ

2 
3. σyx = γ σx*

2   
 
Also, note that σyx = σyx* (by multiplying the first equation by Y) and σxx* = σx*

2 (by multiplying the first equation by 
X). 
To illustrate the consequence of measurement error, let's solve for just two parameters in the true model (Model I), γ 
and σζ

2 (and assume we know the population value of ε). 
 
4. γ = σyx /σx*

2 

X* 
γ 

ζ 

ε 

Y 

X 

X Y

u

b

MODEL I:  TRUE MODEL II:  WRONG
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σζ

2 = σy
2 - γ2 σx*

2 
 
5. σζ

2 = σy
2 - γ2 σx

2 + γ2 σε
2 

 
Now, what would we get if we incorrectly computed parameters in terms of moments using the wrong model 
(Model II)?  Let's express Model II's parameters in terms of the parameters of the true model (Model I). 
 
b = σxy/σx

2   For (true) Model I, σyx = γ σx*
2.  Therefore, we can replace σyx 

 
b = γ (σx*

2/σx
2) since from standardized results above, σx*/σx = ρxx*; it follows that 

 
b = γ ρxx*

2   where ρxx*
2 is the squared correlation between X* and X, called the reliability coefficient (note 

Bollen labels this ρxx). 
 
The above implies that in the population, if the true model entails random measurement error in X, and we 
incorrectly assume a perfectly-measured X, we'll get the wrong value for γ.    Note also that if you somehow knew 
the value of ρxx*

2 , for example, from an earlier study,  you  could correct for attenuation in b,   
 
γ = b / ρxx*.This assumes that we are in the population.  What if we are relying on sample data and we try to estimate 
the parameters of Model I using the OLS estimators from Model II?  Let's start with the OLS estimator of b for 
Model II: 
 
෠ܾ = sxy/sx

2   If we use ෠ܾ to estimate γ, we'll get a biased estimate: 
 
E( ෠ܾ) = γ ρxx*

2  The OLS estimator of γ will be biased when random measurement error is ignored:  since ρxx*
2 < 

1, it will underestimate γ.  
 
Conclusion:  When X is measured with random error, the OLS estimator of the regression coefficient will be 
downwardly biased, and this holds regardless of sample size. 
 

B. RANDOM MEASUREMENT ERROR IN A DEPENDENT VARIABLE. 
 
Consider the following two models: 

 
Model I assumes that Y, our observed dependent variable is measured with random error: Y is a linear combination 
of Y*, an unobservable variable, plus a random measurement error ε.  Again, assume we're in deviation scores): 
 
Y = Y* + ε  
 
Standardized:  Zy = Pyy* Zy* + Pyε Zε  where Zy = X/σy, Zy* = X*/σy*, Zε = ε/σε, Pyy* = ρyy* = σy*/σy, and Pyε = σε/σy. 

Y* 
γ 

ζ 

ε 

Y 

X X Y

u

b

MODEL I:  TRUE MODEL II:  WRONG
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The second equation is again our substantive bivariate regression model when Y is corrected for measurement error. 
 
Y* = γ X + ζ 
 
Assume that E(ε) = E(ζ) = 0 and E(ε,ζ) = 0.  Later, when we try to estimate parameters from sample moments we'll 
need to assume εiN(0,σε

2), ζiN(0,σζ
2), so again let's just do so now.  Again, we have three moments σx

2, σy
2, and 

σyx, and four parameters (σx
2, σy*

2, σζ
2, γ).  (Again, without additional information about the parameter values, we 

would not be able to estimate this model from sample data.)  For now, let's assume we know the values of the 
population parameters, and show what happens if we estimated Model II instead of Model I. 
 
We can compute moments in terms of parameters for Model I: 
 
σx

2 = σx
2  

 
σy

2 = σy*
2 + σε

2 which implies that σy*
2 = σy

2 - σε
2  The true score variance is the observed variance minus the error 

variance. 
σyx = γ σx

2   
 
Also, σy*

2 = γ2 σx
2 + σζ

2 
 
To illustrate the consequence of measurement error, let's solve for just two parameters, γ and σζ

2 (and assume we 
know the population value of ε). 
 
γ = σyx/σx

2 
 
σζ

2 = σy*
2 - γ2 σx

2   but from above, σy*
2 = σy

2 - σε
2; therefore,  

 
σζ

2 = σy
2 - σε

2 - γ2 σx
2   

 
Now, what would we get if we (incorrectly) estimated the wrong model (Model II)?  Let's express Model II's 
parameters in terms of the parameters of the true model (Model I). 
 
b = σxy/σx

2     This is exactly the correct formula for γ 
 
Therefore, ignoring random measurement error in the dependent variable has no effect on our computation of the 
regression coefficient from observable moments.  What about the disturbance variance? 
 
σζ

2 = σy
2 - γ2 σx

2 - σε
2   σu

2 = σy
2 - b2 σx

2  but since b = γ, σu
2 = σy

2 - γ2 σx
2      

 
σζ

2 = σu
2 - σε

2      Substitute σu
2 for the first two terms: 

 
σu

2 = σζ
2 + σε

2 
 
Therefore, if we ignore random measurement error in the dependent variable, our formula for the variance of the 
disturbance term from observable moments will be wrong—it'll give us a value that is too big, since it pools the true 
disturbance variance plus the measurement error variance.  This means that our formula for the R2 for the equation 
will also be wrong (too small): 
 

R2 (Model I) = 1 - (σζ
2/σy

2) for (true) Model I.  But for (wrong) Model II, we get 
 

R2 (Model II) = 1 - (σu
2/σy

2) = 1 - (σζ
2 + σε

2)/σy
2  Since σu

2 is too big, R2(II) will be too small (unless σε
2 = 0). 

Aside:  This decomposition of the disturbance is a variance components model, used in random effects ANOVA 
designs, pooled time-series cross-section econometric models, and random intercept HLM models, where σε

2 
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represents the error component (assumed orthogonal to regressors) that varies either across time or across cross-
sections (depending on the model) but not both, whereas σζ

2 is an error term orthogonal to σε
2 that varies across both 

time and cross-sections.  (For a discussion of LISREL as a variance components model, see Jöreskog 1978 Annals 
de l'INSEE no. 30-31).  
 
What if we are relying on sample data and we try to estimate the parameters of Model I using the estimators from 
Model II?  Let's start with the OLS estimator of b for Model II: 
 
෠ܾ  = sxy/sx

2  If we use ෠ܾ  to estimate γ, we'll get an unbiased estimate: E( ෠ܾ) = σxy/σx
2 = γ. 

 
However, the variance of ෠ܾ, E( ෠ܾ 2) = σu

2/(xi - x-)2 will be bigger than the variance of ෠ܾ, E( ෠ܾ 2) = σζ
2/(xi - x-)2, 

making ෠ܾ  inefficient E( ෠ܾ2) > E( ෠ܾ2).  That inefficiency is dependent on the magnitude of σε. 
 
