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 LECTURE 1:  MOMENTS AND PARAMETERS IN A BIVARIATE LINEAR STRUCTURAL MODEL 
 
I  PRELIMINARIES:  STRUCTURAL EQUATION MODELS. 
II.  POPULATION MOMENTS AND PARAMETERS. 
III. CORRELATIONS AND STANDARDIZED COEFFICIENTS. 
IV. ESTIMATION AND TESTING. 
 
I.  PRELIMINARIES:  STRUCTURAL EQUATION MODELS 
 
This course is about the use of structural equation models for examining social phenomena.  There are four basic 
principles involved: 
 
1. Assume we can characterize a social phenomenon by a set of random variables.   

 A random variable is one whose values or outcomes are governed by a probability distribution.   
 A set of random variables have joint outcomes, which are governed by a joint probability distribution.   
 We characterize this joint distribution by observable moments (means, variances, and covariances). 

 
2. We assume that some underlying causal structure or model generates observed moments (covariances) 

 The underlying structural model represents our (parsimonious) theory of the phenomenon. 
 The model generates the data (joint distribution of random variables), which we characterize by observed 

moments. 
 The parameters of the model are assumed to be invariant: they are somewhat stable over time and only 

change when there is true social change. 
 The causal structure can be expressed in linear structural equations and path diagrams. 
 Hence the terms, "covariance structure analysis," "path analysis" and "structural equation models." 

 
3. Given observed population moments, we could compute population parameters of our structural model (assuming 

the model is identified). 
 
4. However, we lack access to population moments, and therefore, we cannot compute population parameters. 

 Instead, we have access only to sample moments. 
 We can use them to estimate population parameters. 
 We want estimators with desirable properties (unbiased and efficient). 
 We will need to test hypotheses about parameter estimates to rule out chance (sampling variability). 

 
We begin by assuming a phenomenon of interest can be characterized by a set of random variables, whose joint 
distribution can be described by their observed moments.  But first we need to review the algebra of expectations of 
random variables.  The expected value of a random variable is a weighted sum of the values, each weighted by the 
probability of its occurence.  The expected value of a random variable is the population mean. 
 
Aside:  Review of algebra of expectations rules (see Winkler & Hayes 1975 pp. 141-47). 
 
1.  E(c) = c               where c is a constant. 
2.  E(cX) = cE(X)            where X is a random variable with expectation E(X). 
3.  E(X + c) = c + E(X). 
4.  E(X + Y) = E(X) + E(Y)        where Y is a random variable with expectation E(Y). 
5.  E(X + Y + ... + Z) = E(X) + E(Y) + ... + E(Z). 
 
Technically, moments refer to the expectations of different powers of random variables.  We're concerned with two 
kinds of moments—moments about the origin and moments about the mean.  Moments about the origin describe 
the central tendency of the distribution; we're interested in the first moment about the origin, the mean μ = E(X).  
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Moments about the mean describe the shape of the distribution according to μr = E[X - E(X)]r.  Note that this gives 
the expectations of powers of the random variable after subtracting the mean.  The first moment about the mean is 
zero—μ1 = E[X - E(X)] = 0—t he second refers to the variance (covariance), the third to a measure of skewness 
(symmetric or not), and the fourth to kurtosis (how peaked is the distribution): 
 
1. First moment about the origin: 

 
 μ  = E(X)Mean 
 
2. Second moment about the mean: 

 
 σ2 = E[X - E(X)]2  Variance 
 
 σxy = E[X - E(X)] E[Y - E(Y)] Covariance 
 
3. Higher-order moments about the mean: 
 
 μ3 = E[X - E(X)]3  Related to Skewness 
  
 μ4 = E[X - E(X)]4  Related to Kurtosis 
 
In this course we will be concerned mostly with the second moments, the variances and covariances.  We'll leave 
the means unanalyzed, and assume that variables are normally-distributed, which implies that we can safely ignore 
higher-order moments.  Later in the semester, we'll have reason to come back to the mean (when we look at the 
difference between means across groups) and higher-order moments (when we consider what happens when 
multivariate normality fails to hold). 
 
