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Abstract 

 

Stochastic Kinetic Energy Backscatter Schemes (SKEBS) are introduced in numerical 1 

weather forecast models to represent uncertainties related to unresolved subgrid-scale 2 

processes.  These schemes are formulated using a set of parameters that must be 3 

determined using physical knowledge and/or to obtain a desired outcome.  Here, a 4 

methodology is developed for assessing the effect of four factors on spatial features of 5 

forecasts simulated by the SKEBS-enabled Weather Research and Forecasting (WRF) 6 

model. The four factors include two physically motivated SKEBS parameters 7 

(determining amplitude of perturbations applied to streamfunction and potential 8 

temperature tendencies), a purely stochastic element (a seed used in generating random 9 

perturbations), and a factor reflecting daily variability.  A simple threshold-based 10 

approach for identifying coherent objects within forecast fields is employed, and the 11 

effect of the four factors on object features (e.g., number, size, and intensity) is assessed.  12 

Four object types are examined: upper-air jet streaks, low-level jets, precipitation areas, 13 

and frontal boundaries. The proposed method consists of a set of standard techniques in 14 

experimental design, based on the analysis of variance, tailored to sensitivity analysis. 15 

More specifically, a Latin Square Design is employed to reduce the number of model 16 

simulations necessary for performing the sensitivity analysis. Fixed effects and random 17 

effects models are employed to assess the main effects and the percentage of the total 18 

variability explained by the four factors. It is found that the two SKEBS parameters do 19 

not have an appreciable and/or statistically significant effect on any of the examined 20 

object features.   21 

Keywords: Sensitivity analysis, statistical models, parametrization, NWP, analysis of 22 

variance. 23 

 24 

1. Introduction 25 

 26 

Stochastic Kinetic Energy Backscatter Schemes (SKEBS) are introduced in numerical 27 

weather forecast models to enhance their skill in the production of probabilistic forecasts.  28 

First introduced in Large Eddy Simulation models (e.g., Leith 1990; Mason and Thomson 29 

1994), SKEBS are used to represent energetic contributions to flows from unresolved 30 

physical processes through stochastic perturbations.  For atmospheric flows, these 31 

perturbations are added to model tendencies resulting in better calibrated forecast 32 
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ensembles (i.e., better match between mean errors and forecast uncertainties as 33 

represented by the variance in the ensemble).  Such schemes are formulated, as with any 34 

other parameterization scheme, using a number of parameters that must be determined 35 

based on physical knowledge and intuition, or tuned to obtain a desired outcome such as 36 

increasing the variance in ensemble forecast members by a given amount. As such, it is of 37 

interest to understand what effect the SKEBS parameter values have on the evolution of 38 

simulated atmospheric states, especially if a specific effect is desired. For example, if 39 

increased ensemble variance is the end goal, then it is useful to know which parameters to 40 

vary to that end.  Or, if one is performing object-oriented forecast verification (e.g., 41 

Gilleland et al., 2009; Marzban et al., 2009), then it is important to know how features of 42 

the objects are affected by model parameters. All of these issues can be examined under 43 

the umbrella of sensitivity analysis. 44 

  45 

It is important to distinguish two distinct categories of Sensitivity Analysis (SA). In one 46 

category SA is done primarily for the purpose of model tuning and/or data assimilation, 47 

e.g., Ancell, Hakim (2007), Järvinen et al., (2012), Laine et al., (2012), and Ollinaho et 48 

al., (2014).  In this category the SA is only a component of a complex optimization 49 

problem where one seeks specific values of parameters (or initial conditions, etc.) that 50 

optimize some quantity gauging the agreement between forecasts and observations. 51 

Another way in which observations play a central role in this category of works is through 52 

data assimilation.  By contrast, in the second category, SA does not involve any 53 

optimization or data assimilation (Alpert, 1993; Aires et al., 2013;  Marzban, 2013; 54 

Marzban et al., 2014; Marzban et al. 2018a; Marzban et al. 2018b; Yang et al., 2014; 55 

Dasari, Salgado, 2015; Smith, et al., 2015); there the main purpose of SA is to assess the 56 

effect of the parameters on the forecasts. The main goal is not to optimize forecasts but 57 

rather gain knowledge on the relationship between model parameters and forecasts. This 58 

knowledge may, in turn, be used for improving forecasts, or it may shed light on the 59 

underlying physics of the phenomenon under study. There are (at least) two reasons that 60 

render this latter approach to SA nontrivial: 1) The effect, on forecasts, of a given 61 

parameter cannot be assessed independently of other parameters because the underlying 62 

physics is inherently multivariate, and 2) natural variability must be taken into account in 63 

order to establish the statistical significance of the results. Properly attending to these 64 

issues is a complicated task that has led to a large body of literature on this flavor of SA 65 

(Alpert 1993; Sobol', 1993; Oakley, O'Hagan, 2004; Fasso, 2006; Saltelli et al., 2010; 66 

Zhao, Tiede, 2011;  Aires et al., 2013; Marzban, 2013; Marzban et al., 2014; Marzban et 67 

al. 2018a; Marzban et al. 2018b). The present work falls into the latter category. 68 

 69 

The approach adopted here consists of assessing the sensitivity of object features of 70 

meteorological interest. Four object types are considered: upper-air jet streaks, low level 71 

jets, precipitation areas, and frontal boundaries (i.e., baroclinic zones). Because the 72 

SKEBS parameters affect the amount of energy that is injected into the flow, one expects 73 

that large-scale features that rely on energetic growth (such as growing baroclinic modes) 74 

would be affected by different parameter values.  75 

 76 
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Here the SKEBS in the Weather Research and Forecasting (WRF) model (Skamarock, 77 

