
The effect of model parameters on the
spatial structure of forecast fields

Caren Marzban1,2, Robert Tardif3, Scott Sandgathe1,

Corinne Jones2, Xiaochuan Du2, Ning Li2,

Natalia Hryniw3, Nicholas C. Lederer4,

James D. Doyle5, Yi Jin6

1 Applied Physics Lab, University of Washington, Seattle, WA 98195
2 Dept of Statistics, University of Washington, Seattle, WA 98195
3 Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195
4 The Boeing Company, Applied Mathematics, Seattle, WA 98124-2207
5 Naval Research Laboratory, Monterey, CA 93943-5502

Abstract

In spatial verification techniques, it is often important to take into account the spatial
structure of forecasts and observations. As such, it is desirable to be able to affect the
spatial structure of forecasts. In this talk, it is shown that some model parameters have
coherent and significant effects which can, in principle, be employed to revise the spatial
structure of the forecasts. A variety of forecast quantities are examined from two NWP
models - COAMPS and WRF.
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Introduction

It is well-known that model parameters affect forecasts.

The question we ask here is not How?

But rather How should one go about answering the How?

I.e., this talk is not about results (must be treated cautiously),

But rather about methodology.

Bird’s-Eye View

WRF/ARW/SKEBS COAMPS

Version 3.7.0 4.2.2

25-km domain over CONUS 81-km domain over CONUS

003-120hr forecasts 24hr forecasts

prcp, t2m, t500hPa convective and stable precip

wind speed at 250hPa, and at 850hPa surface temp, water vapor

9 days (Dec ’14 - Mar ’15) 40 days (Feb - July ’09)

10 days apart 3 days apart

2-8 model params 11 model params

Fractional Factorial Designs (LSD and 2k−p) Latin Hypercube Sampling

Only a sample of the proposed devices are shown here.
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Model Parameters

COAMPS:
ID Name Description

1 cumulus1 Temp increment at the LCL for KF trigger

2 cumulus2 Cloud radius function

3 cumulus3 Fraction of precip fed back to grid scale

4 PBL1 Mixing length

5 PBL2 Surface flux perturbations

6 Cumulus4 Vertical velocity for trigger

7 Cumulus5 2nd method to perturb temp at the LCL for trigger

8 Micro1 Autoconversion factor

9 Micro2 Autoconversion factor

10 Micro3 Slope intercept parameter for rain

11 Micro4 Slope intercept parameter for snow

KF = Kain-Fritsch

PBL = Planetary Boundary Layer

LCL = Lifted Condensation Level

WRF:

Stochastic Kinetic Energy Backscatter Schemes (SKEBS)
ID Name Description

1 rexponent t Spectral slope for potential temperature perturbations

2 rexponent psi Spectral slope for streamfunction perturbations

3 kminforc Min forcing wave# in longitude for streamfunction pert

4 tot backscat psi Total backscattered dissipation rate for streamfunction

5 ztau t Decorrelation time for potential temperature perturbations

6 ztau psi Decorrelation time for streamfunction perturbations

7 tot backscat t Total backscattered dissipation rate for potential temp

8 lminforc Min forcing wave# in latitude for streamfunction pert
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Method

Statistical model for WRF sensitivity:

yi,j,k···m = µ + Dayi + X1j + X2k + · · · + εi,j,k···m,

yijk···lm = response (e.g., observed precip at a grid point)

on the ith Day,

for the jth, kth, · · ·, values of the WRF params X1, X2, · · ·
for the mth replication of the experiment.

X1j = True effect (mean response - µ) of WRF param X1

Etc.

Fixed effects model: all factors fixed (non-random), except ε ∼ N(0, σ2
ε ).

t-test of H0 : X1 = µ, etc., or

F-test of H0 : Xi = µ ∀i

Random effects model: all factors zero-mean random (except µ), with

σ2
Response = σ2

Day + σ2
X1 + σ2

X2 + · · · + σ2
ε .