The least squares residual will give a biased estimate of the disturbance variance: 
 
su

2 = sy
2 - ෠ܾ 2 sx

2 
 
E(su

2) = σu
2 = σζ

2 + σε
2 If σε

2 > 0, estimates will be upwardly biased (too big). 
 
This means that the estimated standard errors of ෠ܾ  will be biased, since they depend on the biased estimate of the 
disturbance: 
 
sb = [su

2/(xi - x-)2] 
 
The estimated standard errors will be biased upward because the estimated disturbance variance was biased upward. 
 
Conclusion:  When Y is measured with random error, the OLS estimator of the regression coefficient will be 
unbiased but inefficient, and the estimated disturbance variance and estimated standard error will be upwardly 
biased.  This result holds regardless of sample size. 
 
These results, for random measurement error in the independent and dependent variables can be generalized to the 
multiparameter and multiequation cases.  First, in a single-equation multiple regression, when one independent 
variable, X1 is estimated with random measurement error, and that error is ignored, OLS estimates of the coefficient 
for X1 will be biased and inefficient.  Moreover, if X1 is correlated with other independent variables, their effects 
will also be estimated with bias (but the direction of bias is difficult to predict.)  When the dependent variable Y1 is 
measured with random error, all coefficients estimated by OLS will be unbiased but inefficient and estimated 
standard errors will be upwardly biased.  In models with multiple indicators that have correlated measurement 
errors, the direction of biases are less predictible (see Bollen 1989, pp. 167-171 for a discussion of bias and 
inconsistency). 
 

C. CORRECTING A CORRELATION FOR ATTENUATION DUE TO UNRELIABILITY. 
 
Here is the classical formula for a correlation coefficient corrected for attenuation due to unreliability: 
 

ρx*y* = ρxy/(ρxx*
2 ρyy*

2) 
 
where ρx*y* is the true correlation between X* and Y*, ρxy is the observed correlation between X and Y, and ρxx*

2 
and ρyy*

2 are the reliability coefficients for X and Y, respectively.  We 
can derive this using the results above: 
 
 

Y = Y* + ε  Pyy* = ρyy* = σy*/σy  (standardized) 
 

Y* γ 

ζ 

ε 

Y X 

δ
 
 

X
*
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X = X* + δ  Pxx* = ρxx* = σx*/σx  (standardized) 
 
Y* = γ X* + ζ Py*x* = ρy*x* = γ σx*/σy* (standardized) 
 
σyx = σy*x* = γ σx*

2 
 
 
 
 
Begin with the correlation between observed Y and X: 
 
ρyx

2 = σyx
2/(σx

2 σy
2)       We can replace σyx = γ σx*

2 
 
ρyx

2 = γ2 σx*
2/(σx

2 σy
2)      Multiply this out 

 
ρyx

2 = γ2 (σx*
2/σx

2) (σx*
2/σy

2)    but ρxx*
2 = σx*

2/σx
2 

 
ρyx

2 = ρxx*
2 γ2 (σx*

2/σy
2)      Multiply the right-hand side by σy*

2/σy*
2 = 1 

 
ρyx

2 = ρxx*
2 γ2 (σx*

2/σy
2)(σy*

2/σy*
2)   Rearrange  

 
ρyx

2 = ρxx*
2 γ2 (σx*

2/σy*
2)(σy*

2/σy
2)   We can replace ρy*x*

2 = γ2 σx*
2/σy*

2 from above 
 
ρyx

2 = ρxx*
2 ρy*x*

2 (σy*
2/σy

2)     We can also replace ρyy*
2 = σy*

2/σy
2 

 
ρyx

2 = ρxx*
2 ρy*x*

2 ρyy*
2      Take the square root of both sides 

 
ρx*y* = ρxy/(ρxx*

2 ρyy*
2) 

 
Thus, if we know the reliabilities of X and Y, we can correct the observed correlation for attenuation due to 
unreliability by simply dividing the correlation by the square roots of the reliabilities of X and Y.  This technique is 
often used in psychology and sociology. 
 
But from the standpoint of structural equation modeling, a more important issue is to estimate the reliabilities of 
indicators within a measurement model from sample data, test such a model, and correct for attenuation due to 
unreliability in multivariate models.  The principal motivation for developing the LISREL approach to covariance 
structure analysis was to incorporate models of measurement error into structural equation models. 
 
 
 
II. SPECIFICATION OF A WALKING DOG MODEL. 
 
Consider the following simple structural model with four observable variables and two unobservable or latent 
variables.  Suppose we are interested in returns to education, but have pairs of fallible indicators of income and 
education, which we assume are each valid measures but measured with some random measurement error.  For 
example, they could be reports given by the respondent and the respondent's parent, or they could be a self-report 
and census measures. 

 
There are four measurement equations relating latent 
(unobserved variables) to observed indicators:   
 
(1) x1 = λx11 ξ1 + δ1  (3) y1 = λy11 η1 + ε1 
 
(2) x2 = ξ1 + δ2    (4) y2 = η1 + ε2 

η1
 γ 

ζ

ε2 

Y1X1 

 ξ1 

δ1 
 

X
2
 Y

2
 

δ
2 
 ε

1
 

λx11 
 λ

y11 
 1

 
 1

 
 

ED
 
 INCOME
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Each measurement equation specifies the observed variable to be a linear combination of a latent true variable plus a 
random measurement error.  There is also a substantive equation relating unobserved variables: 
 
(5) η1 = γ11 ξ1 + ζ1 
 
Let's make the usual assumptions about disturbances being uncorrelated with each other, with regressors in their 
equations, having no serial correlation, having constant variance zero means, etc.  Suppose that η1 is income and ξ1 
is education.  Then equation (5) gives us returns to education after controlling for measurement error.  The latent 
variable does not have an inherent metric, so we have to assign it one.  We've done this above by specifying that λx21 
= λy21 = 1, which fixes the metric of η1 to be equal to that of x2, ξ1 to equal that of y2.  (We could also have specified 
the other λs = 1, or specified the variances of η1 and ξ1 to be some constant, such as 1.0.  More on measurement 
parameters later.)  Therefore, we have 10 moments and 9 parameters (λx11, λy11, σδ1

2, σδ2
2, σε1

2, σε2
2, σξ1

2, γ11, and 
σζ1

2).  That implies one overidentifying restriction on our sample moments. 
 