Klemp, 2008) is used. This SKEBS implementation introduces stochastic perturbations to 78 

the simulated tendencies of potential temperature and non-divergent wind, which are 79 

controlled through several user-specified parameters. Some of the parameters are 80 

deterministic in nature, such as those used to control the amplitude of the perturbations, 81 

which represent the total amount of backscattered energy in potential temperature and 82 

non-divergent wind.  However, since the perturbations are generated using an 83 

Autoregressive process, there is also an element of pure randomness, hereafter referred to 84 

as the purely stochastic component of SKEBS. This component is controlled by a seed 85 

parameter that affects the random number generation in SKEBS.  The reader is referred to 86 

Berner et al. (2011) for more details on this SKEBS implementation. Here, the effect of 87 

both types of parameters are evaluated and contrasted using WRF forecasts generated up 88 

to 120 hours.  There exist many more parameters in SKEBS whose impact on features of 89 

objects is worthy of consideration. Here, the analysis is restricted to only two model 90 

parameters in order to simplify the demonstration of the methodology. (In a work to 91 

presented separately, as many as eight model parameters are being examined by the 92 

authors). 93 

 94 

Serving as the central piece in this evaluation are the four aforementioned object types   95 

identified within gridded forecast fields. Section 4 describes a simple threshold-based 96 

method for identifying the objects.  In addition to the number of identified objects, 97 

various quantities characterizing each object are recorded. For this study, these quantities 98 

serve as the response variable in linear models, and methods of experimental design 99 

provide a setting wherein the effect of several factors on these responses can be 100 

quantified.  101 

 102 

Two of the factors are key SKEBS parameters (the amplitude of perturbations to 103 

rotational wind and potential temperature), and a third factor is the replication of SKEBS 104 

itself (i.e., the seed used to generate sequences of random perturbations in SKEBS); this 105 

factor represents the purely stochastic component of SKEBS.  The fourth factor 106 

represents the effect of daily variability.  The third factor can be viewed as generating an 107 

ensemble, and the fourth factor is motivated by the expectation that forecasts are sensitive 108 

to initial conditions. The effect of these four factors is estimated for forecast hours 0-120.  109 

 110 

As further explained in Section 2, the design of the experiment involves nine days, 41 111 

forecasts at 3hr intervals (between 0 and 120 hours), nine values of each of the two 112 

SKEBS parameters, and six SKEBS replications, which in a full factorial design leads to 113 

a large number of experiments (or “ensemble members”); to reduce the number of 114 

experiments, a special type of a fractional factorial design (called a Latin Square Design) 115 

is used.  116 

 117 

Experiments of this type are often called computer experiments because the resulting data 118 

are not the result of a real experiment in any sense of the word (Sacks et al., 1989; Welch 119 

et al., 1992; Santner, et al., 2003; Fang, et al., 2006).  The defining characteristic of 120 

computer experiments is that the experimental error is zero, because re-running the 121 
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computer model (here WRF/SKEBS) leads to the same set of outcomes. Without an 122 

estimate of experimental error it is impossible to perform any of the statistical tests 123 

designed to assess statistical significance (Santner et al.,  2003; Fang et al., 2006). 124 

However, as long as one is interested in main effects only (i.e., no higher-order 125 

interactions), then standard methods of experimental design can be used for assessing 126 

statistical significance, because all of the contributions to variance from higher-order 127 

interactions can act as a proxy for experimental error (Montgomery, 2009).   128 

 129 

2. Experimental Design: A Brief Introduction 130 

 131 

This study aims to determine how certain spatial features of forecasts are affected by four 132 

factors, including two model parameters: the amplitude of perturbations to 1) rotational 133 

wind, and 2) potential temperature, denoted Par1 and Par2, respectively.  Additionally, 134 

another factor is also examined – one that measures how the effects vary across (here, 9) 135 

days; it is denoted Day.   One  important question is: How does the effect of the 136 

deterministic parameters (Par1 and Par2) compare with the effect of the purely stochastic 137 

component of SKEBS?  Therefore, in addition to the three factors Day, Par1, and Par2, a 138 

fourth factor - denoted Rep - is introduced to measure the effect of replicating the 139 

experiment. Finally, it is useful to examine how all these effects vary with forecast (valid) 140 

time, denoted Fhour (here, varying from 0 to 120 hours).  141 

 142 

In the field of experimental design (Montgomery, 2009), linear models are often 143 

employed to estimate the effect of various factors on the response.  One simple model is 144 

  145 
y

ijkl
=µ+Day

i
+Par1

j
+Par2

k
+Rep

l
+ε

ijkl ,   (1) 146 

 147 

where the response yijkl denotes a measurement of some quantity of interest (e.g., the 148 

number of jet streaks) on the i
th

 Day, for the j
th

 and k
th

 values of Par1 and Par2, 149 

respectively, and for the l
th

 replication of the experiment.  The factor Fhour is not 150 

included in the model, because the model is developed at each value of Fhour. The terms 151 

appearing on the right side of Eq. (1) are all parameters (not to be confused with SKEBS 152 

parameters) to be estimated from data on the response y and the factors. The ε term is a 153 

random variable whose variance σε
2
 is another quantity that must be estimated from data, 154 

not only for assessing goodness-of-fit, but also for performing statistical tests. It can be 155 

shown (Montgomery, 2009) that the least-squares estimates of these parameters generally 156 

involve sample means of the response, or the difference between two sample means. For 157 

example, the least-squares estimate of the µ parameter is the sample mean y.... , also called 158 

the grand mean. The parameter Day1 is estimated by the difference (y1... -  y....) . In all of 159 

these expressions a “dot” refers to a sample mean over the corresponding index. The 160 

other components - the Day factor, and the other factors in the model - are all estimated 161 

through similar difference between sample means. Given that the estimates of the factors 162 

are differences from the grand mean, these estimates are also called main effects. The 163 

machinery of experimental design aims to perform statistical/hypothesis tests of whether 164 

the true/population main effects are zero; (see next paragraph for another measure of a 165 

factor's effect.) The model in Eq. (1) is strictly linear, but it is possible to introduce 166 
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nonlinear terms. Such terms generally appear as terms with multiple indices, and they are 167 

called interaction effects. For example, a term like Xij (called a 2-way interaction) 168 

