
Statistical Power in Covariance Structure Models
Author(s): Ross L. Matsueda and William T. Bielby
Source: Sociological Methodology, Vol. 16 (1986), pp. 120-158
Published by: American Sociological Association
Stable URL: http://www.jstor.org/stable/270921 .

Accessed: 09/04/2014 20:43

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Sociological Association is collaborating with JSTOR to digitize, preserve and extend access to
Sociological Methodology.

http://www.jstor.org 

This content downloaded from 128.95.71.159 on Wed, 9 Apr 2014 20:43:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=asa
http://www.jstor.org/stable/270921?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


STATISTICAL POWER 
IN COVARIANCE 

STRUCTURE MODELS 

Ross L. Matsueda 
UNIVERSITY OF WISCONSIN, MADISON 

William T Bielby 
UNIVERSITY OF CALIFORNIA, SANTA BARBARA 

During the preparation of this chapter, Ross L. Matsueda received support 
from the National Institute of Justice, U.S. Department of Justice (82-IJ-CX-0060), 
and the Graduate School of the University of Wisconsin-Madison. William T. 
Bielby was supported by a grant from the National Science Foundation to the 
Center for Advanced Study in the Behavioral Sciences (NSF-BNS-76-22443). 
Opinions expressed in this chapter are those of the authors and do not necessarily 
represent the official position or policies of the funding agencies. An earlier version 
of this chapter was presented at the August 1984 meetings of the American 
Sociological Association, San Antonio. The authors are grateful to Michael E. 
Sobel and several anonymous reviewers for helpful comments on that version. 

120 

This content downloaded from 128.95.71.159 on Wed, 9 Apr 2014 20:43:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STATISTICAL POWER IN COVARIANCE STRUCTURE MODELS 121 

Advances in covariance structure analysis have made structural 
equation modeling an important methodological tool in the social sciences. 
These models attempt to specify, estimate, and test causal relationships 
underlying observable variables. (See Goldberger 1972; Bielby and Hauser 
1977; Joreskog and S6rbom 1982; Bentler 1980, for overviews.) Typically 
the parameters of such models are estimated by the method of maximum 
likelihood, and hypotheses are evaluated with the likelihood-ratio x2 test. 
As many researchers have recently noted, however, hypothesis testing and 
model fitting using the likelihood ratio test can be obscured for two 
reasons. First, the test statistic may be sensitive to violations of the 
following assumptions: (1) that the observable variables are distributed 
multivariate normal; (2) that the observations are independent; and (3) 
that the sample size is large enough to capitalize on asymptotic properties. 
Second, hypothesis testing can be obscured because the test statistic is 
sensitive to the size of the sample. This problem is readily apparent when 
evaluating the overall goodness of fit of a model's overidentifying restric- 
tions. In large samples, even models with relatively trivial departures from 
hypothesized restrictions are likely to be rejected. Conversely, in small 
samples, even models with large departures are likely to be accepted. 

Several strategies for addressing these two issues have been pro- 
posed. Joreskog (1979) and others suggest comparing the x2 statistic to 
degrees of freedom; J6reskog and S6rbom (1984) propose several goodness- 
of-fit indexes that measure the relative amount of covariation jointly 
explained by the model; and Bentler and Bonett (1980) follow the lead of 
Tucker and Lewis (1973) in proposing fit indexes based on comparisons to 
baseline models. These strategies may be useful for evaluating hypotheses 
when departures from the assumptions of normality, independence, and 
large samples are so extreme that they seriously threaten conventional test 
results.' On the other hand, each of these proposals represents an ad hoc 
strategy for offsetting the influence of sample size on the likelihood ratio 
statistic. This problem is more appropriately conceived as an issue of 

' When these assumptions are violated, however, the optimal properties of 
maximum-likelihood estimation (best asymptotic normal) are suspect. Thus any 
use of the LISREL approach to estimate or test parameters is drawn into question. 
Little is known of the robustness of either maximum-likelihood estimation or 
likelihood ratio tests to violations of these assumptions. For preliminary work, see 
Beardon, Sharma, and Teel (1982), Boomsma (1982, 1983), Fuller and Hemmerle 
(1966), Geweke and Singleton (1980), Lawley and Swanson (1954), and Olsson 
(1979). Furthermore, research on more robust procedures has yet to provide 
definitive results (see Browne, 1984). 
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122 ROSS L. MATSUEDA AND WILLIAM T. BIELBY 

statistical power and more directly addressed with procedures for protect- 
ing against type II error (the error of retaining a false null hypothesis). 
Furthermore, the issue of power is relevant to all conventional statistical 
tests of parameters in structural equation modeling. This implies that the 
power of tests of both overall goodness of fit and specific parameters can 
be treated within a single unified framework. 

In this chapter, we draw upon principles of classical inference to 
examine statistical power for covariance structure models. Focusing on 
maximum-likelihood estimation and likelihood ratio tests of J6reskog's 
LISREL approach (Joreskog and Sorbom 1982, 1984), we proceed in five 
steps. First, we review estimation and testing in covariance structure 
models. Second, we review ad hoc strategies for dealing with statistical 
power in covariance structure models. Third, we present an approximate 
power function of the likelihood ratio test and show how power can be 
calculated routinely. Fourth, we discuss the implications of power calcula- 
tions for testing hypotheses in structural equation models. While our 
recommendations are sometimes difficult to implement in complex models, 
they do provide a formal conceptualization of the problem and distinguish 
between formal hypothesis testing and informal model fitting. Fifth, we 
investigate the influence of certain parametric structures on the power of a 
test and discuss ways of increasing power. 

COVARIANCE STRUCTURE MODELS 

The LISREL Model. In J6reskog's LISREL model for the analysis of 
covariance structures, random vectors of n latent independent variables, 

i'= (4 (2 . .I n) and m latent dependent variables, f' = 
(7i1' .2t... ,TJ ,m), are linearly related by the following system of equations: 

,q = Bq + I't + t (1) 

where B(m X m) and F(m X n) are matrices of coefficients, t(m X 1) is a 
vector of random disturbances, elements of i, i, t, and Et' have zero 
expectations, and I - B is nonsingular. The vectors of observed variables, 
x= (x, x2,..., xq) and y' = (yl,, y2,*' yp), are related to latent vari- 
ables by the following measurement equations: 

yA A F+e (2) 

x = A.' + 8 (3) 

where AY(p X m) and Ax(q X n) are matrices of coefficients and e(p X 1) 
and 8(q X 1) are vectors of random measurement errors. Elements of e 
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STATISTICAL POWER IN COVARIANCE STRUCTURE MODELS 123 

and 8 have zero expectations and are uncorrelated both with one another 
and with elements of t and .J; To simplify matters, the observable 
variables are expressed as deviations from their means, so that E(x) = 0 
and E(y) = 0. The covariance matrices (with dimensions) for i, t, c, 8 are 
respectively: *(n X n) = E(t'), *(m X m) = E(t'), 01(p X p) = E(ee') 
and 08(q X q) = E(88'), where 'k and 4) are positive definite. Then Equa- 
tions (1) through (3) can be manipulated so that the (p + q) X (p + q) 
nonsingular covariance matrix E for the vector of observables z = (y', x')' 
is expressed as a function of the following structural parameters (J6reskog 
and Sorbom 1984, I.8): 

[A(I - B) '(r4Fr' + P)(I - B') YA + Oe Ay(I-B) 1FAc] 

xA r (I -B' A AX4AX + 8 J 
(4) 

Maximum-Likelihood Estimation. If the joint distribution of observed 
variables is multivariate normal, then maximizing the likelihood function 
is equivalent to choosing values of unconstrained parameters that mini- 
mize 

F= log X1- log SI+ tr(SX2) -(p+q) (5) 

where S is the sample covariance matrix for z = (x', y')'. The maximum- 
likelihood estimator 9 for the vector of t free parameters 6 is minimum- 
variance asymptotic normal. The t X t asymptotic covariance matrix of 
parameter estimates V is a function of the inverse of Fisher's information 
matrix: 

2[ a 2F I]l 6 

where N is the sample size. The asymptotic standard errors are the square 
roots of the diagonal elements of V.2 

The Likelihood Ratio Test. Specific hypotheses in nested models can 
be tested using Neyman-Pearson's likelihood ratio method. Let 06 = (O', Os')' 
be the partitioned vector of r + s = t parameters, where elements in 61 
correspond to parameters in thwe matrices on the right-hand side of 

2 Note that V refers to the population value of the variance-covariance 
matrix of the maximum-likelihood estimator. When applying the estimation proce- 
dure to data in practice, one typically uses the Fletcher-Powell iteration method 
(or some variant) to obtain a maximum-likelihood estimate both of the parameters 
and of V, which is an estimate of V. (See Gruvaeus and Joreskog 1970.) 
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124 ROSS L. MATSUEDA AND WILLIAM T. BIELBY 

Equation (4). The structure corresponding to the null hypothesis, HO: 
or = rO, is nested within a less restrictive structure corresponding to the 
alternative hypothesis, H,: Or O,. Given nested parameterizations, the 
structure representing the null hypothesis can be tested against the struc- 
ture representing the alternative hypothesis. Let FH denote the minimized 
value of Equation (5) under the null hypothesis, and let FA denote the 
value under the less restricted alternative. Then -2 times the log-likeli- 
hood ratio is 

V=N[FH-FA] (7) 

which is asymptotically distributed x2 with r degrees of freedom under the 
null hypothesis. 