We’ll simplify the notation by using LISREL notation for structural variances: 
 
 E(ξ1

2) = ϕଵଵ  E(δ1
ଵଵߠ  = (2

ఋ   E(δ2
ଶଶߠ  =  (2

ఋ   E(ε1
ଵଵߠ =  (2

ఌ   E(ε2
ଶଶߠ =  (2

ఌ   E(ζ1
2)  = ψଵଵ 

 
To compute moments in terms of parameters, begin with two preliminary computations:  
 
E(η1

2)  = γ11
2 ϕଵଵ+ ψଵଵ   since E(η1

2) = E(γ11 ξ1 + ζ1)
2 = γ11

2 E(ξ1
2) + E(ζ1

2) + 2γ11 E(ξ1 ζ1) 
 
                      ϕଵଵ  ψଵଵ    0 
 
E(ξ1 η1 )  = γ11 ϕଵଵ     since E(ξ1 η1 ) = E[ξ1 (γ11 ξ1 + ζ1)] = γ11 E(ξ1

2) + E(ξ1 ζ1) 
 
II. MOMENTS IN TERMS OF PARAMETERS AND VICE-VERSA. 
 
Now, let's compute observable moments in terms of parameters: 
 
1.  σx1

2 = λx11
2 ϕଵଵ + ߠଵଵ

ఋ       E(x1
2) = (λx11 ξ1 + δ1)

2 = (λx11)
2E(ξ1

2) + E(δ1
2) + 2λx11E(ξ1 δ1) 

                       
                             ϕଵଵ  ߠଵଵ

ఋ     0 
 
2.  σx2

2 = ϕଵଵ + ߠଶଶ
ఋ         E(x2

2) = (ξ1 + δ2)
2 = E(ξ1

2) + E(δ2
2) + 2 E(ξ1 δ2) 

 
                       ϕଵଵ  ߠଶଶ

ఋ    0 
 
3.  σx2x1 = λx11 ϕଵଵ         E(x2x1) = λx11 E(ξ1

2) + E(δ1δ2) = λx11 ϕଵଵ + ߠଶଵ
ఋ  

 
                            0 in this model 
 
4.  σy1

2 = λy11
2 (γ11

2 ϕଵଵ + ψଵଵ) + ߠଵଵ
ఌ    E(y1

2) = λy11
2 E(η1

2) + E(ε1
2) = λy11

2 (E(η1
2))+ σε1

2 
 
               but from above, E(η1

2)  = γ11
2  ϕଵଵ + ψଵଵ 

 
5.  σy2

2 = γ11
2 ϕଵଵ + ψଵଵ + ߠଶଶ

ఌ      E(y2
2) = E(η1

2) + E(ε2
2) = γ11

2  ϕଵଵ + ψଵଵ + ߠଶଶ
ఌ  

 
6.  σy2y1 = λy11 (γ11

2 ϕଵଵ + ψଵଵ)      E(y2y1) = λy21 λy11 (γ11
2 ϕଵଵ + ψଵଵ) + ߠଶଵ

ఌ  
 
7.  σy1x1 = λx11 λy11 γ11 ϕଵଵ        E(x1y1) = λx11 λy11 E(ξ1η1) + E(δ1ε1) = λx11 λy11 E(ξ1η1)  
 
               cross-products = 0, but from above, E(ξ1 η1 )  = γ11 ϕଵଵ 
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8.  σy2x1 = λx11 γ11 ϕଵଵ       E(x1y2) = λx11 E(ξ1η1) + E(δ1ε2) = λx11 γ11 ϕଵଵ 
 
9.  σy1x2 = λy11 γ11 ϕଵଵ       E(x2y1) = λy11 E(ξ1η1) + E(δ2ε1) = λy11 γ11 ϕଵଵ 
 
10. σy2x2 = γ11 ϕଵଵ        E(x2y2) = E(ξ1η1) + E(δ1ε2) = γ11 ϕଵଵ 
 
 
We can arrange these results into our usual matrices: Σ = Σ(θ) 
 

Σ ൌ
4 ൈ 4				

ۏ
ێ
ێ
ێ
ۍ
					௫భߪ
ଶ 				

					௫మ௫భߪ
					௫భ	௬భߪ
					௬మ௫భߪ

௫మߪ
ଶ 								

					௫మ	௬భߪ
					௬మ௫మߪ

						௬భߪ
ଶ 				

					௬మ௬భߪ 					௬మߪ
ଶ

ے
ۑ
ۑ
ۑ
ې

 

 

Σሺθሻ ൌ
4 ൈ 4				

ۏ
ێ
ێ
ێ
௫భభߣ		ۍ

ଶ Φଵଵ ൅ ଵଵߠ
ఋ 													

																							௫భభΦଵଵߣ

ଵଵߛ௫భభߣ௬భభߣ
ଶ Φଵଵ										

ଵଵߛ௫భభߣ
ଶ Φଵଵ																		

Φଵଵ ൅ ଶଶߠ
ఋ 																					

ଵଵߛ௬భభߣ
ଶ Φଵଵ																	

ଵଵߛ௬భభߣ
ଶ Φଵଵ																		

௬భభߣ
ଶ ሺߛଵଵଶ Φଵଵ ൅ ψଵଵሻ ൅ ଵଵߠ

ఌ 															

ଵଵߛ௬భభሺߣ
ଶ Φଵଵ ൅ ψଵଵሻ																											 ଵଵଶߛ Φଵଵ ൅ ψଵଵ ൅ ଶଶߠ

ఌ
ے					
ۑ
ۑ
ۑ
ې

 

 
Now, let's compute parameters in terms of moments: 
 
For λy11, divide (9) by (10):  σy1x2/σy2x2 = (λy11 γ11 Φଵଵ)/γ11 Φଵଵ 
 
λy11 = σy1x2/σy2x2 
 
But we can also divide (7) by (8):  σy1x1/σy2x1 = (λx11 λy11 γ11 Φଵଵ)/(λx11 γ11 Φଵଵ) 
 
λy11 = σy1x1/σy2x1  
 

1.  λy11 = σy1x2/σy2x2 = σy1x1/σy2x1  
 
For λx11, divide (8) by (10):  σy2x1/σy2x2 = (λx11 γ11 ϕଵଵ)/	ϕଵଵ γ11  
 

2.  λx11 = σy2x1/σy2x2 = σy1x1/σy1x2      (the latter from dividing (7) by (9) 
 
For γ11, divide (8) by (3): σy2x1/σx2x1 = (λx11 γ11 ϕଵଵ)/(λx11 ϕଵଵ) 
 

3.  γ11 = σy2x1/σx2x1 = σy1x1 σy2x2/σx2x1 σx2y1   (the latter from replacing ϕଵଵ in (7) 
 
We can stop here.  For the anal-retentive, here are the rest of the parameters in terms of moments: 
 
 
For ϕଵଵ, take (2) σx2x1 = λx11 ϕଵଵ; we know that λx11 = σy2x1/σy2x2; so σx2x1 = σy2x1/σy2x2 ϕଵଵ 
 

4.  ϕଵଵ = σx2x1 σy2x2/σy2x1 = σx2x1 σy1x2/σy1x1   (the latter replacing λx11 = σy1x1/σy1x2) 
 
For σδ1

2, take (1) σx1
2 - λx11

2 ϕଵଵ= σδ1
2, and replace ϕଵଵ and λx11

2 = σy2x1
2/σy2x2

2 
 
ଵଵߠ
ఋ 	= σx1

2 - (σy2x1
2/σy2x2

2)(σx2x1 σy2x2/σy2x1) = σx1
2 - (σy2x1 σx2x1/σy2x2) = (σx1

2 σy2x2 - σy2x1 σx2x1)/σy2x2 
 

ଵଵߠ  .5
ఋ  = (σx1

2 σy2x2 - σy2x1 σx2x1)/σy2x2 = (σx1
2 σy1x2 - σy1x1 σx1x1)/σy1x2  
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(the latter from replacing λx11 = σy1x1/σy1x2) 