measures how the effect of Par1 on response varies across days.   169 

 170 

Although tests of main effects are performed for the problem at hand, there exists an 171 

alternative approach which is also appropriate. Strictly speaking, the main effects 172 

discussed above are estimates of fixed, population parameters, and for this reason they are 173 

called fixed effects. Any conclusions based on a fixed effects model are specific only to 174 

the particular values assigned to the various factors.  However, one may choose to view 175 

these particular values as a random sample taken from a larger space of parameter values, 176 

in which case it makes no sense to speak of the main effect of a factor, because any 177 

notion of an effect is itself a random variable. Effects of this type are called random 178 

effects, and any conclusions based on a random effects model pertain to the population of 179 

all possible values that the factors may take, not the specific values appearing in the 180 

sample only.  In such models, the main aim is not to test whether or not an effect is zero, 181 

but rather to test whether or not any portion of the variability in the response can be 182 

explained by each of the factors in the model.  Specifically, for random effects models 183 

one writes  184 

 185 

σ Response

2
=σ Day

2
+σ Par1

2
+σPar2

2
+σ Rep

2
+σ ε

2

,    (2) 186 

and the goal is to estimate and then test whether any of the variance components on the 187 

right hand side of Eq. (2) are zero.   188 

 189 

To clarify the difference between a fixed effects model and a random effects model, 190 

suppose the Day factor takes d values (i.e., the number of days in the study). Treating the 191 

Day factor as a fixed factor would allow one to test whether there is a difference between 192 

the sample means of the response across the d days. A significant result would then 193 

suggest that the mean response varies across the specific d days, i.e., the Day factor has an 194 

effect on the response.  However, one may choose to consider the d days in the study as a 195 

random sample taken from the population of all days, in which case it is more appropriate 196 

to treat the Day factor as a random factor. Then, one can test the null hypothesis  σ
2

Day = 0 197 

which constitutes a test of whether a nonzero portion of the total variability in the 198 

response σ
2

Response
 
can be accounted for by daily variability.  A significant result would 199 

suggest that the mean response varies across all days (not just the d days appearing in the 200 

data).  Similarly, one can treat Rep, Par1, and Par2 as fixed or random factors. Although 201 

fixed effects models provide intuitive measures of effects, random effects models have 202 

the advantage that the final conclusions are not specific to the values of the factors chosen 203 

for the study. As such, both model types are useful.   204 

 205 

Therefore, here, both types of models are developed. First, the factors are treated as fixed 206 

parameters. The estimate of each factor represents the sensitivity of the response with 207 

respect to that factor, i.e., the main effect of that factor. Then, random effects models are 208 

developed wherein the sensitivity of the response with respect to a given factor is 209 

measured by the variance component of that factor. It is more useful to report the variance 210 
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component as the fraction of the total variance. For example, the sensitivity for the Day 211 

factor is best reported as the so-called intraclass correlation  212 

ρ
Day
= 100

σ DAY

2

σ Response

2

;       (3) 213 

 214 

similarly for the other variance components.  Another advantage of examining the 215 

intraclass correlation is that analytic formulas exist for its confidence intervals 216 

(Montgomery, 2009). Such confidence intervals are critical for assessing the statistical 217 

significance of the sensitivity results. 218 

 219 

In a full factorial design involving the four factors Day, Par1, Par2, and Rep, the number 220 

of model runs would be equal to the product of the number of values of each factor. That 221 

number of runs is often impractically large, and so, there exist a number of experimental 222 

designs whose goal is to reduce the number of runs. The Latin Square Design (LSD) is 223 

one such design, and it is briefly explained in the Appendix. In order to illustrate the basic 224 

idea, consider a problem involving three factors (and a response), with each factor taking 225 

three possible values. Ideally, one must observe the response at all 3
3
 possible values of 226 

the factors, because then one can estimate the effect of the three factors as well as all of 227 

the interactions between them. However, it can be shown (Montgomery, 2009) that 3
2
 228 

runs are sufficient for estimating the main effects of the factors, if the values of the 3 229 

factors for the 3
2
 runs are selected according to a special prescription best displayed as a 230 

square table. An example of such a square is shown in Table 1, where the factors are 231 

denoted A, B, and C, and the subscripts denote the value of each factor. For example, the 232 

bottom/right element in that square corresponds to a run where the factors A and B are set 233 

to their third value, and the factor C is set to its second value.  If the three factors have p 234 

levels, then the square table is p × p, and so, the necessary number of runs is only p
2
. This 235 

example involves three factors, but it can be shown that the number of necessary runs is 236 

p
2 

regardless of the number of factors (See Appendix). Such tables are called Latin 237 

Squares, and by virtue of being square tables, designs that follow such tables dramatically 238 

reduce the number of necessary runs, although at the cost of making all interactions 239 

between the factors inestimable (Montgomery, 2009).  The inability of the LSD to 240 

estimate interaction effects is not a major concern because the main effects are generally 241 

much larger than interaction effects. The expectation that higher-order interactions are 242 

weaker than main effects is generally borne out due to several principles: the principle of 243 

hierarchical ordering, the principle of effect sparsity, and the principle of effect hierarchy; 244 

see pages 192, 230, 272, 314, 329 in (Montgomery 2009), and pages 33-34 in (Li, 245 

Sudarsanam, and Frey 2006).  In the case of precipitation, Marzban et al. (2014) also find 246 

the interactions to be much smaller than main effects. 247 

   248 

3. Data 249 

 250 

Version 3.7.0 of the WRF-ARW model was used for this work, with lateral boundary 251 

conditions specified every 6 hours from output of the Global Forecast System (GFS).  All 252 

of the standard WRF parameters were the default “out of box” parameters, with a 25-Km 253 
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grid-spacing for a domain 200 (east-west) by 140 (north-south), over the Continental US.  254 

