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ABSTRACT

A methodology is proposed for examining the effect of model parameters (assumed to be contin-

uous) on the spatial structure of forecasts. The methodology involves several statistical methods of

sampling and inference to assure the sensitivity results are statistically sound. Specifically, Latin

hypercube sampling is employed to vary the model parameters, and multivariate multiple regression is

used to account for spatial correlations in assessing the sensitivities. The end product is a geographic

‘‘map’’ of p values for each model parameter, allowing one to display and examine the spatial structure

of the sensitivity. As an illustration, the effect of 11 model parameters in a mesoscale model on

forecasts of convective and grid-scale precipitation, surface air temperature, and water vapor is

studied. A number of spatial patterns in sensitivity are found. For example, a parameter that controls

the fraction of available convective clouds and precipitation fed back to the grid scale influences

precipitation forecasts mostly over the southeastern region of the domain; another parameter that

modifies the surface fluxes distinguishes between precipitation forecasts over land and over water. The

sensitivity of surface air temperature and water vapor forecasts also has distinct spatial patterns, with

the specific pattern depending on the model parameter. Among the 11 parameters examined, there is

one (an autoconversion factor in the microphysics) that appears to have no influence in any region and

on any of the forecast quantities.

1. Introduction

The algorithms in numerical weather prediction

models contain numerous parameters—hereafter,

‘‘model parameters’’—whose values and/or ranges are

generally established by field or laboratory experiments

or on theoretical grounds (Stensrud 2007). The effect of

these parameters on forecasts is important, but often

complex and difficult to establish. Two techniques

that are often used to address the influence of model

parameters on forecasts are sensitivity analysis andmodel

tuning (also called fine-tuning or calibration). This article

proposes a sensitivity analysis method aimed at better

understanding the effect of model parameters on the

spatial structure of forecasts. Themodel used to illustrate
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the method is Coupled Ocean–Atmosphere Mesoscale

Prediction System (COAMPS),1 and the forecast quan-

tities are precipitation (convective and resolved grid

scale), surface air temperature, and water vapor.

It is important to distinguish between the two ap-

proaches because in spite of their similarities, their fo-

cuses are different. The immediate goal of model tuning

is the objective improvement of forecasts (Duan et al.

2006; Hourdin et al. 2017; Voudouri et al. 2017). While

that effort does naturally involve assessing the sensitiv-

ity of the forecasts with respect tomodel parameters, the

objective improvement of forecasts is only an indirect

and long-term objective in sensitivity analysis. The main

focus of sensitivity analysis is to establish the conditions

under which parameters have an effect at all, and then to

quantify the magnitude and statistical significance of the

effects (Saltelli et al. 2004, 2010; Warner 2011). The

difference between the two methods can be seen in the

fact that model tuning relies on observations in order to

guide the tuning of the model, whereas in sensitivity

analysis, one is interested mostly in the effect of model

parameters on forecasts only. As such, model tuning can

be thought of as a sensitivity analysis of forecast errors.

The covariates (i.e., the independent variables) in a

sensitivity analysis or model tuning are not always model

parameters; instead, one may be interested in the effect

of initial conditions, the impact of observations and/or

their location, the effect of the various members of an

ensemble, sensitivity with respect to a unit change in a

state variable, or combinations of all of the above (Ancell

and Hakim 2007; Daescu and Langland 2013; Davis and

Emanuel 1991; Gombos and Hansen 2008; Hacker et al.

2011; Järvinen et al. 2012; Laine et al. 2012; Ollinaho et al.

2014; Torn and Hakim 2008; Weisman et al. 2015). Based

on the above definitions, these examples broadly—but

by no means categorically—fall under the umbrella of

model tuning. Examples of studies that place more em-

phasis on sensitivity analysis—but not to the exclusion

of model tuning—are Adlerman and Droegemeier

(2002), Boyle et al. (2015), Crook (1996), Gómez-

Navarro et al. (2015), Houston and Niyogi (2007),

Marzban et al. (2014), Mölders et al. (1995), Qian et al.