 
For ߠଶଶ

ఋ , take (2) σx2
2 = ϕଵଵ + ߠଶଶ

ఋ  and replace ϕଵଵ so that σx2
2 = σx2x1 σy2x2/σy2x1 + ߠଶଶ

ఋ  
 
ଶଶߠ
ఋ  = σx2

2 - (σx2x1 σy2x2/σy2x1)  
 

ଶଶߠ  .6
ఋ  = (σx2

2 σy2x1 - σx2x1 σy2x2)/σy2x1 = (σx2
2 σy1x1 - σx2x1 σy1x2)/σy1x1 (the latter from replacing ϕଵଵ 

 
= σx2x1 σy1x2/σy1x1) 

 
For σζ1

2, take (6) σy2y1 = λy21 λy11 (γ11
2 ϕଵଵ + ψଵଵ) = λy21 λy11 γ11

2 σξ1
2 + λy21 λy11 ψଵଵ

 

 

(σy2y1 - λy21 λy11 γ11
2 σξ1

2)/λy21 λy11 = ψଵଵ  then replace all the parameters in the left-hand side: 
 

7.  ψଵଵ = σy2x2 (σy2y1 σx2x1 - σy2x1 σy1x2)/σx1x2 σy1x2 = σy2x1 (σy2y1 σx2x1 - σy2x1 σy1x2)/σx1x2 σy1x1 
 
For ߠଵଵ

ఌ , take (4) σy1
2 = λy11

2 (γ11
2 ϕଵଵ + ψଵଵ) + ߠଵଵ

ఌ , which gives  ߠଵଵ
ఌ  = σy1

2 - λy11
2 (γ11

2 ϕଵଵ+ ψଵଵ) 
 
Replace all parameters on the right-hand side with moments, and obtain: 
 

ଵଵߠ  .8
ఌ  = (σy1

2 σy2x2 - σy1x2 σy2y1)/σy2x2 = (σy1
2 σy2x1 - σy1x1 σy2y1)/σy2x1 

 
For ߠଶଶ

ఌ , take (5)  σy2
2 = γ11

2 ϕଵଵ + ψଵଵ + ߠଶଶ
ఌ , which gives  ߠଶଶ

ఌ  = σy2
2 - γ11

2 ϕଵଵ + ψଵଵ 
 
Replace all parameters on the right-hand side with moments, and obtain: 
 

ଶଶߠ  .9
ఌ  = (σy2

2 σy1x2 - σy2x2 σy2y1)/σy1x2 = (σy2
2 σy1x1 - σy2x1 σy2y1)/σy1x1 

 
 
All this yields a list of parameters in terms of moments (exercise:  check my algebra for errors or typos): 
 
1.  λy11 = σy1x2/σy2x2 = σy1x1/σy2x1  
 
2.  λx11 = σy2x1/σy2x2 = σy1x1/σy1x2 
 
3.  γ11 = σy2x1/σx2x1 = σy1x1 σy2x2/σx2x1 σx2y1 
 
4.  ϕଵଵ = σx2x1 σy2x2/σy2x1 = σx2x1 σy1x2/σy1x1 
 
ଵଵߠ  .5

ఋ  = (σx1
2 σy2x2 - σy2x1 σx2x1)/σy2x2 = (σx1

2 σy1x2 - σy1x1 σx1x1)/σy1x2 
 
ଶଶߠ  .6

ఋ   = (σx2
2 σy2x1 - σx2x1 σy2x2)/σy2x1 = (σx2

2 σy1x1 - σx2x1 σy1x2)/σy1x1 
 
7.  ψଵଵ = σy2x2 (σy2y1 σx2x1 - σy2x1 σy1x2)/σx1x2 σy1x2 = σy2x1 (σy2y1 σx2x1 - σy2x1 σy1x2)/σx1x2 σy1x1 
 
ଵଵߠ  .8

ఌ  = (σy1
2 σy2x2 - σy1x2 σy2y1)/σy2x2 = (σy1

2 σy2x1 - σy1x1 σy2y1)/σy2x1 
 
ଶଶߠ  .9

ఌ  = (σy2
2 σy1x2 - σy2x2 σy2y1)/σy1x2 = (σy2

2 σy1x1 - σy2x1 σy2y1)/σy1x1 

 
The important point here is that there are two ways of computing each parameter, which results because the model is 
overidentified.  The model implies one overidentifying restriction on observed moments, which we can obtain by 
equating any of the pairs of parameters expressed in terms of moments.  For example, set the two equations for λy11 
equal: 
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λy11 = σy1x2/σy2x2 = σy1x1/σy2x1  cross-multiply and get: 
 

σy1x2 σy2x1 = σy2x2 σy1x1 
 
Or set the two equations for γ11 equal:    
 
γ11 = σy2x1/σx2x1 = σy1x1 σy2x2/σx2x1 σx2y1 cross-multiply and get: 
 

σy2x1 σx2x1 σx2y1 = σx2x1 σy1x1 σy2x2 
 

σy2x1 σx2y1 = σy1x1 σy2x2 
 
In the factor analysis literature, this overidentifying restriction is called a “tetrad difference” constraint.  The 
principles we've discussed for an overidentified recursive model in observables hold here.  If the model is correct in 
the population, this overidentifying restriction will hold exactly in the population, and the two different ways of 
computing parameters in terms of moments will yield the exact same result.  If the restriction does not hold exactly 
in the population, we can conclude that the model is wrong. 
 
III. ESTIMATION AND TESTING. 
 
In empirical applications, of course, we don't have access to population moments, so we have to use moments drawn 
from a random sample to estimate parameters.  We can specify the sample counterparts to our covariance structure 
matrices: S = Σ(ߠ෠) 
 

S ൌ
4 ൈ 4				

ۏ
ێ
ێ
ێ
ۍ
					௫భݏ
ଶ 				

					௫మ௫భݏ
					௫భ	௬భݏ
					௬మ௫భݏ

௫మݏ
ଶ 								

					௫మ	௬భݏ
					௬మ௫మݏ

						௬భݏ
ଶ 				

					௬మ௫భݏ 					௬మݏ
ଶ

ے
ۑ
ۑ
ۑ
ې

 

 

Σሺθ෠ሻ ൌ
4 ൈ 4				

ۏ
ێ
ێ
ێ
ۍ

		

መ௫భభߣ
ଶ Φ෡	ଵଵ ൅ ෠ଵଵߠ

ఋ 													

																							መ௫భభΦ෡ଵଵߣ

ොଵଵߛመ௫భభߣመ௬భభߣ
ଶ Φ෡ଵଵ										

ොଵଵߛመ௫భభߣ
ଶ Φ෡ଵଵ																		

Φ෡ଵଵ ൅ ෠ଶଶߠ
ఋ 																					

ොଵଵߛመ௬భభߣ
ଶ Φ෡ଵଵ																	

ොଵଵߛመ௬భభߣ
ଶ Φ෡ଵଵ																		

መ௬భభߣ
ଶ ሺߛොଵଵଶ Φ෡ଵଵ ൅ ψ෡ଵଵሻ ൅ ෠ଵଵߠ

ఌ 															

ොଵଵߛመ௬భభሺߣ
ଶ Φ෡ଵଵ ൅ ψ෡ଵଵሻ																											 ොଵଵଶߛ Φ෡ଵଵ ൅ ψ෡ଵଵ ൅ ෠ଶଶߠ

ఌ ے		
ۑ
ۑ
ۑ
ې

 

 
 
But when we use the method of moments to estimate parameters from sample covariances, we have two ways of 
estimating.  Which do we use? 
 