We can show that Equation (7) assesses how well the null hypothe- 
sis fits the data. If the null hypothesis is true-that is, if Or= Oor in the 
population-then the r corresponding overidentifying restrictions on the 
population covariance matrix I must also be satisfied (J6reskog 1973, 

A 

1977). Let XH denote the covariance matrix implied by estimates for the 
model corresponding to the null hypothesis, where Or = Oro is assumed. It 
estimates X subject to the r constraints. Furthermore, let 'A denote the 
covariance matrix implied by estimates for the less restrictive model 
corresponding to the alternative hypothesis, where Or is assumed to be 
unconstrained (Or * Oro). It also estimates 2, but the elements of 'A need 
not satisfy the r restrictions. It follows that the test statistic in Equation (7) 
can be reformulated as 

V = N [log I?HI/iAI] + tr[S(AH -A )1 (8) 

The nonnegative expression in Equation (8) is zero-denoting 
a perfect fit of the null hypothesis-only when XH equals 'A. Thus for 
a given sample size N, the likelihood ratio test statistic is proportional 
to a scalar criterion for assessing the degree to which matrix XH departs 
from XA. We can state this another way. Rewrite Equation (8) as 
v = Nd(XH, )A), where d denotes a "discrepancy function" for the two 
implied covariance matrices (Browne 1984, p. 7). Note that for a given N, 
larger values of the statistic correspond to larger discrepancies between H 
and XA. Conversely, for a given discrepancy, larger values of N corre- 
spond to larger values of the x2 statistic. Classic inferential procedures for 
computing the probability of type I and type II error link measures of fit 
based on sample data to the issue of substantive interest: the degree to 
which Or departs from Oro in the population. In contrast, most alternative 
approaches to fit focus only on the discrepancy between YH and XA. 
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STATISTICAL POWER IN COVARIANCE STRUCTURE MODELS 125 

The Overall Goodness-of-Fit Statistic. The overall goodness-of-fit statis- 
tic is a special case of the likelihood ratio test statistic. Any overidentified 
model implies restrictions on the population covariance matrix, which can 
be assessed by testing the model incorporating the null hypothesis against a 
just-identified alternative. In this case, O = (0r, Os')' has t = (1/2)(p + q) 
(p + q + 1) elements; OS refers to the s unconstrained parameters of the 
hypothesized model; and Or refers to the r parameters that differentiate the 
hypothesized model from the just-identified alternative model. The null 
hypothesis, then, is Or = 0. A just-identified model reproduces the sample 
moments exactly, so that ?A = S. Therefore, for the overall goodness-of-fit 
test, Equation (8) reduces to the following: 

v=N[log(0?HV/ISI) + tr(St- ) - ( P + q )](9 

This statistic assesses the goodness of fit of the hypothesized model by 
indexing the discrepancy between the sample covariance matrix S and the 
covariance matrix implied by the hypothesized model 'H* 

In practice, researchers rarely articulate Or-the parameters that 
differentiate the hypothesized model from the just-identified alter- 
native-especially in complex models when r is large. Indeed, in some 
instances more than one parameterization of Or is substantively plausible. 
Nevertheless, the test statistic evaluates the null hypothesis that a specific 
(but possibly unarticulated) set of r restrictions on the observable moments 
is satisfied in the population covariance matrix. As in the general case, the 
test statistic, which indexes departures from the overidentifying restrictions 
in the sample, depends not only on corresponding discrepancies in the 
population but also on sampling variability. Again classic methods of 
statistical inference allow one to disentangle these influences. 

MODEL FI77ING AND HYPOTHESIS TESTING. 
ALTERNA TIVE STRA TEGIES 

Null Models, Incremental Fit, and Hypothesis Testing. Because a given 
discrepancy between tH and ?A yields different values of the likelihood 
ratio test statistic in samples of different sizes, several researchers have 
proposed alternative indexes of fit. J6reskog (1979), for example, suggests 
that when analyses are in part exploratory, the x2 statistic v should be 
compared to degrees of freedom r. When v/r is large, residuals, normal- 
ized residuals, and modification indexes are inspected and restrictions in 
the model are relaxed; if this respecification results in a large drop in v 
relative to the number of parameters added, the improvement is presumed 
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126 ROSS L. MATSUEDA AND WILLIAM T. BIELBY 

real and not due to chance. In effect, this strategy relaxes the formal use of 
significance tests. Moreover, strictly speaking, it does not offset the in- 
fluence of sample size, since the ratio of v to r is just as dependent on 
sample size as v alone (Hoelter 1983, p. 330). 

Joreskog and S6rbom (1984) propose a more direct way of offset- 
ting the influence of sample size on criteria of fit using the adjusted 
goodness-of-fit index (AGFI): 

AGFI = I-[p + q) ( p + q + 1)/2r] -tr(t 'S - I) /tr( 
A 

_,S) ] 

(10) 

The index is not an explicit function of sample size; like the fitting 
function of Equation (5), it measures fit in an intuitive way. The distribu- 
tion of this statistic is unknown, however. Consequently, the index is more 
useful in exploratory studies, where one is attempting informally to fit 
various models to data, and less useful in confirmatory studies where one is 
attempting formally to test a priori hypotheses. For the latter, a formal 
procedure is needed. 

Bentler and Bonett (1980) present a formal strategy for evaluating 
the overall fit of a hypothesized model and for testing hypotheses about 
specific parameters. To eliminate the effect of sample size, they propose 
that comparisons of nested models be assessed relative to the fit of 
"the most restrictive, theoretically defensible model"-a baseline model 
(p. 600).3 Their "incremental fit index" is 

F-FA() 
AHA F 

B 

where FA, FH, and FB are the minimized values of the fitting function 
(Equation 5 in the maximum-likelihood context) for models corresponding 
to the alternative hypothesis, the null hypothesis, and the baseline model, 
respectively. Their statistic depends on the discrepancies between estimated 
covariance matrices implied by the hypothesized and alternative models, 
but it is not dependent on sample size. Moreover since 0 < (FH- FA) < FB, 

the incremental fit index AHA is bounded by 0 and 1. The index assesses 
the discrepancy between ?H and ?A as a proportion of the discrepancy 

3 We use the term baseline rather than null for two reasons. First, the null 
model usually refers to a model in which observable variables are mutually 
independent, whereas the baseline model refers to the general case of the most 
restrictive model that remains substantively justified (Sobel and Bohrnstedt 1985). 
Second, we wish to avoid confusion between the baseline model of mutual 
independent observables and the hypothesized model corresponding to the null 
hypothesis. 
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STATISTICAL POWER IN COVARIANCE STRUCTURE MODELS 127 

between ?B and S, the observable sample moment matrix. The overall fit 
of the hypothesized model would be assessed relative to the baseline model 
by the statistic ABH= (FB - FH)/FB I - (FH/FB), whereas the conven- 
tional x2 test for the parameters differentiating the two models is v- 
N(FB/FH). Similarly, the overall test for the less restrictive alternative 
relative to the baseline is ABA = 1 - (FA/FB), where ABA = ABH + AHA- 

Thus in going from the most restrictive baseline model to the least 
restrictive alternative, any improvement in fit can be attributed to two 
additive components: one component ABH due to parameters differentiat- 
ing the hypothesized model from the baseline model and an incremental 
component A HA due to parameters differentiating the hypothesized model 
from the alternative model. According to Bentler and Bonett (1980, p. 
591), if ABH is large relative to ABA, then t (the covariance matrix 
implied by the estimated hypothesized model) may "contain virtually all 
the information that one may be concerned with in practical cir- 
cumstances," even if a conventional statistical test rejects the restrictions 
implied by the hypothesized model. 