(2015), Robock et al. (2003), Roebber (1989), Roebber

and Bosart (1998), Schumann and Roebber (2010), and

Zhao and Tiede (2011).

As mentioned above, the immediate goal of sensitivity

analysis is to expose the conditions under which the pa-

rameters have an effect on the forecasts and to assess the

strength of that effect. InMarzban et al. (2014), the effects

of 11 model parameters (Table 1) on the domain average

and center of gravity of precipitation are examined. Here,

in order to provide a visual display of the spatial structure

of sensitivity across the entire domain, a measure of sen-

sitivity is produced at each and every grid point.

On a spatial/gridded field, estimates of sensitivity are

affected by dependency (spatial correlation) between

grid points. Such correlations affect both the point es-

timate of sensitivity, as well as tests of statistical signif-

icance. Another complicating factor is themultiplicity of

tests arising from testing either multiple model param-

eters at a given grid point or across multiple grid points

(Wilks 2006, 2011). It is well known that multiple hy-

pothesis testing leads to an increase in type I errors: for

example, suggesting that a model parameter has a sig-

nificant effect on the forecasts at a given grid point, when

in fact it does not. As such, it is important to avoid,

minimize the number of, or take steps to account for

spatial correlations and the multiplicity of hypothesis

tests (Benjamini and Hochberg 1995; Bretz et al. 2010;

Dmitrienko et al. 2009; Noble 2009; Rosenblatt 2013;

Wilks 2011).

The present paper puts forth a methodology that allows

one to address all of these issues. The methodology con-

sists of several well-known techniques from the field of

experimental design. Latin hypercube sampling is

employed to select the values of the model parameters

across which they are varied. Multivariate multiple re-

gression (MMR), a generalization ofmultiple regression to

the case where multiple predictors and multiple responses

are present, is used to model the relationship between 11

model parameters and forecasts at several grid points, si-

multaneously. The multivariate (i.e., several responses)

nature of MMR allows one to account for spatial correla-

tions and the multiplicity of those tests pertaining to mul-

tiple model parameters and multiple responses. In the

proposed approach, the problems associated with multiple

hypothesis tests across the multitude of grid points are

avoided completely, because at no stage are the p values

compared with a significance level of any kind for the

purpose of hypothesis testing; the magnitude of the

p values is sufficient to provide a visual assessment of

the significance and the magnitude of the sensitivities.

These steps lead to spatially corrected p values that

are displayed as a geographic ‘‘map’’ reflecting the

spatial structure of the sensitivities, first across all model

parameters and then for each model parameter. These

maps are produced for each of the 40 days/forecasts in

the dataset examined here. Although such daily sensi-

tivity maps can be useful for some users, the question

of how model parameters affect forecasts requires an

assessment of sensitivity that is independent of day/time.

To that end, a final statistical test is applied to produce a

1 COAMPS is a registered trademark of the Naval Research

Laboratory.
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single map of p values that displays the spatial structure

of sensitivities aggregated across days.

2. Method

a. Data

The methodology developed here requires running

the forecasting model (here, COAMPS) for different

values of the model parameters (and for different days/

forecasts). The model output—henceforth, ‘‘data’’—

generated in this way is then used for the sensitivity

analysis. Given the large computational requirements of

running forecasting models, the number of times one

can run them is an important practical consideration.

Methods of experimental design (Montgomery 2009)

can be used to both minimize the number of runs and to

select the specific values of the model parameters for

each run. The experimental design of this study is similar

to that of Marzban et al. (2014), and so, it is described

here only briefly. Only the atmospheric portion of

COAMPS (Hodur 1997) is used. For 40 days, at ap-

proximately 3-day intervals between 16 February and

2 July 2009, COAMPS 24-h forecasts are generated for

four meteorological quantities: 24-h accumulated con-

vective and grid-scale precipitation, surface air tem-

perature, and water vapor. For each date, a 99-member

ensemble is produced by varying 11 model parameters;

these parameters are shown in Table 1, and the reasons

for their selection are explained by Holt et al. (2011).