  መ௬భభ= sy1x2/sy2x2 = sy1x1/sy2x1ߣ  .1
 
  መ௫భభ= sy2x1/sy2x2 = sy1x1/sy1x2x11ߣ .2
 
 ොଵଵ= sy2x1/sx2x1 = sy1x1 sy2x2/sx2x1 sx2y1ߛ  .3
 
4.  Φ෡ଵଵ= sx2x1 sy2x2/sy2x1 = sx2x1 sy1x2/sy1x1 
 
෠ଵଵߠ  .5

ఋ  = (sx1
2 sy2x2 - sy2x1 sx2x1)/sy2x2 = (sx1

2 sy1x2 - sy1x1 sx1x1)/sy1x2  
 
෠ଶଶߠ  .6

ఋ = (sx2
2 sy2x1 - sx2x1 sy2x2)/sy2x1 = (sx2

2 sy1x1 - sx2x1 sy1x2)/sy1x1 
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7.  ψ෡ଵଵ= sy2x2 (sy2y1 sx2x1 - sy2x1 sy1x2)/sx1x2 sy1x2 = sy2x1 (sy2y1 sx2x1 - sy2x1 sy1x2)/sx1x2 sy1x1 
 
෠ଵଵߠ  .8

ఌ = (sy1
2 sy2x2 - sy1x2 sy2y1)/sy2x2 = (sy1

2 sy2x1 - sy1x1 sy2y1)/sy2x1 
 
෠ଶଶߠ  .9

ఌ = (sy2
2 sy1x2 - sy2x2 sy2y1)/sy1x2 = (sy2

2 sy1x1 - sy2x1 sy2y1)/sy1x1 
 
Let's take ߣመ௬భభ as an example.  Let the two estimates be defined as: 
 
መ௬భభߣ
௔  = sy1x2/sy2x2   ߣመ௬భభ

௕  = sy1x1/sy2x1  
 
We have two ways of estimating the parameter.  Should we choose ߣመ௬భభ

௔ , orߣመ௬భభ
௕ , or a weighted average of the two 

መ௬భభߣ
௖  = w1 ߣመ௬భభ

௔  + w2ߣመ௬భభ
௕ , where w1 and w2 are weights?  They are both unbiased (and consistent), and thus, any 

weighted sum of the two will be unbiased.  But they vary in efficiency.  Unlike the situation of recursive models in 
observables, it turns out that the efficient estimator is a weighted sum of the two ߣመ௬భభ

௖ .  But given this, how should 
we determine the weights?  Note that in the sixties, some sociological methodologists suggested using an 
unweighted average of the two estimates ߣመ௬భభ

௖  = w1 ߣመ௬భభ
௔  + w2ߣመ௬భభ

௕ , where w1 = w2), since they knew of no principle 
to weight them, and they figured using more sample information was better than using less (see Costner).  It turns 
out that the principle of maximum likelihood (ML) gives us a set of criteria for determining weights.  ML determines 
weights in such a way as to give optimal asymptotic properties (the behavior of the estimator as N goes to infinity):  
consistent and  asymptotically efficient estimates.  This holds for the other parameters as well, such as γ: 
 
ොଵଵߛ
௔ = sy2x1/sx2x1   ߛොଵଵ

௕ = sy1x1 sy2x2/sx2x1 sx2y1 
 
ML would provide a consistent and asymptotically efficient estimator by choosing weights for ߛොଵଵ

௖ = m1 ߛොଵଵ
௔ + m2ߛොଵଵ

௕ , 
where m1 and m2 are the weights.  It is important to remember that if the model were just-identified—for example, if 
there were a correlation between ε1 and ε2 (which we would parameterize as a covariance in our unstandardized 
model ߠଶଵ

ఌ ), then there would be only one way of computing moments in terms of parameters.  In that case, the 
method of moments –simply using sample counterparts to population moments -- will give us optimal finite sample 
properties:  unbiased and efficient estimates.  Therefore, ML is needed when models are overidentified, which is 
almost always the case with covariance structure models. 
 
A second question arises:  how do we test the model's overidentifying restriction?  And how do we get appropriate 
estimates of standard errors?  One way of testing would be to somehow test how close S and Σ(ߠ෠) are to each other, 
e.g., is S - Σ(ߠ෠) = 0?  It turns out that the likelihood ratio test procedure provides a formal way of carrying out such a 
test.  Moreover, in our walking dog model, there are several ways of parameterizing the overidentifying restriction 
on sample moments.  For example, we could specifyߠଶଵ

ఋ  or ߠଶଵ
ఌ  or a direct effect from ξ1 to y1 or y2, etc.  The 

likelihood ratio method will allow us to test one of these specific hypotheses about parametric structure.  More on 
this later. 
 
Here is a simple walking dog example estimated in LISREL.  First, the path diagram: 
 
 
 

Data:  Occupational Changes in a Generation 
Source:  Bielby, Hauser & Featherman (1977) AJS 
 
X1 = Father’s Education Questionnaire 
X2 = Father’s Education Telephone 
Y3 = Father’s Income Telephone 
X2 = Father’s Income Telephone 
 

η1
 γ 

ζ

ε2 

Y1X1 

 ξ1 

δ1 
 

X
2
 Y

2
 

δ
2 
 ε

1
 

λx11 
 λ

y11 
 1

 
 1

 
 

FA ED
 
 

FA-INC 
LOG  




 




Covariance Structure Analysis (LISREL) Professor Ross L. Matsueda 
Lecture Notes Do not copy, quote, or cite without permission 

14 

 
 