F-test of H0 : σ2
i = 0

F-test of H0 : σ2
i = 0 ∀i

Intraclass correlation ρ =
σ2i

σ2
Response

Statistical model for COAMPS sensitivity:

Multivariate Multiple Regression (MMR)

# of responses = 9 = 3× 3.

Pillai’s trace test for if a model param has effect on any of the 9 responses.

MMR accounts for spatial correlations and multiple hypothesis testing.
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Method: Continued ...

For each day, for each model param → map of p-values (or ρ values).

More useful to “combine” maps across days into a single map, for each param.

How?

At each grid point, the daily p-values are subjected to a test of uniformity

(chi-squared and/or Kolmogorov-Smirnov).

No α (significance level)!

Even though MMR gives corrected p-values, it’s not necessary because we

don’t compare p-values with α.
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Sampling Designs

We have k factors, L levels each.

Full factorial design requires Lk runs.

Fractional Factorial Designs require fewer runs.

The price: aliasing (i.e., cannot be estimated separately).

Magic: We know special runs for estimating the main effects.

Graeco-Latin Square Design (GLSD) requires L2 runs.

Example of a 5-factor GLSD, with L = 5 levels each:
111 222 333 444 555
534 145 251 312 423
452 513 124 235 341
325 431 542 153 214
243 354 415 521 132

2k−p Designs (i.e., L = 2) require 2k−p runs.

28−4 = 16 runs involving 8 factors

214−10 = 16 runs involving 14 factors

215−11 = 16 runs involving 15 factors (instead of 215 = 32, 768 runs)

The 16 runs for a 28−4 design, involving 8 factor:
X1 X2 X3 X4 X5 X6 X7 X8
-1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1 1
-1 1 -1 -1 1 -1 1 1
1 1 -1 -1 1 1 -1 -1
-1 -1 1 -1 1 1 1 -1
1 -1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 1 -1 1
1 1 1 -1 -1 -1 1 -1
-1 -1 -1 1 1 1 -1 1
1 -1 -1 1 1 -1 1 -1
-1 1 -1 1 -1 1 1 -1
1 1 -1 1 -1 -1 -1 1
-1 -1 1 1 -1 -1 1 1
1 -1 1 1 -1 1 -1 -1
-1 1 1 1 1 -1 -1 -1
1 1 1 1 1 1 1 1

Latin Hypercube Sampling (LHS) requires specification of sample size.

Example, for COAMPS, we specify 99 parameter values for the 11 parameters.

LHS is “space filling.”
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Results

Fig1a. WRF sensitivity of precip, ρ values from random effects model, with

LSD.
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Fig1b. WRF sensitivity of precip, p-values from fixed effects model, with LSD.
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Fig2a. WRF sensitivity of precip, ρ values from 2k−p.
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Fig2b. WRF sensitivity of precip, p-values from 2k−p.
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Fig3a. WRF wind speed at 250m, ρ values from 2k−p.
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Fig3b. WRF wind speed at 250m, p-values from 2k−p.
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Fig4a. WRF temperature at 500m, ρ values from 2k−p.
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Fig4b. WRF temperature at 500m, p-values from 2k−p.
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a) b)

c) d)

Fig 5. COAMPS sensitivity (on y-axis) of the domain mean of a) convective

precipitation, b) stable precipitation, c) surface air temperature, and d) water

vapor, with respect to the 11 model parameters (on x-axis). The boxplots

display the variability of the sensitivity across the 40 days examined here.
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Fig6. COAMPS p-values for convective precip.
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Fig7. COAMPS p-values for stable precip.
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Fig8. COAMPS p-values for air temperature.
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Fig9. COAMPS p-values for water vapor.
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Conclusion

Sensitivity analysis on NWP forecasts with respect to model params is hard

because

- NWP models are generally too computationally intensive to run many times,

hence sampling methods play an important role.

- The data have temporal and spatial structure,

hence “careful” statistical modeling is warranted.

- There are ambiguities in terms of what is meant by sensitivity,

hence fixed-effects vs. random-effects models and more,

- The final devices are visual, e.g., boxplots & maps of p-values (a feature),

which introduce some subjectivity (a drawback).

- But all of these issues are addressable.

We are currently varying similar model parameters in COAMPS and in WRF.
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