The specific values of the parameters are obtained by

taking a Latin hypercube sample (LHS) of size 99 from

the 11-dimensional space of the parameters. Techni-

cally, by virtue of being an analysis of data produced by a

computer model, the sensitivity analysis performed here

is an instance of a computer experiment, wherein the

sampling method of choice is LHS (Cacuci et al. 2005;

Saltelli et al. 2004, 2010; Bowman et al. 1993; Fang et al.

2006; Sacks et al. 1989; Santner et al. 2003). This sam-

pling scheme is designed to assure that no two of the 99

points have the same value for any of the 11 parameters.

It can be shown that this property leads to estimates that

are generally more precise than random sampling or

varying the model parameters one at a time (Cioppa and

Lucas 2007; Hacker et al. 2011; McKay et al. 1979;

Marzban 2013; Marzban et al. 2014; Qian et al. 2015).

Here, the number of runs is set to 99, mostly based on

trial and error; it is confirmed that fewer runs (20 and 50)

produce similar results, although, not surprisingly, with

lower statistical significance. The choice of the number of

runs is also weighed against the time required for each of

the COAMPS runs. To expedite the runs, a low-resolution

configuration is used. Specifically, the size of the domain is

45 3 72 with 81-km grid spacing. Although this spacing

may be too coarse to be useful for practical purposes, as

shown below, it is sufficiently fine to demonstrate the

methodology and to reveal many nontrivial and statisti-

cally significant spatial structures. The resolution of the

model and the number of runs are two quantities that af-

fect computational effort, and so their values depend on

the computational resources available to users of this

methodology. Regardless of computational resources,

some trial and error is recommended in order to test the

sensitivity of the final results on these two quantities.

The LHS is designed for situations where the variables

being sampled are continuous. In the present applica-

tion, all of the model parameters examined are contin-

uous. The case where model parameters are discrete or

categorical requires a different class of sampling

schemes; that methodology will be considered else-

where. The LHS is not the only sampling procedure with

desirable properties; Qian et al. (2015) use LHS and an

alternative known as quasi–Monte Carlo sampling.

Further comparisons of the two sampling methods have

been performed in Kucherenko et al. (2015).

b. Multivariate multiple regression

The statistical model used for assessing sensitivity and

its statistical significance is MMR. The main reason for

TABLE 1. The 11 parameters studied in this paper. Also shown are the default values and the range over which they are varied.

ID Name (unit) Description Default Range

1 delt2KF (8C) Temperature increment at the LCL for KF trigger 0 22, 2

2 cloudrad (m) Cloud radius factor in KF 1500 500, 3000

3 prcpfrac Fraction of available precipitation in KF, fed back to the grid scale 0.5 0, 1

4 mixlen Linear factor that multiplies the mixing length within the PBL 1.0 0.5, 1.5

5 sfcflx Linear factor that modifies the surface fluxes 1.0 0.5, 1.5

6 wfctKF Linear factor for the vertical velocity (grid scale) used by KF trigger 1.0 0.5, 1.5

7 delt1KF (8C) Another method to perturb the temperature at the LCL in KF 0 22, 2

8 autocon1 (kgm23 s21) Autoconversion factors for the microphysics 0.001 1 3 1024, 1 3 1022

9 autocon2 (kgm23 s21) Autoconversion factors for the microphysics 4 3 1024 4 3 1025, 4 3 1023

10 rainsi (m21) Microphysics slope intercept parameter for rain 8.0 3 106 8.0 3 105, 8.0 3 107

11 snowsi (m21) Microphysics slope intercept parameter for snow 2.0 3 107 2.0 3 106, 2.0 3 108
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this choice is the manner in which MMR allows one to

account for spatial correlations (DelSole and Yang

2011). Although other methods exist that take spatial

correlations into account when performing inference

(Douglas et al. 2000; Elmore et al. 2006;Wilks 1997), the

MMR approach is more natural in the present applica-

tion because the sensitivity analysis is done within a

regression framework already.

