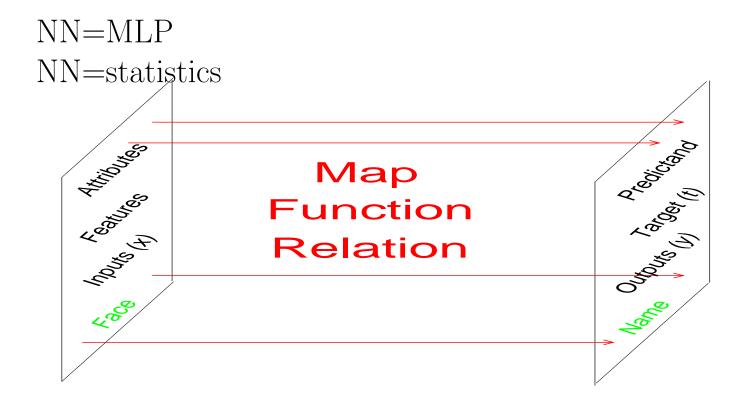
REGRESSION

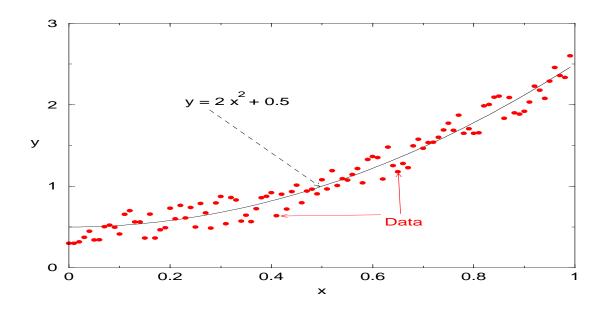
Caren Marzban http://www.nhn.ou.edu/~marzban

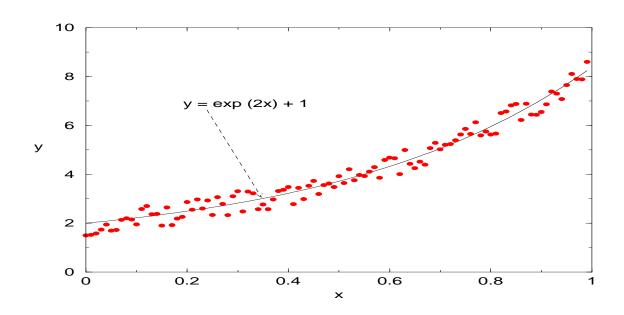
Generalities



Talk 1: Regression.

Continuous target (e.g. temperature ...)





Linear vs. Nonlinear

Note:

- 0) Regression is about estimating parameters from data.
- 1) Linear refers to parameters, not x or y:

$$y = \alpha x + \beta$$

2) Some nonlinears are intrinsically linear:

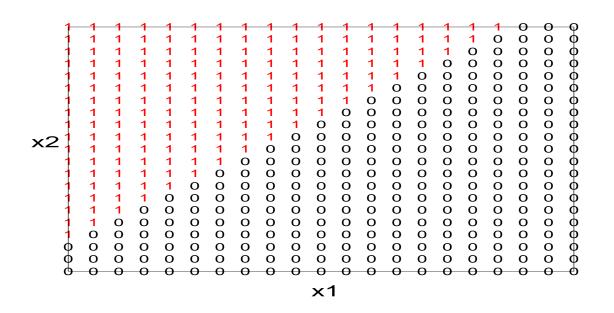
$$y = \exp^{\alpha x} + 1 \rightarrow \log(y - 1) = \alpha x$$
.

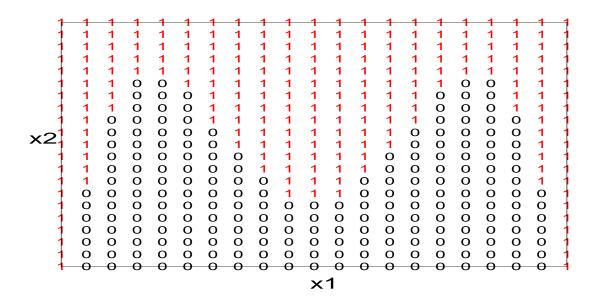
3) Some are not:

$$y = \alpha \exp^{\alpha x}$$
.

Talk 2: Classification (Discrimination).

Categorical target (e.g. class=0/1 ...) Linear and Nonlinear decision boundary.





(Logistic regression = classification!)