The following lines were read from file H:\529 New Examples\Example files 1\Walking Dog 1.LS8: 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR 
 !Nonblack males OCGR March 1973 
 DA NI=4 NO=578    DA(ta) line: I’m inputting four variables (NI=4) with N=578. 
 SD      I’m reading in standard deviations in free format 
 * 
 4.19  4.14  0.41  0.39 
 KM      I’m reading in a correlation matrix in free format 
 * 
 1.000 
 .939  1.000 
 .477   .467  1.000 
 .486   .478   .913  1.000 
 LA      I’m reading in variable labels in free format 
 * 
 FED-Q FED-T FILOG-Q FILOG-T    
 SE      I’m selecting the two income variables first (they 
 3 4 1 2 /     are Ys) followed by two education variables (xs) 
 MO NX=2 NY=2 NK=1 NE=1 GA=FU,FR BE=ZE PS=DI,FR LX=FU,FI LY=FU,FI TD=SY,FI TE=SY,FI 
 FR LX 1 1 LY 1 1    By not freeing these and giving them start values of 1.0, I’m selecting x2  
 FR TD 1 1 TD 2 2     to be reference indicator for ξ and y2for  η. 
 VA 1 LX 2 1 LY 2 1     
 FR TD 1 1 TD 2 2    I’m freeing the measurement error variances. 
 FR TE 1 1 TE 2 2 
 PD      Asking for the path diagram. 
 OU ME=ML RS EF SC MI    Using ML, asking for residuals, indirect effects,  

 `  completely standardized solution, and modification  
   indices. 

 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
                           Number of Input Variables  4  
                           Number of Y - Variables    2 
                           Number of X - Variables    2 
                           Number of ETA - Variables  1 
                           Number of KSI - Variables  1 
                           Number of Observations   578 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
  
 
 
 
        Covariance Matrix        
        This is S, the sample covariance  
             FILOG-Q    FILOG-T      FED-Q      FED-T    matrix 
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            --------   --------   --------   -------- 
  FILOG-Q       0.17 
  FILOG-T       0.15       0.15 
    FED-Q       0.82       0.79      17.56 
    FED-T       0.79       0.77      16.29      17.14 
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Parameter Specifications 
 
         LAMBDA-Y     
 
               ETA 1 
            -------- 
  FILOG-Q          1 
  FILOG-T          0  Reference indicator for ETA is Y2 
 
 
         LAMBDA-X     
 
               KSI 1 
            -------- 
    FED-Q          2 
    FED-T          0  Reference indicator for KSI is X2 
 
         GAMMA        
 
               KSI 1 
            -------- 
    ETA 1          3   
 
         PHI          
 
               KSI 1 
            -------- 
                   4   
 
         PSI          
 
               ETA 1 
            -------- 
                   5 
 
         THETA-EPS    
 
             FILOG-Q    FILOG-T 
            --------   -------- 
                   6          7 
 
         THETA-DELTA  
 
               FED-Q      FED-T 
            --------   -------- 
                   8          9 
  
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Number of Iterations =  5 
 
 LISREL Estimates (Maximum Likelihood)                            
 
         LAMBDA-Y     
 
               ETA 1    
            -------- 
  FILOG-Q       1.03 
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              (0.04) 
               27.90 
  FILOG-T       1.00 
 
         LAMBDA-X     
 
               KSI 1    
            -------- 
    FED-Q       1.03 
              (0.03) 
               33.53 
    FED-T       1.00 
 
         GAMMA        
 
               KSI 1    
            -------- 
    ETA 1       0.05   This is returns to education in log dollars 
              (0.00) 
               13.28 
 
         Covariance Matrix of ETA and KSI        Covariance matrix of latent variables 
 
               ETA 1      KSI 1    
            --------   -------- 
    ETA 1       0.14 
    KSI 1       0.77      15.80 
 
         PHI          
 
               KSI 1    
            -------- 
               15.80   Variance of latent variable, KSI 
              (1.09) 
               14.55 
 
         PSI          
 
               ETA 1    
            -------- 
                0.10   Disturbance variance, PSI 
              (0.01) 
               13.71 
 
         Squared Multiple Correlations for Structural Equations   
 
               ETA 1    
            -------- 
                0.27   R-Squared for the income equation 
 
         THETA-EPS    
 
             FILOG-Q    FILOG-T    
            --------   -------- 
                0.02       0.01 Measurement error variances for income measures 
              (0.00)     (0.00) 
                3.69       2.33 
 
         Squared Multiple Correlations for Y - Variables          
 
             FILOG-Q    FILOG-T    
            --------   -------- 
                0.89       0.93 R-Squareds for income measures—reliability  
     coefficients (squared standardized LAMBDAs 
 
         THETA-DELTA  
 
               FED-Q      FED-T    
            --------   -------- 
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                0.77       1.34  Measurement error variances for education measures 
              (0.44)     (0.42) 
                1.75       3.21 
 
         Squared Multiple Correlations for X - Variables          
 
               FED-Q      FED-T    
            --------   -------- 
                0.96       0.92  R-Squareds for education measures—reliability  
      coefficients (squared standardized LAMBDAs 
 
 
                           Goodness of Fit Statistics  There is one tetrad-        

     difference overidentifying 
Degrees of Freedom = 1   restriction 

Minimum Fit Function Chi-Square = 0.13 (P = 0.72) Likelihood Ratio test 
        Normal Theory Weighted Least Squares Chi-Square = 0.13 (P = 0.72)  Asymptotically  
                  Estimated Non-centrality Parameter (NCP) = 0.0  equivalent test 
              90 Percent Confidence Interval for NCP = (0.0 ; 3.60)  Great fit!  
  
                       Minimum Fit Function Value = 0.00022 
                 Population Discrepancy Function Value (F0) = 0.0 
              90 Percent Confidence Interval for F0 = (0.0 ; 0.0062) 
              Root Mean Square Error of Approximation (RMSEA) = 0.0  This is a useful fit  
             90 Percent Confidence Interval for RMSEA = (0.0 ; 0.079) statistic.  Rule of  
               P-Value for Test of Close Fit (RMSEA < 0.05) = 0.86  thumb < .05 is good 
  
                  Expected Cross-Validation Index (ECVI) = 0.033 
            90 Percent Confidence Interval for ECVI = (0.033 ; 0.039) 
                         ECVI for Saturated Model = 0.035 
                        ECVI for Independence Model = 2.64 
  
      Chi-Square for Independence Model with 6 Degrees of Freedom = 1514.96 
                            Independence AIC = 1522.96 
                                Model AIC = 18.13 
                              Saturated AIC = 20.00 
                           Independence CAIC = 1544.40 
                                Model CAIC = 66.37 
                              Saturated CAIC = 73.60 
  
                          Normed Fit Index (NFI) = 1.00 
                        Non-Normed Fit Index (NNFI) = 1.00 
                     Parsimony Normed Fit Index (PNFI) = 0.17 
                        Comparative Fit Index (CFI) = 1.00 
                        Incremental Fit Index (IFI) = 1.00 
                         Relative Fit Index (RFI) = 1.00 
  
                            Critical N (CN) = 29550.26 
  
  
                    Root Mean Square Residual (RMR) = 0.00062 
                            Standardized RMR = 0.00037 
                        Goodness of Fit Index (GFI) = 1.00 
                   Adjusted Goodness of Fit Index (AGFI) = 1.00 
                  Parsimony Goodness of Fit Index (PGFI) = 0.100 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
         Fitted Covariance Matrix 
 

