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Modeling Criminal Careers as Departures From
a Unimodal Population Age–Crime Curve: The Case

of Marijuana Use
Donatello TELESCA, Elena A. EROSHEVA, Derek A. KREAGER, and Ross L. MATSUEDA

A major aim of longitudinal analyses of life-course data is to describe the within- and between-individual variability in a behavioral
outcome, such as crime. Statistical analyses of such data typically draw on mixture and mixed-effects growth models. In this work, we
present a functional analytic point of view and develop an alternative method that models individual crime trajectories as departures from
a population age–crime curve. Drawing on empirical and theoretical claims in criminology, we assume a unimodal population age–crime
curve and allow individual expected crime trajectories to differ by their levels of offending and patterns of temporal misalignment. We
extend Bayesian hierarchical curve registration methods to accommodate count data and to incorporate influence of baseline covariates on
individual behavioral trajectories. Analyzing self-reported counts of yearly marijuana use from the Denver Youth Survey, we examine the
influence of race and gender categories on differences in levels and timing of marijuana smoking. We find that our approach offers a flexible
model for longitudinal crime trajectories and allows for a rich array of inferences of interest to criminologists and drug abuse researchers.
This article has supplementary materials online.

KEY WORDS: Curve registration; Drug use, Functional data; Generalized linear models; Individual trajectories; Longitudinal data;
MCMC; Unimodal smoothing.

1. INTRODUCTION

An important task in criminology concerns describing indi-
vidual trajectories of offending across time or age. An adequate
description of offending trajectories across age is necessary
for describing differences in criminal careers (Blumstein and
Cohen 1987), for estimating features of age–crime curves
(Hirschi and Gottfredson 1983), such as age at onset, and ulti-
mately, for explaining differences in age–crime curves using de-
velopmental or life-course theories (Sampson and Laub 1993).

Most research on criminal careers and age–crime trajectories
has been descriptive, following the pioneering work of Wolf-
gang, Figlio, and Sellin (1973), who examined age at onset,
length of criminal careers, and patterns of desistance. Recent
research has turned to model-based approaches, such as growth
curve or trajectory mixture models, which typically specify in-
dividual trajectories as polynomial in age. Such models describe
population heterogeneity in individual trajectories either by in-
cluding random effects for age and age-squared (Raudenbush
and Chan 1993), or by specifying a mixture of latent classes
of trajectories (Nagin and Land 1993), or by combining la-
tent trajectory classes and random effects (Muthén and Shedden
1999). However, polynomial representations are typically not
able to capture nuanced heterogeneity between individuals in
their observed patterns of criminal behavior, and research find-
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ings are often driven by variability in within-age behavioral
amplitude (Gottfredson and Hirschi 1990). More importantly,
both growth curve and trajectory mixture models tend to ig-
nore subject-specific variation in the timing of crime. From a
statistical perspective, this leads to inconsistent estimates of
time-varying population parameters (Brumback and Lindstrom
2004; Gervini and Gasser 2004). From a substantive perspec-
tive, ignoring phase variability leads to population estimates of
age–crime curves that are not representative of typical individual
trajectories as they smear over local features of subject-specific
time series. In particular, it has been observed that growth curve
and trajectory mixture models are typically unable to capture
individual variability in the decline of offending (Bushway,
Sweeten, and Nieuwbeerta 2009).

In this article, we propose an alternative approach for analyz-
ing longitudinal crime data. We draw on the growing research
literature in criminology on the age–crime curve. Nearly all re-
searchers agree that, overall, the population age–crime curve is
unimodal, rising precipitously from age 7 (the age of culpability)
until the peak years—between ages 13 and 21 depending on the
offense—and then slowly declining throughout the remaining
years of the life span. Some researchers have emphasized, on
substantive and theoretical grounds, substantial heterogeneity
in age–crime curves across groups of individuals. For exam-
ple, Blumstein, Farrington, and Moitra (1985) posited groups of
desisters, persisters, and nonoffenders, and Moffitt (1993) con-
trasted groups of life-course-persistent chronic offenders versus
adolescence-limited normal offenders. By contrast, Hirschi and
Gottfredson (1983) injected controversy into criminology by
arguing that a single age–crime curve underlies all criminal of-
fenses and is invariant across all social groups and throughout
history. Although they claimed invariance in the basic shape
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of the age–crime curve, they also acknowledged the presence
of modest individual differences in crime trajectories. Specif-
ically, Hirschi and Gottfredson (1983) claimed that individual
differences are driven by differences in (time-stable) levels of
offending and (time-varying) opportunities to commit crime.
These substantive arguments naturally lend themselves to using
an appropriately constrained functional data analysis approach
for modeling longitudinal crime data.

We posit a unimodal population age–crime curve and de-
velop a Poisson warping regression model that defines individ-
ual crime trajectories as random functions that deviate from the
mean curve according to individual-specific level of offending
and time misalignment patterns. We build on curve registration
models of Ramsay and Li (1998), who introduced a model for
the alignment of a sample of curves via a continuous monotone
transformation of a main effect modifier (usually time), and
Telesca and Inoue (2008), who formulated a Bayesian hierar-
chical model for curve registration, allowing for the borrowing
of information across curves. To accommodate discrete observa-
tions (counts), we develop a generalized extension of the curve
registration models to count data. In addition, we incorporate
covariate effects directly on (1) the expected intensity of crim-
inal behavior and on (2) the deviation from the average timing
of offenses in a hierarchical fashion.

Although the assumption of unimodality is relatively weak,
given observed distributions of crime and drug use, we will
compare the predictive performance of models with unimodal-
ity against a model with an unconstrained shape function.
Moreover, our functional data analysis approach is sufficiently
flexible to model not only modest individual departures from a
population age–crime curve, but also substantial individual de-
partures. Our unimodal constraint assumes a monotonic incline
in offending to the peak age followed by a monotonic decline,
which is consistent with observed empirical age–crime curves,
including the relatively flat individual curves of chronic of-
fending or low offending posited by Blumstein, Farrington, and
Moitra (1985). Thus, the model can treat the question of invari-
ance of the population age–crime curve as an empirical question.

We are not the first to take a functional data analytic point
of view toward longitudinal crime data. Ramsay and Silverman
(2002) carried out a functional principal component analysis on
a landmark dataset originally collected by Glueck and Glueck
(1950), and reanalyzed by Sampson and Laub (1993). Our
approach to analyzing life-course crime trajectories, although
functional, is fundamentally different from that of Ramsay and
Silverman (2002) as we do not rely on principal components.

Several authors have contributed to the statistical analysis of
random curves. Shi, Weiss, and Taylor (1996) were among the
first to introduce flexible semiparametric models for the analysis
of a sample of curves based on functional mixed-effects mod-
eling. In the analysis of sparsely observed functions, Rice and
Silverman (1991), and, more recently, Yao, Müller, and Wang
(2005) discussed nonparametric methods based on functional
principal component analysis.