Nine days are selected between December 2014 and March 2015. Each initial forecast 255 

hour is 10 days apart in this time period, ensuring minimal temporal association between 256 

days.  The specific dates are as follows:  Dec. 01, 11, 21, 31, Jan. 10, 20, 30, and Feb. 9, 257 

and 19. Winter months were chosen for the high degree of variability with regards to jet 258 

stream activity and mid-latitude cyclone activity.   259 

 260 

For this study three factors Day, Par1, and Par2 were sampled according to the LSD, 261 

thereby reducing the necessary number of runs from 9
3
 to 9

2
.  As a result, it is assumed 262 

that the interactions between these three factors are much smaller than the main effects.  263 

Because of the LSD, Par1 and Par2 take nine values as well. The range of the nine values 264 

are chosen to be centered on the recommended SKEBS values, but in order to examine 265 

the full range of possible effects, they span one order of magnitude smaller and one order 266 

of magnitude larger than the default values. The nine specific values are (0.1, 0.325, 267 

0.550, 0.775, 1.000 3.250 5.500, 7.750, 10.000) ×10
-5

 for Par1, and (0.1, 0.325, 0.550, 268 

0.775, 1.000, 3.250, 5.500, 7.750, 10.000) ×10
-6

 for Par2. As mentioned previously, in 269 

the random effects model inference of the sensitivities pertains to all possible values of 270 

the parameters, not just to the specific nine values; for this reason, the specific nine 271 

values selected here do not play an important role in the final analysis. Indeed, in an 272 

earlier version of the analysis, the following Par1 values produced very similar results: 273 

(0.5, 2.875, 5.25, 7.625, 1.0, 12.375, 14.75, 17.125, 19.5) × 10
-5

. 274 

  275 

One of the main goals here is to assess the effect of Rep (i.e., the purely stochastic 276 

component of SKEBS) and how it compares with the effect of the other factors.  277 

Therefore, more computational effort is dedicated to that end. Specifically, the Rep factor 278 

and the combination of the other three factors (Day, Par1, and Par2) follow a full factorial 279 

design.  In other words, all 9
2
 LSD runs involving Day, Par1, and Par2, are replicated at 280 

every value of the Rep factor. Here the number of replications is six. 281 

 282 

All of these factors are treated first as fixed factors, and then as random factors.  283 

However, the factor Fhour is treated as a fixed factor, because it varies across 41 fixed 284 

values, from 0 to 120 hours, in increments of 3 hours. As mentioned above, Fhour is not 285 

included in the model, because the model in Eq. (1) is developed at each of the 41 values 286 

of Fhour. Consequently, all of the results found here take the form of “time series” of the 287 

main effects, variance components, or intraclass correlations as a function of Fhour.  288 

  289 

Given the above design, the total number of runs is 9
2
 × 6 × 41 = 19,926.  Although this 290 

is a large number of runs, it is significantly smaller than what would be necessary in a full 291 

factorial design: 9
3
 × 6  × 41 = 179,334.   292 

 293 

4. The Response 294 

 295 

As previously mentioned, sensitivity to SKEBS parameters is assessed with respect to 296 

various features of the following meteorologically significant object types: 1) upper-air jet 297 

streaks, 2) low-level jets, 3) precipitation events , and 4) frontal boundaries. Jet streaks 298 
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are defined at 250 hPa as regions with contiguous model grid points having wind speeds 299 

in excess of 50 m s
-1

 (approximately 100 knots). Similarly, low level jets are defined as 300 

regions at 850 hPa characterized by winds stronger than 20 m s
-1

.  Precipitation events are 301 

contiguous regions where the total precipitation accumulation at the surface is above 1mm 302 

in 3-hour forecast intervals. Frontal boundaries (i.e., baroclinic zones) are identified using 303 

the horizontal gradients of the 1000-700 hPa geopotential thickness field (McCann, 304 

Whistler, 2001). A threshold value of 0.3 m Km
-1

 for the magnitude of the geopotential 305 

height gradient is used to identify significant baroclinic zones.  Although it is possible to 306 

develop more sophisticated means of identifying such objects, the focus of this study is 307 

on the development of an object-based SA method, regardless of how the objects are 308 

identified.  309 

 310 

By definition, all of these  objects are characterized by relatively well-defined spatial 311 

extent.  For every available forecast hour, objects meeting the above criteria are 312 

identified.  Figure 1 shows an example of jet streak objects identified in the 250 hPa 313 

WRF wind field.  Three jet streak objects are identified in this particular WRF forecast. 314 

The smallest and weakest is located over states in the northwestern United States, a 315 

second is located over eastern Canada, while the largest and strongest extends from the 316 

southwestern Four Corners states to the mid-Atlantic states.  317 

 318 

Here we point out that the five grid points nearest the model domain's lateral boundaries 319 

are omitted from the analysis in order to prevent any direct influence from the imposed 320 

lateral boundary conditions taken from deterministic GFS forecasts. This way, only grid 321 

points in the interior of the domain where solutions are fully influenced by SKEBS 322 

perturbations are considered. Also, identified objects are restricted to those composed of 323 

at least 50 grid cells, corresponding to areas larger than about 31,000 Km
2
 in order to 324 

minimize any “noise” in the resulting object datasets that could be associated with 325 

spurious appearance/disappearance of small areas with wind speeds changing to values 326 

just above/below the threshold. Despite the application of such conditions, spurious 327 

changes in object characteristics may occur as objects merge or separate solely due to 328 

subtle changes in the underlying continuous field; for example, it is possible for two 329 

nearby jet streak objects at a particular forecast hour to merge at the following forecast 330 

hour due to an increase in wind speed above the threshold in the region separating the two 331 

jets. Associated changes to the response variable (e.g., number of objects or their size, 332 

intensity, and location) can be described as “measurement error” because the variability 333 

introduced by these changes is not due to any of the factors included in the model (Eq. 1).   334 

 335 

 336 

The features examined here are 1) the number of objects, 2) their size, 3) intensity, and 4) 337 

location. The size of each object is computed as the number of grid points included in that 338 

object.  The intensity is measured as the mean intensity of the field across the object, and 339 

their location is recorded at the latitude and longitude of the center-of-mass of the object.  340 