II. POPULATION MOMENTS AND POPULATION STRUCTURAL PARAMETERS. 
 
Let's begin with the simplest possible example: just two variables, Y and X.  As an example, assume we have 
census data on all individuals in the U.S., and Y is income measured in dollars, while X is years of education. For 
simplicity, let's assume the means of the two variables is zero:  E(X) = 0; E(Y) = 0.  We can accomplish this by 
deviating each variable from its mean: xi' = xi - μx and yi' = yi - μy.  In general, we'll work with x' and y', but omit 
the prime.  We begin by characterizing these two variables by computing their second moments: 
 
 σx

2 = E[X - E(X)]2  σxy = E{[X - E(X)][Y - E(Y)]}= E(XY)  because E(X) = E(Y) = 0 
  
 σy

2 = E[Y - E(Y)]2 
 
Note that these are population moments, not sample moments; so they are quantities of the population we're 
interested in—the U.S.—and not estimates.  Let's arrange these in a convenient matrix of population covariances of 
observed variables, call it Σ: 
 
Σ

2 ൈ 2
ൌ ቈ

௫ଶߪ

௫௬ߪ ௬ଶߪ
቉ 

 
Let's assume that Σ, the population moment matrix of our variables, provides an adequate description of the 
variables X and Y.  Our goal is to specify a structural model that underlies these population moments—that is, that 
generates the moments.  That model should be based on scientific theory.  Let's say our theory is some variant on 
human capital theory, and assumes that income is a linear function of years of education: 
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yi = βxi + εi   where i = 1, . . , 
 
Remember that this is a representation of the population model of X and Y.  (The subscripts, i, represent 
individuals.  From now on, I will omit the subscripts for convenience, but remember that they are implicit.)  Note 
that in this model Y, X, and ε are random variables, but β is a constant.  Let's say Y is income measured in dollars 
and X education measured in years.  Following a simple human capital argument, we assume that income is 
determined by education plus an error or disturbance term, ε.  Variation in Y, income, is generated by two 
components:  βX is the deterministic component; and ε is the stochastic component.  ε is a random variable called 
the error or disturbance because it disturbs what would otherwise be a stable relationship.  The disturbancecaptures 
the probabilistic (random, chance, stochastic) source of variation in Y.  Think of it as the sum of all other sources of 
variation in Y—excluded minor variables, which taken together act like a random shock on each value of Y.  At 
least we hope (and pray) that this is correct.   
 
Let's make the usual regression assumptions of this model:  (1) E(εiXi) = 0; (2) εi~N(0,σ2); and (3) E(εiεj) = 0.  The 
first assumption implies that the model is properly specified, and we haven't left out any important variables.  It is 
critical:  if wrong, we'll get wrong (biased) results.  The second assumption implies that ε is zero on average, which 
makes E(Y) = βE(X), and homoscedasticity (constant error variance across observations).  This means that each 
observation, i, is assumed to be drawn from a probability distribution of possible observations.  And each 
observation is drawn from a probability distribution that has the same mean (0) and same variance σ2 (as opposed to 
σi

2, which would allow the error variance to differ across observations).  The third assumption is that the errors are 
not serially correlated.  We also assume that the model is properly and completely specified, effects are linear, and 
variables are perfectly-measured.   
 
There are three population parameters in this model:  β, σx

2, and σε
2.  These three parameters govern the joint 

distribution between X and Y.  They tell us everything we need to know about our model, and thus our two 
variables. 
 
Given this, we assume that the observable population moments were generated by the population model (which we 
cannot observe).  We can use a little algebra to compute the values of population moments from the population 
parameters.  This entails using the algebra of expectations on our original structural equation model: 
 
Y = βX + ε 
 
Now, we want to know how this model generated our observable moments (σx

2, σxy, σy
2).  Multiply our equation 

through by a variable, then take the expected value: 
 
X is exogenous (predetermined and unanalyzed) in the model; so we treat its variance as both a population moment 
and parameter: 
 
E(X2) = E(X2) =  
 
1.  σx

2 = σx
2 

 
To compute the covariance of X and Y, we multiply our equation by X, then take expectations: 
 

X Y 

ε 
β 

ED INC 
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XY = X(βX + ε) = βX2 + Xε 
 
E(XY) = βE(X2) + E(Xε) = β σx

2 
  
2.  σxy = β σx

2 
 
And we do the same for the variance of Y: 
 
Y2 = (βX + ε)(βX + ε) =  β2 X2 + 2βXε + ε2)  
 
E(Y2) = β2 E(X2) + 2βE(Xε) + E(ε2) = β2 σx

2 + σε
2  

 
3.  σy

2 = β2 σx
2 + σε

2  
 
Let's arrange these population parameters into a matrix, call it Σ(θ), that corresponds to our population moment 
matrix (Σ). 
 

