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Structural equation modeling (SEM) has advanced
considerably in the social sciences. The direction of
advances has varied by the substantive problems faced
by individual disciplines. For example, path analysis
developed to model inheritance in population genet-
ics, and later to model status attainment in sociology.
Factor analysis developed in psychology to explore the
structure of intelligence, and simultaneous equation
models developed in economics to examine supply and
demand.

These largely discipline-specific advances came to-
gether in the early 1970s to create a multidisciplinary
approach to SEM. Later, during the 1980s, responding
to criticisms of SEM for failing to meet assumptions
implied by maximum likelihood estimation and test-
ing, SEM proponents responded with estimators for
data that departed from multivariate normality, and for
modeling categorical, ordinal, and limited dependent
variables. More recently, advances in SEM have incor-
porated additional statistical models (growth models,
latent class growth models, generalized linear models,
and multilevel models), drawn upon artificial intelli-
gence research to attempt to “discover” causal struc-
tures, and finally, returned to the question of causality
with formal methods for specifying assumptions neces-
sary for inferring causality with nonexperimental data.

In this chapter, I trace the key advances in the his-
tory of SEM. I focus on the early history and try to
convey the excitement of major developments in each
discipline, culminating with cross-disciplinary integra-
tion in the 1970s. I then discuss advances in estimating
models from data that depart from the usual assump-
tions of linearity, normality, and continuous distribu-
tions. I conclude with brief treatments of more recent
advances to provide introductions to advanced chapters
in this volume.

EARLY HISTORY:
THE DISCIPLINARY ROOTS OF SEM

Sewall Wright's Path Analysis
in Genetics and Biology

In 1918, Sewall Wright, a young geneticist, published
the first application of path analysis, which modeled the
bone size of rabbits. After computing all possible par-
tial correlations of his measures, he was still dissatis-
fied with the results, which remained far from a causal
explanation. Consequently, Wright developed path
analysis to impose a causal structure, with structural
coefficients on the observed correlations. His substan-
tive application decomposed the variation in the size of
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an individual bone to various hereditary causes (Hill,
1995). He subsequently applied path analysis to sys-
tems of mating, using data on guinea pigs, which laid
the basis for much of subsequent population genetics.
For example, in modeling the proportion of white color
in spotted guinea pigs, Wright (1920) decomposed the
variance into heredity (1), common environment for the
litter (¢), and other factors, such as developmental noise
(d). The path coefficient (h) represents the link between
genotype and phenotype, and h? is the proportion of
variance due to heredity, later termed “heritability” in
population genetics. Wright also developed models for
systems of mating, showing the consequences of con-
tinued inbreeding systems, such as continued brother—
sister mating, which results in m = r'y;, where m is the
correlation between mates in one generation, and r'y is
the correlation between brother and sister of the previ-
ous generation (Li, 1956). He also derived results for
intergenerational consequences of assortative mating.
Figure 2.1 reproduces a path diagram of environment
and heredity, which Hill (1995, p. 1500) calls “surely
one of the best known diagrams in biological science.”

Wright (1921a, 1934) presented the method of path
analysis for estimating causal relations among vari-

A diagram illustrating the relations between twe mated individuals and their
progeny. H, I, /' und " are the genetfc constitutions of the four individuals. G, G, G"
and G" are four germ-cells. . and D represent tangible external conditions and chance frregu-

larities as factors in developmment, € s chance at ion as n factor in d
the composition of the germa-cells. Path cocfficients are represented by small letters.

FIGURE 2.1. An early path diagram on the importance of
heredity and environment in spotted guinea pigs. From
Wright (1921b). Copyright granted by the Genetics Soci-
ety of America. Reprinted by permission.
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ables based on the correlation matrix of observed vari-
ables, emphasizing path coefficients (standardized re-
gression coefficients) but also using “path regressions”
(unstandardized coefficients). He invented a graphical
method of presenting causal relations using path dia-
grams, consisting of variable labels connected by ar-
rows for direct effects, double-headed arrows for unan-
alyzed correlations, and the estimated path coefficients
listed over single-headed arrows. From path diagrams,
Wright could read off total, direct, and indirect effects,
and quickly decompose correlations into various causal
sources, such as direct effects, indirect effects, com-
mon causes, and the like. Among the models Wright
estimated by path analysis was a model of multiple
causal indicators, or what later became known as the
multiple-indicator, multiple-indicator-cause (MIMIC)
model. Wright’s estimation method was essentially the
method of moments, which follows the intuitive prin-
ciple of estimating a population moment (or function of
moments) using the sample analog moment (or function
of moments) (Goldberger, 1991). Although he lacked a
principle for reconciling multiple ways of expressing a
path coefficient in terms of sample moments in overi-
dentified models, he did check to see if they were close,
and acknowledged the potential gains in efficiency and
reduced standard errors from using full information
(Goldberger, 1972b).

While working for the U.S. Department of Agri-
culture, Wright (1925) worked on corn and hog cor-
relations, developing a complex, highly overidentified,
recursive system of equations containing observed, un-
observed, lagged, and unlagged variables to describe
seasonal data on hog breeding, corn prices, and hog
prices. The Department of Agriculture rejected publi-
cation of the monograph on the grounds that “an ani-
mal husbandman” (Wright’s position at the time) “had
no business writing about economics” (Crow, 1988).
Wright’s research was only published after Henry Wal-
lace read the paper and exploited the influence of his
father, then Secretary of Agriculture. Although the re-
cursive model had no explicit demand function, Wright
(1925, p. 54) noted in a footnote that a direct negative
effect of hog quantity on hog price would be desirable
but the “treatment of such reciprocal relations between
variables requires an extension of the theory of path
coefficients” (see Goldberger, 1972b, p. 983).

In 1928, Wright’s father, economist Phillip Wright,
published a study of the tariff, which included an ap-
pendix—the infamous “Appendix B”"—that applied in-
strumental variables and path analysis to reciprocal re-
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lations between variables (Wright, 1928). Most scholars
presume that the appendix was coauthored with Sewall
Wright, although Stock and Trebbi (2003) suggest that
Phillip may have been sole author.! Phillip Wright, who
had mentioned the identification problem as early as
1915 (Wright, 1915), and presented it in graphical form
of supply and demand curves, wrote out what later be-
came known as the reduced form equations:

P=p22D+p, 2t (21)
c5’.!) 5
(s) (o)
Q=¢,—*D+¢,—=5 (2.2)
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where D and § indicate shifts in demand and supply
curves after transforming P and Q to trend ratios, and
o’s represent standard deviations of variables. Wright
(1928) noted that the two equations contain four un-
knowns. He then suggested that if two external vari-
ables, A and B, could be found (based on external
knowledge of markets) such that A were correlated with
D but not S, and B were correlated with S but not D,
the principles of path analysis would yield solutions for
the four unknowns. Wright had arrived at a more gen-
eral treatment than offered by Henry Schultz that year
(1928) or “indeed in 1938” (Goldberger, 1972b, p. 984).
Sewell Wright (1934) later developed more general so-
lutions, noting that a mere single external variable is
sufficient if the supply and demand situations were un-
correlated—that is, the disturbances of the two equa-
tions were orthogonal—and also that, in very complex
models with many more shifts than external variables,
one could solve for parameters by assuming plausible
values for some of the unknowns (see Epstein, 1987).
This solution to the simultaneous equation problem
would be rediscovered by Rejersgl (1945, cited in Mor-
gan, 1990), who used the term “instrumental variable
estimates” (which he attributed to Frisch).

At this time, Wright's (1934) path analysis was large-
ly ignored not only in biology but statistics as well, per-
haps in part because it contained elements “that were
objectionable” to the two dominant schools of statistics
(Shipley, 2000, p. 70):

The Phenomenalist school of Pearson disliked Wright's
notion that one should distinguish “causes” from cor-
relations. The Realist school of Fisher disliked Wright's
notion that one could study causes by looking at corre-
lations. Professional statisticians therefore ignored it.
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And applied biologists were drawn to Fisher’s methods,
which included inferential statistics, were rooted in ex-
perimental design, and were easier to understand (Ship-
ley, 2000). Later, Wright’s path models became foun-
dational for much of population genetics (Li, 1956).

Causal Models and Path Analysis
in Sociology

Perhaps the earliest reference to path analysis by a so-
ciologist appeared in an appendix to Blalock’s (1961a,
pp. 191-193) classic treatment of causal inference in
nonexperimental research, where he briefly discussed
“some related approaches,” and concludes that path
analysis “might readily be extended so as to be highly
useful in the less precise nonexperimental sciences.™
Blalock had spearheaded a voluminous literature in so-
ciology on causal models in the 1960s by elaborating
on Simon’s (1954) method of making causal inferences
from correlational data. Building on Yule’s (1896) orig-
inal method of ruling out common causes using par-
tial correlations, Simon (1954) began by noting that a
zero partial correlation (r,, . = 0) between independent
variable x and dependent variable y holding z constant,
implies a spurious correlation between x and y when
z (a confounder) is causally prior to x and y. However,
when z is causally prior to x and causally subsequent to
y, z is an intervening variable between x and y. Simon
(1954, p. 471) correctly asserted that the determination
of whether a partial correlation is or is not spurious
“can only be reached if a priori assumptions are made
that certain other causal relations do not hold among
the variables”—namely, exclusionary restrictions on
coefficients and uncorrelated errors in equations. He
then went on to expound on these conditions in all pos-
sible three-variable models. Blalock (1961b, 1962) ex-
tended this method to a five-variable model and then
to an exhaustive exposition of the four-variable case.
Later, Boudon (1965) applied these results to path co-
efficients, drawing from Wright (1934), but renaming
them “dependence coefficients.”