Typically, functional data analysis deals with large amounts
of data sampled on a fine grid in time or space (Brumback and
Lindstrom 2004; Gervini and Gasser 2004). Information on
lifetime criminal behavior, however, often comes in the form
of many short or sparsely sampled time series (see Elliott,

Huizinga, and Ageton 1985; Harris et al. 2003). High individual
heterogeneity in combination with such data structures requires
models that capitalize on borrowing information across sub-
jects while maintaining a high level of flexibility to provide a
reasonable fit to individual observed trajectories.

Our method of hierarchical curve registration with covariates
allows us to develop a flexible set of nonparametric representa-
tions for individual curves of criminal offending. It deals with
data sparsity by combining information across curves in two
ways: (1) structurally, by representing individual curves as an
affine transformation of a natural crime curve constrained to be
unimodal; and (2) stochastically, by assuming conditional de-
pendence (exchangeability) between key parameters contribut-
ing to the likelihood function. As we model the crime trajectories
in a semiparametric fashion, we integrate the substantive claims
of Hirschi and Gottfredson (1983) with the existing toolkit
of functional data analysis methods and accommodate the
unimodality constraint for non-Gaussian data. Unlike previous
approaches to modeling crime trajectories, our approach explic-
itly incorporates criminological arguments that the population
age–crime curve is unimodal and that individual trajectories can
be described as departures from the common population curve.
We illustrate our approach by analyzing data on marijuana use.

1.1 Data

We consider marijuana use data from the Denver Youth Sur-
vey (DYS) (Esbensen and Huizinga 1990), a longitudinal study
of delinquency and drug use in high-risk neighborhoods in
Denver. Marijuana use is of interest not only to drug researchers
and life-course scholars but also to criminologists because it is
an illegal substance in the United States. The DYS collected
data from an accelerated longitudinal design covering the age
span from 7 to 25. The peak age of marijuana use is about age
20 (Office of National Drug Control Policy 2008). The survey
asked drug use questions starting from age 11.

The DYS identified high-risk neighborhoods via a cluster
analysis of census variables such as family structure, ethnic-
ity, socioeconomic status, housing, mobility, marital status, and
age composition (e.g., Esbensen and Huizinga 1990). High-
risk neighborhoods were then defined as the top third in terms
of high social disorganization and high official crime rates.
These neighborhoods represent the most disadvantaged areas
of Denver.

The investigators selected a sample of 20,300 households
from high-risk neighborhoods in Denver, and used a screening
questionnaire to identify five child and youth cohorts (i.e., 7, 9,
11, 13, or 15 years old in 1988). The overall procedure yielded a
sample of 1528 respondents [for details, see Matsueda, Kreager,
and Huizinga (2006), and Esbensen and Huizinga (1990)]. Of
these respondents, 1459 were aged 11 years or older for at least
one interviewed year and completed a youth survey that included
drug-use counts. Subjects were interviewed in their homes an-
nually from 1988 to 1992 and from 1995 to 1999 (10 waves).

We consider answers to the survey question: “In the past year,
how many times have you smoked marijuana?” Our goal is to
model individual trajectories of marijuana use over the interval
of 10–25 years of age, and to understand differences in these tra-
jectories by race/ethnicity and gender. We selected individuals
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Figure 1. Exploratory summaries. Panels (a, b): Histograms of mean and maximal use of marijuana . Panels (c, d): Histograms of age of first
and maximal marijuana use.

who had between 4 and 9 longitudinal observations on marijuana
use for each individual. The resulting dataset had a mean of 7.39
(SD = 1.37) observations per subject. Exploratory summaries
associated with variability in timing and frequency of marijuana
use are reported in Figure 1. In panels (a) and (b), we provide
histograms for mean and maximal marijuana use, respectively.
The frequency of marijuana use is highly volatile. Marijuana
smokers—those who reported smoking at least once during the
observation period—smoked marijuana 42.85 times per year on
average with SD = 133.33, with the maximum reported count
of yearly marijuana smoking of 999.1 One commonly reported
quantity of marijuana use over the last year is 365 times that
corresponds to the once-a-day frequency of smoking. Ages at
first use and at the maximal marijuana use vary substantially as
indicated by the histograms in panels (c) and (d) of Figure 1.
These summaries illustrate large individual variability in ampli-
tude (level) and phase (timing) among individual trajectories of
marijuana smoking.

The remainder of this article is organized as follows. In Sec-
tion 2, we introduce a hierarchical model for the semiparametric
analysis of longitudinal count data. We discuss Markov chain

1A few respondents reported using marijuana more than twice a day. For those
very few who reported using marijuana more than three times a day, their
answers were truncated to the maximum of 999.

Monte Carlo (MCMC) estimation and inference in Section 3
and analyze lifetime data on marijuana use from the DYS in
Section 4. We conclude with a discussion of our contributions
and possible model extensions in Section 5.

2. HIERACHICAL REGISTRATION

2.1 Poisson Warping Regression Model

In this section, we introduce a general formulation for
the functional representation of longitudinal crime data. Let
Yi = (Yi1, . . . , Yij , . . . , Yin)′ denote an observed vector of of-
fenses for individual i over a discrete sampling design t =
(t1, . . . , tj , . . . , tn). To simplify notation, we assume that a sam-
pling design t is common for all individuals, but the functional
model is flexible to accommodate different sampling times.
Technically, observed counts Yij denote the number of offenses
over a reasonable time interval τ , for example, a month or a
year, just before sampling times tj . The time interval τ is fixed
and the same for all observations in the sample. Let Xi denote a
p-dimensional vector of time-stable covariates for individual i.

We assume that individual trajectories of offending are real-
izations from a functional Poisson process. Thus, the observed
count at time tj for individual i is

Yij | λi(tj , Xi) ∼ Poisson{ λi(tj , Xi) }, (1)
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where E(Yij | Xi) = λi(tj , Xi). The sampling density of Yij is
given by

P (Yij = yij | λi(tj , Xi)) = e−λi (tj ,Xi )λi(tj , Xi)yij

yij !
.

Assume that the intensity function λi(tj , Xi) depends on the
covariate information Xi as follows:

λi(tj , Xi) = ai(Xi) S(tj , β) ◦ μi(tj ,φi ; Xi)

= ai(Xi) S{μi(tj ,φi ; Xi),β}, (2)

where ai(Xi) ≥ 0 is an individual-specific amplitude, S(tj ,β)
is a mean shape function, and μi(tj ,φi ; Xi) is an individual-
specific time-transformation function. Consequently, the mean
function S(tj ,β), evaluated over a subject-specific time scale
μi(tj ,φi ; Xi), defines individual-specific mean trajectory of of-
fending. Our notation indicates explicit dependence on Xi for
individual amplitude and time-transformation functions. We de-
fine this dependence in Sections 2.3 and 2.4, respectively, by
modeling the mean of ai and φi as a function of covariates Xi .