ቈ
௫ଶߪ

௫௬ߪ ௬ଶߪ
቉ ൌ ൤

௫ଶߪ

௫ଶߪߚ ௫ଶߪଶߚ ൅ ఌଶߪ
൨ 

 Σ
2 ൈ 2

   =   Σሺθሻ
2 ൈ 2

 

 
The fundamental theorem of covariance structure analysis is: Σ = Σ(θ).  That is, the covariance (moment) matrix in 
the population is a function of an underlying structure—a “covariance structure” or “structural equation model” in 
the population.  Again, the structure of Σ(θ) reflects our social science theory about the phenomenon.  Once we 
specify our model based on theory, we assume that the population model generated the observable moments, so if 
we knew the values of the parameters, we could compute the moments using Σ(θ).  Here's an example.  Let's play 
God and assume we're omniscient, capable of "seeing" (without estimating from sample data) population parameters 
of our simple model: 
 
β = 0.8 $1,000/yr, σx = 3yrs, and σε = 3 × .$1,000 
 
Return to education is $800 per year, but we rescale this variable into the metric of one thousand dollars.. 
 
Our simple population model becomes: 
 
Y = 0.8 X + ε. 
 
Using the above Σ(θ), we can compute the population moments implied by this model: 
 

൤
																										ଶݏݎݕ	9

ሺ0.8	$1,000/ݎݕሻሺ9ݏݎݕଶሻ ሺ0.8ଶ	$1,000ଶ/ݏݎݕଶሻ9	ݏݎݕଶ ൅ 9	1,000$ଶ
൨ ൌ ൤

																										ଶݏݎݕ	9
ሺ7.2	$1,000/ݏݎݕሻ						 14.76		$1,000ଶ

൨ 

       Σ(θ)a                  =       Σa 
 
Of course, one never knows the values of parameters specified in Σ(θ).  But if we knew Σ, we could use the formula 
of Σ(θ) to compute the values of population parameters.  (Note that we rarely observe the population moments 
directly, but instead must rely on their sample counterparts as estimates.)  In our simple model, there are three 
population parameters, σx

2, β, and σε
2.  We also have three equations given above.  Three equations in three 

unknowns will allow us to solve the unknowns. 
 
1.  σx

2 = σx
2(from 1 above) 
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σxy = β σx
2(from 2 above) 

 
2.  β = σxy/σx

2 
 
σy

2 = β2 σx
2 + σε

2(from 3 above)σε
2 = σy

2 - β2 σx
2 = σy

2 - [(σxy)2/σx
2)2] σx

2 (given 2) 
 
3.  σε

2 = σy
2 - (σxy

2/σx
2) 

 
This is the situation we would normally find ourselves in.  We can characterize our variables with observable 
population moments; then we specify a structural model we assume generated those moments.  We can then 
compute the values of all parameters using these equations.  (Note that we are still in the population –no need to 
estimate anything or worry about samples.)  Let's compute the parameters from moments in our example.   
 