But it was Duncan’s (1966) classic expository article,
“Path Analysis: Sociological Examples,” and his mon-
umental monograph with Peter Blau, The American
Occupational Structure (Blau & Duncan, 1967), that
launched the path analysis movement in sociology, and
later in political science. Duncan used published cor-
relations to apply path analysis to recursive models of
class values, population density, occupational prestige,
and synthetic cohorts. Subsequently, Costner (1969) and
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Blalock (1969) used path analysis to address multiple-
indicator causal models, and in particular, to find that
tetrad-difference restrictions on observed correlations
provide a way of testing models—a result that emerged
from factor analysis in psychology. These papers made
important insights into substantive population models,
although they tended to gloss over sample—population
distinctions, efficient estimation, and formal hypothesis
testing.

Substantively, Duncan and Hodge (1963) had ear-
lier published a four-variable status attainment model
on data from Chicago, in which son’s education inter-
vened between the effects of father’s occupation on
son’s occupation in 1940 and 1950. They estimated the
models using equation-by-equation multiple regression.
Blau and Duncan’s (1967) monograph expanded on this
model by using national data, distinguishing hierar-
chies of occupations and rewards from the process by
which individual characteristics sort people into those
occupations, and examining whether the American
stratification system approximated an open opportunity
structure more than a rigid class hierarchy. The study
produced an explosion of productive research using
path analysis to model status attainment, most notably
the Wisconsin status attainment model (e.g., Sewell &
Hauser, 1975).

Factor Analysis in Psychology

In psychology, interest in SEM originated in *“factor
analysis,” which is a statistical method for analyzing a
correlation or covariance matrix of observed variables
to identify a small number of factors, components, or
latent variables that contain the essential information
in the original variables. Thus, the primary goal is to
attain “scientific parsimony or economy of description”
(Harman, 1960, p. 4). The method was originally devel-
oped to model psychological theories of ability and be-
havior. Spearman (1904) is often credited as the found-
ing father of factor analysis, although earlier Pearson
(1901) published a paper on fitting planes by orthogonal
least squares—the foundation for principal component
analysis—which was later applied to the analysis of
correlation matrices by Hotelling (1933). Spearman’s
work on factor analysis derived explicitly from his
work on intelligence testing. He specified a two-factor
theory of intelligence, in which all mental processes in-
volved a general factor g, plus a specific factor 5. The
general factor enters all activities, some more than oth-
ers, while the specific factors were unique to the task at
hand (the specific mental activity). Spearman claimed
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that the disparate items from intelligence tests would
reveal two factors: a general factor and an item-specific
factor. Moreover, Spearman (1927) showed that four
variables cannot be described by a single factor unless
their intercorrelations satisfy the conditions of two van-
ishing tetrad differences?:

Fiaf3s— a3 =0 (2.3)
Fiarag = Tyl =0 (2.4)

Criticisms of the two-factor theory of intelligence on
theoretical as well as empirical grounds—tetrads often
failed to vanish or, equivalently, correlation matrices
failed to be of unit-rank, even after considering sam-
pling error—Iled to interest in multiple factor analysis,
in which group factors were identified after extract-
ing a general factor (e.g., Holzinger, 1941). Thurstone
(1935), who founded the Psychometric Society, noted
that a vanishing tetrad difference implied a vanishing
second-order determinant of the matrix of observables,
and extended this to the vanishing of higher-order de-
terminants as a condition for more than one factor. He
then generalized the result: The number of common
factors is determined by the rank of the matrix of ob-
servables (see Harman, 1960). In addition, Thurstone
(1935) developed the centroid method of factoring a
correlation matrix (as a pragmatic compromise to the
computationally burdensome principal axis method).
Moreover, he developed a definition of simple structure
for factor analysis based on five principles (the most
important of which are to minimize negative loadings
and maximize zero loadings) to facilitate interpretation
and ensure that loadings were invariant to the inclu-
sion of other items. This spawned interest in various
methods of rotation of the initial solution, such as Kai-
ser’s (1958) Varimax orthogonal rotation. Thurstone’s
original hand rotation was oblique, allowing factors to
be correlated, but it was Jennrich and Sampson (1966)
who developed a computational method of achieving an
oblique rotation, and Jennrich and Clarkson (1980) who
worked out the standard errors of rotated loadings (see
Browne, 2000).

The problem of rotating factor solutions is avoided
when confirmatory factor analysis is used. Here, the
number of factors and the pattern of loadings—including
restrictions on loadings—are specified in advance,
transforming the problem into one of identification of a
model’s parameters from observed moments—the same
issue that arises in simultaneous equation models.* The
factor model specifies y = An + &, where y is a vector of
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p observables, 1 is a vector of m latent factor, , where
(m < p), Ais a p x m matrix of loadings, and € is a vec-
tor of p error terms representing “unique” variance in y.
Identification is typically achieved by specifying zero-
restrictions on elements of A to create, for example,
sets of congeneric tests, in which items load solely on
single factors (e.g., Joreskog, 1971b). The zero loadings
create tetrad difference overidentifying restrictions on
observed covariances, as noted earlier. The covariance
structure then becomes
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I=A¥A+ @ (2.5)
where Z=E(yy), ¥ = EM 1), and ® = E(e €), and
E(e) = 0. A maximum likelihood approach to factor
analysis was developed by Lawley (1940), and fully
elaborated by Anderson and Rubin (1956). But, ac-
cording to Browne (2000, p. 663), computational pro-
cedures were not available until “nested algorithms
involving eigenvalues and eigenvectors and imposing
inequality constraints on unique variance estimates
were discovered independently by Joreskog (1967) and
by Jennrich and Robinson (1969).” If S, the covariance
matrix of observables follows a Wishart distribution,
the log-likelihood function of the model is

1 -1
logL = —En[logp]l +ir(sz)] (26)
Joreskog (1967) and his colleagues developed computer
software programs for confirmatory factor analysis es-
timated by maximum likelihood.

Simultaneous Equation and
Errors-in-Variables Models in Economics

The structural equation approach in econometrics is
usually attributed to Haavelmo (1943) and the Cowles
Commission (1952), most notably Koopmans (1945).
But, as Morgan (1990) points out, Frisch and Waugh
(1933, pp. 389-390) were first to define “structural re-
lation” as a “‘theoretical relation postulated a priori” in
a single-equation multivariate linear model in which
the partial regression coefficient represented a “struc-
tural coefficient™: “An empirically determined relation
is ‘true’ if it approximates fairly well a certain well-
defined theoretical relationship, assumed to represent
the nature of the phenomenon studied.”

Frisch (1934), however, was critical of the use of
probability models for economic data (e.g., variations
in the business cycle), which were rarely the result
of a sampling process, and of ordinary least squares
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(OLS) regression because measurement errors existed
on not only dependent variables but also independent
variables. This led him to confluence analysis, which
treated observed variables as fallible indicators of la-
tent variables, and then examined the interrelationships
among all latent and observed variables to distinguish
“true relations” from “confluent relations.” Frisch de-
veloped the method of “bunch maps”—a graphical
presentation of regression coefficients—as a tool to
discover underlying structure, often obtaining approxi-
mate bounds for relationships (for details, see Hendry
& Morgan, 1989).

According to Qin (1989), Frisch—who coined the
term “econometrics” and helped found the Economet-
ric Society and its journal Econometrica—had devel-
oped many of the abstract principles of identification
of simultaneous equation models, although in a man-
ner confounded with issues of estimation and testing,
particularly in his critique of Tinbergen (1939). Tinber-
gen himself had discussed a formal way of identifying
a two-equation model from reduced-form parameters
(Tinbergen, 1930, cited in Magnus & Morgan, 1987),
although in his monumental models of the Dutch and
U.S. economies, he “cleverly constructed his model
in the causal chain fashion,” using OLS to estimate
its parameters, including effects of lagged dependent
variables (Anderson, 1991).% In his classic works on de-
mand, Schultz (1938) had developed the cobweb model
in which lagged price identified the supply—demand
model. Remarkably, Schultz was unaware of Sewell
‘Wright's more general instrumental variable solution to
the identification problem despite the two participating
in intellectual discussions of science, mathematics, and
statistics within a hiking group of academics (Gold-
berger, 1972b, pp. 985-986).

Within this context, Haavelmo (1943, 1944) made
two key contributions to structural equation models in
economics. First, he built on the work of Wald, Koop-
mans (1937), and others in specifying a probability
model for econometric models, presenting clearly and
concisely the Neyman—Pearson (e.g., Neyman & Pear-
son, 1933) approach to hypothesis testing, and using
the probability approach for estimation, testing, and
forecasting (see Morgan, 1990). He also distinguished
between two models of the source of stochastic com-
ponents: errors-in-variables models emphasized by
Frisch (1934), and random shocks models introduced
by Slutsky (1937).6 This framework is often referred to
as the “probabilistic revolution” in econometrics (see
Morgan, 1990) and has had a lasting impact on the
field, particularly in cementing the Neyman—Pearson
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approach to inference over others, such as Bayesian
approaches (e.g., Jeffreys, 1935; see Heckman, 1992).
Second, Haavelmo made major advances in simultane-
ous equation models, showing that OLS estimates are
biased in a two-equation supply—demand model, and
distinguishing between structural form equations and
what Mann and Wald (1943) termed the “reduced-form
equation.” He applied maximum likelihood estimation
to the system of equations, showing its equivalence to
OLS when applied to the reduced form, and specifying
necessary and sufficient conditions for identification
in terms of partial derivatives of the likelihood func-
tion (Haavelmo, 1943, 1944). Haavelmo (1944) also
refined the term “autonomy”: Parameters representing
relatively autonomous relations are more likely to be
stable, intelligible, and useful for policy analysis (Al-
drich, 1989). Parameters, then, are structural when they
represent autonomous relations, which are invariant to
policy interventions. Haavelmo (1943) also interpreted
structural equations in terms of counterfactuals or po-
tential outcomes, presaging the more recent models of
Rubin (1974) and Imbens and Angrist (1994).