For the mean shape and time-transformation functions,
we assume that their functional forms belong to the Sobolev
space spanned by linear combinations of cubic B-spline basis
functions (De Boor 1978). Intuitively, this is a vector space
containing shapes of virtually arbitrary flexibility, provided it
originates from an adequate number of basis functions. See
also Peña (1997) for a discussion of B-spline optimality and
stability. When modeling the shape function S(t,β), we further
constrain the functional form to be unimodal.

The modeling framework introduced in Equations (1) and
(2) generalizes substantive arguments of Hirschi and Gottfred-
son (1983) about the age–crime curve. It starts by assuming a
common unimodal shape for the age–crime curve and reflects
individual differences in the expected intensity of criminal be-
havior ai(Xi) and deviations from the average timing of offenses
μi(tj ,φi ; Xi).

2.2 Mean Shape S(t,β) and Unimodal Smoothing

Let the mean shape function S(t,β) be a mapping S(t,β) :
T −→ R+, where T = [t1 − �, tn + �] is the observed sam-
pling interval [t1, tn] that is extended by a temporal misalign-
ment window � < ∞ (Telesca and Inoue 2008). Assume that
the functional form of the average shape S(t,β) is a linear B-
spline combination S(t,β) = SB(t)′β, where SB(t) is a set of
K basis functions of order 4 evaluated at time t and β is a p-
dimensional vector of spline coefficients. To ensure positivity
of S(t,β), it is sufficient to require positivity of the shape coeffi-
cients βj ≥ 0, j = 1, . . . , K . To ensure unimodality of S(t,β),
it is sufficient to require the first derivative ∂S(t,β)/∂t to ex-
hibit only one possible sign change (Schumaker 1981, theorem
4.76). We combine the unimodality and positivity requirements
via the following reparameterization of the shape coefficients β:

βk = ν∗2 − (νk − ν∗)2, k = 1, . . . , K, (3)

where the new coefficients ν = (ν1, . . . , νK )′ are nonde-
creasing, that is, 0 = ν1 ≤ · · · ≤ νK < 2ν∗, and ν∗ ≥ 0 is a

fixed modal pivot.2 We place a second-order shrinkage prior
distribution on ν. In particular, assuming ν0 = ν1 = 0, we
model the generic kth element of ν as

νk = 2νk−1 − νk−2 + εk, εk ∼ N
(
0, σ 2

β

)
. (4)

The variance parameter σ 2
β can then be interpreted as a

smoothing parameter shrinking the shape function toward a
piecewise linear trajectory.

2.3 Amplitude Parameters ai (Xi ) and Amplitude
Regression

The notion that individual criminal propensity is constant
across the life span but varies among individuals is common in
the criminology literature. Gottfredson and Hirschi (1990) in-
troduced the hypothetical concept of self-control that could ex-
plain this variation. The amplitude regression part of our model
allows us to test the relationship between individual criminal
propensity and observed covariates.

We model the dependence of individual-specific amplitude ai

on covariates Xi in a generalized linear fashion:

E(ai | Xi , ba) = exp{X′
iba}, i = 1, . . . , N, (5)

where ba is a p-dimensional vector of amplitude regression co-
efficients. To specify a prior distribution for ai with the mean
given by Equation (5), we exploit the Gamma-Poisson conju-
gacy and assume

(ai | ba, b0; Xi) ∼ G(b0, b0 exp{−X′
iba}). (6)

In this formulation, 1/
√

b0 represents the coefficient of varia-
tion.

The prior distribution of ai in Equation (6) has two appealing
properties. First, due to conjugacy, the conditional posterior
density of ai is

p(ai | Yi ,β,φi , ba, b0; Xi) ∝ a
{b0+

∑
j Yi (tj )−1}

i

× exp

⎧⎨
⎩−

⎛
⎝ b0

exp{X′
iba} +

∑
j

S{μi(tj ,φi),β}
⎞
⎠ ai

⎫⎬
⎭ , (7)

which corresponds to Gamma distribution with shape
parameter (b0 +∑

j Yi(tj )) and rate (b0 exp{−X′
iba} +∑

j S{μi(tj ,φi),β}). In addition, the marginal distribution of
observed offense counts Yij , integrating over ai , is negative bi-
nomial:

P (Yij = yij |β,φi , ba, b0; Xi)

=
∫ ∞

0
P (Yij = yij |β,φi , ai, ba, b0)p(ai |ba, b0)dai

= 
(yij + b0)

b0 yij !
(1 − Wij )b0 W

yij

ij , (8)

where

Wij =
(

exp{X′
iba}S{μi(tj ,φi),β}

exp{X′
iba}S{μi(tj ,φi),β} + b0

)yij

.

2We discuss unimodal smoothing in more detail in Section 2 of the online sup-
plementary materials. In our analysis, choosing ν∗ =

√
Ȳ provided a reasonable

reference scale on the magnitude of S(t, β), for the prior on ba to be reasonably
centered around 0.
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This form allows for natural modeling of overdispersion in the
marginal distribution of counts. Here, small values of b0 indicate
extra variability beyond that explained by the Poisson.

In the presence of amplitude parameters ai , scale identifiabil-
ity is often an issue. In Gaussian models, for example, Gervini
and Gasser (2004) and Brumback and Lindstrom (2004) im-
posed summation constraints of the kind

∑N
i ai = N . From a

Bayesian perspective, scale identification can be achieved by
modeling dependence between the ai at the population level
(see Telesca and Inoue 2008).

The amplitude part of the model is completed with priors for
the coefficient of variation and for the regression coefficients,
respectively,

b0 ∼ G(λa, λb), ba ∼ π (ba). (9)

The specific form for π (ba) is described in the next section, to
relate amplitude and phase effects.

2.4 Time-Transformation Functions μi (t,φ i ) and Phase
Regression

Criminologists specify multiple dynamic influences on tra-
jectories of offending. For example, changes in crime and drug
use over time are attributed to changes in peer groups, oppor-
tunities, school experiences, and neighborhood contexts. In our
model, we use individual time-transformation functions and a
phase shift to account for such dynamic individual-specific influ-
ences. In addition, we model the phase shift as a linear function
of time-stable covariates, gender, and race/ethnicity. This allows
us to test whether certain groups of individuals start their crimi-
nal careers on average earlier than other groups, controlling for
differences in amplitudes.

We allow time-transformation functions to map the original
time scale onto random image sets enclosed in an extended
sampling interval T = [t1 − �, tn + �], that is, μi(t,φi) :
[t1, tn] −→ T (Telesca and Inoue 2008). As before, [t1, tn] is
the observed time interval and � < ∞ is a temporal misalign-
ment window. We require subject-specific time-transformation
functions μi(t,φi) to be strictly monotone, ∂μi(t,φi)/∂t > 0
(Ramsay and Li 1998), to prevent time reversibility, and to define
a bijection between the original time scale t and the transformed
time scale μi(t,φi).