Panels a-c in Figure 2 show the histograms of number, size, and intensity for precipitation 341 

objects across all four factors (i.e., days, replications, Par1 and Par2); other object types 342 

have similar histograms. The histograms of latitude and longitude are not shown because 343 
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that figure shows no useful information. It can be seen that the number of objects can 344 

vary between 1 and 13, with the most common value around 3 or 4. By contrast,  the size 345 

of objects has an exponential-looking histogram, and so the data examined consists of 346 

mostly small objects (i.e., consisting of 50 grid points).   Mean intensity values (panel c) 347 

vary between about 1 and 17 m/s, with the most common value around 2.3 m/s.  348 

 349 

Given the similarity in the shape of the histograms of number and size of objects, one 350 

may wonder if these two features are correlated. In fact, given that the size of the forecast 351 

domain is fixed, one may suspect a negative correlation. Panel d in Figure 2 shows the 352 

scatterplot of these two features. Although for the extreme case where there are as many 353 

as 13 objects, their size is restricted to be around 500 grid points, for cases with four 354 

objects, their size can vary from the smallest possible value (50) to 3500 grid points.  As 355 

such, it can be seen that there is no linear association between the two features. 356 

 357 

  The histograms discussed above are constructed from the object features that arise in the 358 

data across all values of the four factors.  But even for given values of the four factors, 359 

there exists a distribution of features.  Here, that distribution is summarized by two 360 

quantities - the minimum and maximum; (the 25
th

 and 75
th

 percentiles of the histograms 361 

were also examined, but the results were statistically equivalent to those based on the 362 

minimum and maximum) In short, the aim is to study the effect of the aforementioned 363 

four factors on the following response/feature variables: 1) Number of objects (e.g., jet 364 

streaks) across the forecast domain, 2) Minimum and 3) Maximum size of (i.e., smallest 365 

and largest) objects across the domain, and 4)  Minimum and 5) Maximum intensity (i.e., 366 

weakest and strongest) of objects across the domain.  As for the location feature, the 367 

minimum, median, and maximum of latitude and longitude are also examined; it can be 368 

argued that the two SKEBS parameters considered here may have an effect on the 369 

location of the objects because they control propagation and development rates. (The 370 

authors acknowledge an anonymous Reviewer for this suggestion). 371 

  372 

Although all four object types (upper-air jet streaks, low-level jets, precipitation events, 373 

and frontal boundaries) have been analyzed, only sensitivity results pertaining to upper-374 

air jet streaks are shown in the next section.  Results with respect to the other object types 375 

were found to be similar especially in terms of the relative magnitude of the effect of the 376 

four factors.  Of the various features considered here, specific results pertaining to 377 

latitude and longitude are not shown, because they are similar to those pertaining to the 378 

intensity feature. 379 

 380 

5. Results 381 

 382 

Before developing the aforementioned models, it is useful to examine the simulated data, 383 

first. Figure 3 shows the values of the five responses/features as a function of forecast 384 

time (Fhour), on one day, with model parameters set to default values, and for the six 385 

replications (in colours). The thick/black line corresponds to a run wherein all of SKEBS 386 

has been turned off. It can be seen that the coloured curves (i.e., different replications of 387 

SKEBS with default parameters) generally fluctuate about the curve of this control run.  388 
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Moreover, evidently, all five response variables have significant variability across 389 

forecast times. Part of this variability is “real” in the sense that objects can appear and 390 

disappear in a forecast field across three hours. The remainder of the variability is due to 391 

the aforementioned measurement error; for example, although the actual size of an object 392 

may not change in a 3-hour interval, the thresholding procedure adopted here for 393 

identifying objects may give a slightly different value for the size. This measurement 394 

error is not a stumbling block for the analysis; its only effect is to magnify the variance of 395 

the ε term in Eq. (1), and thereby reduce statistical power.  Also, as mentioned at the end 396 

of Section 1, these empirical errors are necessary for performing statistical tests of 397 

significance in computer experiments. 398 

 399 

The variability of the response variable plays an important role in both fixed effects and 400 

random effects models. Figure 4 shows the variability of the five response variables at 401 

each forecast time. The slow modulations of all of these curves correspond to the natural 402 

evolution of weather patterns in the nine days examined here. To obtain a sense of the 403 

variability of these results, 95% confidence intervals are also shown (as vertical bars).  It 404 

is evident that all five response variables have nonzero variance at all forecast hours. 405 

Recall that the goal of random effects models is to determine how these variances are 406 

apportioned across the various factors in the model. 407 

 408 

The linear model in Eq. (1) is developed at each forecast time. Treating the factors as 409 

fixed factors allows one to perform F (or t) tests on the main effects. The resulting p-410 

values are summarized in Figure 5. The variability in the boxplots is across the 120 411 

forecast hours.  Here, a significance level (e.g., 0.05 or 0.01) is not selected to assess 412 

statistical significance. Instead, the boxplot of the p-values is examined to provide a 413 

visual assessment of the “strength” of the statistical significance. A tight boxplot, near 0, 414 

suggests that the corresponding effect is statistically significant. By contrast, if the 415 

boxplot of p-values is near 1 or extends across the full range from 0 to 1, then the 416 

corresponding factor is deemed non-significant, i.e., that there is insufficient evidence 417 

from data to conclude that the factor has an effect. This practice is consistent with a 418 

fundamental theorem in statistics stating that the distribution of p-values is given by a 419 

uniform distribution between 0 and 1, if the null hypothesis (of no-effect) is true.  420 