The advances made by Haavelmo and Mann and
Wald led to work on the simultaneous equation model
at the Cowles Commission, which moved to Chicago
in 1939, led by Marschak and including Koopmans,
Haavelmo, Wald, Lurwicz, Klein, and Anderson (Rubin
and Leipnik were graduate assistants in Mathematics,
and Simon joined later). Work at the Cowles Commis-
sion solved the major problems of identification, esti-
mation, and testing of simultaneous equation models.
In particular, Koopmans, Rubin, and Leipnik (1950)
gave a general treatment of( the model’s structural and

reduced forms: ’LUU\ i N
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to be zero. If we rearrange the matrices so that the first
row of (B, ') is written as (B, 0, v, 0), then the first row
of I' = —-BII becomes (B, 0)IT = —(y, 0). Then partition
(IT):

Hz[ﬂu 1111] 29)
I, 1L,

and we obtain BIT;, = —y, and

BIT, =0 (2.10)
The vector B is identified (except for a multiplicative
constant) by Equation 2.10 if and only if the rank of
I1,, is at least one less than the number of elements in
[3 (Anderson, 1991, p. 7). If an equation does not sat-
isfy this condition, it is underidentified and cannot be
estimated. If an equation’s restrictions on P are exact-
ly one fewer than the rank of IT,, then the equation
is just-identified; if the restrictions are more than one
fewer than the rank of IT;,, the equation is overidenti-
fied.® Koopmans and colleagues (1950) also specified a
maximum-likelihood estimator for the general simulta-
neous equations model, which made Haavelmo’s model
accessible for empirical research.’

Perhaps the most important empirical applications
of simultaneous equation models were Klein’s (1950)
Keynesian models, culminating with the 15-equation
Klein—Goldberger model estimated by limited infor-
mation methods (Klein & Goldberger, 1955). Others at
Cowles had worried about the finite sample properties
of estimation and introduced limited information meth-
ods as a solution (e.g., Anderson & Rubin, 1949).10 Later,
Theil (1953/1992) developed a two-stage least squares
(2SLS) estimator that is consistent but asymptotically

By+Ix=u 2.7) efficient only among single-equation estimators. He ap-

4 plied OLS to the reduced form, obtained predicted val-

beld ital )7y,
%re v is a vector of p endogenous variables, x is a

vector of g predetermined or exogenous variables, u is
a vector of p disturbances (assumed normally distrib-
uted), and I" and B are coefficient matrices in which B
is nonsingular.” The reduced form is

y=Ix+v (2.8)

where I' = —BIT, u = By, £ = BQB', and Q is the covari-
ance matrix of v.

Anderson (1991) summarizes an intuitive way of
stating the identification problem. Suppose that in
Equation 2.7 some elements of B and I" are constrained

ues for endogenous predictors, and applied OLS to the
structural form having replaced endogenous predictors
with their predicted counterparts. Zellner (1962) devel-
oped a joint generalized least squares (GLS) approach
to seemingly unrelated regressions that incorporates
information on covariances among errors of equations
that are otherwise unrelated. He showed that GLS es-
timates and standard errors are minimum variance for
linear models, and gain efficiency over OLS when the
x's differ across equations and covariances among er-
rors of equations are nonzero. Zellner and Theil (1962)
developed a three-stage least squares (3SLS) estimator
that applies joint GLS to the 2SLS estimates—using
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information from the disturbance covariances—and
showed that, for properly specified models, 3SLS is
consistent, asymptotically efficient, and asymptotically
equivalent to full-information maximum likelihood
(ML).

From its heyday in the 1950s and 1960s, in which
Keynesian macroeconomic models proliferated, inter-
est in simultaneous equation models in economics de-
clined (Epstein, 1987). This appears traceable to three
events: (1) self-criticism by members of Cowles; (2) Lu-
cas’s (1976) rational expectations critique, in which eco-
nomic agents anticipate policy interventions and then
act contrary to linear models—implying that models
omitting expectations are misspecified and structural
parameters are not policy-invariant; and (3) empirical
research suggesting that macro-Keynesian simultane-
ous equations models were not superior to simple naive
models in forecasting the future (e.g., Nelson, 1972),
leading to alternative time series models, such as vector
autoregressions (Sims, 1980; see Epstein, 1987; Heck-
man, 2000).

The emphasis of Haavelmo and the Cowles Commis-
sion on models of errors in equations led most econo-
metricians to abandon the errors-in-variables model
emphasized by Frisch (1934). Two “path-breaking
articles”—Zellner (1970) and Goldberger (1972a)—
revived empirical interest in errors-in-variables models
(Judge, Griffiths, Hill, & Lee, 1980). Zellner (1970) pre-
sented GLS (a modification of his joint GLS estimator)
and Bayesian approaches to estimating a model with
a fallible endogenous predictor with multiple causes.
Goldberger showed that GLS is equivalent to ML only
when errors are normally distributed with known vari-
ances. He also showed that when error variances are
unknown, an iterated GLS will converge to ML,

INTERDISCIPLINARY INTEGRATION

The year 1970 was a watershed year for structural equa-
tion modeling: Jéreskog (1970) published his general
method of analyzing covariance structures; Hauser and
Goldberger (1971) presented, at the sociology meetings,
their work on unobservables in path analysis; and Zell-
ner (1970) published his GLS results on unobservable
independent variables. The year 1970 was also marked
by the Conference on Structural Equation Models, an
interdisciplinary forum featuring economists, soci-
ologists, psychologists, statisticians, and political sci-
entists, originating from a Social Science Research
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Council recommendation and culminating with the
published volume Structural Equation Models in the
Social Sciences (Goldberger & Duncan, 1973). This
was presaged by the appearance of Blalock’s (1971)
edited volume Causal Models in the Social Sciences,
which featured interdisciplinary contributions.

In this section, I focus on two key papers published
in this period by Hauser and Goldberger (1971) and
Joreskog (1973). Hauser and Goldberger’s (1971) ex-
amination of unobservable variables is an exemplar of
cross-disciplinary integration, drawing on path analy-
sis and moment estimators from Wright and sociolo-
gists, factor-analytic models from psychometrics, and
efficient estimation and Neyman-Pearson hypothesis
testing from statistics and econometrics. In a seminal
and landmark paper that summarized his approach,
Joreskog (1973) presented his ML framework for es-
timating SEMs, developed a computer program for
empirical applications, and showed how the general
model could be applied to myriad important substan-
tive models. Here, I focus on Hauser and Goldberger
(1971) because they used limited information estima-
tion to reveal what was going on “behind the scenes” of
systems of structural equations estimated by ML.

Hauser and Goldberger (1971) analyze two models:
the two-factor multiple indicator “walking dog” model
(considered in factor analysis and by Costner and Bla-
lock) and the MIMIC model.!? Figure 2.2 presents a
simple walking-dog model with four observables and
two latent factors. We can express the model in matrix
form:

B 4
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FIGURE 2.2. Path diagram of a walking-dog model in four
observables and two latent variables.
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It then follows that the covariance structure model is

2, =Al-B)T¥(I-B)"+6, (2.13)
where Z,, = E(y y') is the (population) covariance ma-
trix of observable indicators, A is a matrix of loadings,
B is a matrix of regression coefficients among latent
variables 1, ¥ = E({ {)is the covariance matrix of
structural disturbances, and 8, = E(g €) is a covari-
ance matrix of measurement errors (diagonal in this
example). This model is overidentified with one degree
of freedom (10 moments and 9 parameters). The overi-
dentifying restriction implies that there is more than
one way of computing parameters in terms of moments,
and there is a testable overidentifying restriction in the
data. This can be seen by computing moments in terms
of parameters (normal equations) and then solving for
parameters in terms of moments. For example:

A3y = 053/0yy = 613/0, (2:14)
By cross-multiplying the second two terms and rear-
ranging, we obtain the identical tetrad-difference re-
striction as found by Spearman (1927) and given in
Equation 2.4, but in unstandardized form: G, G, = Gy
0)3. Because Equation 2.14 can be satisfied by many
different models, a traditional structural equation ap-
proach tests a specific nested parameterization of the
restriction, rather than testing the tetrad-difference
constraint on moments directly.

In estimating overidentified models, the question
becomes which moment estimator(s) should be used.
We can see this by replacing the population moments
in Equation 2.14 with their sample counterparts, and
noting we have two moment estimators for A,,. In overi-
dentified fully recursive models, the OLS estimator is
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unbiased and efficient; therefore, using the moment
estimator corresponding to OLS (giving it a weight of
one) and ignoring other instrumental variable moment
estimators (giving them a weight of zero) is optimal. In
the general case, however, one would not want to use
only one estimator or a simple unweighted average, but
instead weight the moments inversely to their sampling
variability,. Hauser and Goldberger (1971) show that
this is precisely what ML does when minimizing the fit
function in Equation 2.6. We can illustrate this point by
noting that minimizing Equation 2.6 is asymptotically
equivalent to minimizing a quadratic form (Anderson,
1973; Browne, 1974):

Fgus =[5 —o(8)]" W-'[s — 6(0)] (2.15)
where s is a vector of nonredundant elements from the
sample covariance matrix S, 6(8) is the corresponding
vector of elements of the parametric structure of the
covariance matrix Z—which makes § — ¢(8)a discrep-
ancy vector to be minimized—and W is a weight ma-
trix consisting of the covariance matrix of the sample
moments. Under normality, the latter consists of prod-
ucts of second-order moments about the mean. Thus,
the parameters in G(0) are expressed as a function of
sample moments s, each of which is weighted inverse to
its sampling variability by W. The estimator in Equa-
tion 2.15, termed GLS by Browne (1974), has been ap-
plied to econometric models by Hansen (1982), who
terms it the “generalized method of moments.”