Let Sμ(t) denote a set of Q B-spline basis functions of or-
der 4, evaluated at time t. We define the subject-specific time-
transformation functions as linear combinations μi(t,φi) =
Sμ(t)′ φi for a given Q–dimensional vector of basis coeffi-
cients, φi = (φi1, . . . , φiQ)′. Imposing the ordering φi1 < · · · <

φiq < · · · < φiQ provides us with a sufficient condition for time-
transformation functions μi(t,φi) to be monotone (Brumback
and Lindstrom 2004). Additionally, imposing boundary con-
ditions (t1 − � ≤ φi1 ≤ t1 + �) and (tn − � ≤ φiQ ≤ tn + �)
allows for the time transformations μi(t,φi) to map the original
time scale t onto random intervals not bigger than [t1 − �, tn +
�] and not smaller than [t1 + �, tn − �]. This last requirement
rules out possible degeneracies, provided that the temporal mis-
alignment window is such that � << (tn − t1)/2.

Let ϒ be a Q-dimensional vector of identity coefficients so
that Sμ(t)ϒ ′ = t . Following the penalization approach intro-
duced by Lang and Brezger (2004), we assume that individual

time-transformation coefficients φi arise from a first-order ran-
dom walk shrinkage prior. Thus, for all i = 1, . . . , N ,

(φiq − γiq) = (φi(q−1) − γi(q−1)) + ηiq,

with

ηiq ∼ N
(
0, σ 2

φ

)
I {M}, q = 1, . . . , Q, (10)

where φi0 = ϒ0 = 0. Here,M defines a set of random cuts such
that ηiq − ηi(q−1) > ϒq−1 − ϒq, q = 1, . . . ,Q, where |ηi1| ≤
� and |ηiQ| ≤ �. The variance parameter σ 2

φ is a smoothing
parameter that controls the amount of shrinkage of individual
time-transformation functions toward the identity transforma-
tion μi(t,ϒ) = t .

We incorporate covariate effects by modeling the average
phase shift as a linear function of covariates Xi :

γiq = E[φiq |Xi , bφ] = ϒq + X′
ibφ, i = 1, . . . , N. (11)

Finally, we complete the model with priors over phase and
amplitude regression coefficients (b′

a, b′
φ)′ ∼ N (b0, �b), with

conditionally conjugate hyperprior �b ∼ IW (νb, cb I2p).

3. ESTIMATION AND INFERENCE

Our modeling approach can be essentially summarized as fol-
lows. Marijuana use in time is assumed to arise as the realization
of a functional Poisson process with mean structure (2). Depen-
dence on covariate information is included through amplitude
effects (5) and phase shifts (11).

3.1 Likelihood Function

Using the B-spline representations for the mean shape and
time-transformation functions described in Sections 2.2 and 2.4,
we rewrite the expected number of offenses for subject i at time
tj from Equation (2) as

λi(tj ,β, ai,φi) = ai SB(tj )′β ◦ Sμ(tj )′φi

= ai SB{Sμ(tj )′φi}′β. (12)

Here we omit the explicit dependence of ai and φi on covariates
X to simplify notation. The log-likelihood function of shape co-
efficients β, amplitude parameters a = (a1, . . . , aN )′, and time-
transformation coefficients � = (φ′

1, . . . ,φ
′
N )′ is then

�(β, a,� | Y)

∝
N∑

i=1

n∑
j=1

[ yij log{λi(tj ,β, ai,φi)} − λi(tj ,β, ai,φi]. (13)

The above formulation of the likelihood depends on the choice of
the number and locations of the spline knots for the mean shape
S(t,β) and time-transformation functions μi(t,φi). Because the
mean shape S(t,β) is estimated from multiple individual trajec-
tories, several authors in functional data analysis recommend
selecting a large number of knots. For example, placing knots
at every sampling time point can allow for a high level of shape
flexibility. The level of smoothness is then selected automat-
ically or ad hoc via likelihood or prior penalization schemes
(Eilers and Marx 1996; Lang and Brezger 2004). The shrinkage
prior as in Equation (4) automatically shrinks the fixed-effect
functions toward a linear regression. In our case of highly sparse
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longitudinal offense data, however, we observed some sensitiv-
ity to the choice of the number of basis functions. To select
the number of basis functions, we therefore recommend apply-
ing a model selection criterion based on the minimization of a
posterior predictive loss (Gelfand and Ghosh 1998).

Let Y o denote the observed counts and Y p denote the predicted
counts. Following Gelfand and Ghosh (1998), we obtain the
deviance version of the posterior predictive loss criteria for the
Poisson case as

Dk(m) =
∑
ij

{
hij − h

(
μ

p
ij

)}+
∑
ij

{
h
(
μ

p
ij

)+ k h
(
Y o

ij

)
k + 1

− h

(
μ

p
ij + k Y o

ij

k + 1

)}
, i = 1, . . . , N, j = 1, . . . , n,

(14)

where h(x) = (x + 1/2)log(x + 1/2) − x, hij = E{h(Y p
ij |

Y)}, and μ
p
ij = E{Y p

ij | Y}. Here, m denotes the number of basis
functions in the model to be evaluated.

Different considerations apply for the subject–specific
time-transformation functions. These maps carry structural
smoothness as they are constrained to be monotone. The strict
monotonicity requirement counterbalances the small number
of observations associated with each individual trajectory and
suggests parsimony in the choice of the number of knots.
Because the time scale is stochastic, the exact placement of
knots is less important in this case; thus, we equally space the
knots for the time-transformation functions.

In the following section, we describe an MCMC algorithm
for posterior simulation based on fixed numbers of spline basis
functions for the mean shape SB(·) and time-transformation
Sμ(·) functions.

3.2 Posterior Simulation via MCMC

For the Poisson warping regression model described in
Section 2, the full parameter set θ includes an N-dimensional
vector of individual-specific random amplitude coefficients
a = (a1, . . . , aN )′, an (N × Q) matrix of individual-specific
time-transformation coefficients � = (φ′

1, . . . ,φ
′
N )′, a p-

dimensional vector of population-level shape coefficients β,
and population-level regression and smoothing parameters ba ,
bφ , b0, σ 2

φ , and σ 2
β .

We seek inference about θ and functionals of θ through the
posterior probability p(θ | Y; X) ∝ p(Y | θ ; X)p(θ ; X), where
p(Y | θ ; X) is described by the log-likelihood in Equation (13)
and p(θ ; X) represents the joint prior distribution. Recall the de-
pendence on covariates for amplitude and time-transformation
parameters through their respective prior distributions [Equa-
tions (6) and (11)]. Because the posterior distribution is not
available in closed form, we base our inferences on an MCMC
simulation from the joint posterior distribution p(θ | Y; X) (for
a recent review, see Gamerman 1997). We use a Gibbs sam-
pler (Gelfand and Smith 1990) whenever conditional posterior
quantities are available in a standard distributional form. Other-
wise, we derive an efficient sampling scheme, combining Gibbs
steps with Metropolis–Hastings (MH) steps (Hastings 1970) in
a hybrid sampler (Tierney 1994).