 421 

Here (Figure 5) it can be seen that the factor Day has a significant effect on all five 422 

responses. This is not surprising, because it is known that the responses vary across the 423 

nine days in the study. By contrast, the near-1 location of the boxplots for Par1 and Par2 424 

in all five panels suggests that there is no evidence from data to suggest that these two 425 

parameters have any effect on any of the response variables. The Rep factor plays a more 426 

complex role; although the p-values do extend to relatively large values, the bulk of their 427 

histogram is skewed toward smaller values, in all five panels.  In other words, the Rep 428 

factor does appear to have an effect on all five response variables, but not at all forecast 429 

hours.  430 

 431 

Although it is possible to examine the p-values in the fixed-effects model at each forecast 432 

hour, it is more useful to examine the forecast-hour-dependence of the results in the 433 
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random effects model. Treating the factors as random variables leads to consideration of 434 

the variance components, and in turn, intraclass correlations, ρ in Eq. (3), and their 435 

confidence intervals. Figure 6 shows the 95% confidence interval for ρ at different 436 

forecast times. The “Day, Number” panel shows the effect of the Day factor on the 437 

number of objects in the domain. It can be seen that the effect of the Day factor 438 

diminishes very quickly, and falls to near-zero values for Fhour beyond nine.  The effect 439 

of the Day factor on the size of objects is shown in the panel marked “Day, Size”; 440 

although the smallest (black) objects are mostly unaffected by the Day factor, the effect 441 

on the largest (red) objects is less trivial.  On forecast times scales from 0 to 120 hours, 442 

for very short forecast times (3 to 9 hours) the Day factor can explain 60% to 90% of the 443 

variability; even for longer forecasts, the effect is non-zero, leveling-off at values in the 444 

5% to 10% range. In other words, even for very long forecast times, daily variability 445 

contributes a significant portion of the total variability in the size of objects. The effect of 446 

the Day factor on the (mean) intensity of objects has a similar behavior (panel “Day, 447 

Intensity”), although for longer forecast times, the effect is generally weaker than the 448 

effect on object size. Said differently, for short forecast hours the variability in object 449 

intensity can be explained by daily variability, but for very long forecast times that 450 

variability is not due to daily changes in weather. 451 

 452 

The effect of the Rep factor can be seen in the second row of panels in Figure 6.  For all 453 

five response variables (number, min. size, max. size, min. intensity, and max. intensity), 454 

Rep can explain only about 0.1% to 0.5% of the variability in the data. The large 455 

confidence intervals make it difficult to interpret the results; the lower end of the intervals 456 

are generally above zero, suggesting that the corresponding effects are nonzero, consistent 457 

with the small p-values observed in Figure 5.  Although the top end of the intervals is 458 

erratic, it is important to note the scale on the y-axis of these panels - 0 to 1% - and so, 459 

the effect of Rep is generally quite small. 460 

 461 

The effect of the parameters (Par1, Par2) on all response variables is even weaker than 462 

that of the Rep factor (third and fourth rows in Figure 6).  The ρ values are generally 463 

below 0.1%. In other words, even when the effect of the parameters is statistically 464 

significant (i.e., nonzero at 95% confidence level), the magnitude of the effects is 465 

extremely small.  The fact that the effect of the parameters is weaker than that of Rep is 466 

important, and is further discussed in the next section. 467 

 468 

The last row of panels in Figure 6 shows ρε, i.e., the percentage of the variability in the 469 

data that cannot be explained by the four factors Day, Rep, Par1, and Par2. As such, it is 470 

useful for assessing the combined effect of the four factors. Evidently, for forecast hours 471 

longer than three hours nearly 100% of the variability in the number of objects cannot be 472 

explained by any of the four factors. This is expected from the panels in the first column 473 

of Figure 6, because none of the four factors appear to have an effect on the number of 474 

objects for long forecast times.  475 

  476 

When the response is object size (bottom row, middle panel), or object intensity (bottom 477 

row, right panel), the variability that cannot be explained by the four factors generally 478 
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increases with forecast time. For the smallest of objects (black curve) the increase is quite 479 

abrupt – from 0 to 100% as one goes from 0hr to 3hr forecasts and beyond. For the largest 480 

objects (red curve), although the increase is more gradual, the percentage of unexplained 481 

variance approaches 100% by forecast hour 100. The undulations in the curves, caused by 482 

the natural variability in the data across the 120 hours, make it difficult to pinpoint a 483 

specific forecast time beyond which the four factors become useless. 484 

In summary, examining all of the panels in Figure 6, it appears that when the factors do 485 

contribute to the variability in the response, most of that variability is due to the Day 486 

factor. The next important factor is Rep; and Par1 and Par2 have nearly no effect. It is 487 

also clear that Par1 and Par2 have a much smaller effect than Rep, at every forecast hour. 488 

This suggests that the two tunable SKEBS parameters examined here may not produce 489 

the expected variability in the specific objects under consideration, since the purely 490 

stochastic component (which is not as controllable as the tunable parameters) 491 

overwhelms the variability in the forecasts.   492 

 493 

6. Conclusion and Discussion 494 

 495 

SKEBS has been designed to introduce variability into the forecasts in a manner 496 

consistent with the physics that are unresolved by the model.  One would then expect that 497 

SKEBS parameters (Par1, Par2) would have some effect on the forecasts, and that the 498 

effect of these parameters would be more prominent than that of the purely stochastic 499 

component of SKEBS (Rep). Here, forecasts of jet streaks, low-level jets, precipitation, 500 

and baroclinic zones are considered, although only the analysis on jet streaks is presented. 501 

A simple method is employed to identify these objects within continuous forecast fields; a 502 

suite of methods from experimental design are then woven together to assess the effect of 503 

four factors (Day, Par1, Par2, Rep) on five features of these objects (number, minimum 504 

and maximum size, and minimum and maximum intensity. The impact of the four factors 505 

on the location (latitude and longitude) of the objects is also examined; but it is not 506 

presented because the results are similar to that of intensity. It is shown that the number 507 

of objects in these fields does not appear to be affected by any of the factors.  It is also 508 

shown that for forecast times when the factors do have a nonzero effect on the size and 509 

intensity of objects, apart from the effect of the Day factor, the effects of the other three 510 

factors are quite small, explaining only a few percentage points of the variability observed 511 

in the data. More importantly, it is found that the effect of Par1 and Par2 is much less 512 

than that of Rep.  513 

 514 

This suggests that the variability produced by varying the two SKEBS parameters does 515 

not appear to have a significant effect on the specific object types and their features 516 

examined here; the purely stochastic part is the main driver of any SKEBS-induced 517 

variability. It is important to emphasise that this conclusion pertains only to the specific 518 

object types and features examined here.  It does not reflect on the connection between 519 