Linear Regression

Given data, e.g.,

$$(x_i, t_i), i = 1, 2, 3, ..., N$$

and a model, e.g., $y(x, \omega) = \omega x + \theta$,

$$t_i = \omega x_i + \theta + \epsilon_i$$

how do we estimate the parameters, ω , θ ?

Need one more thing, e.g., mean square error (MSE),

$$E(\omega) = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i^2 = \frac{1}{N} \sum_{i=1}^{N} [y(x_i, \omega) - t_i]^2.$$

$$\frac{\partial E}{\partial \theta} = 0 = \frac{\partial E}{\partial \omega}$$
(exercise)
$$\omega = \frac{\langle xt \rangle - \langle x \rangle \langle t \rangle}{\langle xx \rangle - \langle x \rangle \langle x \rangle}$$

where

$$< xt > = \frac{1}{N} \sum_{i=1}^{N} x_i t_i$$
 etc.

This ω is said to be the Ordinary Least Squares (OLS) estimate.

NN

$$y(x, \omega, H) = g \left(\sum_{i=1}^{H} \omega_i \ f(\sum_{j=1}^{N_{in}} \omega_{ij} x_j - \theta_j) - \omega \right)$$

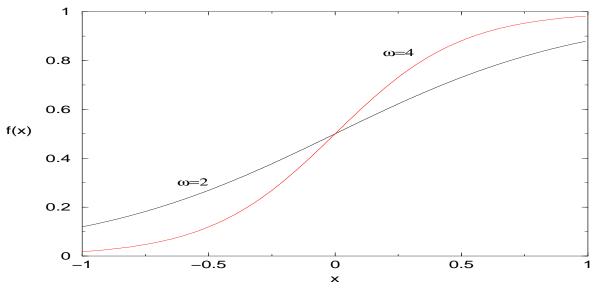
H = # hdn f(x) = sigmoid g(x) = sigmoid/linear

Recall ...

Nonlinearity \rightarrow overfitting \rightarrow poor prediction.

H and $|\omega| \rightarrow$ nonlinearity.

 $H = \text{large}, \ \omega = \text{small} \leftrightarrow \text{NN} = \text{linear} \leftrightarrow \text{underfit}$ $H = \text{small}, \ \omega = \text{large} \leftrightarrow \text{NN} = \text{nonlinear} \leftrightarrow \text{overfit}$



Logistic function $f(x) = \frac{1}{1+e^{-\omega x}}$ for $\omega = 2, 4$.

Question: $\omega = ?$ (training) H = ? (architecture)

$$\omega = ?$$

$$P(\omega|D) \sim P(D|\omega) \times P(\omega)$$

$$P(\omega|D) \sim e^{-E_D(\omega)} \times e^{-E_W(\omega)}$$

$$\sim e^{-[E_D(\omega) + E_W(\omega)]} \equiv e^{-E(\omega)}$$

Then, $\max P(\omega|D) \iff \min E(\omega)$. Most probable ω , given data, minimizes $E(\omega)$. Recall MSE.

Specifically, if

$$P(D|\omega) \sim e^{-[y(\omega)-t]^2}$$
 (gaussian data)
 $P(\omega) \sim e^{-\omega^2}$ (gaussian weights)

then

$$E(\omega) = \Sigma [y(\omega) - t]^2 + \Sigma \omega^2 \sim \text{MSE} + \text{Weight-decay}$$

Even in NNs the choice E = MSE assumes normality. Pick the right E.

Be skeptical of "assumption-free" claims.

Weight-decay caps ω (see $H=\text{small},\omega=\text{large}$, above). Highly recommended.

$$\omega = ?$$
 (Continued)

 $E(\omega)$ = nonlinear in $\omega \to$ Iterative method.

Dumb:

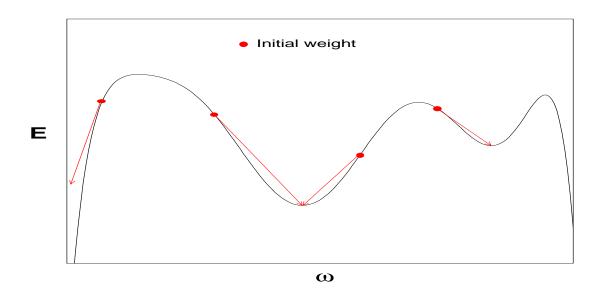
Go thru all possible ω 's, Calculate E for each ω , Locate minimum of E, Select corresponding ω .

Good News:

Gradient decent, BP, conjugate gradient, simulated annealing, genetic algorithm,

Bad news: local minima.