Sampling Phase Regression Coefficients bφ and Smoothing
Parameters σ 2

φ and σ 2
β : The prior model induces likelihood

conjugacy in the conditional posterior distribution of the phase
regression coefficients bφ and the smoothing parameters σ 2

φ and
σ 2

β . For these quantities, it is therefore straightforward to devise
an efficient Gibbs sampler based on direct simulation from their
complete conditional distributions that we include in the online
supplement.

Sampling Time-Transformation Coefficients φ: Taking ad-
vantage of the fact that the time-transformation coeffi-
cients φ have compact support T = [t1 − �, tn + �], we
implement an MH sampler with appropriately scaled tran-
sition kernels q(φold,φnew). Given that φiq < φi(q+1) (∀ i =
1, . . . , N, q = 1, . . . , Q), we consider proposal densities of
the form q(φold

iq , φnew
iq ) = N (φold

iq , s2
iq )I {M}, where M is the

compact support defined in Equation (10) (Section 2.4). During
the MCMC simulation, for each set of individual-specific time-
transformation coefficients, we start from some value s2 for the
variance of the proposal density and recalibrate the individual
proposal variances s2

iq at burn-in to achieve an acceptance rate
between 35% and 65% (Roberts and Rosenthal 2001).

Sampling Amplitude Parameters a, ba, and b0: We use a
Gibbs sampler and simulate directly from the conditional pos-
terior distribution given in Equation (7) to update individual
amplitude parameters a = (a1, . . . , aN )′ one at a time.

The conditional posterior distributions for regression coeffi-
cients ba and for the coefficient of variation b0 are not available
in closed form. We implement MH scans with proposal distribu-
tions informed by the respective target densities. If �ba

defines
the inverse of the prior covariance matrix (i.e., the concentration
matrix) on amplitude regression coefficients ba , the conditional
posterior density of ba can be written as

log{p(ba | a, b0,�ba
)} = −1

2
b′

a�ba
ba

− b0

∑
i

{X′
iba + ai exp(−X′

iba)},

with gradient vector

gba
= −1

2
b′

a�ba
− b0

∑
i

{X′
i − aiX′

i exp(−Xi
′ba)},

and Hessian matrix

Hba
= −1

2
�ba

− b0

∑
i

{aiXiX′
i exp(−X′

iba)}.

Given gba
and Hba

, we approximate the conditional posterior

mode b̂a numerically via the Newton–Raphson method. Defin-
ing �∗

ba
= (Hba

| b̂a
)−1, we obtain the transition kernel on the

basis of the overrelaxed proposal q(bold
a , bnew

a ) = 2b̂a − bold
a +

MV t(0, τba
�∗

ba
, η). The parameters τba

and η can be used to
tune the MH acceptance ratio.

For the coefficient of variation b0, we use an MH step to sam-
ple from the conditional posterior density. We consider a Gamma
proposal with shape v0 and rate v0/b̂0; the parameter v0 can be
used to tune the MH acceptance ratio, while the conditional
moment estimator of b0 is defined as b̂0 = ∑

i

exp{2X′
iba}∑

(ai−exp{X′
iba})2 .

Sampling Parameters ν of Common Shape Function: Recall
that we reparameterized the common shape function S(t,β) with

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
2:

28
 1

8 
Ja

nu
ar

y 
20

13
 



Telesca et al.: Modeling Criminal Careers 1433

new nondecreasing coefficients ν from Equation (3). We update
ν one parameter at a time using an MH scan with transition
kernels based on conditional proposals q(νold

j , νnew
j |ν\j ), j =

1, . . . , K . Defining �ν = cov(ν)−1, the logarithm of the target
conditional posterior density is

log{p(νj | Y, ν\j , a,φ)} ∝ −1

2
ν ′�νν

+
∑
ij

[yij log{SB(μi(t, φi))
′β(ν)}

−SB (μi(t, φi))
′β(ν)}].

Given a fixed modal pivot ν∗, the conditional posterior support
of νj is [l(νj ), u(νj )], with l(νj ) = max(0; νj−1) and u(νj ) =
min(νj+1; 2ν∗), j = 2, . . . , K − 1. Furthermore, for j = K ,
l(νK ) = min(νK−1, ν

∗/2) and u(νK ) = ∞. We fix ν1 = 0, cor-
responding to the assumption of no marijuana use at time t1. We
consider independent Gaussian proposals with support defined
by (l(νj ), u(νj )) and recalibrate the scale of the transition kernel
at burn-in to achieve an acceptance rate between 35% and 65%.

3.3 Model Interpretation and Inference

Given baseline covariate information x = (x1, . . . , xp)′, the
mean function S{μ(t),β} is well defined for any t ∈ [t1, tn]. If
we focus on the expected intensity of criminal behavior, the
marginal expected count at time t can be written as

E{Y(t) | x} = exp{x′ba} S{(t + x′bφ),β}, (15)

allowing us to describe average trajectories of offending condi-
tional on covariate values.

Posterior predictions of individual trajectories can be ob-
tained conditioning on individual-specific amplitudes and time-
transformation functions:

E{Yi(t) | μ(t) = μi(t); xi} = a(xi)S{μi(t, φi ; xi),β},
t ∈ [t1, tn]. (16)

Such model-based individual predicted trajectories are of con-
siderable interest to criminologists for describing and explain-
ing the development of crime and deviance over the life course.
For example, Bushway, Sweeten, and Nieuwbeerta (2009) dis-
cussed and compared ways to identify “early-starters” and
“desisters” by examining individual predictions from other
longitudinal data analysis approaches. In contrast to other
methods, however, our model allows naturally for examining
marginal covariate effects on two key features of the age–crime
distribution—criminal propensity and the timing of criminal
careers—across all individuals in the sample.

Given MCMC draws from the posterior distribution of model
parameters θ and a fine grid of time points in T = [t1, tn], we
obtain pointwise summaries of curves given by Equations (15)
and (16) and pointwise 100(1 − α)% highest posterior density
(HPD) intervals using the method described by Chen and Shao
(1999).

We find it convenient to include an intercept term in the
model by letting the first column of the design matrix X to be
the column of 1s. Thus, if marginal effects of covariates on the
expected intensity of criminal behavior are of interest, one can
examine the marginal expected count at time t, conditional on

the identity time transformation for the natural age–crime curve:

E{Y(t) | μ(t) = t ; x} = exp{x′ba} S(t,β), t ∈ [t1, tn]. (17)

Given that x1 = 1 by convention, we rewrite the expectation in
(15) as

E{Y(t) | μ(t) = t ; x} = S(t,β) exp{ba1}
p∏

κ=2

exp{xκbaκ}.

The intensity of offending for the baseline combination of
covariates is then exp{ba1}, and a multiplicative effect on
intensity associated with a unit increase in covariate xκ is
exp{baκ}, κ = 2, . . . , p, all else being equal.