SKEBS and the physical processes it seeks to represent, and whether the physically-520 

motivated model behind SKEBS has a consistent effect on model forecast evolution at 521 

large. In practice, then, if one is interested in the specific objects and features examined 522 

Page 12 of 26

http://mc.manuscriptcentral.com/metapps

Meteorological Applications



For Peer Review

 13 

here, it is best if the resources for tuning or calibrating the model parameters are directed 523 

away from the physical SKEBS parameters. However, see next paragraph. 524 

 525 

Armed with the methodology developed here, the above analysis can be generalized in a 526 

number of ways. For instance, the criteria for identifying objects can be revised; the 527 

number of parameters, and their range and values can be extended, and/or other response 528 

variables can be examined. Although the two SKEBS parameters under consideration do 529 

not appear to have an effect on the four  object types examined here, it will be useful to 530 

find other meteorologically relevant  objects that are affected by these SKEBS 531 

parameters. As pointed out by an anonymous reviewer, it is known that the SKEBS 532 

parameters examined here do affect the reliability/skill of large-scale ensemble forecasts. 533 

As such, the null effect of the model parameters may seem contradictory, but then it is 534 

important to recall that the sizes of the objects considered here fall on the smaller end of 535 

the resolved scales in the model simulations. 536 

 537 

One may also consider more/other SKEBS parameters, in which case Graeco-Latin 538 

Square Designs (GLSD; see Appendix) can be used to reduce the number of runs 539 

necessary for estimating main effects. A desirable feature of GLSD is that the necessary 540 

number of runs for estimating main effects is the square of the number of values each 541 

factor takes, independent of the number of factors in the study. In fact, fixed-effects and 542 

random-effects models with as many as eight parameters are currently under 543 

investigation, and preliminary results suggest that even when some of the SKEBS 544 

parameters do affect the spatial structure of the forecasts, their effect is still overwhelmed 545 

by daily variability and variability due to replication. That finding also raises the 546 

possibility of examining the effect of the factors on the spatial structure of the forecasts, 547 

independently of the existence of any objects in the forecast field.  Generalizations can 548 

also be made to the statistical modeling effort. For example, the fixed-effects and 549 

random-effects models employed here are linear models commonly employed in 550 

experimental design (Montgomery 2009). These can be generalized to include higher 551 

order interactions.  Alternatively, it is possible to replace these models entirely with fully 552 

nonlinear models - often called metamodels (Santner et al., 2003; Aires, 2013).  Many of 553 

these questions are currently under consideration.  554 

 555 

A comparison of the current work and that reported in  Marzban et al. 2018b is in order. 556 

First, and foremost, whereas the objects here are identified by a simple thresholding 557 

method, those in the latter work are identified via two different clustering algorithms. 558 

Second, the (11) model parameters in the latter study are continuous parameters which 559 

necessitates a different (than LSD) method for sampling the parameter space.  The reason 560 

the model parameters are different between the two studies is that the underlying model 561 

in the latter work is COAMPS® (Coupled Ocean/Atmosphere Mesoscale Prediction 562 

 System).  The impact of the 11 parameters in COAMPS on the spatial structure of 563 

forecasts (i.e., without reference to any objects) has also been examined (Marzban et al. 564 

2018a). 565 

 566 

7. Appendix: Latin Square Designs 567 
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 568 

Consider an experiment involving three factors, A, B, and C, each taking three values 569 

denoted A1, A2, A3, B1, B2, B3, and C1, C2, C3. (In statistics, the values a discrete 570 

variable can take are referred to as levels. Here we avoid the term level in order to 571 

minimize confusion with the use of that term in meteorology.)  A full factorial design 572 

refers to 3
3 

runs necessary to consider all possible combinations of the values each factor 573 

can take. It can be shown (Montgomery, 2009) that in a full factorial design one can 574 

estimate all main effects, all interactions, and the variance of the errors, σ
2

ε . If, however, 575 

interactions are not of interest, then only the specific runs shown in Table 1 are sufficient.  576 

In other words, only the nine runs (A1, B1, C1), (A1, B2, C2), (A1, B3, C3), ... , (A3, B3, 577 

C3) are sufficient for estimating the main effects (and the error variance). An experiment 578 

involving only such specific runs is said to follow a Latin Square Design (LSD). 579 

Interactions, however, cannot be estimated. Technically, in LSD, main effects and 580 

interactions effects are said to be aliased, meaning that the effects one can estimate are a 581 

combination of main effects and interaction effects, and one cannot disentangle the two. 582 

As such, when one computes main effects in an LSD, the assumption is that the 583 

interaction effects are negligible. Latin squares as in Table 1 are constructed by assigning 584 

the columns to the values of one factor, the rows to the values of another factor, and then 585 

cyclicly permuting the values of the last factor within the body of the square. This assures 586 

that every combination of the three values appears precisely one time - a unique and 587 

defining characteristic of the LSD. The factors may take more than three values, in which 588 

case the Latin square will simply be larger. 589 

 590 

The Graeco-Latin Square Design (GLSD) is the generalization of the LSD to four or more 591 

factors, with each factor taking any number of values; the only constraint is that all 592 

factors must have the same number of values. So, in the present study, if nine days are 593 

selected for the analysis, then each of the two parameters (Par1 and Par2) must take nine 594 

values.  More examples of LSDs and GLSDs can be found in Montgomery (2009).  595 

  596 

It is worth mentioning that in an LSD involving the three factors Day, Par1 and Par2, on 597 

no single day are the two parameters varied across all their values.  Consequently, one 598 

cannot assess the sensitivity of the two parameters for each day. This may appear to be a 599 

limitation; however, it is important to point out that knowledge of sensitivities for any 600 

given day is useless; only the sensitivities across all days have practical utility. And the 601 