The second model analyzed by Hauser and Gold-
berger (1971), the MIMIC model, is presented in a
simple four-variable, three-equation form in Figure 2.3,
This model has nine parameters, 10 observable mo-
ments and, therefore, one overidentifying restriction. In
matrix form, the model is

&

FIGURE 2.3. Path diagram of a multiple-indicator,
multiple-indicator cause (MIMIC) model.
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(2.17)
n= T =x +¢
and the covariance structure is
X, = BI®I"+¥)B' +6, 2.18)

Z,=0I'B

where Exy = E(x y") contains the covariances between x
and y, Z,, = E(y y’) the covariances among the y’s, ® =
Z..=E(xx") (covariances among x’s are unconstrained),
0, = E(e €') the covariance matrix of measurement er-
rors in y (assumed diagonal here), and ¥ = E( ) the
covariance matrix of the structural disturbance(s). Let
us fix B,; = 1.0 to normalize the latent variable 1 and
give it a metric; one could also normalize by fixing ¥
to a constant.

Using path analysis, we can compute moments in
terms of parameters, solve for the parameters, and ob-
tain two ways of expressing parameters in terms of mo-
ments. For example:

B” = G}’r‘l /G)’r“l =

Replacing the population moments with their sample
counterparts gives us two sample moment estimators
of B,;. Also, if we cross-multiply the right two terms in
Equation 2.19 we get a single tetrad-difference overi-
dentifying restriction, ©,,0,. =0,.0,.. Note that
this is the same restriction on observable moments we
found for the walking-dog model above (if we denote
all variables as y’s), which illustrates an important dif-
ficulty for structural equation models: Overidentifying
restrictions can be satisfied by substantively different
models. In general, ML will provide consistent and as-
ymptotically efficient estimates by weighting sample
moments inverse to their sampling variability, result-
ing in optimal weights for multiple moment estimators.
Again, minimizing the likelihood function will provide
a likelihood ratio ¥? test of overidentifying restrictions.

Hauser and Goldberger (1971) also use economet-
ric methods to study identification and estimation. By

(2.19)

G)’lxz /oh"z
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substituting Equation 2.17 into 1 in Equation 2.16, we
obtain the reduced form:

(R ey

y I x + II

(2.20)

where Ty, = ByyYp Ta = ByyYips Ty = 1.0V, Ty = LOY,
Ty = By, + €, and m, = 1.0, + €,. The reduced form
can always be efficiently estimated using OLS. The
estimation issue arises because there are two ways of
expressing structural parameters in terms of reduced-
form parameters:

Biy =Ty /Ty = T/ Ty, (2.21)
This also implies a proportionality constraint on re-
duced form parameters, providing a test of the MIMIC
specification. ML weights the reduced-form parameter
estimates T, inverse to their sampling variability to
obtain asymptotically efficient estimates (Hauser &
Goldberger, 1971). In this example, there is one degree
of freedom and the single constraint can be expressed
in terms of observed moments or reduced-form param-
eters. Generally, in more complex models, both kinds
of restrictions exist, and ML will use both forms of
restrictions in estimating parameters.!3 Joreskog and
Goldberger (1975) later expanded on ML estimation of
the MIMIC model, and Goldberger (1973) discussed
estimation in overidentified models with latent vari-
ables and simultaneity. For discussions of indicators
as causes of theoretical constructs versus reflections of
constructs, see Hauser (1973) and Bollen and Lennox
(1991).

In a series of landmark papers, Joreskog (1970, 1973,
1978) outlined a general approach to covariance analy-
sis and a computer program he called LISREL, which,
following econometricians as far back as Frisch and
Waugh (1933), stood for “LInear Structural RELations.”
At about the same time, Keesling (1972) in his PhD dis-
sertation, and Wiley (1973) in the Goldberger—Duncan
volume, presented nearly identical models. However, it
was Joreskog’s version and software package that came
to dominate the field. The LISREL model incorporates
factor analysis, simultaneous equation models, and path
analysis (as discussed earlier) into a general covariance
structure model (e.g., Joreskog & Sérbom, 2001):
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Joreskog showed that ML estimates are obtained by
minimizing the following fit function and solving for
parameters:

F,y =log|Z| - log|S|+#(S=)-p+q  (2:23)
where § is the sample estimate of the population cova-
riance matrix X, and p and g are constants reflecting the
number of observed y’s and x’s, respectively. If we let
6 be a vector of ¢ parameters, then the f X t covariance
matrix of parameter estimates, V, is a function of the
inverse of Fisher’s information matrix:

-1
2 *F
V=|=|lE
(n){ (BGBB’H
in which the square roots of the diagonal elements are
asymptotic standard errors. Finally, if F;, is the mini-
mum of Equation 2.23 under the null hypothesis, and

Fy,, is the minimum under the less restrictive alterna-
tive, then —2 times the log likelihood ratio is

(2.24)

v=N(F, —Fy) (2.25)
which is asymptotically distributed %> with (p + q) — ¢
degrees of freedom. Equation 2.25 can be applied to
tests of nested models and the model’s overall good-
ness of fit. Joreskog (1971) also generalized this result
to estimate the model in multiple populations, and
showed how the model can be applied to simultaneous
equations, MIMIC models, confirmatory factor mod-
els, panel data, simplex models, growth models, vari-
ance and covariance components, and factorial designs
(for reviews, see Bentler, 1980, 1986; Bielby & Hauser,
1977).

In 1975, Duncan authored an excellent introductory
text for path analysis and structural equation models,
in which he echoed Frisch and Haavelmo’s concept of
autonomy: “The structural form is that parameteriza-
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tion—among the various possible ones—in which the
coefficients are (relatively) unmixed, invariant, and
autonomous” (p. 151). He also distinguished forms of
social change, from trivial changes in sampling or ex-
ogenous variables (that leave structural coefficients in-
tact) to deeper changes in structural coefficients (which
provide fodder for explanation by multilevel models),
and changes in the model’s structure itself (p. 167), and
provided sage advice for applying structural models
(p. 150): “Do not undertake the study of structural equa-
tion models (or, for that matter, any other topic in socio-
logical methods) in the hope of acquiring a technique
that can be applied mechanically to a set of numerical
data with the expectation that the result will automati-
cally be ‘research.”” Furthermore, Duncan noted that if
research using structural models “are contributions to
science (and not merely exercises in quantitative tech-
nique), it is because the models rest on creative, sub-
stantial, and sound sociological theory” (p. 151).

The next two decades saw an explosion of the use of
structural equation models in many areas of the social
sciences, including stratification (e.g., Bielby, Hauser,
& Featherman, 1977), social psychology (e.g., Kohn
& Schooler, 1982), psychology (e.g., Bentler & Speck-
art, 1981), marketing (Bagozzi, 1980), mental health
(e.g., Wheaton, 1978, 1985), sociology of science (e.g.,
Hargens, Reskin, & Allison, 1976), criminology (e.g.,
Matsueda, 1982; Matsueda & Heimer, 1987), adoles-
cence (e.g., Simmons & Blyth, 1987), and population
genetics (e.g., Li, 1975). Some extensions of the model
were developed during this period. Alwin and Hauser
(1975) wrote a systematic treatment of decomposing ef-
fects into total, direct, and indirect effects using path
analysis. Sobel (1982, 1986) applied the delta method
to obtain asymptotic standard errors for total and in-
direct effects; Bollen (1987) developed a method for
determining specific effects and their standard errors
(implemented in Mplus); and Bollen and Stein (1990)
developed bootstrap confidence intervals for indirect
effects. Kenny and Judd (1984) showed how to estimate
a LISREL model with product terms among latent
exogenous variables, and Joreskog and Yang (1996)
showed that Browne’s asymptotically distribution-free
(ADF) estimator used on the matrix of augmented mo-
ments provides consistent estimates of parameters in
the Kenny—Judd model, as well as consistent standard
errors and fit statistics.

Matsueda and Bielby (1986) and Satorra and Saris
(1985) independently showed how to calculate the
power of the likelihood ratio test in covariance struc-
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ture models—using the noncentral ) distribution—and
independently presented a nearly identical way of ap-
proximating the noncentrality parameter. They showed
that the likelihood ratio test statistic is asymptotically
equivalent to a quadratic form:™

| wonder if these
parentheses are
incorrectly in bold?
They look bolder
than those of 2.27

,&”“k \( \' \\*)\.’\ (4

the ML estimator for the rth parameter,
responding null hypothesis, and V, is the
ovariance matrix of 8, or, in other words,
1l submatrix of Equation 2.24. Under the

null hypothesis, v has a central ¥* distribution with r
degrees of freedom. Under the alternative hypothesis, v
has a noncentral %2 distribution with r degrees of free-
dom and noncentrality parameter:
T=(0,-9,)V'0,-9,) (2.21)

where 0, is the population parameter corresponding
to the alternative hypothesis and 8, is the population
parameter corresponding to the null hypothesis (see
Kendall & Stuart, 1979, pp. 246-247). Matsueda and
Bielby (1986) then drew on Hauser and Goldberger
(1971) and Goldberger (1973) to show analytically that,
in a walking-dog model (Figure 2.2}, adding indicators
to the endogenous latent variable increases the power
of the test of B3,;, depending on the reliability of the in-
dicators. This is analogous to adding cross sections to a
pooled time series cross-section econometric model es-
timated by GLS. They also gave simulation results for
adding indicators to the exogenous latent variable (see
Matsueda & Bielby, 1986; Satorra & Saris, 1985).