If the marginal effects of covariates on the expected timing
of criminal behavior are of interest, we can examine the mean
trajectory of offending over time t, substituting the identity trans-
formation for the amplitude:

E{Y(t) | a = 1; x} = S(t,β) ◦ (t + x′bφ). (18)

As before, given that x1 = 1, we rewrite (18) as

E{Y(t) | a = 1; x} = S(t,β) ◦
(

t + bφ1 +
p∑

κ=2

xkbφk

)
.

The mean age–crime trajectory for the baseline combination of
covariates is S(t + bφ1,β), and an additive phase effect associ-
ated with a unit increase in covariate xκ is bφκ, κ = 2, . . . , p, all
else being equal. These phase effects can be interpreted as shifts
in the timing of criminal careers. Thus, positive coefficients bφκ

indicate an earlier participation in crime on average.

4. CASE STUDY

We restrict our analysis to marijuana users who had at least
four, not necessarily consecutive, observations during the course
of the study.3 We define marijuana users as those who reported
smoking marijuana at least once. After removing 867 nonusers
and 22 marijuana users who had fewer than four observed time
points, we are left with a subset of 588 marijuana offenders
for analysis. Our inferences are based on 15,000 (thinned by
20) samples from the posterior distribution, after discarding a
conservative 50,000 iterations for burn-in. We assessed conver-
gence using the R package BOA (Bayesian Output Analysis;
Smith and Brian 2005).

Longitudinal observations of marijuana use are reported in
Figure 2(a). A few observations indicating marijuana smoking
more than 500 times per year have been cut off for ease of
visualization. In this figure, the solid black superimposed curve
is the overall smoothed mean. This summary does not resemble
any of the individual trajectories as it smears over the variability
in both timing and frequency of drug use.

We fit the model introduced in Section 2 using nine basis
functions (five interior knots) for the shape function S{t,β}, de-
fined on the extended time interval [t1 − �, tn + �]. This choice
was made to minimize the posterior predictive loss introduced

3The inclusion of observations with a shorter time series would not affect the
population estimates; however, posterior inference on subjects with fewer then
four records can be misleading due to weak identifiability of the subject-level
parameters.
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Figure 2. Drug use (marijuana). Panel (a): Yearly count for the use of marijuana for 588 subjects from the DYS. A solid black line depicts
the structural mean function. Panel (b): Aligned normalized trajectories. In black we report the overall functional convex average S(t,β). Panel
(c): Subject-specific posterior square root amplitude with associated 95% credible intervals. Panel (d): Subject-specific time scale, characterized
by the expected posterior time-transformation functions.

in (14) (Gelfand and Ghosh 1998). Furthermore, we consider
five basis functions (one interior knot) for the individual random
time transformations (see Figure 7). The misalignment window
� can be interpreted as the maximal size of a linear shift. A nat-
ural constraint for the size of � is given by the half width of the
time domain (tn − t1)/2, but more stringent values may be justi-

fied to avoid degeneracies in the time-transformation functions.
In our application, we choose a more conservative � = 1.5.

We place relatively diffuse G(0.1, rate = 10) priors on
the shape precision 1/σ 2

β and G(0.1, rate = 1) on the time-
transformation precision 1/σ 2

φ . The amplitude-phase prior
covariance �b is assigned a proper inverse Wishart prior
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Figure 3. Drug use (marijuana). Panel (a): Yearly count for the use of marijuana for three subjects exhibiting different timing of marijuana
use. Panel (b): Subject-specific time scale and associated 95% credible bands for the same subjects highlighted in panel (a).
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Telesca et al.: Modeling Criminal Careers 1435

Table 1. Amplitude and phase regression parameters [stars denote 95% credible interval (CI) that
do not cover the value zero]

Amplitude Phase (years)

Effect E(ba|Y ) 95% CI E(bφ |Y ) 95% CI

Baseline
White males 1.502 [1.240, 1.842] −0.741 [−1.169, −0.312]
Main effects
Female −0.334 [−0.501, −0.167]∗ 0.461 [0.213, 0.713]∗

Latino 0.154 [−0.107, 0.396] 0.420 [−0.017, 0.864]
African American 0.436 [0.175, 0.678]∗ −0.864 [−1.325, −0.385]∗

Other 0.394 [0.068, 0.715]∗ 0.172 [−0.383, 0.718]

IW(12, 100 I10). Finally, we complete the model specifying a
prior distribution for the coefficient of variation 1/

√
b0. As we

are considering a sample of users, we require b0 > 1 and define
a shifted Gamma prior G(λa = 1.1, λb = 0.1) on (b0 − 1). A
proper scale-informative prior on ba is used to define “soft”
identifiability constraints. The constraint b0 > 1 assures that
the prior mode of ai is greater than 0.

Figure 2(b), shows observed frequencies of drug use that
have been normalized by removing individual differences
in timing and in amplitude for all individuals. We obtained
these quantities by evaluating observed frequencies on the
inverse transformed time scale E(μ−1

i (t,φi) | Y), including
the phase shift, and dividing by the expected amplitude of
offense E(ai | Y). We superimpose normalized observed
counts with a smoothed functional convex average S(t,β). This
figure shows a typical pattern of marijuana use for an average
individual in our sample of marijuana smokers from the most
disadvantaged areas of Denver. The average individual starts
smoking marijuana during adolescence, continues with higher
intensity through college age, and then drops off marijuana
smoking after reaching 20. We observe a thin left tail of
occasional use before the peak years and a thicker right tail of
occasional use after the peak years. This pattern is generally
consistent with the claims of Hirschi and Gottfredson (1983)
and previous empirical research on the age–crime curve.

Figure 2(c), shows posterior median estimates of the individ-
ual amplitude parameters on the log scale, with corresponding
95% HPD credible intervals. We observe that variability in am-
plitude is an important source of variation in marijuana smoking
trajectories. Estimated log-amplitude parameters are from about
−4 to 4; the range of these estimates is much wider than the
width of a typical 95% credible interval. A log amplitude equal
to 0 corresponds approximately to a marijuana smoking trajec-
tory at the level of the overall functional convex mean [solid
black line in Figure 2(b)], with the estimated peak smoking
at about 33 times per year. In comparison, the average log
amplitude of 1.5 for white males corresponds to marijuana
smoking frequency that is exp(1.5) ≈ 4.5 times higher than the
structural mean, with the estimated peak at about 33 × 4.5 =
148 times per year.