The terms ‘‘multivariate’’ and ‘‘multiple’’ in MMR

refer to several response and predictor variables, re-

spectively. The benefits of an MMR model over several

multiple regression models (one per response variable)

are similar to the advantages of a single multiple re-

gression model over several simple regression models

(one for each predictor). Consider the latter comparison;

it can be shown that if the predictors are completely un-

correlated, then multiple regression is completely equiv-

alent to several simple regressions developed on each of

the predictors. However, in the presence of any correla-

tion between the predictors, the least squares regression

coefficients in multiple regression are different from

those in simple regression, and only the former are cor-

rect (i.e., unbiased estimates of the true population re-

gression coefficients). In this sense, multiple regression

‘‘accounts for’’ the correlations between predictors.

Similarly, given several response (and several pre-

dictor) variables, if the responses are completely un-

correlated, then MMR has no advantages over several

multiple regression models (one per response). But if

there exists any correlation between the response vari-

ables, then the least squares estimates of the regression

coefficients in multiple regression models are incorrect;

only those obtained from MMR are unbiased estimates

of the true/population values. In this sense, MMR ac-

counts for correlations between response variables, as

well as correlations between the predictors.

In the present application, the predictors in MMR are

the 11model parameters. To be able to compare the effect

of the model parameters, they are all standardized (to

have a mean and variance of 0 and 1, respectively) at each

grid point. The response variables are the forecasts (e.g., air

temperature) at multiple grid points. Here, the number of

response variables is set to nine, corresponding to the grid

points in a 33 3 window. Such a window corresponds to a

square of size 243km (3 3 81km) on the side. In other

words, it is assumed that the spatial correlation extends to

that distance scale. This window size is selected to be suf-

ficiently large to account for some spatial correlation, but

sufficiently small to allow nontrivial spatial structure to be

seen across the entire forecast domain. Henceforth, this

window will be referred to as the MMR window.

The multivariate nature of MMR allows a variety of

statistical tests. At the simplest level, one can test whether

any of the predictors (model parameters) have an effect on

any of the response variables (grid points in the MMR

window). Hypotheses containing the word ‘‘any,’’ or

equivalently, the phrase ‘‘at least 1,’’ are commonplace in

statistics, and there exists a number of standard tests for

them; such tests—often called ‘‘omnibus’’—lead to a single

p value, and as such, avoid the complexities associatedwith

multiple hypothesis testing arising from the multitude of

predictor and response variables (Montgomery 2009;

Wilks 2011).Only if the omnibus test is significant does one

proceed to test the effect of each predictor; otherwise,

there is no justification to test each predictor. This two-step

testing procedure—an omnibus test followed by a se-

quence of more diagnostic tests—is a standard method for

taming the adverse effects of multiple hypothesis testing

(Montgomery 2009). The test used here is called thePillai’s

trace test (Fox et al. 2013), and it leads to a single p-value

map for each forecast day.

Although such daily maps of sensitivity may be useful

for users who may expect the sensitivities to depend on

certain types of weather, assessing sensitivity in-

dependently of forecast day is arguably more useful. To

that end, the daily maps of p values are aggregated into a

single p-value map; see the next subsection for an ex-

planation of how this aggregation is performed. In short,

MMR allows one to generate a single map of p values

displaying the spatial structure of sensitivities across all

model parameters and days. The utility of such a map is

derived from the underlying omnibus test. As such, only

if/when this map reveals a distinct spatial structure does

one proceed to assess the contribution from each model

parameter separately. This map is one of the main out-

puts of the proposed methodology.