In proposing an index of fit independent of sample size, Bentler 
and Bonett have also effectively changed the focus of comparison: The 
hypothesized model is now compared to a more restrictive baseline model 
rather than to a less restrictive alternative. Thus they are claiming that 
correct inferences can be made about a subset of parameters of the 
hypothesized model-even if that model is specified incorrectly. Their 
procedure, however, can yield misleading results (see Sobel and Bohrnstedt 
1985). 

Testing a hypothesized model against a baseline model can be 
illuminating, but it is not a substitute for the test of the hypothesized 
model's overidentifying restrictions. As Bentler and Bonett note (1980, p. 
595), the tests correspond to different hypotheses, and the decision to 
perform one or both tests should be based on substantive considerations. 
But depending on the structure of the data, the test against the baseline 
model can yield misleading results when the test of the hypothesized 
model's overidentifying restrictions is ignored. 

We can illustrate this point with a simple example. Consider the 
following competing specifications for a simple regression model: 

Y-= flix, + ,82X2 + E (12a) 

y=/31x1 +e (12b) 

Y-= +e (12c) 
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128 ROSS L. MATSUEDA AND WILLIAM T. BIELBY 

where Equation (1 2a) corresponds to the alternative hypothesis, Equation 
(1 2b) corresponds to the null hypothesis, and Equation (1 2c) corresponds 
to the baseline model. Assume that in the true specification (1 2a) 2 is very 
large, ,BI is very small, and xl and x2 are highly correlated. Assume 
further that we draw a very large sample so that the estimated standard 
errors are small. Because of omitted variable bias, the estimate for ., can 
be very large under the hypothesized model (12b); consequently, that 
model will reproduce the observed moments much more closely than will 
the baseline model (12c). In going from the hypothesized model (12b) to 
the alternative model (12c), the incremental improvement in fit might be 
very small; but if we interpret this as supporting the hypothesized model 
(as Bentler and Bonett suggest), we would erroneously reject the true 
structure (12a) underlying the observable moments. 

Suppose, for example, the sample moments are sx= = s= 
1.0, sx,X2 = 0.90, sXY = 0.81, and sX2 = 0.90. In this case, all three models 
reproduce the exogenous moments exactly. The baseline model (12c) fails 
to reproduce sx,y and sx2Y instead implying values of zero for both axly and 
A The hypothesized model (12b) reproduces sx exactly and implies a aX2Y. ly yanimlea 
value of 0.729 for 6x2Y' The alternative model (12a) reproduces all sample 
moments exactly. The incremental fit for the hypothesized model (12b) 
against the baseline model (12c) is 0.643. Thus, following an incremental-fit 
procedure, we would conclude that most of the potential for reproducing 
the 3 x 3 sample covariance matrix is accomplished by going from the 
baseline model (12c) to the seriously misspecified hypothesized model 
(12b). Under the hypothesized model, coefficient #I is 0.81. Since the 
hypothesized model reproduces sX2Y much better than the baseline model, 
parameter /PI appears to incorporate meaningful information. But under 
the true alternative specification (12a), the estimate of P, is actually zero.4 

Criteria for assessing fit derived from comparing a hypothesized 
model to a baseline model are misleading because any nested comparison 
requires an accurate specification of the less restrictive model. Equations 
(12a), (12b), and (12c) are nested in parameters and imply nested restric- 

4 The conventional likelihood-ratio x2 test would also yield misleading 
results if applied only to the test of the hypothesized model against the baseline 
model. Imposing the constraint fO = 0 on the hypothesized model would yield a 
large increase in v, leading us to reject the baseline model. The overall x2 test 
statistic for the hypothesized model would also be large, however, leading us to 
reject the hypothesized model as well. The Bentler and Bonett procedure suggests 
that we ignore the latter statistic as ABH approaches 1. 
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STATISTICAL POWER IN COVARIANCE STRUCTURE MODELS 129 

tions on observable population moments. The alternative model (1 2a) 
implies no restrictions; imposing /2= 0 yields the hypothesized model 
(1 2b) with a single restriction: 

aXax=ayx2ax'Xl (13) 
9V19I2 

YX2'gxjxj 

Assuming that this constraint holds, imposing the additional constraint, 
/3 =0, on the hypothesized model (12b) yields the baseline model (12c) 
with an additional restriction: 

aYX'aX2X2 
= 

'YX2a'X2 (14) 

Bentler and Bonett (1980, pp. 596-597) imply that a comparison 
of the hypothesized model (12b) with the baseline model (12c) necessarily 
tests whether the second restriction holds in the population. They argue 
further that such a test can determine when "valuable statistical effects 
have been localized"-even when the hypothesized model (12b) fails to fit 
the data. Neither assertion, however, is necessarily true. In our example, 
comparing the hypothesized and baseline models tests the restriction 
described by Equation (14) only when Equation (13) holds.5 We have 
demonstrated that the incorrectly specified hypothesized model fits much 
better than the baseline model even though Equation (14) was satisfied 
exactly in the sample.6 

In summary, the incremental fit procedure suggested by Bentler 
and Bonett provides useful results only when one can assume that the less 
restrictive model is not seriously misspecified. In effect, however, this 
requires assuming away the problem their strategy was intended to solve. 
In a large sample, the overall fit of the less restrictive model may be poor 
even when the parameters differentiating it from the correct model are 
substantively trivial. Conversely, in a small sample, a poorly specified 
model may still yield an acceptable overall fit. The problem is best 
addressed by calculating how sensitive test statistics are to both meaningful 
and trivial departures from hypothesized parameter constraints. Otherwise 
the indiscriminate use of incremental fit as a modeling strategy (J6reskog 

'Unless xl and x2 are perfectly correlated, the two restrictions hold 
simultaneously only when ?Y,, = YX2 = 0. 

6 Of course, when the alternative, hypothesized, and baseline models are as 
simple as the three in our example, we would compare the hypothesized model to 
both the less restrictive and the more restrictive specifications. But with a more 
complex structure (for example, where y, xl, and x2 each represent vectors of 
many variables), the indiscriminant application of incremental fit indexes could 
easily support seriously misspecified models. 
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1981, pp. 75-76; Rorer and Widiger 1983, p. 453) may come at the 
expense of carefully considering plausible, less restrictive alternative 
models. 

Finally, statistical power is no less a consideration when using 
baseline model test statistics (or adjusted goodness-of-fit indexes) that are 
independent of sample size. These statistics index the extent to which 
sample moments satisfy a set of overidentifying restrictions. But when 
sampling variability is large-due, for example, to a small sample-we 
should expect large departures from restrictions even when they hold in 
the population. 

Critical Sample Size. As we have noted, the likelihood-ratio x2 
statistic v can be written as the product of sample size and a scalar 
discrepancy function denoting the difference between covariance matrices 
implied by the null and alternative hypotheses: v = Nd(?H, $A). The 
expression shows, for example, that in a sample of 5,000 the discrepancy 
corresponding to a type I error rate of 0.05 would be on the average 10 
times smaller than the discrepancy corresponding to the same error rate in 
a sample of 500. Suppose we test a null hypothesis with a very large 
sample, and v is statistically significant at conventional levels (p < 0.05). 
It might be informative to know whether the discrepancy between ?H and 
?A is small enough to retain the null hypothesis with an even smaller 
sample size. Hoelter (1983) has proposed an index of critical sample size 

A A 

(CN) showing-for a given discrepancy, d(> H, ,A), and a given level of 
type I error-the sample size below which the null hypothesis could not be 
rejected. For the likelihood-ratio x2 statistic with r degrees of freedom, 

x'(r) 
CN 

a 
(15) 

P/N 

where X 2(r) is the critical value of the x2 distribution with r degrees of 
freedom and type I error rate of a. For r < 100, the critical value can be 
determined from statistical tables of the x2 distribution (Beyer 1968, pp. 
296-298). For larger values of r, the numerator of Equation (15) is 
approximately (1/2) [za + (2r - 1)1/2]2, where za is the critical value for 
the standard normal distribution.7 

7Equation (15) differs from the index proposed by Hoelter (1983, p. 331): 

C [Z, + (2r- )1/2] + 1 

2v/(N- 1) 
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If we know, for example, that models retained in samples of 200 or 
more observations typically have small discrepancies between tH and tA) 
then we may safely conclude that so long as CN < 200, departures from 
the null hypothesis detected with large samples are substantively trivial 
(Hoelter 1983, p. 331). The index can also suggest when a model has too 
little statistical power. If we retain a null hypothesis and CN is substan- 
tially larger than 200, then there are likely to be substantively large but 
statistically nonsignificant discrepancies between :H and :A. 