Figure 2(d), shows the posterior expected estimates of indi-
vidual time-transformation functions, indicating that phase vari-
ability is another important source of variation in self-reported
marijuana use. Figure 3 illustrates how large differences in the
timing of marijuana use are reflected in individual-specific esti-
mates of time-transformation functions. Figure 3(a) highlights

individual trajectories for an early user (solid line), an average
user (dotted line), and a late user (dashed line). The correspond-
ing estimated time-transformation functions and associated 95%
credible bands are reported in Figure 3(b). We note that for the
average user, the time transformation is close to identity, that is,
the stochastic age of this person is similar to his or her physical
age. The late user’s stochastic age is kept frozen in time until his
or her physical age of about 18; this individual then goes through
the marijuana use period much faster than an average marijuana
smoker in our sample. The early user exhibits a similarly quick
period of marijuana smoking but at much earlier ages.

We use two approaches to investigate how overall intensity
and timing of drug use depends on race and gender. First, in
Table 1, we report posterior estimates of the amplitude and
phase regression parameters for the covariates in the model (in-
dicators for “female,” as well as “African American,” “Latino,”
and “other” case categories; we use “white male” as the baseline
category). We find that, overall in our sample, females use mari-
juana less frequently. For example, white females use marijuana
with an overall frequency that is about exp(−0.334) ≈ 0.72
to 1, when compared with their male counterparts. African
American males from disadvantaged areas of Denver, on the
other hand, seem to be using marijuana more frequently (1.55
to 1), when compared with their Caucasian counterparts. We
find the same significant differences in terms of timing of drug
use, with females starting to use marijuana on average about 5.5
months earlier when compared with white males and African
Americans starting to use marijuana on average about 10
months later.4 We did not estimate gender by race interactions
in our model as some subgroups only included a small (<25)
number of subjects. Second, in Figure 4, we report predicted
mean population curves of marijuana use for some race and
gender subgroups, obtained with Equation (15). The predicted
mean curves in Figure 4 complement our findings from Table 1,
illustrating differences in marijuana use by race and gender.

Examining individual data, we find that the estimated
expected crime trajectories fit the observed data well. In
Figure 5, we report expected frequencies of marijuana use for
a subsample of six subjects in the DYS chosen from the race
and gender categories to illustrate a representative range of
individuals’ amplitude and timing, obtained with Equation (16).
Black dots and solid lines indicate the observed and expected

4National survey data covering the years of our survey show that observed race
and gender differences in age at onset of marijuana use are small and change
signs across survey years (Gfroerer, Wu, and Penne 2002).
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Figure 4. Drug use (marijuana) mean population curves for some
race and gender categories.

counts of yearly marijuana use, respectively, and the dashed
lines represent pointwise 90% HPD prediction intervals. This
figure shows how our model formulation appears to provide a
remarkably close fit to individual profiles. Based on information
that is shared across subjects, this modeling framework allows
for individual-specific predictions for all time points within the
time interval T , including those points where the individual did
not have observations. Wider prediction bands illustrate higher
uncertainty in model predictions where no subject-specific data
are available. We carried out a formal assessment of the good-
ness of fit by comparing posterior predictive distributions with
corresponding summary statistics obtained empirically from
the data. In Figure 6(a)–(b), we report 90% posterior predictive
intervals for the individual yearly average and maximal mar-
ijuana smoking levels, as well as the corresponding summary
statistics. The model provides us with an excellent coverage
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Figure 5. Drug use (marijuana). Lifetime marijuana use profiles for six random subjects from different race and gender categories. For each
profile, the solid line represents the median posterior expected count and the dot-dashed lines represent the associated 90% pointwise prediction
intervals.
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Figure 6. Posterior predictive checks. Panels (a, b): (90%) Posterior predictive intervals versus summary statistics associated with average
marijuana use and maximal level of marijuana use. Panels (c, d): (90%) Posterior predictive intervals and data points corresponding to the age at
maximal marijuana use and the age of first use. The online version of this figure is in color.

for the observed average levels of marijuana use (94%) and
maximal frequencies of marijuana use (86%). Figure 6(c)–(d),
report 90% posterior predictive intervals for the individual age
at maximal marijuana use and for the age at first use, as well
as the corresponding observed ages. The posterior predictive
intervals follow the observed ages fairly well across the time
interval. Note that because the available data do not allow us to
obtain exact empirical estimates of the timing summaries, that
is, we could only say that the first marijuana smoking event
happened during a particular year but are unable to distinguish
when it happened exactly, examining numerical coverage
values for age-related summaries would not be appropriate.

In sum, our model provides two important features in model-
ing individual crime trajectories. First, it allows us to estimate
a common age–crime curve and fit individual trajectories as
departures from that mean curve. Second, it allows us to dis-
entangle variation in individual crime trajectories due to differ-
ences in level (amplitude) and timing (phase shift) of offenses.
This approach gives us new insights into modeling trajectories
of marijuana use. We find the shape of the estimated common
age–crime curve to be consistent with prior empirical research.
Like previous research, we find race and gender differences in
levels of marijuana smoking; unlike previous research, our find-
ing controls for the common age–crime curve and individual
variability in phase and amplitude. We find little support for the

claims that differences in the shape of the age–crime curve are
merely due to differences in rates of offending; for example,
Hirschi and Gottfredson (1983) argued that racial differences
in age at onset are merely due to racial differences in rates of
offending. In contrast, we find significant race and gender dif-
ferences in timing as indicated by the shift of marijuana use
trajectories while controlling for race and gender differences in
amplitude. Moreover, we do not detect any correlation, a poste-
riori, between individual amplitude and shift parameters, which
would be expected if differences in timing were merely due to
differences in amplitude.

5. DISCUSSION

In this article, we propose a generalized warping regression
method for the analysis of longitudinal crime data. We model
subject-specific expected patterns of offenses as arising from
a natural unimodal age–crime curve, evaluated over a random
individual-specific time-transformation scale, and with a ran-
dom individual-specific amplitude.

The analysis we present in this article has several limitations.
First, we chose to ignore the issue of heaping in the distribu-
tion of self-reported counts (Wang and Heitjan 2008). A more
realistic sampling model would take into account tendencies
to report smoking marijuana with a rounded frequency (most
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Figure 7. Unimodal versus unrestricted age–crime curve. Panel (a): Posterior predictive loss analysis comparing unimodal and unrestricted
models fitted specifying a varying number of interior knots. Panel (b): Conditional predictive ordinate analysis comparing unrestricted and
unimodal models with five interior knots. The online version of this figure is in color.

commonly, in our example, 365). Second, observations in the
dataset are right censored at age 25 and may be left censored
at the age when individuals enter the survey. Third, the flexible
specification of the mean function may be subject to criticism
of overparameterization. Although these issues are important
and deserve further attention, we believe that the hierarchical
Bayesian formulation, together with a flexible mean function,
in our model may already provide reasonable adjustments to
heaping biases and issues of censored data. We alleviate over-
parameterization concerns via structural modeling constraints,
shrinkage priors, and model selection via posterior predictive
checks.