Good news: doesn't matter.



Different $\omega_i \to \text{different } \omega_f$, with different/equal $E(\omega_f)$.

$$H = ?$$

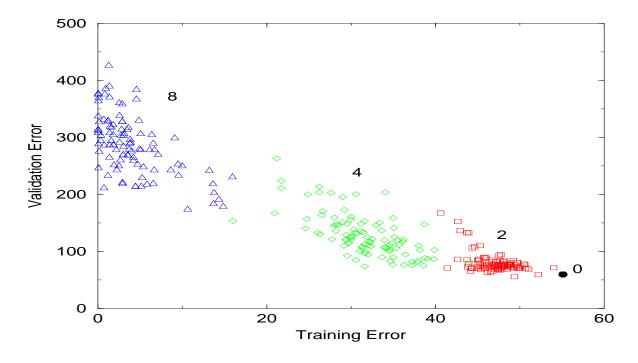
Cross-validation, etc. Bootstrapping.

$$\begin{array}{ll} \text{Data} = \text{trn}_1 \oplus \text{vld}_1 & \text{Trial 1} \\ \text{Data} = \text{trn}_2 \oplus \text{vld}_2 & \text{Trial 2} \\ \dots & \dots & \dots \end{array}$$

Theory suggests the 2/3 rule: $N_{trn} = 2N_{vld}$.

Sometimes need a third set - the test set.

Local minima are intertwined with H.



Training and validation errors at 100 local minima for NNs with H=0,2,4,8. (tv-diagram)

Different initial ω 's (seed) and Bootstrap (trial) (t,v) = (training error, validation error)

Н	Seed	Bootstrap Trial		
		1	2	•••
	1	(t,v)	(t,v)	•••
2	2	(t,v)	(t,v)	
	• • •	(t,v)	(t,v)	•••
	1	(t,v)	(t,v)	
4	2	(t,v)	(t,v)	
	•••	(t,v)	(t,v)	
8	1	(t,v)	(t,v)	
	2	(t,v)	(t,v)	
	• • •	(t,v)	(t,v)	
	• • •			
	• • •	tv-diagram	tv-diagram	
			\	
		H_1	H_2	$\longrightarrow H_{ ext{optimal}}$

We already know

 $H = \text{too small} \rightarrow \text{underfit trn set}$

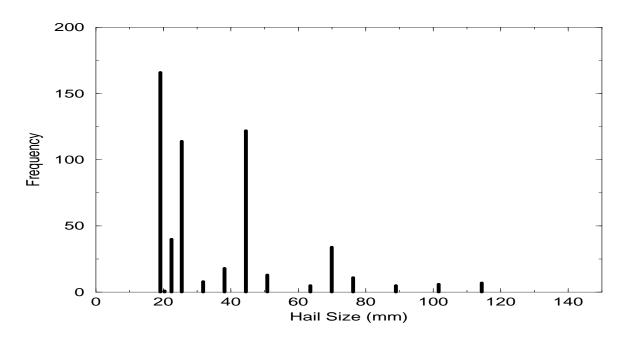
 $H = \text{too large} \rightarrow \text{overfit trn set}$

But common mistake

 $H = H_1 \rightarrow \text{overfit vld}_1$

One vld error = biased measure of performance

Practical Application - Hail Size



The distribution of hail-size. Note the peaks.

$$N_{in} = 9, N_{out} = 1 = \text{hail size}, N = 550$$

Preprocess:

Examine distribution (histogram) of inputs/output.

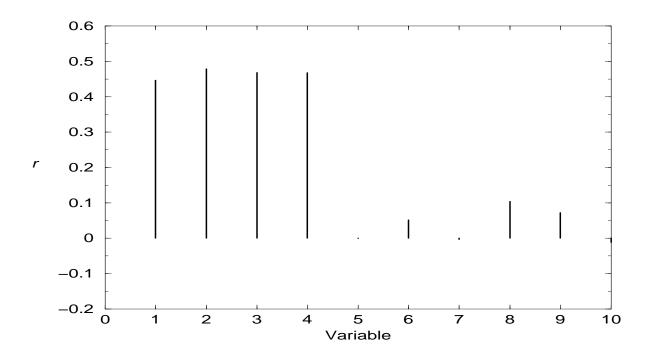
Eliminate outliers from trn set.

Exclude collinear inputs $(15 \rightarrow 9)$.