The other main output is a number of p-value maps

for examining the contribution of eachmodel parameter

separately. MMR allows for such a test as well; in this

case, each p value assesses whether a given model pa-

rameter has an effect on any of the grid points in the

MMR window. Given that the test is done within the

MMR framework (i.e., with multiple responses and

predictors), the resulting p values continue to take into

account spatial correlations across the grid points and

correlations between the model parameters.

In the proposed methodology, complexities associated

with the multiplicity of predictors, responses, and grid

points are addressed in different ways. First, the p values

computed in MMR are penalized for larger number of

predictors and/or responses; these numbers appear ex-

plicitly in the degrees of freedom associated with the test

and in a way that generally increases the p value when the

numbers are large (Montgomery 2009). This ‘‘correction’’

does not directly address the problems associated with

multiple hypothesis testing because those problems arise
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when one compares p values with a fixed number

(e.g., significance level) for the purpose of rejecting or not

rejecting a null hypothesis. Here, the problems associated

with multiple hypothesis testing across the grid points are

avoided altogether because at no stage are any of the

p values employed for hypothesis testing.

The flowchart in Fig. 1 shows all of the elements of

the proposed methodology. One begins with an LHS

taken from the space of model parameters (top-left

corner of Fig. 1). These parameters are fed into the

mesoscale model (here, COAMPS), and forecast

spatial/gridded fields—maps, for short—are produced.

The model parameters are standardized and used as

predictors in MMR, while the response variables for

MMR are supplied by the values of forecasts inside the

MMRwindow. The least squares estimates of MMR are

subjected to two types of tests: 1) a test of whether any of

the model parameters have an effect on any of the grid

points in the MMR window and 2) a test of whether a

given model parameter has an effect on any of the grid

points in the MMR window. There exists one such

p-value map per day. A test of uniformity, discussed in

the next subsection, is applied to aggregate the daily

p-value maps.

c. Why p values?

One may wonder why the proposed methodology

places so much emphasis on producing p values when,

ultimately, no hypothesis tests are performed at all.

There are three reasons for using p values to assess

sensitivity. First, p values have a special property that can

be used for a variety of purposes: they have a uniform

distribution under the null hypothesis (Montgomery

2009). In the present application, this important property

is employed to aggregate the 40 daily p-value maps into a

single map of p values.

This aggregation involves the temporal component of the

data, and because the 40 cases are selected to be 3 days

apart, one may assume that they are reasonably in-

dependent. Under the null hypothesis that the forecast at a

grid point is unaffected by any of themodel parameters, the

40 p values at a given grid point ought to have a uniform

distribution. Then, any violation of uniformity suggests that

the parameter in question has an effect on the forecast at

that grid point. Here, a chi-squared and a Kolmogorov–

Smirnov test of uniformity have been performed, although

only the results of the former are shown; the latter produced

similar results. Again, the p values are displayed as a map.

The second reason for using p values is that although

statistical significance and the magnitude of an effect are

distinct concepts, the relationship between the magnitude

of p values and themagnitude of the regression coefficients

they test is monotonic. As such, a p value can be used not

only for assessing statistical significance, but also to convey

information about the magnitude of the sensitivity effect.

The proposed methodology has been developed

to avoid multiple hypothesis testing, but not to its exclu-

sion. The fact that the proposed methodology produces

FIG. 1. A flowchart of the proposed methodology. ‘‘Map’’ denotes a spatial, gridded field.

See text for explanation.
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p values at each grid point readily allows for multiple

testing because all of the procedures developed for mul-

tiple hypothesis testing begin with a set of ‘‘raw’’ p values

(such as those in the p-valuemaps) and then correct them

for the multiplicity of tests (Benjamini and Hochberg

1995; Bretz et al. 2010; Dmitrienko et al. 2009; Rosenblatt

2013; Wilks 2011). It is this feature of multiple hypothesis

testing procedures that constitutes the third reason for

using p-value maps for displaying sensitivity. In other

words, p values are used here because they can be readily

corrected for multiple hypothesis testing; other measures

of sensitivity (e.g., the regression coefficients) do not have

this property.