Although the CN index addresses the issue of power more directly 
than the incremental fit strategy, Hoelter's procedure poses an indirect 
method of protecting against a desired level of type II error, since the 
critical sample size is chosen on informal grounds. Moreover, like incre- 
mental fit procedures, this strategy avoids explicit consideration of alterna- 
tive, less restrictive parameterizations. 

In sum, then, when applied with extreme care the strategies that 
J6reskog and S6rbom (1984), Bentler and Bonett (1980), and Hoelter 
(1983) propose for fitting models can be useful. These strategies, however, 
are based on indexes with unknown distributional properties. Furthermore, 
they are all ad hoc methods for offsetting the influence of sample size on 
the likelihood ratio test statistic. Formally, this influence is more directly 
addressed by protecting against a desired level of type II error. Thus the 
problem should be conceptualized as an issue of statistical power. More- 
over, classic tenets of statistical inference also address influences on the 
power of tests other than sample size. Now we shall show how conven- 
tional power analyses can provide a more thorough approach for testing 
structural equation models within the context of multivariate normality. 

AN APPROXIMA TE NONCENTRAL DISTRIBUTION FOR THE 
LIKELIHOOD-RA TIO x2 STATISTIC 

Kendall and Stuart (1979, pp. 246-247) show that the likelihood 
ratio test statistic in Equation (7), testing H0: Or = rO against H,: O = 

Hoelter (1983) uses the normal approximation regardless of r, even though it is 
biased toward zero when r is small. Moreover, his index is based on a slightly 
different expression for the X2 statistic: v = (N - 1)(FH - FA). Hoelter's index and 
Equation (15) give nearly identical results for r > 5, and the difference between N 
and N - 1 is inconsequential in samples large enough to justify using statistics with 
asymptotic properties. 

This content downloaded from 128.95.71.159 on Wed, 9 Apr 2014 20:43:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


132 ROSS L. MATSUEDA AND WILLIAM T. BIELBY 

FIGURE 1. Power function of the noncentral x2 distribution by type I error rate (ca) and 
degrees of freedom (r). 
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asymptotic covariance matrix for or. The quadratic form in Equation (16) 
is distributed as the noncentral x2 distribution with r degrees of freedom 
and noncentrality parameter 

T = ( Or - or)'Vr- ( Or -Oro) (17) 
This result allows us to calculate the power of the likelihood ratio 

test in four steps.' First, the parametric structure representing the null 
hypothesis is specified. Second, the structure of the alternative hypothesis is 
specified. This step, ignored in both conventional testing of covariance 
structure models as well as in the recommendations reviewed above, is 
crucial since power cannot be calculated without first specifying the values 
of the population parameters. The third step is to compute the information 
matrix of the alternative model. This is accomplished by applying maxi- 
mum-likelihood estimation to the moments implied by the alternative 
model and then inverting the r-dimensional submatrix of V corresponding 
to or. (Note that we are computing population values of V, not estimating 

8 In a recently published paper, Satorra and Saris (1985) also apply this 
result to covariance structure models. 
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V.) Fourth, the noncentrality parameter is calculated by using Equation 
(17), and power is obtained from power tables for the noncentral x2 
distribution (see Haynam, Govindarajulu, and Leone 1970). 

For a given r and type I error rate a, the power (1 - /) to detect 0 
-that is, the ability to reject the null hypothesis given certain values of 
the parameters in question-is a monotonically increasing function of the 
noncentrality parameter T (see Figure 1). The noncentrality parameter is a 
quadratic form that weights departures from the null hypothesis in the 
population (r - ,O) by the amount of sampling variability V,- for 
estimates of those departures. Equations (5) and (6) show that T is 
proportional to sample size and is also a function of the parametric 
structure of the population covariance matrix 1. 

For the test that a single coefficient is zero (Ho: 0 = 0), the 
noncentrality parameter is T = 02/var(O), the ratio of the squared popula- 
tion value of the parameter to the sampling variance of its estimator.9 For 
r = 1 the estimator 0 has an asymptotic normal distribution under the 
alternative hypothesis (H1: 0 * 0), so power can be computed either by 
referring T to the noncentral x2 tables or by referring T1/2 to the 
cumulative normal distribution (Kendall and Stuart, 1979, p. 249). 

POWER, SAMPLE SIZE, AND PARAMETRIC STRUCTURE 

In multiple-indicator models, relationships among unobservable 
constructs can be obtained from relationships among observable indicators 
measured with error. For these models, the power of detecting structural 
coefficients among unobservables is influenced by measurement parame- 
ters that can often be manipulated by the researcher. In most nonexperi- 
mental research, covariation among exogenous variables and structural 
disturbances-parametric influences on power in the general linear model 
-are properties of the underlying structural process and consequently are 
beyond the control of the researcher. Power can be manipulated only by 
controlling the size of the sample and the rate of type I error (Bielby and 

9 Belsley (1982) proposes a signal-to-noise index for testing multicollinear- 
ity in the general linear model that is the ratio of the parameter (signal) to its 
sampling standard error (noise). This ratio is equivalent to the noncentrality 
parameter of the Wald (1943) test, and the corresponding test statistic is distributed 
noncentral F. Note that the power function of the likelihood ratio test statistic, as 
we have applied it to covariance structure models, can be used as a diagnostic test 
for extreme multicollinearity among exogenous latent factors. 
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FIGURE 2. A multiple-indicator model. 
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Kluegal 1977). But in multiple-indicator models, power can also be 
influenced by modifying the structure of the measurement model. In this 
section, we focus on a two-factor multiple-indicator model (see Figure 2) 
and analyze power as a function of the size of the sample, the reliability of 
the indicators, and the number of indicators. 

When the population parameters have the values listed in Figure 2 
and the sample size is 1,200, the noncentrality parameter for the null 
hypothesis y = 0 has a value of 8.112. Figure 1 shows that the null 
hypothesis will be rejected with a probability (power) of about 0.90 when 
the type I error rate (a) is 0.10 and with a probability of approximately 
0.35 when a = 0.001. Thus, protecting against type I error more conserva- 
tively would reduce the likelihood of detecting y = 0.333 (a standardized 
effect of about 0.28) to just over one chance in three. Increasing sample 
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FIGURE 3. 
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size, improving measurement reliability, and obtaining additional indica- 
tors are alternative ways of increasing the power to detect y = 0. We shall 
examine each in turn. 

Sample Size. Figure 3 shows the proportional relationship between T 
and sample size, given the parameter values in Figure 2. According to 
Figure 1, to detect y = 0.333 with a probability (power) of 0.90 when the 
type I error rate is 0.00 1 requires a value of T = 20.9 or, according to 
Figure 3, a sample of about 3,100 cases (20.9/0.0068 = 3,074). If we relax 
our level of protection against type II error to /B = 0.20 (power of 0.80), we 
need only 2,500 cases to detect y = 0.333; at /3 = 0.30, we need just 2,140 
cases. 

Reliability. In principle the relationship between T and the reliabil- 
ity of indicators of 4 and i1 can be expressed analytically. Specifically, 
Equation (5) would be twice differentiated with respect to the nine free 
parameters to obtain V` (J6reskog, 1973, pp. 107-110). The diagonal 
element corresponding to y would give the noncentrality parameter as a 
function of the model's parameters, including a,, and a In practice, 
such an exercise becomes prohibitively complex. Therefore we determined 
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the relationship through a simulation by computing values of T for 
different combinations of aE and ca6, graphing these values, and infer- 
ring patterns from the results. 

For the model depicted in Figure 2, measurement error variances of 
27 correspond to reliabilities of 0.250 and 0.325 for the x and y indicators, 
respectively, where pxx = 1 - (a8,8/ajj) and pyy = 1 - (ae/a7). We com- 
puted T for 70 combinations of as6s6 and u , with values of each ranging 
from 0 to 99. The corresponding reliabilities ranged from 0.11 to 1.0 for 
the x indicators and from 0.12 to 1.0 for the y indicators. We discovered 
that within that range the relationship between T and reliability is 
described almost perfectly (R2 = 0.9997) by the following equation: 

T= 1.8- 2.5pxx- 6.4pyy+ 106.pxxpyy (18) 

For any given application, the specific values of these coefficients depend 
on values of the other parameters as well as the size of the sample. 
Nevertheless, this equation does show that the reliability of the x 's affects 
power contingent on the reliability of the y's and vice versa (Fornell and 
Larcker 1981). 