Applied researchers obsessed over the global good-
ness-of-fit likelihood ratio %? test because, in large
samples, models with many overidentifying restrictions
tend to be rejected even when each restriction only de-
parts trivially from the null hypothesis. This gave rise
to a cottage industry of fit indices designed to offset
the effect of sample size on test statistics. From this
literature, it seems that a consensus is emerging that
the most useful fit indices are Steiger and Lind’s (1980)
root mean square error of approximation (RMSEA;
see also Browne & Cudeck, 1993; Steiger, 1990) and
Raftery’s (1993, 1995) application of Schwartz’s (1978)
Bayesian information criterion (BIC). (For details, see
West, Taylor, & Wu, Chapter 13, this volume.) RMSEA
is defined as

=JEJr (2.28)
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where F|, is the population discrepancy function reflect-
ing the model’s lack of fit and r is the degrees of free-
dom, as earlier. MacCallum, Browne, and Sugawara
(1996) have defined the noncentrality parameter for

;o RMSEA index:

LG

=2, -0, )V"@ ECRRNG J,[z;feﬁ}\w s

A=(n-1re? (2.29)

where n is the sample size. They show that power
can be calculated for the null hypothesis of perfect fit
(i.e., € = 0), as well as an approximate or close fit (e.g.,
€ < .05). The latter may be useful in very large sam-
ples for models with many overidentifying restrictions,
whereby reasonably well-specified models are likely to
be rejected (see Lee, Cai, & MacCallum, Chapter 11,
this volume). To date, RMSEA is the most popular fit
index used in empirical applications of SEM, although
it recently has been subject to criticism (e.g., Chen et
al.,, 2008, on using a fixed cutoff point).

ADDRESSING VIOLATIONS
OF DISTRIBUTIONAL ASSUMPTIONS

At this time, a major criticism of structural equation
models is that the assumptions of continuous observed
variables, multivariate normal distributions, and large
sample sizes—needed to capitalize on the asymptotic
properties of maximum likelihood estimation and
testing—are rarely met in practice. Some early Monte
Carlo studies, such as Boomsma (1983), which created
non-normal errors by categorizing continuous vari-
ables, found that estimators were robust when samples
were greater than 200, but that skewness due to catego-
rization produced spurious measurement error correla-
tions and biased standardized coefficients (see Bollen,
1989, for a review).!

ADF Estimator

As noted earlier, Browne (1974) introduced the qua-
dratic form estimator he termed generalized least
squares (GLS), which yielded optimal estimates for
normally distributed observable variables when W
is the covariance matrix of the sample moments (see
Equation 2.15). Subsequently, Browne (1984) made a
landmark contribution by developing what he termed
an “asymptotic distribution-free” (ADF) estimator, by
incorporating information about higher-order moments
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into the weight matrix of Equation 2.15, which can be
written in scalar form as

(2.30)

where s, is the sample covariance between variables
g and h, 6,,(0) is the corresponding element of Z(0)
implied by the model, and ws*¥ is a typical element of
W-!, which is « x u, where u = k (k + 1), and k is the
number of observables. Browne showed that if Wis a

matrix with typical element

Wenii = Mghis = SanSy (2.31)
where m,; is the fourth-order moment about the mean,
then minimizing Equation 2.15 yields the ADF estima-
tor, which is minimum variance consistent within the
class of estimators in the form of Equation 2.15 under
the mild assumption that eighth-order moments are fi-
nite (Browne, 1984, p. 710).13 Brpwne presented the as-
ymptotic covariance matrix for 8, and an asymptotic
¥? test statistic, as well as an estimator for elliptical dis-
tributions, which have zero skewness but kurtosis that
departs from multivariate normality.

Browne’s (1984) ADF and elliptical estimators first
appeared in Bentler’s (1995) EQS program, followed by
Joreskog and Sorbom’s (2001) LISREL program. Re-
cent work has examined the finite sample properties of
ADF and finds that it works well in very large samples.
Other techniques available are using corrections to the
covariance matrix of ML estimators to obtain accu-
rate p-values for the %? test under non-normality (e.g.,
Browne 1984), or a bootstrap method (Bollen & Stein,
1993). Browne's ADF estimator was also crucial for a
second important advance: developing models for ordi-
nal, limited, and discrete outcomes,

Models for Ordinal, Limited,
and Discrete Outcomes

Structural equation models are often applied to survey
data, in which items are measured on dichotomous or
ordinal scales, violating the assumption of continuous
and normally distributed observed variables. Muthén
(1984) has made seminal contributions for analyzing
dichotomous, ordinal, and limited dependent variables
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within a covariance structure framework. The trick is to
estimate scale-appropriate correlation coefficients (e.g.,
polychoric and polyserial) and then use a variation of
Browne’s (1984) ADF estimator. The polychoric corre-
lation, which goes back to Pearson (1901), computes a
correlation under the assumption that the ordered cat-
egories can be represented by contiguous intervals on
a continuous scale (correlations between ordinal and
continuous variables are termed “polyserial correla-
tions™).!® Thus, the ordinal variable is related to the un-
derlying normally distributed, continuous latent variable
through a threshold model. Early work on factor models
for dichotomous variables include Bock and Lieberman
(1970), who used tetrachoric correlations and an ML
estimator for a single factor model, and Christoffersson
(1975), who generalized this to multiple factors using a
GLS estimator (see also Muthén, 1978). Muthén (1979)
developed a multiple-indicator structural probit model,
and Winship and Mare (1983, 1984) applied multivari-
ate probit models estimated by ML to multiple-indicator
structural equation models and path analysis.

Muthén (1984) provided a general framework for
analyzing ordinal variables. Here I focus on the poly-
choric and ADF approach with a simple example of a
pair of three-category ordinal variables. Each ordered
variable is related to an underlying continuous variable
by two thresholds:

y=1 if y' <0,

y=2 ifo, < y <a, (2.32)

y=3 ifa,<y

where the value for y indexes the ordinal category for
y, ¥" is a latent continuous variable, and o, and @, are
thresholds. If we specify a distribution for y*—we will
assume it is normal—we can then estimate the thresh-
olds by the general formula:

o,=0">n/N i=123 k=12 (233
k=1

where [ indexes the category of y, k indexes the number
of thresholds, @!(.) is the inverse of the standard nor-
mal distribution function, n, is the sample size of the
kth category, N is the total sample size, and N = n; + n,
+ ...+ n, If we apply this to a second three-category
ordered variable x, but with thresholds B, and B,, and
define m; as the population parameter denoting that an
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observation falls into cell (i, j), we can then define the
log-likelihood function of the sample (Olsson, 1979):

3 3
log L(n; | ;) = CZ 2 n; logm,

i=l j=1

(2.34)

where m; = ®,(0t, B) - @0, By) — Pylay, Byy) -
@,(0;; 5, By, and @, (.,.) is the bivariate normal dis-
tribution function with population correlation p. Maxi-
mizing Equation 2.34 will yield the ML estimator of
the polychoric correlation, p,,. Alternatively, one can
use a two-step procedure, estimating the thresholds
o, and B, from the marginals of the contingency table
(e.g., Equation 2.33), and then solving for p. See Olsson
(1979) for a parallel treatment of the polyserial corre-
lation between continuous and ordered variables, and
Poon and Lee (1987) for multivariate ML estimators of
both polychoric and polyserial correlations.

Once the polychoric and polyserial correlations p
and their asymptotic covariances have been estimated,
Browne'’s (1984) ADF fitting function can be used to
obtain optimal estimates:

Fup =[p-0®)] 8;,[6-2()]

where p is a vector of scale-appropriate correlation es-
timates, ¢(8) is the corresponding vector of the para-
metric structure generating the correlations, and S, is
the inverse of the asymptotic covariance matrix of the
correlation estimates. Standard errors and ¥ test sta-
tistics are obtained as earlier (Muthén, 1984). Muthén
(1989) has also developed a tobit factor analysis for cen-
sored observed variables. A general method for han-
dling dichotomous and limited dependent variables in
SEM was initially programmed in Muthén’s LISCOMP
program, and then in his recent more comprehensive
Mplus program (Muthén & Muthén, 2004), and later
in Joreskog and Sorbom’s (2001, 2002) LISREL and
PRELIS programs, and Bentler’s (1995) EQS. Much
of this material is covered in Bollen’s (1989) excellent
intermediate-level SEM text.

(2.35)

RECENT ADVANCES

Major contemporary advances in SEM make it an excit-
ing and growing field. These include the development
of latent growth and latent-class growth models for lon-
gitudinal data, the application of Bayesian methods, the
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integration of generalized linear models and multilevel
models within an SEM framework, the adoption of al-
gorithms from artificial intelligence to discover causal
structure, and a formal treatment of causality within an
SEM framework.