However, the methodology developed here does not

include the necessary corrections for multiple hypothesis

testing because the corrections depend on the specification

of an error rate to be controlled, and the choice of that error

rate is highly user- or problem-dependent (Rosenblatt

2013). There exists a large number of error rates, similar to

the wide variety of verification measures, but two common

choices are the family-wise error rate, defined as the

probability of at least one type I error, and the false dis-

covery rate, which is the expected proportion of type I er-

rors among all the tests that leads to the rejection of the null

hypothesis. The ultimate decision to reject or not reject a

null hypothesis depends on the choice of the error rate. It is

worth mentioning that these corrections, too, utilize the

uniformity of p values under the null hypothesis.

3. Application

To set the stage for the sensitivity analysis, for each of the

four forecast quantities, Fig. 2 shows the average across

40 days (forecasts) and 99 parameter values (ensemble

members). It is evident that the southeast region, off the

coast of Florida, receives the most convective precipitation

across the domain (Fig. 2a). Grid-scale precipitation

(Fig. 2b) is far less structured, with a slightly higher am-

plitude off the eastern coast and across theGulf states. The

Kain–Fritsch (KF) scheme (Kain and Fritsch 1993) is sen-

sitive to grid spacing, and it is expected that at this coarse

resolution (81km), the convective parameterization plays

an important role in producing precipitation (Gallus 1999).

Surface air temperature (Fig. 2c) displays the expected

gradient with respect to latitude and with cooler tempera-

tures over the Rockies and the Appalachian Mountains.

Water vapor near the surface (Fig. 2d) displays a similar

pattern to surface air temperature, with the exception that

the low-level dry air extends farther south, into Mexico.

a. Nonspatial sensitivity

Tomake contact with work done previously (Marzban

et al. 2014), first, the sensitivity of the domain mean of

the forecast quantities is computed for each of the 11

model parameters. The data used for estimating these

regression coefficients are the 99 cases corresponding to

99 samples taken from the 11 model parameters, and so

there exists a regression coefficient for each model pa-

rameter and each of the 40 days in the dataset. Figure 3

shows these regression coefficients with the box plots

displaying their variability across the 40 days.

If a boxplot is entirely above or below the horizontal

line at y5 0, then one may conclude that the corre-

sponding parameter has a consistent and significant ef-

fect on the forecast for all 40 days examined here. A

relatively small overlap of the boxplot with the hori-

zontal line implies that the parameter has a nontrivial

effect, but the effect is weaker. And if a boxplot is nearly

centered on the horizontal line, then one may conclude

that the corresponding parameter has no effect on the

forecast. Such plots are useful because they convey in-

formation about both statistical significance and the

magnitude of the effect via, respectively, the spread of

the boxplots and the overall location of the boxplots

relative to the horizontal line at y5 0.

It can be seen that parameters 1, 3, and 7 have

significant effects on both types of precipitation

(Figs. 3a,b), though their effect on grid-scale pre-

cipitation is opposite to that on convective precipitation.

Some explanation for this finding can be offered: pa-

rameter 3 controls the fraction of available precipitation

fed back from the convection parameterization to the

microphysics for grid-scale precipitation (Table 1). Al-

ternatively, it may be considered as cloud detrainment

primarily occurring at upper levels, where cloud ice

usually forms; the condensate is then passed to the grid-

scale microphysics. This connection represents the in-

teraction between the grid-scale-resolved clouds and

parameterized convection. When a large fraction of the

available precipitation is provided to the grid-scale mi-

crophysics, there is less chance for themodel to generate

convective precipitation, and hence, a negative sensi-

tivity to this parameter is expected (Fig. 3a). On the

other hand, the grid-scale precipitation increases when

more moisture becomes available, consistent with its

positive sensitivity to parameter 3 (Fig. 3b). The effects

of parameters 1 and 7 [controlling the temperature in-

crement at the lifted condensation level (LCL) for the

Kain–Fritsch cumulus parameterization] may be ex-

plained as follows: adding positive air temperature

perturbations at the LCL may cause the air parcel to

become more buoyant, rising faster, which is conducive

to convective precipitation and is reflected in the

positive sensitivity in Fig. 3a. The negative sensitivity

of parameter 7 in Fig. 3b suggests that grid-scale

precipitation decreases with the positive temperature
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perturbation at the LCL. In short, for any given amount