Figures 4 and 5 illustrate this relationship more clearly. When 'q is 
measured perfectly, increasing the reliability of the two measures of t by 
0.10 increases T by more than 10. But the slopes in Figure 4 decrease 
dramatically with pyy. Thus when q is measured with reliability 0.30, 
changes in the reliability of the x 's have a negligible impact on power. 
Figure 5 shows a similar relationship between T and pyy for selected values 
of pxx. In our original example, the noncentrality parameter would have to 
increase from 8.1 to 20.9 to obtain power of 0.90 with a = 0.001. This 
would require increasing the reliability of the two indicators of the latent 
exogenous variable from 0.25 to 0.66 (leaving pyy = 0.325). Similarly, 
without changing pxx, unreliability in the indicators of the latent endoge- 
nous variable would have to be all but eliminated (increasing py from 
0.325 to 0.98) in order to have the same effect. In contrast, increasing the 
reliability of both x 's and y's to just 0.50 increases T to 23.8, providing 
more than enough power (greater than 0.9) to detect y = 0.333. That 
increase in power is comparable to increasing the sample size nearly 
threefold (from 1,200 to more than 3,500). For this example, if it takes 
fewer resources to double reliability than it takes to nearly triple sample 
size, then improving the quality of measurement is more cost-effective than 
adding cases. 
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FIGURE 4. Noncentrality parameter as a function of exogenous indicator reliability at selected 
levels of endogenous indicator reliability. 
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We have constructed our example so that T equals 100 when all 
variables are measured perfectly. Consequently, we can interpret Figures 4 
and 5 and Equation (18) as showing the proportionate reduction in 
effective sample size due to imperfect measurement. For example, measur- 
ing - perfectly but reducing the reliability of 's indicators from 1.0 to 
0.60 is equivalent to reducing the number of cases by 42 percent (from 100 
to 58). Furthermore, measuring both i1 and ( with a reliability of 0.30 
instead of 1.0 reduces the effective sample size by 81 percent. Again, 
calculations such as these can show when improving the accuracy of 
measurement is cost-effective relative to increasing the size of the sample. 
(See Cleary and Linn 1969; Cleary, Linn, and Walster 1970.) 

Number of Indicators of the Endogenous Latent Variable. The relationship 
between power and the number of indicators of the endogenous latent 
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FIGURE 5. Noncentrality parameter as a function of endogenous indicator reliability at selected 
levels of exogenous indicator reliability. 
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variable can be established analytically for a specific class of models. 
Suppose ( is measured without error and J indicators of i1 are obtained so 
that the structural equations are 

1i. = YtZi + ti(19) 

Yi; = qj + E i; (20) 

where i = 1 ... ., N indexes individuals and j = 1,.. . , J indexes indicators 
of the latent endogenous variable. The indicators of i1 are assumed to have 
parallel measurement properties, so that AYj= 1 and a, = a,, for all j.10 

10 Following the terminology of Lord and Novick (1968), the indicators are 
parallel but not " essentially parallel." The latter requires that the indicators' 
means be constrained to be equal as well. Although this is possible within a 
LISREL framework (see Sorbom 1981), we have not parameterized the means in 
the models considered here. 
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Substituting Equation (19) into (20) gives 

Yij = Yti- + ti- + Eij (21) 

Equation (21) is equivalent to a variance components model for panel 
data where j indexes indicators instead of time periods. (See Maddala 
1971; Judge, Griffiths, Hill, and Lee 1980.) The structural disturbance , 
is a random component varying across persons, whereas Eii is a random 
component uncorrelated with tj and varying across both persons and 
indicators. There is no indicator-specific component, since the Yij are 
deviated from indicator-specific means. Averaging Equation (21) across 
the J indicators gives 

Yi Yti + (ti + J) (22) 

where the composite disturbance is independently distributed with zero 
mean and variance a;; + (I/J)Uee. The maximum-likelihood estimate of y 
can be obtained by applying ordinary least squares (OLS) to Equation 
(22). " The noncentrality parameter for the hypothesis y = 0 is 

T 
y Nj'au (23) 

var(y) a;;+ (1/A) (23) 

When the structural equation is deterministic, then a;;= 0 and the non- 
centrality parameter is proportional to J. In this case, adding another 
indicator is equivalent to adding N independent observations. As a,, 
approaches zero, however, additional indicators become redundant and do 
not increase the power to detect y. Finally, whenever a;; and a,, are both 
positive, adding indicators increases T at a decreasing rate. 

We confirmed these results with a simulation that is summarized in 
Figure 6. The solid lines in Figure 6(a) graph the noncentrality parameter 
for departures from the null hypothesis y = 0 against the number of 

" In terms of the variance components analogy, the ML estimate is 
equivalent to the "between" estimator, since for the ith individual, (i does not 
vary across j. If (i is replaced by a vector of exogenous variables, Equations (19) 
and (20) constitute a multiple-indicator, multiple-cause (MIMIC) model (J6reskog 
and Goldberger 1975). Equation (22) shows that a MIMIC model with parallel 
measures of the endogenous variable is equivalent to a single-indicator regression 
model for the additive composite, j- = (1/J)VJI yl Y. Of course the latter formula- 
tion provides neither separate estimates for ao and a,, nor a test of the overidenti- 
fying restrictions implied by the MIMIC specification. In the context of classic test 
theory, Equation (22) also shows that doubling the number of parallel indicators is 
equivalent to improving reliability by doubling the length of tests comprised of 
parallel items. 
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FIGURE 6. Noncentrality parameter as a function of number of endogenous indicators at selected levels of indicator 
reliability. (a) Multiple y 's, ( Measured Without Error (b) Multiple y 's, two x 's with px = 0.25 
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indicators and their reliability. Values of a,, equal to 1, 9, 27, and 90 
correspond to reliabilities of 0.9, 0.5, 0.25, and 0.1, respectively, where 
y = 1/3, N= 1,200, a-= 9, and a = 8. At pY= 0.1O0, increasing the 
number of indicators from two to five doubles T (from 24.7 to 49.5), thus 
having an effect equivalent to doubling the sample size. But when reli- 
ability is 0.50, going from two to five indicators increases T by only 28 
percent. At p = 0.90, additional indicators are largely redundant; adding 
three more indicators increases the noncentrality parameter by just 4 
percent. Clearly, adding indicators, increasing reliability, and increasing 
sample size are alternative ways of increasing power. Choosing a strategy 
to attain a desired protection against type II error should be determined 
through a cost-benefit analysis of the alternatives. For example, adding 
indicators can be a cost-effective way to improve the ability to detect 
departures from y = 0 even when reliability is high, providing that the 
other two strategies are comparatively expensive.12 

The impact of adding indicators of the endogenous latent variable 
is somewhat different when they are not in equivalent metrics. Replacing 
Equation (21) by 

Yij Xyjmi + eij (24) 

precludes averaging across indicators unless XyI = XY2 = * = Xy there- 
fore the variance components analogy expressed in Equation (21) breaks 
down.13 The dotted lines in Figure 6(a) show T as a function of sample size 
when Ay is a free parameter to be estimated for j= 2,...,J. These 
simulation results are based on the identical parameter values as our 
model with parallel measures of q: Each X Y equals 1.0 in the population, 
but they are now free parameters for j> 1. Although the results for 
parallel indicators can be either derived analytically or simulated em- 
pirically, we have only empirical results for the case of unconstrained AYi. 

12 Evaluating alternatives strictly on the basis of "tau per dollar" is 
inappropriate if one strategy threatens the viability of the specification more than 
the others. Adding cases is unlikely to change the specification in most applications, 
while the risk of misspecification could be greater with the other strategies. If 
reliability is increased in a way that also introduces undetected error correlations, 
for example, then estimates of error variances will be biased downward and 
statistical power will be overstated. 