Latent Growth and Latent Class
Growth Models

Although the use of factor analysis for modeling panel
data on growth was introduced by Tucker (1958) and
Rao (1958), it was not until 1990 that Meredith and
Tisak (1990) published the treatment within an SEM
framework that is still relevant today (see Bollen &
Curran, 2006). Meredith and Tisak (1990) showed that
individual growth curves, often modeled within a mul-
tilevel or mixed model framework (e.g., Raudenbush &
Bryk, 2002), can be modeled within a standard SEM
framework by treating the shape of growth curves as
latent variables with multiple indicators consisting of
the variable at multiple time points. This latent growth
curve approach models both covariances and means of
observed variables. Figure 2.4 presents a path diagram
of a four-wave quadratic latent growth curve model.
Here, the intercept o gives the value of y implied by
the model at the first time point; f, is the linear growth
component (giving the growth rate at the first time
point); and [3, is the quadratic growth component (giv-
ing the change in the growth rate over time). One can
then impose a parametric structure on the growth pa-

FIGURE 2.4. Path diagram of a four-wave quadratic latent
curve model.
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rameters o, B, and B3,, which would correspond to the
second-level equation in a multilevel model.

In criminology, Nagin and Land (1993) developed
a finite mixture model for latent classes of individual
trajectories. This group-based trajectory model esti-
mates individual trajectories using polynomials and
then classifies the trajectories into discrete groups.
The latent classes can be viewed as points of support
in approximating a continuous distribution of unob-
served heterogeneity or as reflections of theoretically
important groups (see Nagin, 2005). In criminology,
this model has been used to distinguish people with
different criminal careers, such as chronic offenders,
early starters, and adolescence-limited offenders (see
Nagin & Tremblay, 2005). Muthén (2004) shows how
to estimate this model within an SEM framework with
Mplus. Moreover, Muthén’s approach, termed “growth
mixture modeling,” allows for within-class variation
among individual trajectories, a mean curve with varia-
tion around it, whereas Nagin’s approach does not. The
latter is nested within the former and can be subjected
to statistical test. These models have become important
features of research in child development, adolescent
substance abuse, and criminal careers (e.g., Connell &
Frye, 2006; Nagin & Tremblay, 2005).

Bayesian Approaches

As noted earlier, work at the Cowles Commission
helped cement the Neyman-Pearson frequentist ap-
proach to hypothesis testing in econometric simul-
taneous equation models, which spread to SEM in
psychology through Anderson and Joreskog, and in
sociology through Goldberger and Duncan. In recent
years, alternatives—particularly Bayesian approach-
es—have been proposed for SEM (for an early and per-
sistent advocate in economics, see Zellner, 1971). From
a Bayesian perspective, estimation is less about deduc-
ing the values of population parameters and more about
updating, sharpening, and refining our beliefs about the
empirical world.

Bayesian estimation begins with a probability model
of the data, D, in terms of a vector of parameters, 8
(e.g., Raftery, 1995). The analyst’s prior beliefs about
the uncertainty of 8 is denoted by the prior probability
density, p(0). The probability model for the data, then,
is the likelihood function, p(D16), which is the prob-
ability of the data given that 8 are the true parameters.
We then observe the data, D, and update our beliefs
about 8 using Bayes’s theorem:
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p®|D)=[p(D|0)p(®))/ p(D) (2.36)
The data are treated as a fixed set of information to
be used in updating our beliefs about the parameters.
Therefore, p(D) does not involve 6, and Equation 2.36
reduces to

p(8| D)= p(D|6)p(8) (2.37)
where e« means “proportional to.” The marginal den-
sity of the data has been dropped; to make this a proper
density, a proportionality constant can be added. Thus,
the posterior density is proportional to the likelihood
times the prior density. Inferences about 6 are made
from summary statistics about the posterior density,
p(B1D), such as the posterior mode or Bayesian con-
fidence intervals (“credible intervals™), which have an
intuitive interpretation: “The probability that the true
value of the parameter lies in the interval is—for ex-
ample—95%.”

Bayesian hypothesis testing entails comparing hy-
potheses to determine which has the highest probabil-
ity of being correct. Suppose we have two hypotheses,
H, and H,, with prior probabilities, p(H,;) and p(H,)
before the data are examined, and define the prior odds
ratio as

Odds, o, = p(Ho)lp(H,) (2.38)
After examining the data, the prior probability will be
updated, resulting in posterior probabilities for each
hypothesis, p(H,| D) and p(H, | D), and a posterior odds
ratio:

pHID)p(H||D)= Oddspcst:rior

(2.39)
=By, x Odds

prior

where By, is the Bayes factor:

By, = p(DIHy)/p(DIH,) (2.40)
and p(D1H,) and p(DI|H,) are the marginal probabili-
ties of the data. Equation 2.39, the posterior odds ratio,
gives the probability that the data support H, over H,.
Note that the posterior odds are equal to the Bayes fac-
tor when the prior odds are equal to 1.

Bayesian estimation and testing are currently dif-
fusing into the SEM literature. For example, Raftery
(1993, 1995) showed how to approximate the Bayes
factor with the BIC, which is computed from the likeli-
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hood ratio test statistic. Suppose we wish to compare
two models in which M,_, is nested within M, and has
one more parameter than M. Then, if v;_, is the likeli-
hood ratio test statistic for model M,_; and v, is that of
model M, and v = v,_; —V, is the test statistic for testing
the one parameter (see Equation 2.25), then
BIC, ,—BIC, =v—logn (2.41)
where n is the sample size. If this quantity is positive,
then the less-restrictive model M, is preferred (Raftery,
1995). As a fit statistic, BIC has performed exceedingly
well in a variety of contexts and is particularly useful
for SEM in large samples and with many overidentify-
ing restrictions because trivially small departures from
a reasonable model will be rejected using the likeli-
hood ratio test. Although it has become the dominant fit
statistic for most models estimated by ML, it has only
recently begun to be used in SEM empirical studies.
Bayesian estimation using Markov Chain Monte
Carlo (MCMC) algorithms are proving useful for in-
corporating prior information into confirmatory factor
analysis (e.g., Lee, 1981); estimating complex models,
such as nonlinear latent variable models (e.g., Arminger
& Muthén, 1998); estimating multilevel factor models
(Goldstein & Browne, 2002); arriving at a semipara-
metric estimator (Yang & Dunson, 2010); and drawing
inferences about underidentified parameters from the
posterior distribution when an informative prior is used
(Scheines, Hoijtink, & Boomsma, 1999). For details,
see Kaplan and Depaoli, Chapter 38, this volume. The
program, TETRAD III, provides an MCMC algorithm
using the Gibbs sampler (Scheines, Spirtes, Glymour,
Meek, & Richardson, 1997).

Generalized Linear Latent
and Mixed Models

When data take on a hierarchical structure—such as
individuals nested within families, which in turn are
nested within neighborhoods—special methods are
needed to obtain consistent estimates of standard errors
and test statistics due to dependent observations within
clusters. Multilevel regression models allow estimation
of models in which random intercepts capture hetero-
geneity between clusters in the dependent variable, and
random coefficients capture heterogeneity in relation-
ships among independent and dependent variables. A
multilevel structural equation model would incorpo-
rate multiple-indicator measurement models into the
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latent variable models. Early attempts to incorporate
measurement error into multilevel regression models
have assumed that measurement error variances (e.g.,
Goldstein, 1995) or factor loadings (e.g., Raudenbush
& Sampson, 1999) are known and have the advantage
that unbalanced designs, in which the number of Level
1 cases varies by Level 2, are easily handled if miss-
ing at random (see Rabe-Hesketh, Skrondal, & Pickles,
2004).

Multilevel structural equation models have typi-
cally specified separate models for within-cluster and
between-cluster covariance matrices. For example,
Muthén (1994) has shown how to estimate a two-level
SEM using available SEM software. The trick is to
specify separate within- and between-cluster models,
and then use the multiple-group option to estimate
the parameters simultaneously. Muthén argues that
an estimator using this method is equivalent to ML in
balanced designs, and is consistent (with reasonable
standard errors and test statistics) in unbalanced de-
signs (see also Goldstein & McDonald, 1988; Muthén,
1997; for a review of alternate estimators, see Yuan &
Bentler, 2007). This approach is easily implemented
using existing SEM software but is limited to specific
models.

A more general approach is outlined in Rabe-Hesketh
and colleagues (2004), and expanded in Skrondal and
Rabe-Hesketh’s (2004) excellent advanced text. Their
generalized linear latent and mixed models (GL-
LAMM) framework consists of three components: (1)
a response model; (2) a structural equation model for
latent variables; and (3) distributional assumptions for
latent variables. The response model is simply a gener-
alized linear model conditional on the latent variables
and consisting of a linear predictor, a link function,
and a distribution from the exponential family (Rabe-
Hesketh et al., 2004). The model can handle response
variables that are continuous, ordinal, dichotomous,
discrete and continuous time durations, counts, polyto-
mous responses and rankings, and mixes of responses.
The structural equation for latent variables takes on the
usual form, 1 = pn + TE + {, with the exception that
latent variables are allowed to vary by different levels.
Rabe-Hesketh and colleagues assume the latent vari-
ables at level [ are distributed multivariate normal with
zero mean and covariance matrix X, although other
distributions can be specified. The authors have also
written a program, GLLAMM, which maximizes the
marginal likelihood using an adaptive quadrature pro-
cedure and is available in the software package Stata



32 m

(Rabe-Hesketh, Pickles, & Skrondal, 2001). For more
details, see Skrondal and Rabe-Hesketh (2004) and
Rabe-Hesketh, Skrondal, and Zheng (Chapter 30, this
volume). Many of these models can also be estimated
using Mplus (Muthén & Muthén, 2004).