1.  σx

2 = 9 years 
2.  β = σxy/σx

2 = 7.2/9 = 0.8 $1,000/yr 
3.  σε

2 = σy
2 - (σxy

2/σx
2) = 14.76 - (7.22 /9) = 9 $1,000 2 

 
Note that these computations assume that the model proposed is correct -- that is, Σ = Σ(θ).  If the model is wrong, 
the equivalence won't hold.  For example, suppose the "true" population model is exactly as above, but with one 
exception, β = 0.  (Aside:  What does this difference imply substantively?)  If this is the true model, then we 
would necessarily observe the following population moments: 
 

൤
௫ଶߪ

௫ଶߪ0 0ଶߪ௫ଶ ൅ ఌଶߪ
൨ ൌ ൤

																										ଶݏݎݕ	9
																									ݏݎݕ	$	0	 14.76		$1,000ଶ

൨ 

   Σ(θ)b    =       Σb 
 
So, if we observe Σb, we know that Σ(θ)a is wrong and Σ(θ)bis correct.  But if we observe Σa, then we know that 
Σ(θ)a is correct and Σ(θ)b is wrong.  Since we're in the population, truth is easy to determine.  We're not relying on 
sample information, so we have no need for estimation or statistical inference.   
 
What if we had not assumed that the population mean of X (μx) and Y (μy) were zero?  We could model the means 
of our variables as well.  In our simple example, there are two additional moments, μx and μy, and two additional 
parameters, μx and α: 
 
Y = α + βX + ε (Neither Y nor X are deviated from their means) 
 
E(Y) = α + β E(X) + E(ε)  Since E(Y) = μy, E(X) = μx, and E(ε) = 0,  
 
μy = α + β μx  where α is a constant representing the Y-intercept. 
 
Again, we can express moments in terms of parameters 
 

μx = μx     or in vector form:   ቂ
ଵߤ
ଶߤ
ቃ ൌ ቂ

												ଵߤ
ߙ ൅ ଵߤߚ

ቃ  

μy = α + β μx          1ൈ1   1ൈ1 
 
and parameters in terms of moments: 
 
4.  μx = μx  
 
μy = α + β μxα = μy - β μx  
 

X Y 

ε
β = 0 

ED INC 
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5.  α = μy - (μx σxy/σx
2) 

 
Let's be God again and know the population parameters α = $4,000 and μx = 12 years.  Because our model 
generates the means of X and Y, we can compute them: 
 
μx = 12 yrs 
 
μy = α + β μx = 0.4 $1,000 + (0.8 $1,000/yr)(12yrs) = 10.0 $1,000 
 
Or, if we began with the means of Y and X—μy = 10 $1,000 and μx = 12 years—we could then solve for α: 
 
α = μy - (μx σxy/σx

2) = 10.0 $1,000 - (12yrs)(7.2 $1,000 yrs/9yrs2 = 0.4 $1,000 
 
Exercise:  Give a substantive interpretation for α and β.  How might this model be untenable in the real world? 
 
III. CORRELATIONS AND STANDARDIZED COEFFICIENTS. 
 
Thus far, we have been modeling covariance structures, developing models in terms of the original metrics of 
random variables, such as dollars and years of schooling.  This can also be done analyzing correlation matrices and 
working with standardized coefficients.  Historically, sociologists' use of path analysis focused on standardized 
coefficients (sometimes with disastrous results) which simplifies certain algebraic manipulations.  Recall the 
formula for the population correlation: 
 
ρ = σxy/(σxσy)  
 
Recall that this is also equal to the covariance of X and Y after each has been standardized (μ = 0; σ2 = 1).  Assume 
we're in deviation scores, E(X) = E(Y) = 0.  We can standardize X and Y: 
  
Zx = X/σx and Zy = Y/σy 
 
E{[Zx - E(Zx)][Zy - E(Zy)]} = E(Zx Zy) = E[(X/σx)(Y/σy)] = E(XY)/σxσy = σxy/(σxσy) = ρ 
 
Then, our population moment matrix becomes 
 
Σఘ

2 ൈ 2
ൌ ൤

1
௫௬ߩ 1 ൨ 

 
Again, we assume that some underlying structure generated this population correlation matrix, but now the model 
must be standardized.  Again, assume we've deviated from means E(X) = E(Y) = 0 and now standardize our 
bivariate regression model: 
 
Y = β X + ε          divide through by σy 
 
Y/σy = β/σy X + ε/σy       multiply second term by 1 (σx/σx), third term by 1 (σε/σε) 
 
Y/σy = (β/σy)(σx/σx) X + (σε/σε) ε/σy  rearrange terms 
 
Y/σy = (β σx/σy) (X/σx) + (σε/σy) (ε/σε)  
 