             FILOG-Q    FILOG-T      FED-Q      FED-T    This is  Σ(ࣂ෡), the covariance matrix  
            --------   --------   --------   --------   implied  by the parameter estimates.  
  FILOG-Q       0.17 
  FILOG-T       0.15       0.15 
    FED-Q       0.82       0.79      17.56 
    FED-T       0.79       0.77      16.29      17.14 
 
         Fitted Residuals 
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             FILOG-Q    FILOG-T      FED-Q      FED-T    

            --------   --------   --------   --------   This is S - Σ(ࣂ෡), the residual matrix  
FILOG-Q       0.00                 that subtracts the moments implied by  

  FILOG-T       0.00       0.00                the model from the sample moments. 
    FED-Q       0.00       0.00       0.00 
    FED-T       0.00       0.00       0.00       0.00 
 
 Summary Statistics for Fitted Residuals 
 
 Smallest Fitted Residual =    0.00 
   Median Fitted Residual =    0.00 
  Largest Fitted Residual =    0.00 
 
 Stemleaf Plot 
 
 - 1|5  
 - 1|  
 - 0|5  
 - 0|000000  
   0|  
   0|89 
 
         Standardized Residuals   
 
             FILOG-Q    FILOG-T      FED-Q      FED-T    
            --------   --------   --------   -------- 
  FILOG-Q        - - 
  FILOG-T        - -        - - 
    FED-Q       0.36      -0.36        - - 
    FED-T      -0.36       0.36        - -        - - 
 
 Summary Statistics for Standardized Residuals 
 
 Smallest Standardized Residual =   -0.36 
   Median Standardized Residual =    0.00 
  Largest Standardized Residual =    0.36 
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Modification Indices and Expected Change 
 
 No Non-Zero Modification Indices for LAMBDA-Y     
 
 No Non-Zero Modification Indices for LAMBDA-X     
 
 No Non-Zero Modification Indices for GAMMA        
 
 No Non-Zero Modification Indices for PHI          
 
 No Non-Zero Modification Indices for PSI          
 
 
         Modification Indices for THETA-DELTA-EPS  This are univariate LaGrangian multiplier test  
             Statistics, distributed as a Z-statistic. 
             FILOG-Q    FILOG-T    
            --------   -------- 
    FED-Q       0.13       0.13 
    FED-T       0.13       0.13 
 
         Expected Change for THETA-DELTA-EPS  This is the amount a fixed parameter is  
       Estimated to chang4 if it were freed. 
             FILOG-Q    FILOG-T    
            --------   -------- 
    FED-Q       0.00       0.00 
    FED-T       0.00       0.00 
 
         Completely Standardized Expected Change for THETA-DELTA-EPS  

This standardizes expected change, putting    
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             FILOG-Q    FILOG-T      them in standard deviation units. 
            --------   -------- 
    FED-Q       0.00       0.00 
    FED-T       0.00       0.00 
 
 Maximum Modification Index is    0.13 for Element ( 1, 1) of THETA DELTA-EPSILON 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Standardized Solution       This only partially standardizes coefficients by the latent variables, η and ξ  
 
         LAMBDA-Y     
 
               ETA 1    
            --------  This standardizes λy by ση only. 
  FILOG-Q       0.39  ࣅ૚૚	ࣁ࣌ 
  FILOG-T       0.38  ࣅ૛૚	ࣁ࣌ 
 
         LAMBDA-X     
 
               KSI 1    This standardizes λx by σξ only. 
            --------   
    FED-Q       4.10  ࣅ૚૚	ࣈ࣌ 
    FED-T       3.98  ࣅ૛૚	ࣈ࣌ 
 
         GAMMA        
 
               KSI 1    This is fully standardized by η and ξ 
            -------- 
    ETA 1       0.52  ࢽ૚૚

ࣈ࣌
ࣁ࣌
 

 
         Correlation Matrix of ETA and KSI        
 
               ETA 1      KSI 1    
            --------   -------- 
    ETA 1       1.00 
    KSI 1       0.52       1.00 
 
         PSI          
 
               ETA 1    
            -------- 
                0.73 ` This is ࣀࣁࡼ

૛ , therefore the square root of this is the standardized disturbance path coefficient ሺ85. =(ࣀࣁࡼ   
 
         Regression Matrix ETA on KSI (Standardized)  
 
               KSI 1    
            -------- 
    ETA 1       0.52 This is the standardized regression of η on ξ (structural form = reduced form) 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Completely Standardized Solution 
 
         LAMBDA-Y     
 
               ETA 1    
            -------- 
  FILOG-Q       0.95  ࢟ࣅ૚૚

ࣁ࣌
૚࢟࣌
 

  FILOG-T       0.97  ࢟ࣅ૛૚
ࣁ࣌
૛࢟࣌
 

 
         LAMBDA-X     
 
               KSI 1    
            -------- 
    FED-Q       0.98  ࢞ࣅ૚૚

ࣈ࣌
૚࢞࣌
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    FED-T       0.96  ࢞ࣅ૛૚
ࣈ࣌
૛࢞࣌
 

 
 
         GAMMA        
 
               KSI 1    
            -------- 
    ETA 1       0.52  ࢽ૚૚

ࣈ࣌
ࣁ࣌
 

 
 
         Correlation Matrix of ETA and KSI        
 
               ETA 1      KSI 1    
            --------   -------- 
    ETA 1       1.00 
    KSI 1       0.52       1.00 
 
         PSI          
 
               ETA 1    
            -------- 
                0.73 This is ࣀࣁࡼ

૛ , therefore the square root of this is the standardized disturbance path coefficient ሺ85. =(ࣀࣁࡼ  
 
 
         THETA-EPS    
 
             FILOG-Q    FILOG-T    
            --------   -------- 
                0.11       0.07 This is ࣁ࢟ࡼ૛ , therefore the square root of this is the standardized disturbance path  
     coefficient ሺ33. =(ࣁ࢟ࡼ and .26  
 
         THETA-DELTA  
 
               FED-Q      FED-T    
            --------   -------- 
                0.04       0.08 This is ࣁ࢞ࡼ૛ , therefore the square root of this is the standardized disturbance path  

     coefficient ሺ20. =(ࣁ࢞ࡼ and .28 
 
         Regression Matrix ETA on KSI (Standardized)  
 
               KSI 1    
            -------- 
    ETA 1       0.52 This is the standardized reduced form regression of η on ξ (structural form = reduced form) 
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Total and Indirect Effects 
 
         Total Effects of KSI on Y    
 
               KSI 1    
            -------- 
  FILOG-Q       0.05 This is ࢽ૚૚࢟ࣅ૚૚  
              (0.00) 
               12.95 
  FILOG-T       0.05 This is ࢽ૚૚࢟ࣅ૛૚ 
              (0.00) 
               13.28 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES NO ERR CORR                         
 