Tetrad: The Discovery of Causal Structure

A philosophically distinct approach to SEM developed
with the publication of Glymour, Scheines, Spirtes, and
Kelly’s (1987) Discovering Causal Structure: Artificial
Intelligence, Philosophy of Science, and Statistical
Modeling. Instead of focusing on estimation and test-
ing of structural models specified on a priori grounds,
Glymour and colleagues draw on computer algorithms
from artificial intelligence to “discover” causal struc-
ture with their program TETRAD. Thus, they are re-
turning to the earlier ideas of Spearman, Frisch, Simon,
Blalock, and Costner, who tried, in various ways, to
induce causal structure from patterns of association
among variables.'” As noted earlier, Spearman’s focus
on tetrad difference restrictions on observed correla-
tions became superfluous in light of Thurstone’s rotated
solution to simple structure for factor models; Frisch’s
confluence analysis and bunch mappings became ob-
solete with advances in identification and estimation
in simultaneous equations; and Simon and Blalock’s
method of ransacking three- and four-variable models
became outdated with the development of estimation
and testing using ML and GLS in integrated SEMs.
These “outdated” approaches have been resurrected by
Glymour et al. (1987).

Beginning with the observation that an infinite num-
ber of models is consistent with any covariance matrix
of observed variables, Glymour and colleagues (1987)
return to Simon and Blalock’s method of identifying
the vanishing partial correlations that must hold for a
given model and to the writings of Wright, Spearman,
and others, who identified the tetrad difference equa-
tions that must hold for a given model. They provide a
fascinating philosophy of science edifice to justify the
idea of discovering causal structure. Moreover, they
use the terminology of directed graphs—rather than
path analysis—in which variables are vertices; causal
effects are directed edges that can be into a vertex (the
number denoted by indegree) and out of a vertex (the
number denoted by outdegree); a recursive model is
acyclic; a nonrecursive model (in which a path contains
a subpath beginning and ending in the same vertex) is
a cyclic model; and a trek is a path or a set of paths that
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induce a correlation. Using these notions, they provide
basic theorems and definitions about causal relations
and a computer program, TETRAD, for discovering
causal structure. The program allows users to incorpo-
rate a priori information about the data (e.g., a tentative
or partial model), identifies the vanishing tetrad differ-
ences and vanishing partial correlations of the model,
and then provides a test of the constraints. It then modi-
fies the model by identifying the treks needed to satisfy
a “false” tetrad equation without altering “true” tetrad
equations, and calculates vanishing tetrads and partial
correlations implied by the new model. Bollen (1990)
develops a simultaneous test statistic to address the
multiple testing problem and Bollen and Ting (1993)
develop a confirmatory tetrad analysis approach for
testing SEMs, including some non-nested and underi-
dentified models.

The TETRAD approach is not without its critics
(e.g., Humphreys & Freedman, 1996) and controversies
(e.g., Glymour & Cooper, 1999; Spirtes, Glymour, &
Scheines, 1993). Robins and Wasserman (1999) have
effectively shown that it is not possible, in an obser-
vational study, to infer causal relationships between
two variables, assuming that the sample is large and
the distribution of the random variables is consistent
with the causal graph, and assuming no additional sub-
stantive background knowledge (as claimed in Spirtes
et al., 1993; Pearl & Verma, 1991). Using a Bayesian
framework, they demonstrate that the claim assumes
that the prior probability of no unmeasured causes is
high relative to sample size, and when this probability
is low relative to sample size, causal relationships are
underidentified from the data. This opens a new puzzle:
What kinds of assumptions must be made to discover
causal relationships from nonexperimental data (Gly-
mour, Spirtes, & Richardson, 1999)? This puzzle has
encouraged cross-fertilization from the causality litera-
ture in statistics into the SEM literature.

Nevertheless, TETRAD is certainly a useful empiri-
cal tool for exploring causal structures, finding equiva-
lences, and providing an efficient tool for sensitivity
analyses. TETRAD has been shown to be more efficient
at modifying models than existing procedures available
in SEM packages, such as using first-order partial de-
rivatives, residuals, or univariate Lagrange multipliers
(termed “modification indexes” in LISREL). Moreover,
introducing the language of directed graphs into struc-
tural equation models helps bridge the SEM literature
with new developments in graphical theory and causal
analysis (see Spirtes et al., 1993).
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Causality and Structural Equation Models

An exciting recent development, which is slowly fil-
tering into the SEM community, has been an explicit
return to causal models using the language and logic
of counterfactuals: What would happen if a subject re-
ceived a different treatment (or value of the indepen-
dent variable)?'® As a consequence of Freedman’s (e.g.,
1987) persistent criticisms of SEM applications for
making causal claims when assumptions of linear mod-
els are not met, and the more compelling critique of
Holland (1988), most members of the SEM community
have retreated from making causal claims and using
causal language.!” However, a recent literature, emerg-
ing from disparate sources such as statistics, artificial
intelligence, philosophy of science, epidemiology, and
economics, has developed graphical models for identi-
fying causality under explicit weaker assumptions than
are generally made. Such models, which generalize
and extend Wright's (1921a) original path analysis, ap-
peared in the social science literature as early as 1982
but did not catch on (see Kiiveri & Speed, 1982). Since
then, major advances have been made in artificial intel-
ligence (e.g., Pearl, 1988), statistics (e.g., Spirtes et al.,
1993; Wermuth & Lauritsen, 1983), and epidemiology
(Greenland, Pearl, & Robins, 1999; Robins, 1986; Rob-
ins & Greenland, 1992).

This approach begins with the classical SEM as-
sumption that causality cannot be determined from
observational data alone, but requires additional causal
assumptions drawn from theoretical or substantive
knowledge, which are translated into a structural model
represented by a path model. At this point, the approach
departs from traditional path analytic and SEM treat-
ments of causality, in which strong and often unrealistic
assumptions must be made in empirical applications:

Structural equation models do little more to justify the
causal interpretation of their coefficients than the caus-
al orderings of path analysis. In both approaches, such
causal interpretations are established by fiat rather than
by deduction from more basic assumptions. (Holland,
1988, p. 460)

The contemporary counterfactual causality literature
lays bare the typically strong assumptions underlying
“causality by fiat,” and more importantly, searches for
ways of identifying causal effects under weaker as-
SUmptions.

To get a sense of this literature, consider a funda-
mental issue of causality in SEM—decomposing total
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effects into direct and indirect effects (see Figure 2.5).
From a causality perspective, by manipulating and ran-
domizing values of the independent variable, causal ef-
fects of that variable can be identified because recipro-
cal causation and omitted variable bias are ruled out.
In the case of indirect effects, this requires sequential
randomization (Robins & Greenland, 1992). For ex-
ample, in Model A of Figure 2.5, by randomizing on
X we can obtain the causal effect of X on M and the
total causal effect of X on Y. However, because M is
endogenous—and therefore, neither manipulated nor
randomized—we cannot obtain the causal effect of M
on Y. Consequently, we cannot obtain the direct causal
effect of X on ¥, and cannot decompose the total causal
effect of X into direct and indirect components. To ob-
tain the causal effect of M on ¥ we must randomize on
M—hence, the need for sequential randomization.

In the social sciences, however, such sequential ran-
domization is rarely possible; therefore, the question
becomes, “What assumptions are necessary to identify
causal direct and indirect effects?” An early paper by
Holland (1988) discussed the question within Rubin’s
(e.g., 1974) model, which carefully separates causal
theory from observed data, and which begins with
unit causal effects based on counterfactuals and then
defines average causal effects. Rubin’s model typically
assumes independent outcomes, and in particular, that
treatment of one individual does not affect the outcome
of another.2Y Holland noted that if we can assume that
the effect of X on Y operates solely through its effects
on M—that is, ¢ = 0, which yields Model B of Figure
2.5— then the average causal effect of M on Y is identi-
fied and estimable using an instrumental variable esti-
mator. Since X is orthogonal to u (by randomization)
and X has no direct effect on Y (because ¢ = 0), X can
serve as an instrument for M (as long as @ # 0) and a
consistent estimator of b, the average causal effect of M

u
o, u v
X M 5 . l l
\ / a b
¢ Y X — M—7
Model A Model B

FIGURE 2.5. Path diagram of models with direct and in-
direct effects.




34 ®

on Y is simply the total average causal effect of X on ¥
divided by the direct average causal effect of X on M.
This estimator is useful for encouragement designs—
in which it is reasonable to assume that X, randomized
encouragement (e.g., encouraging students to study),
affects ¥ solely through M, the activity encouraged
(studying)—but is of limited utility in most observa-
tional studies in the social sciences (Sobel, 2008).

A related approach to the separation of causal di-
rect and indirect effects is associated with the work of
Robins (e.g., Robins & Greenland, 1992), which builds
on Robins’s (1986) original graphical approach to cau-
sality using tree graphs. Robins and Greenland (1992)
show that Robins’ g-computation algorithm can be
used to separate direct and indirect effects of X if X and
M are both randomized, X and M do not interact, and
M can be blocked by intervention (i.e., manipulated).
When these conditions hold, but M is not manipulated,
g-estimation can still estimate the fraction of total ef-
fect that could be prevented by blocking M if additional
confounding variables are available. Finally, when all
conditions hold, except X and M interact in affecting
Y, direct and indirect effects cannot be separated, al-
though one can still estimate the fraction of the total
effect of X that could be prevented by blocking M.

Recently, Emsley, Dunn, and White (2010) reviewed
alternative approaches to estimating mediating effects
in controlled trials and showed that under treatment
heterogeneity, the interaction terms between random-
ized treatment and exogenous confounders can be used
as instrumental variables to separate direct and indi-
rect effects of treatment when the mediating variable is
not randomized. Sobel (2008) shows that instrumental
variables can be used to separate direct and indirect ef-
fects under weaker assumptions—such as relaxing the
assumption of constant treatment effects—than pre-
sented by Holland (1988). Jo and Muthén (2002) have
used latent growth models to define principal strata of
the mediator and estimating, for models with multiple
outcomes, complier average causal effects (CACE),
which are average effects of treatment in the subpopu-
lation of compliant subjects (e.g., Angrist, Imbens, &
Rubin, 1996; Imbens & Rubin, 1997).