The assumption of a unimodal population age–crime curve
plays a key role in the proposed analysis framework and pro-
vides us with robustness to alternative model specifications in-
volving varying flexibility of the population age–crime curve.
Furthermore, this structural restriction is associated with im-
proved predictive performance in this case study, when com-
pared with the models without the unimodality restriction. A
formal comparison of models fitted with and without the uni-
modality restriction is summarized in Figure 7. Figure 7(a) com-
pares the posterior predictive loss associated with the two mod-
els, evaluated for a varying number of spline basis knots. In
our implementation, the posterior predictive loss is based on
deviance calculations as defined in (14). Our derivation follows
the argument by Gelfand and Ghosh (1998), which describe the
posterior predictive loss as a penalized goodness-of-fit measure,
where the penalty term is associated with the magnitude of the
predictive variance. For all levels of complexity, the posterior
predictive loss associated with the unimodal curve model is
lower than that associated with the unrestricted mean model.
We obtain a detailed comparison of the two best models by cal-
culating the conditional predictive ordinate (CPO) p(yi | y(i))
for each individual in the sample (Pettit 1990; Geisser 1993).
This summary is comparable with the classical cross-validation
procedure. Here, we evaluate the predictive density of yi given
observations y(i), excluding counts from subject i. Figure 7(b),
shows that for a clear majority of subjects, predictions based
on the unimodal curve model outperform those obtained with-
out imposing structural constraints (i.e., have higher CPO

and smaller values of the transformed CPO plotted in Figure
7(b)). These results indicate that the unimodality assumption is
appropriate for modeling marijuana smoking trajectories. Fur-
ther empirical work is needed to confirm that the unimodality
assumption is appropriate for modeling behavioral trajectories
of drug use and crime in general. This assumption would indeed
be unnecessary if longer, less sparse time series of crime behav-
ior would be available. In which case, one may also question
the assumption of a unique population age–crime curve. We
however maintain that further modeling extensions may not be
warranted in the analysis of the DYS data explored in this article;
certainly not without substantial methodological developments.

Our method of Bayesian hierarchical unimodal curve regis-
tration presents a novel approach to modeling data on behav-
ioral trajectories that relies on a common underlying unimodal
mean curve and models individual trajectories by specifying
individual-specific deviations in phase and amplitude from the
mean curve. Popular current approaches to the analysis of longi-
tudinal behavioral trajectories most often rely on growth curve
models (Raudenbush and Chan 1993) and mixture trajectory
models (e.g., Nagin and Land 1993). Similar to our approach,
growth curve models also assume that all individuals share the
same mean trajectory of crime. However, the mean trajectory
is most commonly specified by a polynomial, and individual
deviations from the mean are characterized by individual ran-
dom intercept, slope, and quadratic terms. Group-based trajec-
tory models (Nagin and Land 1993; Roeder, Lynch, and Nagin
1999) aim to identify latent classes of crime trajectories, follow-
ing from a theoretical taxonomy developed by Moffitt (1993)
who described a population of offenders as a mixture of two
different groups, adolescence-limited and life-course-persistent
offenders. Growth curve mixture models of Muthén and Shed-
den (1999) also assume latent classes of trajectories but, in
addition, incorporate within-group polynomial random effects,
similar to the growth curve models. In contrast to our curve
registration approach, the existing approaches for longitudinal
analysis of behavioral outcomes can only implicitly account for
individual differences in timing, whether at the group or in-
dividual level. Because time-varying population estimates can
only be consistent if individual trajectories have been properly
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aligned to a standardized time scale (Brumback and Lindstrom
2004; Gervini and Gasser 2004; Telesca and Inoue 2008), sub-
stantive implications of failing to account for phase variability
in the data can be enormous. For example, without adjusting
for phase variability, estimates of individual quantities related
to timing, such as age at peak use, may not be reliable and find-
ings of multiple latent groups of individual trajectories may be
spurious. We believe that our approach has great potential to
provide researchers with new insights for modeling drug and
alcohol use, as well as other behavioral outcomes.

Our model formulation explicitly accounts for variability in
individual amplitude (level of offending) and timing, and in-
cludes covariate effects on these quantities. While the interpre-
tation of covariate effects on amplitude is straightforward, co-
variate effects on timing are incorporated in the shift parameter
and should be interpreted as such. Technically, the shift parame-
ter in our model reveals differences in timing that are conditional
on the individual curves being transformed to a common shape.
The observed summary statistics may not correspond to the dif-
ferences in timing/shift revealed by the model because observed
differences in timing may be confounded with observed differ-
ences in shape. In the marijuana example, however, race and
gender differences in timing found with our model were similar
in magnitude and significance to observed race and gender dif-
ferences in the age at maximal use. Thus, in a regression of age
at maximal use on race and gender, females were estimated to
reach the age at maximal use significantly earlier than males and
blacks significantly later than whites. If we were interested in
examining race and gender differences in other specific timing
features of the age–crime curve, such as age at onset and age
at desistance, the model would have to be extended to incor-
porate time-stable covariates as time-varying effects. While this
approach would induce higher flexibility in the modeling of lon-
gitudinal counts, the interpretation can be more challenging. On
the other hand, the appealing features of direct inference about
functional changes in the mean structure suggest that extending
our model to incorporate time-varying effects of covariates may
be worthwhile.

Another direction for a possible extension of our model relates
to the foregoing discussion about identifying distinct groups of
offending trajectories. Ramsay and Silverman (2002) carried out
a functional principal component analysis on arrest data in an
attempt to confirm or disprove the existence of distinct groups
of criminal offenders and found “no real evidence of strong
groups.” A group mixture reformulation of our model may al-
low for the classification of different features of the age–crime
curve, from intensity of offense to typical offending ages, and to
different shapes of the natural crime curve. Moreover, it would
relax the assumption of a single population age–crime curve
and attempt to fit models of multiple group trajectories, such as
Blumstein, Farrington, and Moitra (1985) and Moffitt (1993).

Another important question in criminology is to under-
stand how criminal behavior changes in association with time-
dependent covariate information. For example, do individual
departures from a natural crime curve correspond to changes in
life-course transitions, such as high school dropout, entrance
into college, parenthood, and entrance into the labor force?
To address these questions, one needs to incorporate time-
dependent covariates. This could be achieved, for example, by

integrating our warping regression model with the historical
functional linear model of Malfait and Ramsay (2003).

The above potential extensions to our model would capitalize
on the strengths of our general approach to modeling crime tra-
jectories. These strengths include (1) an individual-level model
that is both flexible and realistic, and allows for differences in
amplitude and timing of offenses; (2) a model that incorporates
criminologists’ specifications of an invariant age–crime curve
with individual departures based on individual differences in
crime propensity and life situations; and (3) an estimation pro-
cedure that borrows information between the population average
age–crime curve and individual departures from that curve.

SUPPLEMENTARY MATERIALS

Supplementary materials to this article include a Monte Carlo
study assessing coverage and estimation performance of the pro-
posed method as well as a more detailed discussion of unimodal
smoothing. Also included is a web appendix summarizing full
conditional distributions used in the posterior simulation.

[Received August 2008. Revised May 2012.]
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