Transform inputs and target to z-scores:

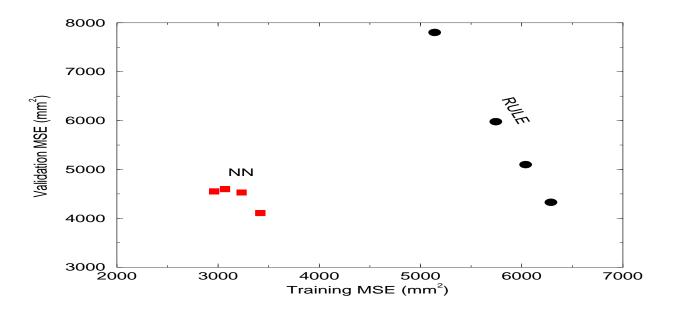
$$z = (x - \mu)/\sigma$$
.

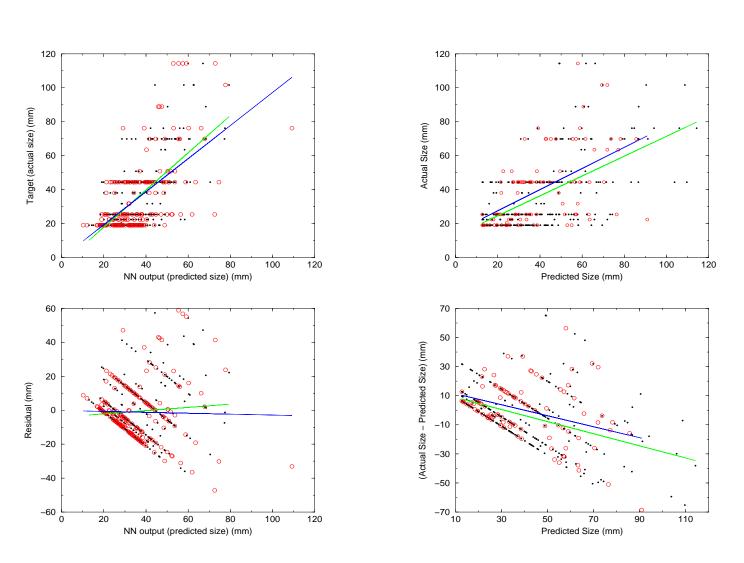
Choose E (=MSE, affected by outliers). Note: post-check normality of residuals $(t_i - y(x_i))$.

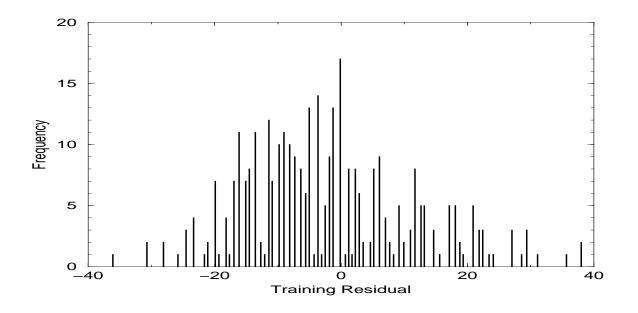


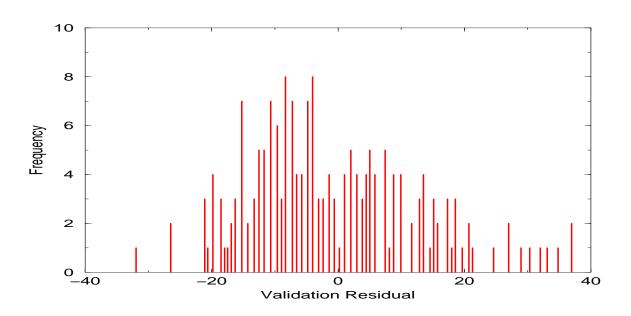
Look at r, but do not select inputs based on r. More ...

Performance









Discussion

- The NN outperforms "Rule".
- Having said that, avoid model comparison!
- Use graphical (rather than scalar) means of assessing performance (scatterplots, residual plots, etc.)
- The linear correlation coefficient of the scatterplot, r, is a good scalar measure of performance. r^2 is the percentage of total variance explained. $r \sim 1$ is good.
- Any nonlinear pattern in residual plots suggests that the NN has learned the wrong function.
- The r of the residual plots is a good scalar measure of performance. $r \sim 1$ is good.
- \exists many corrections to these r's accounting for non-linearity, no. of weights, etc.
- Don't diagnose the weights.
- "Curse of dimensionality".

Single Lesson

NNs do statistics. So, start from linear regression.