 Zy  =  Pyx   Zx  +  Pyε  Zε  
 
Therefore, the standardized form of our model is: 
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Zy = Pyx Zx + Pyε Zε  
 
where Zy = Y/σy , Zx = X/σx , Zε = ε/σx , Pyx = β σx/σy , and Pyε = σε/σy  
 
(Note that Duncan (1975) forgets to replace X and Y with Zx and Zy.)  Just as before, we can express moments in 
terms of parameters: 
 
Begin with Zy = Pyx Zx + Pyε Zε , multiply through and take expectations 
 
1.  E(Zx

2) = E(Zx
2) = 1 

 
2.  E(Zy

2) = Pyx
2 E(Zx

2) + Pyε
2 E(Zε

2) = Pyx
2 + Pyε

2 = 1 
 
3.  E(Zy Zx) = Pyx E(Zx

2) + Pyε E(Zε Zx) = Pyx = ρxy  
 
Note that, in a bivariate equation, Pyx = ρxy.  This does not necessarily hold in the multivariate case.  Now express 
parameters in terms of moments: 
 
1.  E(Zx

2) = 1 
 
2.  Pyx = ρxy 
 
3.  Pyε = (1 - Pyx

2) 
 
We can also express the R2 for this bivariate equation:   
 
R2 = 1 - Pyε

2  
 
= Pyx

2 in the bivariate case only 
 
Now we can again express Σρ in terms of Σρ(θ): 
 

൤
1
௫௬ߩ 1 ൨ ൌ ൤

1
௫ܲ௬ 1 ൨ 

   
Σఘ

2 ൈ 2
 =  

Σఘሺߠሻ
2 ൈ 2

 

 
Let's return to our example: 
 
Y = β X + ε,   Unstandardized form, where Y = Income and X = Years of Education 
 
Zy = Pyx Zx + Pyε Zε  Standardized form, where Zy = Income (standardized), Zx = Years of Education (std.), 
       and Zε = disturbance term (std.) 
 
Pyε = (1 - Pyx

2)1/2 = [1 - (.625)2]1/2 = (1 - .391)1/2 = .6091/2  = .780 
 
R2 = 1 - Pyε

2 = 1 - .609 = .391 
 
What do the standardized parameters tell us? 
 



 

 

 
 

Covariance Structure Analysis (LISREL) Professor Ross L. Matsueda
Lecture Notes Do not copy, quote, or cite without permission

 8 

Exercise:  Due next time.  Assume that the above population moments and parameters are for a population of white 
males in the U.S.  Consider the following population moments on African-Americans males in the 
U.S.:  μy = 7.0 $1,000; μx = 10 years; σx

2 = 4 years2; σy
2 = 15.0 1,000$2; σxy = 1.6 $1,0001yrs.  

Compute the unstandardized and standardized parameters above and briefly contrast the substantive 
interpretations of each parameter with that of whites. 

 
IV. ESTIMATION AND TESTING. 
 
So far, we have been describing our little model assuming we had access both to population moments and 
parameters.  In such a case, we would have no reason for estimation or inferential statistics.  In fact, however, we 
rarely observe the population directly; instead we only obtain data on a sample drawn from the population.  The 
sample moments and parameter estimates are direct counterparts to population moments and parameters: 
 
 Σ = Σ(θ)  Population moments in terms of population parameters 
 S = Σ(ߠ෠)  Sample moments in terms of estimated parameters 
 
We begin with sample data, which we characterize by the sample moments (sample covariance matrix and sample 
means): 
 
 xi/n = ݔ̅
 ത = yi/nݕ
 

sx
2 = 

ଵ

௡ିଵ
∑ 	ሺݔ௜ െ  ሻଶݔ̅

 

sxy = 
ଵ

௡ିଵ
∑ 	ሺݔ௜ െ ௜ݕሺ		ሻݔ̅ െ	ݕതሻ  

 

sy
2 = 

ଵ

௡ିଵ
∑ 	ሺݕ௜ െ  തሻଶݕ

 
S

2 ൈ 2
ൌ ቈ

௫ଶݏ

௫௬ݏ ௬ଶݏ
቉ 

 
S, the sample moments of observed variables, is an unbiased and efficient estimator of Σ.  We can express our 
sample moments in terms of parameters: 
 