In economics, following Imbens and Angrist (1994),
CACE, defined as local average treatment effects
(LATE), has spawned a spate of randomized experi-
ments using instrumental variables to identify treatment
effects (see Imbens & Wooldridge, 2009, for a review).
The relative merits of using randomization to identify
causal effects versus using structural models, such as
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Roy’s (1951) counterfactual model, remain controver-
sial among economists (Heckman & Urzia, 2010). For
an excellent discussion of the relative merits of the two
approaches in economics, including key trade-offs be-
tween internal and external validity, see Deaton (2010),
Imbens (2010), and Heckman (2010).

From artificial intelligence and epidemiology, a
graphical model approach to causality has emerged.
This approach represents the causal assumptions by
a graphical model and then logically infers causality
from a set of theorems applied to the graph. In addition
to Robins’s (1986) tree graph approach, Pearl (2000)
developed a “nonparametric structural causal model,”
which holds regardless of distributional and other sta-
tistical assumptions about a particular data set. Causal
statements can be made that are conditional on the
causal assumptions encoded into the graphical model.

Pearl’s (2000) approach, which is largely consis-
tent with that of Robins (1986), advances SEM by (1)
using new mathematical notation to reflect causality,
such as replacing the algebraic equals sign with a sign
that reflects a causal path; (2) deriving a theorem, the
“back door” criterion, to determine which covariates
should be controlled to arrive at a causal relationship
in an SEM; (3) deriving a theorem, termed “d separa-
tion” (directed separation), which gives the necessary
and sufficient conditions for independence between
two sets of variables conditioned on a third set within
an acyclic directed graph; (4) providing some simple
mathematical notation for making counterfactual state-
ments, which can be analyzed within the directed graph
(for an introduction, see Morgan & Winship, 2007);
and (5) providing an algorithm for identifying equiva-
lent models. Taken together, these theorems translate
the language of causality into the language of statistics
and probability distributions (for distinctions between
the approaches of Robins and Pearl, see Robins, 1995,
2003). See Pearl (2000) for an excellent presentation of
the graphical approach to SEM and for a lucid introduc-
tion to the principles and issues, see Pearl (Chapter 5,
this volume). :

The importance of a graphical approach can be il-
lustrated with a simple example. Consider Model A in
Figure 2.6, a bivariate regression model of Y on X, with
two latent variables: £ affects X and C, and n affects ¥
and C. Standard SEM texts assume that including an ir-
relevant variable in a linear regression model leaves es-
timates unbiased but results in a loss of precision in the
estimate (e.g., Greene, 2003, pp. 150-151). However,
when Model A is the correct model, regressing ¥ on X
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Madel A

Model B

FIGURE 2.6. Path diagram of a model in which control-
ling for an exogenous variable creates bias.

and Z, which appears irrelevant, results in biased and
inconsistent estimates of B. We can see this intuitively
from Model A: the covariance between Z and X and
Z and Y are spurious due to the latent variables & and
1. Spirtes, Richardson, Meek, Scheines, and Glymour
(1998, pp. 190-191) show that if we simplify Model A
to Model B (Figure 2.6), and compute parameters in
terms of covariances and partial covariances, we obtain
an estimator from regressing Y on X and Z that is biased
and inconsistent:

E(X,Y|2)/E(X*|Z)=Po-0,0, /(0202 -2 ) (2.42)

where the term left of the equality sign is the (naive)
two-variable regression coefficient, and o, is the
squared covariance of X and Z. A graphical approach
quickly reveals not only that an unbiased and consis-
tent estimate of [3 is obtained by the bivariate regression
of ¥ on X, but also that a consistent estimator can be
obtained by the naive two-variable regression by also
controlling for &, 1, or both (Greenland & Brumback,
2002).

The recent causality literature suggests that the pa-
rameters of most applications of SEM in the social sci-
ences cannot be interpreted as causal effects without
making strong and often unrealistic assumptions. What,
then, are we to make of empirical applications of SEM,
such as status attainment models? Perhaps a prudent
interpretation, consistent with O. D. Duncan’s thinking
near the end of his career, is that such models “summa-
rize systematic patterns in population variability” (Xie,
2007, p. 154) or, perhaps more precisely, describe “the
probabilistic relationship between successive events in
a population of interest” (Sobel, 1992, p. 666). Such a
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description—even in the absence of causal language—
is a crucial feature of social science research.

CONCLUSION

SEM has progressed through four general stages: (1)
early disciplinary-specific developments of path analy-
sis first from genetics and later sociology, factor analy-
sis from psychology, and simultaneous equation models
in economics; (2) cross-disciplinary fertilization be-
tween economics, sociology, and psychology, leading
to an explosion of empirical applications of SEM; (3)
a period of developing methods for handling discrete,
ordinal, and limited dependent variables; and (4) a re-
cent period of incorporating statistical advances into
the SEM framework, including generalized linear mod-
els, mixed effects models, mixture regression models,
Bayesian methods, graphical models, and methods for
identifying causal effects. The recent period is sub-
stantially integrating SEM with the broader statistical
literature, which—as the chapters of this volume dem-
onstrate—is making SEM an even more exciting and
vibrant tool for the social sciences.
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NOTES

1. Stock and Trebbi (2003) conduct a stylometric (grammar
and writing style) analysis using principal components and
discriminant analysis that points to Phillip as the writer. Be-
cause one solution used path analysis, it is likely that the two
Wrights collaborated—they had done so earlier—although
Stock and Trebbi note that Phillip did not mention his son
Sewall in his acknowledgments, as he had done in earlier
publications.

2. In an essay titled “What If?”” Duncan (1992) wondered wheth-
er, if he had sooner convinced Blalock that Sewall Wright's
path analysis could solve Simon’s questions, Blalock’s appen-
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Ln

11.

12.

14.

dix would have been more complete and Duncan would have
lost motivation to write his 1966 article.

. A third tetrad difference, ry,ryy — ry3r, = 0, is a function of

the first two and will always be true if the first two are true.
Anderson (1991) notes that economists like to put restric-
tions on models, whereas psychologists refused to do so until
“Joreskog (1969) came up with the catchy terms ‘exploratory’
and ‘confirmatory factor analysis’” with zero-restrictions on
loading matrices, along with computer programs for maxi-
mum likelihood estimation. Jéreskog certainly popularized
the terms, but the distinction was originally due to Tucker
(1955).

. This recursive causal chain model was later formalized and

extended by Wold (1964), who criticized simultaneous equa-
tion models for ignoring the presumption that causality pro-
ceeds through time and is best modeled by recursive causal
chains.

. Koopmans (1937) appears to be the first to argue that residual

variance in structural models was due not solely to measure-
ment error—which implies deterministic relationships in the
absence of such errors—but also to omitting numerous minor
variables from the model (see Epstein, 1987, p. 55).
For a discussion of the concept of exogeneity, and of super-
exogeneity, see Engle, Hendry, and Richard (1983).

. While at Cowles, Rubin had been attending lectures by Thur-

stone and raised jidentification issue in the context of the
factor-analytic model. Anderson and Rubin (1956) concluded
that the identification problems of simultaneous equation and
factor analysis models were identical, which led to their trea-
tise on maximum likelihood factor analysis (see Anderson,
1991).

For excellent discussions of the history of simultaneous equa-
tion models in economics, see Epstein (1987) and especially
Morgan (1990).

. For examples of recent returns to limited information meth-

ods to obtain estimates more robust to specification errors,
see Bollen (1996) and Bollen, Kirby, Curran, Paxton, and
Chen (2007).

For a lucid discussion of various ways that econometricians
have approached measurement error, see Judge et al. (1980,
Chap. 13). 3

The term “walking-dog modelVoriginated with Beverly
Duncan, who noted that the path diagram (see Figure 2.1)
resembled a walking dog, in which 7, here depicted the dog’s
face and ( its tail (Hauser, personal communication).

. Hauser and Goldberger (1971) also show that in the special

case in which all tetrad-difference constraints are satisfied,
such as when measurement errors are mutually correlated,
modified GLS (GLS with unknown error variances) is equiv-
alent to ML.

Wold’s (1982) partial least squares “soft modeling” approach
to causal chain models provides “instant” estimates under
arbitrary distributions but dd-riot necessarily have desirable
statistical properties.
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15. Note that My = 1.’122(xg - fg) X, =%, (x; — X)) (xj - fj) isa
sample estimator of G, = UnZ[x, — E(x)1[x, — ECo)][x; —
E(x)] [xj - E(Ij)],.

16. Pearson’s tetrachoric correlation, involving pairs of dichoto-
mous variables, led to his famous quarrel with Yule (1912),
who argued that many binary outcomes, such as death, cannot
be viewed as reflections of a continuous scale, and proposed
his Q-coefficient instead (see Pearson & Heron, 1913).

17. A feature of Wold's (1982) soft modeling approach is the fur-
ther development of a model through a “dialogue between the
investigator and the computer.”

18. The counterfactual approach to causality is just one of many
potential approaches. For a critique of the counterfactual ap-
proach in statistics—with a lively discussion from leading
statisticians—see Dawid (2000).

19. For a lucid response to Freedman’s (1987) critique of Blau-
Duncan, see Glymour et al. (1987), and for a lively descrip-
tion of Duncan’s personal correspondence with Freedman,
see Xie (2007).

20. Rubin (1980) terms this the “stable unit treatment value as-
sumption” (SUTVA); Heckman (2010) has pointed out that
Hurwicz (1962) included this assumption under the concept
of invariance.
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