of moisture available for precipitation, the cumulus and

microphysics schemes represent two competing pro-

cesses for precipitation production. As such, it is not

surprising that the microphysics would generate less

grid-sale precipitation as the cumulus scheme becomes

more active for producing convective precipitation with

the larger positive temperature perturbation at the LCL.

Another difference between Figs. 3a and 3b is in the

effect of parameter 9, which represents the threshold be-

yond which clouds are converted into rain in the micro-

physics scheme (Rutledge and Hobbs 1983); it has a

positive impact on grid-scale precipitation but no effect on

convective precipitation. One possible explanation is that

while the grid-scale precipitation production is delayed due

to the increased value of parameter 9, the clouds havemore

time to develop, and the model actually produces more

grid-scale precipitation over the accumulation period.

Surface air temperature (Fig. 3c) is affected by many

of the parameters (to varying degrees, both positively

and negatively), with the exception of parameters 3, 6, 8,

10, and 11, which appear to have no consistent effect

across the 40 days. Interestingly, in regards to water

vapor (Fig. 3d), with the exception of parameter 5, all of

the parameters have either a negative effect or no sig-

nificant effect. This complex pattern of sensitivity in

temperature and moisture is a reflection of the various

processes that impact the surface atmospheric condi-

tions and the difficulties in representing them in the

physics parameterizations. The convective parameteri-

zation adjusts not only the moisture profiles, but also the

temperature profiles. Therefore, it is not surprising to

FIG. 2. The average (across 40 days and 99 parameter values) of (a) convective precipitation (mm), (b) grid-scale

precipitation (mm), (c) surface temperature (K), and (d) water vapor (kg kg21). The white patches appearing in

(a),(b) correspond to grid points at which no precipitation occurs across the 40 days and the 99 model parameter

values. In the assignment of colors to precipitation values, a log-transformation has been applied in order to visually

enhance the spatial structure of the forecasts.
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see that parameters 1, 2, and 7 have impacts on the

surface air temperature (Fig. 3c). Parameter 4 modu-

lates the depth of the layer impacted by the vertical

mixing processes. For the simulation period, an increase

in the vertical mixing length helps tomix heat downward

to the surface layer on average, although the impact

varies between cooling and heating of the surface layer

on particular days. On the other hand, the near-surface

water vapor is mixed upward, resulting in a dryer surface

layer (Fig. 3d), which is the case for all simulation days.

An outstanding feature in Fig. 3d is the high positive

sensitivity of water vapor to surface flux (parameter 5).

This feature is a strong indication that air moisture in the

surface layer is directly influenced by the surface latent

flux, which is consistent with the surface physics pro-

cesses in the model. Likewise, the surface sensible heat

flux impacts surface air temperature, indicated by its

strong sensitivity to parameter 5 (Fig. 3c).

Precipitation sensitivity analysis was studied using a

different (global) method by Marzban et al. (2014), and

their results are consistent with those above. This con-

sistency adds support to the results found here and also

justifies the use of the simpler (i.e., local or regression

based) approach employed here. The aforementioned

previous work did not examine the other forecast

quantities considered here. These nonspatial sensitivity

findings are important because they aid in organizing

and discussing the spatial results.

b. Spatial sensitivity

As shown in Fig. 1, one of the outputs of the proposed

methodology is a single map of p values that assesses the

extent to which any (i.e., at least one) of the model pa-

rameters affects the forecasts at any (i.e., at least one) of

the grid points in theMMRwindow. Figure 4 shows such a

map for the case where the forecasts are for convective

FIG. 3. Sensitivity (on y axis) of the domain mean of (a) convective precipitation, (b) grid-scale precipita-

tion, (c) surface air temperature, and (d) water vapor, with respect to the 11 model parameters (on x axis) listed in

