Figure 4. Path Model of a Reciprocal Causal Relationship of Property Delinquent Peers and Property Delinquency
Figure 5. Measurement Model of Property Delinquent Peers and Property Delinquency
Path diagram of a four-wave random intercept model.

\[y_{it} = \alpha_i + \varepsilon_{it} \]

\[\alpha_i = \gamma_1 x_{1i} + \zeta_i \]
Path diagram of a four-wave linear latent growth curve model.

\[y_{it} = \alpha_i + \lambda_t \beta_{1i} + \epsilon_{it} \]

\[\alpha_i = \gamma_1 x_{1i} + \zeta_i \]

\[\beta_{1i} = \gamma_2 x_{1i} + \zeta_2 \]
Path diagram of a four-wave quadratic latent growth curve model

\[y_{it} = \alpha_i + \lambda_t \beta_{1i} + \lambda_t^2 \varepsilon_{it} \]

\[\alpha_i = \gamma_1 x_{1i} + \zeta_i \]

\[\beta_{1i} = \gamma_2 x_{1i} + \zeta_2 \]

\[\beta_{2i} = \gamma_3 x_{1i} + \zeta_3 \]
Path diagram of a four-wave quadratic latent curve dual trajectory model
Growth Mixture Model (GMM) in Mplus (Muthén and Muthén 2012)

Here, i indicates the intercept and s indicates the slope and c is a categorical latent variable consisting of one or more latent classes of trajectories. The effects of c on i and s are analogous to regressing i and s on $k - 1$ dummy variables representing the k latent classes of trajectories. Substantively, this means that each class of trajectories can have distinct intercepts and distinct slopes. X is a vector of exogenous covariates affects c, the latent classes of trajectories, via a multinomial logit model. X also affects i and s via a linear model. This model allows for heterogeneity of trajectories within classes. If such heterogeneity is assumed to be zero, this model is identical to Nagin’s (2005) group-based trajectory model.