13 In contrast, when items are tau-equivalent but not parallel -that is, 
when XY, = XY2= ... = X and measurement error variances differ across indica- 
tors-Equation (21) still hYolds with Ay absorbed in the metrics of t and t. The 
specification can be expressed as a "pooling" model for NJ observations with 
heteroscedastic item-specific disturbances. 
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Comparing solid and dotted lines in Figure 6(a) reveals several 
patterns. First, freeing the constraints on X y reduces the probability of 
detecting departures from the hypothesis y = 0: The dotted line lies below 
the solid line at every level of pyy. Second, the proportionate reduction in T 
due to freeing X decreases as the reliability of indicators of the endoge- 
nous latent variable increases. At pyy= 0.10, freeing the constraints on X Y 
has roughly the same effect as reducing the sample size by one-half, while 
at pyy= 0.90 the reduction is quite small. Third, when the X y are 
unconstrained, adding a third indicator can have a particularly large 
impact on power, and the gain appears largest at moderate levels of 
reliability. At pyy= 0.50, for example, adding a third indicator increases T 

by nearly 40% (from 70.5 to 97.8), while adding fourth and fifth indicators 
increases the noncentrality parameter by 8 percent and 5 percent, respec- 
tively. From a different perspective, the pattern suggests that the potential 
gain in power from imposing equality constraints on X Y is greatest when 
there are just two indicators.14 

Figure 6(b) shows what happens when the exogenous variable is 
also measured by multiple fallible indicators. Here we computed values of 
the noncentrality parameter for models in which measurement parameters 
for indicators of the exogenous latent variable were not constrained to be 
equal.15 The calculations for Figure 6(b) are comparable to those for 
Figure 6(a) except that ( is measured with two indicators, xl and x2 with 
a reliability of 0.25 (a,, = a,82,62 = 27). The pattern of returns to ad- 
ditional indicators is similar in Figures 6(a) and 6(b), but noncentrality 
parameters are roughly one-fifth as large in the latter figure. That is, the 
major impact of unreliability in the x's is to reduce the noncentrality 
parameter (as implied by Equation 18 for the case of two x 's and two y 's) 
regardless of either the number or the reliability of the y 's. Closer 

" It is not uncommon for researchers to estimate a model with uncon- 
strained X ,, test for equality of the Xy., and then reestimate the model subject to 
the equality constraint. Because of the sequential estimation procedure, estimates 
of y and estimates of sampling variability produced under the constrained model 
will be biased. Similarly, the noncentrality parameters reported in Figure 6 for 
models with parallel indicators apply only when constraints on A are imposed a 
priori. See Judge, Griffiths, Hill, and Lee (1980, pp. 61-67) for a discussion of this 
issue in the context of the general linear model. 

15 That is, distinct parameters were specified for X, 2 x and a282 
even though Xx = Xx and q,, = q262 in the population model that generated 
the data. We chose tiis strategy because the assumption of parallel measures is 
seldom imposed a priori in sociological applications of covariance structure models. 
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examination of the two figures reveals that the returns to additional 
indicators are somewhat flatter in Figure 6(b); thus the proportionate 
reduction in T due to unreliability in the x's increases slightly with the 
number of indicators.16 Moreover, the relative impact of unreliability in 
the x's on the proportionate reduction in T is greatest when it matters 
least: when pyy is close to 1. For models with X y unconstrained, for 
example, values of T in Figure 6(b) are roughly 18% as large as corre- 
sponding parameters in Figure 6(a) when pyy= 0.90, 26% as large when 
pyy= 0.25, and about 33% as large when pyy= 0.10. 

Number of Indicators of the Exogenous Latent Variable. Figures 7(a) and 
7(b) show how power increases with the number of indicators of the 
exogenous latent variable for a similar set of models. Solid lines correspond 
to models with equality constraints on XX and a,6j,6j; dotted lines apply to 
models where the x 's are not assumed to be parallel. In Figure 7(a), the 
endogenous latent variable is measured by two indicators having perfect 
reliability; in Figure 7(b), it is measured by two indicators having reli- 
ability 0.25. In every instance, the relationship between T and the number 
of x 's parallels the relationship between T and the number of y 's.17 For a 
given value of pxx, adding x 's increases T at a decreasing rate (Figure 7a); 
for different values of pxx the proportionate increase in the noncentrality 
parameter is greatest when reliability is low (Figure 7b). Power is sacrificed 
when XX and a,_j^ are unconstrained-especially when j= 2. (Compare 
solid and dotted lines in Figure 7.) Finally, the effect of introducing 
unreliability in the y's parallels what we found previously: Noncentrality 
parameters are attenuated, but the patterns are largely unaltered. 

16 There is one exception in our example: When endogenous indicators are 
very unreliable and not assumed to have parallel measurement properties, the 
proportionate reduction in y decreases with the number of indicators. That is, for 
unconstrained measurement parameters, the pattern described in the text is non- 
monotonic in pyy, reversing somewhere between p = 0.25 and p = 0.10. 

17 The variance components analogy that produced analytic results for the 
case of endogenous indicators does not work here. Solving out the unobservable ( 
yields 

nz = YXIj, + i -YaiI 

and averaging over J exogenous indicators gives 

1i = Yxi. +( A8.) 
Unlike Equation (22), the composite disturbance ( -y8 ) covaries with the 
observable exogenous variable, x, since cov(xj,,j 8j) * 0. Further, the composite 
disturbance variance, a + (y2/J)q6, is a function of y. Consequently, the model 
averaged over indicators cannot be recast as one meeting OLS assumptions. 
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FIGURE 7. Noncentrality parameter as a function of number of exogenous indicators at selected levels of indicator 
reliability. (a) Multiple x's, r1 Measured Without Error (b) Multiple x's, two y's with pyy= 0.25 
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Summary: Power and Parametric Structure. We have demonstrated the 
effects of sample size, measurement properties, and number of indicators 
on statistical power with a very simple example: a test on a single 
structural coefficient in a two-construct multiple-indicator model. The 
overall pattern of findings, consisting of five results, generalizes to models 
with more than two unobservable constructs. First, the noncentrality 
parameter is proportional to the size of the sample under any parameteri- 
zation. Second, the ability to detect structural relationships among unob- 
servables is in general an interactive multiplicative function of reliabilities 
of all indicators. More precisely, the partial derivative of T with respect to 
the reliabilities of one construct's indicators are a function of the reliabili- 
ties of other constructs' indicators. Therefore, increasing the reliability of 
indicators of one construct has a greater effect when other constructs are 
measured precisely. Third, the ability to detect structural relationships 
among unobservables is increased by adding indicators, but additional 
indicators are largely redundant when reliability is high. Fourth, power is 
increased by assuming equal metrics across indicators (constraining X Y to 
be equal when appropriate), especially when reliability is low. Fifth, the 
ability to detect elements of F depends on the moments among elements of 
i in a way that parallels results for the general linear model. For example, 
the power to detect effects of the kth exogenous unobservable (k increases 
with the variance of (k and the degree to which (k is independent of other 
elements of t. 

More important than the generalizations we can make about a 
limited class of models is the generality of the procedure we have followed. 
The quadratic form of Equation (17) can be computed routinely for 
hypotheses about any set of parameters in models estimated by 
maximum-likelihood methods. Thus the concept of statistical power-the 
ability to detect meaningful effects-is tractable though rarely invoked in 
applications of covariance structure models. 

AN APPLICATION TO THE OVERALL GOODNESS-OF-FIT 
STA TISTIC 

In general, computing the power of statistical tests for covariance 
structure models requires an explicit specification of parameter values for 
the less restrictive model corresponding to the alternative hypothesis. 
While this principle holds equally for computing the power of the overall 
goodness-of-fit statistic, parameterizing the just-identified alternative model 
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can be very difficult in practice. There are at least three reasons why this 
problem can become intractable, especially for complex hypothesized 
models with many overidentifying restrictions. First, there may be more 
than one just-identified parameterization corresponding to plausible alter- 
native hypotheses. In our computations, we have discovered that Equation 
(17) applied to different parameterizations produces slightly different 
results, even when those parameterizations imply identical moments among 
observable variables. Second, when the number of variables and the 
number of degrees of freedom are large, computing V7-l can be prohibi- 
tively expensive. Third, the most plausible alternative parameterization 
may not be identified from moments among observables. While the 
moments implied by such a model can be determined, V7-l (and therefore 
T) cannot be computed. 

In this section we present a procedure for calculating power that 
does not require computing V7-l for just-identified alternative models. The 
procedure can be applied to alternative specifications even when the 
parameters of the alternative are not identified from moments among 
observables. We apply this procedure to an example taken from the 
literature and then use the example to illustrate the implications of power 
analyses for testing a model's overall goodness of fit. 