ቈ
		௫ଶݏ
௫௬ݏ ௬ଶݏ

቉ ൌ ቈ
			௫ଶݏ
௫ଶݏመߚ ௫ଶݏመߚ ൅ ఌଶݏ

቉ 

 S
2 ൈ 2

   =  Σሺߠ෠ሻ
2 ൈ 2

 

 
This is precisely what we did above, except we've replaced the population covariance matrix with the sample 
covariance matrix.  Σሺߠ෠ሻ is the matrix of moments implied by the estimated parameters of the model.  We can now 
express estimated parameters in terms of sample moments: 
 
1.  sx

2 = sx
2 

መߚ  .2  = sxy/sx
2 

3.  sε
2 = sy

2 - (sxy
2/sx

2) 
 
(Note that ߚመ , the sample estimator, is a random variable; whereas β is a constant.)  This method of estimation is 
called the method of moments (see Goldberger 1991, A Course in Econometrics,) which simply takes the equation 
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expressing population parameters in terms of population moments and replaces population moments with sample 
moments.  The parameter estimates obtained from sample moments are sample analogs of parameters expressed as 
population moments.  Hence, in econometrics, the method of moments falls under the general term, “analog 
estimators.”   
 
Important fact:  In recursive linear models in observables, estimation by the method of moments is identical to the 
OLS estimator, which gives desirable finite (small) sample properties:  unbiased E[Σሺߠ෠ሻ] = Σ(θ) and efficient 
E{	Σሺߠ෠ሻ - E	Σሺߠ෠ሻ]}2 is smaller than that of any other linear unbiased estimator.  If we drew numerous samples, and 
constructed a distribution of OLS estimates, the average of the distribution would be the population parameter β, and 
the variance of the sampling distribution would be smaller than that of other unbiased linear estimators. 
 
For any given sample, because of sampling variability, we cannot expect S = Σ, or Σሺߠ෠ሻ = Σ(θ).  This implies that 
our parameter estimates will be subject to sampling variability.  This means we need to assess the effects of chance 
on our estimates, and subject our estimates to formal hypothesis testing.  We can do this using the usual principles 
of classical statistical inference.   
 
Assuming that Y|X is normally distributed (that is ε is normally distributed), we can assume that ߚመ  is normally 
distributed with mean β and variance σβ

2 = σε
2/∑ 	ሺݔ௜ െ መߚ ሻ2.  The standard error ofݔ̅  is the square root of the 

variance, (σβ
2)1/2.  But because we typically do not know the population variance σε

2 of the disturbance, we have to 
estimate it from the sample sε

2 = sy
2 - (sxy

2/sx
2). The estimated standard error of ߚመ  is sβ = [sε

2/∑ 	ሺݔ௜ െ  ሻ2]1/2.  Toݔ̅
test the null hypothesis, H0: β = β0 versus the alternative hypothesis H1: β ് 0, construct the t-statistic:   
 
tn-1 = (ߚመ  - β0)/sβ 
 
If tn-1 > tcritical, (e.g., tcritical > 1.96) then we reject the null hypothesis.  [Aside:  note that when the intercept is 
included in the model, the degrees of freedom become n - 2, and the standard error for β is sβ(n - 1)/(n - 2) (see 
Maddala 1988 Introduction to Econometrics)].   
 
The two models that correspond to the two hypotheses illustrate an important principle:  the second model 
(corresponding to the null hypothesis) is nested within the first model.  Nested means that the second model is a 
special case of the first:  by constraining one or more parameters in the first model, one can obtain the second.  
Here the second model constrains β to be zero, whereas the first model allows it to be any number.  We can test the 
null hypothesis H0: β = 0, against the alternative hypothesis, H0: β ് 0: 

 
   
   Model 1: Alternative Hypothesis: β ് 0      Model 2:  Null Hypothesis: β = 0   
 
Let’s run this bivariate regression model in LISREL 8.8: 
 
