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Abstract

Principal Component Analysis is generally used either to reduce the dimensionality of
data (e.g., for compression, or feature extraction), or to provide an explanation/interpretation
of the underlying structure of data. Both of these goals, however, become increasingly
problematic as the number of variables increases or exceeds the number of cases. In
such situations, it has been proposed that principal components should additionally be
constrained to be sparse (i.e., to have zero loadings on many/most of the variables). In
this talk, the construction of the Sparse Principal Component Analysis is reviewed, and
the method is applied to a number of example data sets from meteorology.
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Introduction

Principal Component Analysis (PCA): workhorse of multivariate statistics.

Two main functions:

1) Dimensionality reduction and compression

2) Data interpretation.

The idea:

Given p variables and n observations,

find a linear combination of variables with maximum variance,

subject to some constraints.

The weights are called loadings.

Equivalent to eigen decomposition of p× p Cov/Cor matrix.

Eigenvalues = variances of PC1, PC2, ...

Eigenvectors = loadings

Equivalent to SVD on n× p data matrix.

Lots of acronyms:

NLPCA: Nonlinear PCA (use nonlinear combinations of p variables)

RPCA: Rotated PCA (constrain loadings to be small or large)

SCoTLASS: Simplified Component Technique-LASSO (same)

ICA: Independent CA (maximize non-normality)

· · ·

Jolliffe and Cadima (2016): Principal Component Analysis: A review and

recent developments. Phil. Trans. R. Soc. A 374.

In Meteorology, Spatial fields pose specific problems (“Buell effect”)

Even harder to do inference.
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Regression

Multivariate Multiple Regression:

β̂ = arg minβ||Y −Xβ||2

X = n× (p + 1) Data matrix

Y = n× q matrix of Responses

β = (p + 1)× q matrix of coefficients

Ridge Regression:

β̂ = arg minβ||Y −Xβ||2 + λ
p∑
j=1

β2
j

The L2-norm penalty term shrinks some of the coefficients.

Tames overfitting.

Lasso Regression:

β̂ = arg minβ||Y −Xβ||2 + λ1
p∑
j=1
|βj|

The L1-norm penalty term shrinks some of the coefficients to zero.

I.e., variable selection.

But for p > n, at most n variables can be selected.

Elastic Net Regression:

β̂ = arg minβ||Y −Xβ||2 + λ
p∑
j=1

β2
j + λ1

p∑
j=1
|βj|

The L1-term gives sparsity

The L2-term allows for more than n selected variables.

Optimization algorithms: not covered here.
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PCA and SPCA

PCA (no flavors):

eigen( cov(X) )

PCA (Vanilla-flavored):

SVD (X)

PCA (as regression)

minA
n∑
i=1
||X − AATX||2 + λ

k∑
j=1
|αj|2

subject to ATA = 1k×k (i.e., orthonormality).

A = p× k = {α1, · · ·αk}

Essentially, PCA = Regression on X to X.

Intuitively, think of a neural-net with p inputs, 1 hidden node, and p outputs.

Sparse PCA (SPCA):

minA,B
n∑
i=1
||X − ABTX||2 + λ

k∑
j=1
||βj||2 +

k∑
j=1

λ1j|βj|1

B = p× k = {β1, · · · , βk}

Essentially, SPCA = Elastic Net Regression on X to X.
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In R

package: elasticnet

function: spca()

lambda = λ (above)

para = λ1j (above)

Instead of para, can specify number of nonzero loadings (nz, below).

spca() works on cov(X) or cor(X) - like eigen version of PCA

and on X itself - like SVD version of PCA.

Zou, H., Hastie, T. and Tibshirani, R. (2006). Sparse Principal Component

Analysis. Journal of Computational and Graphical Statistics, 15 265-286.

Example 1

Data from Statistical Methods in the Atmospheric Sciences, (2nd edition),

Daniel S. Wilks.

Daily precip (inches), and min. and max. temperature (F) at Ithaca and

Canandaigua, NY, Jan 1987

p = 6 variables, n = 31 cases

Note: in this example, sparsity is sensitive to choice of params.

That’s not a bad thing!

A good technique will have a few knobs.

Allows for data exploration.
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Example 1: Continued

PCA:
Variable PC1 PC2 PC3 PC4 PC5 PC6

ithaca precip -0.142 0.677 -0.063 -0.149 -0.219 0.668

ithaca maxT -0.475 -0.203 -0.557 0.093 0.587 0.265

ithaca minT -0.495 0.041 0.526 0.688 -0.020 0.050

canan precip -0.144 0.670 -0.245 0.096 0.164 -0.658

canan maxT -0.486 -0.220 -0.374 -0.060 -0.737 -0.171

canan minT -0.502 -0.021 0.458 -0.695 0.192 -0.135

SPCA:

nz = c(5,5,5,5,5,5) ; lambda = 10

Variable PC1 PC2 PC3 PC4 PC5 PC6

ithaca prcp 0.000 0.674 -0.010 0.162 -0.383 0.000

ithaca maxT -0.494 0.011 -0.775 0.123 -0.521 -0.171

ithaca minT -0.489 0.249 0.000 -0.231 0.000 -0.009

canan prcp 0.000 0.668 -0.148 0.000 -0.411 -0.944

canan maxT -0.512 0.000 -0.613 0.032 -0.619 -0.279

canan minT -0.505 0.193 -0.039 0.951 -0.171 -0.037

Note: SPCA is not same as thresholding the loadings

SPCA:

λ1j = (1, 1, 1, 1, 1, 1), λ = 0

Variable PC1 PC2 PC3 PC4 PC5 PC6

ithaca prcp 0.000 0.896 0 0 0 0

ithaca maxT -0.263 0.000 0 0 0 0

ithaca minT -0.317 0.000 0 0 0 0

canan prcp 0.000 0.445 0 0 0 0

canan maxT -0.731 0.000 0 0 0 0

canan minT -0.545 0.000 0 0 0 0
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Example 1: Continued

What’s the price of this sparsity?

Not much:

Figure: The proportion of variance explained by each of the 6 PCs for PCA

(black) and SPCA (red) for the last SPCA settings.
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Example 2

SST data; for details, see Machine Learning Methods in Environmental

Sciences; Neural Networks and Kernels, William W. Hsieh.

Disclaimer: My PCA results here may be wrong!

Just compare SPCA with PCA.

See Guangoh Jheong and Gyu-Ho Lim in

Parsimonious patterns in sea surface temperature of the tropical Pacific Ocean

(Unpublished, but available upon request from gyuholim@snu.ac.kr)

and

Parsimonious patterns of sea surface temperature in the tropical Pacific Ocean,

2017 AMS Poster.
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Example 2: Continued

Figure: PCA (left) and SPCA (right), of PC1 - PC4 (from top to bottom).
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Example 2: Continued

Not much is lost in terms of variance explained:

Note: In this example, results are insensitive to choice of params.

I recommend to standardize data, i.e., do spca on cor(X),

to get sense of what params do across different data sets.
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Example 3

500hPa geopotential height

Same disclaimer here.

Not much lost:
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Example 3: Continued

Figure: PCA (left) and SPCA (right), of PC1 - PC3 (from top to bottom).
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Example 3: Continued

Figure: In polar coordinates.

Interpretation?

13



Conclusion

SPCA appears promising

But when applied to spatial fields, the spatial structure may render the results

“obvious.”

It has been compared with other sparse PCA method (e.g., SCoTLASS)

but not on spatial fields.

It ought to be compared with RPCA as well.
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