Our example is derived from Wheaton, Muthen, Alwin, and 
Summers' (1977) model of the stability of alienation. The hypothesized 
model has two observable indicators for each of three unobservable 
constructs. Following Bentler and Bonett (1980) and Sobel and Bohrnstedt 
(1985), our example is an abbreviated version of Wheaton and colleagues' 
model, where m, is socioeconomic status in year t, % is alienation in year 
t + 1, and % is alienation in year t + 5. Specifically, we are evaluating the 
power of the test of the null hypothesis that the overidentifying restrictions 
implied by the hypothesized model hold in the population, given that 
unconstrained parameters have the values reported in Figure 8. One 
might, for example, undertake such power computations before replicating 
the stability of alienation study of Wheaton and colleagues (1977). 

Three versions of this model appear in Figure 8. The numbers on 
the solid lines denote values of standardized coefficients for the hypothe- 
sized model and correspond closely to estimates obtained by Wheaton and 
colleagues. Dashed lines in the three panels of Figure 8 correspond to 
parameterizations of three different alternatives to the hypothesized model. 
Model I depicts an arbitrarily parameterized alternative. To obtain this 
alternative, six parameters presumed to be of no substantive interest were 
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FIGURE 8. Three parameterizations of departures from a maintained three-construct, six-indica- 
tor model with uncorrelated errors. 
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added to the hypothesized model and randomly assigned positive and 
negative signs. Testing the hypothesized model against this alternative 
allows us to address two issues. On the one hand, we want to discover 
whether the overall goodness-of-fit statistic is overly sensitive to small and 
substantively unimportant departures from the hypothesized model. 
Specifically, if q is the absolute value of standardized coefficients differen- 
tiating the two models, we want to avoid a situation in which the power to 
reject the null hypothesis is large when the magnitude of q is small. On the 
other hand, we do want to detect departures from restrictions implied by a 
seriously misspecificed hypothesized model. That is, we want a high 
probability that the goodness-of-fit test will reject the null hypothesis when 
q is large. Thus even though the parameters are substantively uninterest- 
ing, failure to detect them when they are large in the population can cause 
biases in estimates of other substantively meaningful parameters. 

In model II of Figure 8, we assumed that the parameters differenti- 
ating the hypothesized and alternative models are of substantive interest. 
Specifically, we assume that error terms c1, F3, and -5 are positively 
correlated, as are F2, F4, and -6. Assuming that each of the six error 
correlations takes on the same value q, we determine how large q must be 
before the correlations are likely to be detected by the overall test statistic. 

In model III, the models are differentiated by just two parameters: 
correlations between -3 and -5 and between -4 and -6. We compute the 
ability of the goodness-of-fit statistic to detect departures from restrictions 
implied by the hypothesized model when four of the six restrictions hold in 
the population. Again we assume that both error correlations take on the 
same value q, and we compute power as a monotonically increasing 
function of q. 

Models I and II of Figure 8 are underidentified without equality 
constraints or other restrictions on the parameters."8 Consequently, we 
must modify the procedure we followed when computing the power to 
detect y in the model of Figure 2. First, as before, we generate hypotheti- 
cal population moments among observables implied by specific values of 
the alternative model's parameters. Second, we use the LISREL program 
(Joreskog and Sorbom, 1984) to fit the hypothesized model to the popula- 

18 In general, an alternative model need not be identified. Indeed, a case 
could be made that in most quantitative social science research, moments among 
observable variables are generated by underidentified models. By posing a plausi- 
ble underidentified alternative model with specific parameter values, we generate 
departures from restrictions implied by an overidentified hypothesized model. 
Power calculations determine the probability of rejecting the restrictions implied 
by the hypothesized model, given those departures. Obviously we are not comput- 
ing the probability of "detecting" underidentified parameters. 
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tion moments generated by the alternative model. Fitting the alternative 
model to obtain Vr-1 (as we did in the previous examples) is impossible, 
since Vr- does not exist for an underidentified model. Therefore, instead 
of computing T from Equation (17) we adopt the procedure of Satorra 
and Saris (1985) to approximate what T would be under a just-identified 
alternative.19 (For alternative models that are identified, we typically find 
that the two procedures for computing T yield results within 5 to 10 
percent of one another.) We then proceed as before, computing power by 
referring T to power tables for the noncentral X2 distribution. 

The top panel of Figure 9 presents results for the arbitrarily 
parameterized alternative. The power of the overall goodness-of-fit statistic 
is computed as a function of q under four conditions: sample sizes of 900 
and 200 and type I error rates (a) of 0.10 and 0.001.20 The right-hand 
plots in Figure 9 graph the population root mean square residual (RMSR; 
J6reskog and Sorbom 1984, p. 41), a summary measure of departures from 
restrictions on the population covariance matrix implied by the hypothe- 
sized model, against q, the size of the standardized coefficients correspond- 
ing to those departures from restrictions. In this example, the typical 
residual correlation (as indexed by RMSR) is almost directly proportional 
to q, increasing nonlinearly at a slightly increasing rate. 

As depicted in the top panel of Figure 9, power is a monotonically 
increasing function of the magnitude of q, the size of the sample, and the 
probability of type I error (a). This graph shows how to obtain a desired 
amount of power by manipulating the size of the sample and the level of 
protection against type I error. Suppose, for example, that a value of 
q = 0.08 or smaller (RMSR = 0.02) represents a substantively trivial de- 
parture from the hypothesized model, while a value of 0.12 or larger 
(RMSR = 0.03) represents a meaningful departure. Suppose further that a 
level of protection against type II error of at least 0.10 (power of 0.90) is 
desired. One would therefore want a decision rule that rejects the null 

'9 See Satorra and Saris (1985) for a derivation of the use of the x2 
statistic, produced by the LISREL program after estimating the hypothesized 
model from moments implied by the alternative model, as an approximation of T, 
the noncentrality parameter. They also report Monte Carlo results of this ap- 
proximation for a simple recursive model and find it to be highly accurate even 
with small sample sizes. 

201 When testing the null hypothesis that a single coefficient 9 is zero, the 
noncentrality parameter is equal to 82/V(8), the squared parameter under the 
alternative model divided by its sampling variance. We have no algebraic results 
for the relationship between q and T when testing a composite hypothesis on two 
or more parameters, but for the examples reported here the relationship between 
T112 and q is nearly linear. 
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FIGURE 9. Power and population root mean square residual correlation (RMSR) as a function 
of departures (q) from the maintained model under three different parameterizations 
of alternative models. 
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hypothesis when q > 0.12 in the population and retains the null when 
q < 0.08. With a sample of 200, a value of q = 0.12 will not be detected at 
conventional levels of type I error: At a = 0.001, only q greater than 0.18 
can be detected; at a = 0.01, only q greater than 0.14 can be detected. 
Clearly, given that the sample size is fixed and a power of 0.90 or more is 
crucial, one must relax the level of type I error above 0.01 to detect 
q = 0.12. 

If, however, one can increase the size of the sample to 900, a more 
stringent level of protection against type I error is possible. In fact, when 
a = 0.10 there is an overabundance of power: The null hypothesis is 
almost certain to be rejected when q = 0.12 (power exceeds 0.99) and also 
when q = 0.08 (power exceeds 0.95). Increasing the protection against type 
I error to 0.001 would yield an adequate decision rule, since power still 
exceeds 0.99 when q is 0.12 or larger but is only about 0.50 when q is 0.08 
or smaller. 

By performing power analyses like these at the design stages of 
research, the researcher can evaluate alternative steps for increasing 
power. For example, the alternatives of increasing the size of the sample or 
lowering the level of protection against type I error can be compared to 
the possibility of adding further or more reliable indicators. 

The middle panel of Figure 9 presents comparable calculations for 
detecting six positive error correlations. The results are similar to those of 
the top panel except that power is uniformly lower at given levels of q. 
Thus it is more difficult to detect departures from the hypothesized model 
due to the substantively grounded positive error correlations than to detect 
departures generated by the arbitrarily parameterized alternative.21 Con- 
sequently, it is possible for a researcher to be in the unfortunate situation 
of simultaneously having too much power to detect arbitrarily and sub- 
stantively trivial departures from a hypothesized model and not enough 
power to detect substantively important departures. For example, a statis- 
tical decision rule designed to detect positive error correlations of 0.10 may 
also have a high probability of rejecting the null hypothesis when unim- 

21 This can also be seen by comparing RMSR as a function of q in the top 
and middle panels of Figure 9. At given levels of q, the model with six error 
correlations generates smaller departures from the overidentifying restrictions 
implied by the hypothesized model. Of course, two alternatives that imply the 
same departures are equally likely to be detected. But in substantively motivated, 
confirmatory applications we are often interested in detecting specific parameters, 
not just departures from implied restrictions on population moments. 
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portant parameters are smaller than 0.10. Confronted with such cal- 
culations, the researcher is forced to evaluate whether small departures 
generated by arbitrary models (like Model I of Figure 9) can be ruled out 
on a priori grounds. If not, the researcher might be forced to conclude that 
social theory and research have not developed sufficiently to apply covari- 
ance structure models to the deductive research problem at hand. 