 
BIVARIATE REGRESSION MODEL   Title of the run 
 
 DA NI=2 NO=500    DA = data NI= No.of input vars. NO = no.cases  
   
 CM      Read in a covariance matrix = CM 
 *      * = Read data in free format (starting on next line) 
 9 
 7.2 14.76 
 LA      LA = labels 
 *      * = Read labels in free format (next line) 

X Y 

ε
β	് 0 

ED INC 
X Y

ε 
β = 0

ED INC
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 SE      SE = select variables (Ys first, then Xs) 
 2 1 /      The 2nd variable is Y and the first X. Slash / 
 MO NX=1 NY=1 GA=FU,FR PS=DI, FR MO = Model Parameters NX= Xs, NY = Ys GA = gamma PS 

is the disturbance 
 VA 0.0 GA 1 1     VA = start value, GA 1 1 is gamma 
 PD      PD = Path Diageram 
 OU ME=ML  SC OU = Output ME = method of estimation, ML = maximum 

likeilhoood, SC = completely standardized solution 

 
LISREL prints out the path diagram; 
 
 
 
 

 
 
 
 
Here is the LISREL output: 
 
 
The following lines were read from file H:\529 examples\bivariate regression.LS8: 
 
 BIVARIATE REGRESSION MODEL 
 DA NI=2 NO=500 
   
 CM 
 * 
 9 
 7.2 14.76 
 LA 
 * 
 ED INC 
 SE 
 2 1 / 
 MO NX=1 NY=1 GA=FU,FR PS=DI, FR 
 VA 0.0 GA 1 1 
 PD 
 OU ME=ML  SC 
 
 BIVARIATE REGRESSION MODEL                                                      
 
                           Number of Input Variables  2 
                           Number of Y - Variables    1 
                           Number of X - Variables    1 
                           Number of ETA - Variables  1 
                           Number of KSI - Variables  1 
                           Number of Observations   500 
 BIVARIATE REGRESSION MODEL      
                                                 
         Covariance Matrix        
                 INC         ED    

            --------   -------- = S, the sample covariance matrix 
      INC      14.76 
       ED       7.20       9.00 
 
 BIVARIATE REGRESSION MODEL                                                      
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 Parameter Specifications 
 
         GAMMA        
                  ED 
            -------- 

      INC          1   = our regression coefficient 
 
         PHI          
                  ED   = the variance of X (ED) 
 
            -------- 
                   2    
         PSI           = the disturbance variance 
 
                 INC 
            -------- 
                   3 
  
 
BIVARIATE REGRESSION MODEL                                                      
 
 Number of Iterations =  0 
 
 LISREL Estimates (Maximum Likelihood)                            
 
         GAMMA        
 
                  ED    
            --------    

      INC       0.80  = ࢼ෡ 
              (0.04)  = Standard Error 
               17.85  = t-value (or Z-statistic) 

 
         Covariance Matrix of Y and X             
 
                 INC         ED    
            --------   -------- 
      INC      14.76 
       ED       7.20       9.00 
 
         PHI          
 
                  ED    
            -------- 
                9.00  = estimated variance of X  
              (0.57) 
               15.78 
 
         PSI          
 
                 INC    
            -------- 
                9.00  = Estimated variance of the disturbance 
              (0.57) 
               15.78 
 
         Squared Multiple Correlations for Structural Equations   
 
                 INC    
            --------    
                0.39  R-squared 
 
 
 
                           Goodness of Fit Statistics 
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                              Degrees of Freedom = 0 
                 Minimum Fit Function Chi-Square = 0.0 (P = 1.00) 
        Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 1.00) 
 
                  The Model is Saturated, the Fit is Perfect ! 
 
 
 BIVARIATE REGRESSION MODEL                                                      
 
 Standardized Solution            
 
         GAMMA        
 
                  ED    
            -------- 

      INC       0.62    Standardized regression estimate ࡼ෡࢟࢞ 
 
 
         Correlation Matrix of Y and X            
 
                 INC         ED    
            --------   -------- 
      INC       1.00 
       ED       0.62       1.00 
 
         PSI          
 
                 INC    
            -------- 
                0.61 
 
         Regression Matrix Y on X (Standardized)      
 
                  ED    
            -------- 
      INC       0.62 
 
                           Time used:    0.062 Seconds 
 