 Standardized Total and Indirect Effects 
 
         Standardized Total Effects of KSI on Y   
 
               KSI 1    

η1
γ11

Y1

 ξ1

λ
y11
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            -------- 
  FILOG-Q       0.20 Standardizes the total effect only by ξ and η -- ࢽ૚૚ሺࣁ࣌/ࣈ࣌ሻ	࢟ࣅ૚૚ሺࣁ࣌ሻ 
  FILOG-T       0.19 ࢽ૚૚ሺࣁ࣌/ࣈ࣌ሻ	࢟ࣅ૛૚ሺࣁ࣌ሻ 
 
         Completely Standardized Total Effects of KSI on Y    
 
               KSI 1    
            -------- 

  FILOG-Q       0.49 Completely standardized: ࢽ૚૚ ൬
ࣈ࣌
ࣁ࣌
൰ ૚૚࢟ࣅ ൬

ࣁ࣌
૚࢟࣌
൰ 

 
  FILOG-T       0.50 ࢽ૚૚ ൬

ࣈ࣌
ࣁ࣌
൰ ૛૚࢟ࣅ ൬

ࣁ࣌
૚࢟࣌
൰ 

 
                           Time used:    0.016 Seconds 
 

Although this model fit the data extremely well, let’s try 
estimating a model that includes a measurement error 
correlation between the two telephone measures: 
 
For error covariances between measurement errors of  
X and Y, LISREL refers to the matrix as TH. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
The following lines were read from file H:\529 New Examples\Example files 1\Walking Dog 2.LS8: 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES ONE ERR CORR 
 !Nonblack males OCGR March 1973 
 DA NI=4 NO=578 
 SD 
 * 
 4.19  4.14  0.41  0.39 
 KM 
 * 
 1.000 
 .939  1.000 
 .477   .467  1.000 
 .486   .478   .913  1.000 
 LA 
 * 
 FED-Q FED-T FILOG-Q FILOG-T 
 SE 
 3 4 1 2 / 
 MO NX=2 NY=2 NK=1 NE=1 GA=FU,FR BE=ZE PS=DI,FR LX=FU,FI LY=FU,FI TD=SY,FI TE=SY,FI 
 FR LX 1 1 LY 1 1 
 VA 1 LX 2 1 LY 2 1 
 FR TD 1 1 TD 2 2 
 FR TE 1 1 TE 2 2 
 FR TH 2 2  Here, we’re freeing the error correlation between Delta 2 and Epsilon 2 
 PD 
 OU ME=ML RS EF SC MI 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES ONE ERR CORR                        

η1
 γ 

ζ

ε2

Y1 X1

 ξ1

δ1

X
2

Y
2

δ
2

ε
1
 

λx11 λ
y11 

 1 1
 
 

FA ED
 

FA-INC 
LOG  

ଶଶߠ
ఋఌ  
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                           Number of Input Variables  4 
                           Number of Y - Variables    2 
                           Number of X - Variables    2 
                           Number of ETA - Variables  1 
                           Number of KSI - Variables  1 
                           Number of Observations   578 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES ONE ERR CORR                        
 
         Covariance Matrix        
 
             FILOG-Q    FILOG-T      FED-Q      FED-T    
            --------   --------   --------   -------- 
  FILOG-Q       0.17 
  FILOG-T       0.15       0.15 
    FED-Q       0.82       0.79      17.56 
    FED-T       0.79       0.77      16.29      17.14 
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES ONE ERR CORR                        
 
 Parameter Specifications 
 
         LAMBDA-Y     
 
               ETA 1 
            -------- 
  FILOG-Q          1 
  FILOG-T          0 
 
         LAMBDA-X     
 
               KSI 1 
            -------- 
    FED-Q          2 
    FED-T          0 
 
         GAMMA        
 
               KSI 1 
            -------- 
    ETA 1          3 
 
         PHI          
 
               KSI 1 
            -------- 
                   4 
 
         PSI          
 
               ETA 1 
            -------- 
                   5 
 
         THETA-EPS    
 
             FILOG-Q    FILOG-T 
            --------   -------- 
                   6          7 
 
         THETA-DELTA-EPS  
 
             FILOG-Q    FILOG-T 
            --------   -------- 
    FED-Q          0          0 
    FED-T          0          9  We’re adding another parameter to be estimated, so 
      Now we’re estimating 10 parameters.  With 10 
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      moments, this model is now just-identified. 
               

THETA-DELTA  
 
               FED-Q      FED-T 
            --------   -------- 
                   8         10 
  
 
 
 !WALKING DOG REGRESSION ON LATENT VARIABLES ONE ERR CORR                        
 
 Number of Iterations =  5 
 
 LISREL Estimates (Maximum Likelihood)                            
 
         LAMBDA-Y     
 
               ETA 1    
            -------- 
  FILOG-Q       1.03 
              (0.04) 
               27.70 
  FILOG-T       1.00 
 
         LAMBDA-X     
 
               KSI 1    
            -------- 
    FED-Q       1.03 
              (0.03) 
               32.40 
    FED-T       1.00 
 
         GAMMA        
 
               KSI 1    
            -------- 
    ETA 1       0.05 
              (0.00) 
               13.28 
 
         Covariance Matrix of ETA and KSI         
 
               ETA 1      KSI 1    
            --------   -------- 
    ETA 1       0.14 
  KSI 1       0.77      15.76 
 
         PHI          
 
               KSI 1    
            -------- 
               15.76 
              (1.09) 
               14.42 
 
         PSI          
 
               ETA 1    
            -------- 
                0.10 
              (0.01) 
               13.71 
 
         Squared Multiple Correlations for Structural Equations   
 
               ETA 1    
            -------- 
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                0.26 
 
         THETA-EPS    
 
             FILOG-Q    FILOG-T    
            --------   -------- 
                0.02       0.01 
              (0.00)     (0.00) 
                3.61       2.36 
 
         Squared Multiple Correlations for Y - Variables          
 
             FILOG-Q    FILOG-T    
            --------   -------- 
                0.90       0.93 
 
         THETA-DELTA-EPS  
 
             FILOG-Q    FILOG-T    
            --------   -------- 
    FED-Q        - -        - - 
    FED-T        - -       0.00  Here’s our new parameter estimate:  it is tiny and  

                         (0.01)  not signficant.  This is to be expected because the 
                           0.36 more restrictive model fit very well.  This 

parameter adds little to the model. 
 
         THETA-DELTA  
 
               FED-Q      FED-T    
            --------   -------- 
                0.72       1.38 
              (0.46)     (0.43) 
                1.57       3.18 
 
         Squared Multiple Correlations for X - Variables          
 
               FED-Q      FED-T    
            --------   -------- 
                0.96       0.92 
 

Goodness of Fit Statistics Zero degrees of freedom because it is 
just idenfied (10 moments minus 10 
parameters = 0 degrees of freedom) 

                              Degrees of Freedom = 0 
                Minimum Fit Function Chi-Square = 0.00 (P = 1.00) 
        Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 1.00) 
                  The Model is Saturated, the Fit is Perfect ! 