The bottom panel of Figure 9 shows the power of the goodness-of-fit 
test for the alternative model with two error correlations.22 Since four of 
the six overidentifying restrictions hold in the population, the two error 
correlations must be relatively large before their probability of detection is 
high.23 For example, with a sample of 200 and a type I error rate of 0.10, 
the two error correlations must exceed 0.25 to obtain power of 0.90. Even 
with a sample of 900, q must exceed 0.12 to obtain a type II error rate of 
less than 0.10. 

Of course, if one knew beforehand that the only possible departures 
from the hypothesized model were error correlations between -3 and -5 
and between -4 and -6, one would evaluate the hypothesized model with a 
more powerful 2-degree-of-freedom test of the two overidentifying restric- 
tions, rather than the 6-degree-of-freedom overall goodness-of-fit test. But 
one does not always know whether departures from the hypothesized 
model are distributed uniformly across all (or most) restrictions, whether 
they are concentrated in one or two restrictions, or whether they involve 
substantively important or unimportant parameters. Computations like 
those reported in Figure 9 are particularly important for complex models 
with many variables and many overidentifying restrictions because they 
force the researcher to differentiate important parameters from trivial 
ones. 

Consider, for example, the following situation: Out of dozens of 
restrictions, only a few involve substantively interesting parameters that 
might be nontrivial in magnitude; power calculations show that the overall 
goodness-of-fit statistic is particularly responsive to very small departures 

22 Since the alternative model is identified, the noncentrality parameter can 
be computed directly from Equation (17) as well as by the procedure used for the 
other two alternative models. For this model, the latter procedure overstates the 
noncentrality parameter, especially when q is large. At q = 0.10, it is 2 percent 
larger than the value computed from Equation (17); at q =0.20, it is 6 percent 
larger; and at q = 0.30, it is 14 percent larger. 

23 The RMSR scale in the bottom panel in Figure 9 is somewhat mislead- 
ing, since all but two of the population correlations are reproduced exactly by the 
hypothesized model. For a given q, the two correlations that are not reproduced 
differ from the corresponding population correlations by 0.1 8q, while the popula- 
tion RMSR is 0.08q in the bottom panel of Figure 9. 
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from the uninteresting restrictions; and there are strong reasons to assume 
that departures from the uninteresting restrictions are uniformly small in 
magnitude. When each of these conditions holds, one may be justified in 
ignoring a statistically significant overall goodness-of-fit test and con- 
centrating instead on a nested comparison of the parameters of substantive 
interest. 

In principle it should be possible to demonstrate-before estimating 
a baseline model on sample data-that each of the three conditions holds. 
The procedure we have applied to a relatively simple model is applicable 
to virtually any model estimated by maximum-likelihood methods. In 
practice, however, rationalizations for ignoring a significant goodness-of-fit 
statistic are invoked after estimating a poor-fitting model from sample 
data. That is, rules of thumb such as ratios of x2 to degrees of freedom are 
invoked only when the data fail to conform to hypotheses. Clearly such 
practices undermine the application of principles of statistical inference to 
covariance structure models. 

CONCLUSIONS 

Discussions of statistical power in covariance structure models are 
usually cloaked under the guise of the influence of sample size on measures 
of goodness of fit. Since the likelihood ratio x2 test statistic is a function of 
sample size as well as the degree to which restrictions implied by the null 
hypothesis are satisfied by sample moments, it is often argued that one 
should ignore that statistic in large samples and resort to alternative 
indexes of fit. We have offered three reasons for using classic principles of 
statistical inference rather than various ad hoc procedures for offsetting the 
influence of sample size on statistical tests. 

First, computing the power of statistical tests requires researchers to 
formulate explicitly an alternative hypothesis, which forces them to decide 
what constitutes meaningful values of parameters differentiating hypothe- 
sized and alternative models. Second, while most ad hoc procedures 
address the problem of " too much" power to detect trivial departures from 
implied restrictions in large samples, classic procedures also confront the 
issue of "too little" power to detect meaningful departures in relatively 
small samples. Ad hoc indexes of fit that are not explicit functions of 
sample size fail to consider entirely the impact of sampling variability. 
Specifically, they do not recognize that departures from overidentifying 
restrictions in the sample are larger on average in smaller samples. Classic 
procedures simultaneously consider the influence of sample size, sampling 
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variability, and true departures from restrictions in the population on 
measures of fit, whereas ad hoc procedures deal only with the influence of 
sample size. Third, the likelihood of rejecting a hypothesized model 
depends on the entire parametric structure of the true population model. 
The particular moments among exogenous constructs, the size of dis- 
turbance variances, the magnitude of coefficients of structural equations, 
and the reliability and number of indicators all influence the probability of 
detecting departures from a hypothesized model. Classic procedures allow 
us to disentangle the effects of each on statistical power; ad hoc procedures 
deal only with sample size. 

Our exposition suggests several avenues for further research, some 
more manageable than others. The most straightforward is to extend our 
results for the hypothesis on a vector of r parameters, Or= Or, to the 
general linear hypothesis of g linear restrictions on r parameters. We can 
denote this hypothesis as HOr = c, where H is a g X r matrix of coefficients 
for the g contrasts among the r parameters and c is a g x 1 vector of 
constants. Our results generalize by replacing (Or - Oro) with (HOr - c) and 
Vr with V (the matrix of sampling covariances among contrasts in 
Equation 17). 

More complicated statistical issues involve results for small samples 
and procedures for random variables that depart from a multivariate 
normal distribution. Somewhat paradoxically, the procedures we propose 
for addressing statistical power, a finite-sample problem, are based on the 
large-sample properties of maximum-likelihood estimators (Kendall and 
Stuart 1979, pp. 246-247). There appears to be little (if any) literature, 
however, on the finite-sample, nonnull distribution of the likelihood-ratio 

x2 statistic. 24 Furthermore, while there are a variety of estimation methods 
for covariance structure models that do not require the assumption of 
multivariate normality (Bentler 1983; Browne 1984), little work has been 
done on the distribution of appropriate test statistics under either null or 
alternative hypotheses. 

Finally, we need to incorporate the literature on sequential testing 
of nested hypotheses into our methods for testing covariance structure 
models. In estimating such models, researchers typically test a set of 
restrictions and then reestimate the model subject to the restrictions that 
pass the test. For example, we might first test for tau-equivalence (equality 

24 Thus we are assuming that the asymptotic result of the noncentral x2 
distribution is reasonably approximated in finite samples. A simple way of examin- 
ing this assumption entails using a Monte Carlo simulation to assess the nonnull 
distribution of the likelihood ratio statistic in finite samples. 
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of lambda coefficients) across measures of a latent variable and then 
reestimate the model subject to the corresponding equality constraints. The 
resulting gain in statistical power and efficiency, however, is partly illusory 
since the true distribution of final parameter estimates is some mixture of 
the sampling distribution of final parameter estimates with and without 
the restrictions imposed. The work on " pretest estimators" (Judge, Griffiths, 
Hill, and Lee 1980, pp. 61-67) treats the problem within the context of 
the general linear hypothesis for linear models, but to date these ideas have 
not been applied to covariance structure models. 

In closing, we advocate extending the frontiers of covariance struc- 
ture research by developing and applying classic statistical methods. Used 
with discretion, incremental fit indexes (Bentler and Bonett, 1980), ad- 
justed goodness-of-fit measures (J6reskog and S6rbom 1984), critical sam- 
ple size measures (Hoelter 1983), and the like can be valuable practical 
tools. But by deflecting attention away from basic principles of classic 
inference and by deemphasizing the careful specifications of a priori 
theoretical structural equation models, the indiscriminant use of such 
procedures is transforming a powerful modeling and testing method into 
the data-dredging, exploratory approach it was meant to supplant. 
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