LSD allows one to estimate those sensitivities with only 9
2
 runs (instead of 9

3
). 602 

 603 

It is important to distinguish LSDs (or GLSDs) with another sampling design with a 604 

similar name, namely Latin Hypercube Sampling (LHS). Although frequently used in SA 605 

(Hacker et al., 2011; Marzban, 2013; Marzban et al., 2014), the LHS is a completely 606 

different sampling scheme, and is most suitable for situations where the covariates 607 

(independent variables) are continuous quantities, not discrete factors; there, one specifies 608 

the desired sample size, first. Then, each of the factors is subdivided into that many bins, 609 

and a sample is drawn such that any combination of the bins appears precisely one time. 610 

The utility of the LHS derives from the fact that LHS estimates of model parameters are 611 

more precise (at least, no less precise) than estimates based on Simple Random Sampling 612 
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(McKay et al., 1979). Note that by contrast to the LSD (or GLSD) where the sample size 613 

is simply the square of the number of values in a factor, the sample size in LHS is not 614 

determined by the number of values of a factor, or the number of factors; instead, it is 615 

specified by the user. 616 

 617 
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Figure Captions 733 

 734 

Figure 1. The histogram of a) the number of precipitation objects, and their b) size and c) 735 

intensity. Panel d shows the scatterplot of size versus the number of objects.   736 

 737 

Figure 2. Jet streak objects identified within the WRF wind field at 250 hPa for a 42-hour 738 

forecast initialized at 00 UTC on February 9 2015. Jet streaks are identified by white 739 

contour lines, and the location of the maximum wind speed within each object is 740 

identified by the white-contoured black dot. 741 

 742 

Figure 3. The “time series” of the five response variables: The Number of objects (a), the 743 

size of the smallest (b) and largest (c) objects, and the intensity of the weakest (d) and 744 

strongest (e) objects. The colors correspond to the six replications, and the thick/black 745 

line corresponds to a control run wherein SKEBS has been turned off. Par1 and Par2 are 746 

set to their default SKEBS values (10
-5

 and 10
-6

, respectively). Size refers to the number 747 

of grid points in an object, and intensity is measured in m/s. 748 

 749 

Figure 4. The variance (across all factors - Day, Rep, Par1, and Par2) of the five response 750 

variables - Number of objects (top), minimum size (black) and maximum size (red) 751 

(middle panel), and minimum intensity (black) and maximum intensity (red) (bottom 752 

panel). The vertical lines are 95% confidence intervals, displaying the uncertainty in these 753 

variance estimates. Size refers to the number of grid points in an object, and intensity is 754 

measured in m/s. 755 

 756 

Figure 5. The distribution/boxplot (across 120 forecast hours) of p-values testing the 757 

significance of the main effects for the four factors (Day, Rep, Par1, Par2) on the five 758 

responses (panels a-e). 759 

 760 

Figure 6. The 95% confidence intervals for the intraclass correlation ρ versus forecast 761 

time, displaying the effect of the four factors, Day, Rep, Par1 and Par2 (top 4 rows) on the 762 

five responses - number of objects (left column), minimum (black) and maximum (red) 763 

size (middle column), and minimum (black) and maximum (red) intensity (right column). 764 

The last row shows ρε, the proportion of total variance in the response not explained by 765 

the four factors. 766 
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Figure 1. The histogram of a) the number of precipitation objects, and their b) size and c)2

intensity. Panel d shows the scatterplot of size versus the number of objects.3
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Figure 2. Jet streak objects identified within the WRF wind field at 250 hPa for a 42-hour2

forecast initialized at 00 UTC on February 9 2015. Jet streaks are identified by white contour3

lines, and the location of the maximum wind speed within each object is identified by the4

white-contoured black dot.5
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Figure 3. The “time series of the five response variables: The Number of objects (a), the2

size of the smallest (b) and largest (c) objects, and the intensity of the weakest (d) and3

strongest (e) objects. The colors correspond to the six replications, and the thick/black line4

corresponds to a control run wherein SKEBS has been turned off. Par1 and Par2 are set to5

their default SKEBS values (10−5 and 10−6, respectively). Size refers to the number of grid6

points in an object, and intensity is measured in m/s.7
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Figure 4. The variance (across all factors - Day, Rep, Par1, and Par2) of the five response2

variables - Number of objects (top), minimum size (black) and maximum size (red) (middle3

panel), and minimum intensity (black) and maximum intensity (red) (bottom panel). The4

vertical lines are 95% confidence intervals, displaying a sense of the uncertainty in these5

variance estimates. Size refers to the number of grid points in an object, and intensity is6

measured in m/s.7
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Figure 5. The distribution/boxplot (across 120 forecast hours) of p-values testing the signif-2

icance of the main effects for the four factors (Day, Rep, Par1, Par2) on the five responses3

(panels a-e).4
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Figure 6. The 95% confidence intervals for the intraclass correlation ρ versus forecast time,2

displaying the effect of the four factors, Day, Rep, Par1 and Par2 (top 4 rows) on the five3

responses - number of objects (left column), minimum (black) and maximum (red) size4

(middle column), and minimum (black) and maximum (red) intensity (right column). The5

last row shows ρε, the proportion of total variance in each response not explained by the6

four factors.7
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 1 

Table 1. An example of an LSD involving three factors A, B, C, each taking three values 1 

(denoted by the indices 1, 2, 3). 2 

 3 

 A1 A2 A3 

B1 C1 C2 C3 

B2 C2 C3 C1 

B3 C3 C1 C2 

 4 
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A Methodology for Sensitivity Analysis of Spatial Features in 

Forecasts: 

The Stochastic Kinetic Energy Backscatter Scheme 
 

Caren Marzban
*
, Robert Tardif, Natalia Hryniw, Scott Sandgathe 

 

All numerical models have parameters whose values are often set in an ad hoc fashion, 

and so, it is important to asses how these parameters affect the output of the model.  The 

output of many models often contain “objects” examples of which are shown in the figure 

below. This paper proposes a methodology for assessing how the model parameters affect 

specific features of such objects.   
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