Table 1. The boxplots display the variability of the sensitivity across the 40 days examined here.
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precipitation. A dark grid point corresponds to a small

p value, that is, a sensitive grid point. By contrast, a white

grid point indicates the lack of evidence from data to

support the claim that any of the parameters have an effect

on any of the grid points in the MMR window. Clearly,

there is nontrivial spatial structure. The grid points in the

Southeast and off the eastern coast of the United States

appear to be most affected by at least one of the model

parameters. There are isolated regions in Mexico and in

the northwesternUnitedStates that also display sensitivity,

albeit to a lesser degree. As explained above, the main

utility of such a map is to determine whether or not there

exists any effect at all, and whether there is sufficient jus-

tification for assessing the contribution of each model pa-

rameter, separately. In this case, the existence of an

unambiguous spatial structure justifies the latter.

For forecasts of convective precipitation, the maps of

the p values for the 11 parameters are shown in Fig. 5.2

Recall that according to Fig. 3a, parameter 3 (control-

ling the amount of precipitation fed back to the resolved

grid) and parameter 7 (controlling temperature pertur-

bations at the LCL) have the most effect on the domain

mean of convective precipitation. From Fig. 5, it is evi-

dent that the effect is mostly in the southeastern regions

in the forecast domain, although parameter 3 has a

larger region of influence than parameter 7. Parameter

2, which also affects KF, has a similar spatial structure.

Parameter 5, a surface flux factor, is significant only in

the southeastern United States, mainly over the ocean,

where large moisture flux occurs across the air–sea in-

terface. The remaining parameters have little or no

discernible spatial structure consistent across the

40 days. One possible reason for this independence on

surface conditions is that the convective systems in-

cluded in the data are not strongly surface-driven during

the forecast period.

Also, note that the conclusion following from the

omnibus test (that at least one of the 11 parameters is

responsible for the spatial structure seen in Fig. 4) is

consistent with the results in Fig. 5. Indeed, it appears

that most of the contribution to the spatial structure in

Fig. 4 is from parameter 3.

For grid-scale precipitation, the omnibus map of

p values shows an unambiguous spatial structure as well

(not shown), and the effect of the individual model pa-

rameters is shown in Fig. 6. The ‘‘best’’ parameters,

according to Fig. 3b, are parameters 1, 7, and 9, and

according to Fig. 6, they all have a comparable spatial

structure. In fact, with the exception of parameter 8,

which displays no spatial structure, all of the parameters

appear to affect the eastern regions of the forecast do-

main. This spatial structure may be because many of the

parameters (e.g., 1 and 7) are KF triggers. They affect

the tradeoff between grid-scale precipitation and con-

vective precipitation along the frontal zones, which oc-

cur primarily in the eastern to southeastern United

States. Parameters 9 (an autoconversion factor) and 10

(slope intercept for rain) are associated with rain pro-

duction by the microphysics scheme; it is interesting that

they are most influential in the northeastern United

States, where convective processes are not as active as

over Florida. Parameters 4 [planetary boundary layer

(PBL) mixing length factor] and 5 (surface flux factor)

have similar patterns of influence, with parameter 4

more significant in the northeast and parameter 5 more

FIG. 4. Sensitivity maps for convective precipitation. Black-

colored grid points correspond to small p values, thereby sug-

gesting that at least one of the model parameters has a significant

effect on at least one of the grid points in theMMRwindow.White

grid points (large p values) suggest that there is no evidence from

the data that any of the model parameters have an effect on any of

the grid points in the MMR window. The grayscale colors are as-

signed to the range of p values across all 11 model parameters.

2 It is important to point out that the grayscale colors are as-

signed to the p values appearing within each panel (i.e., for each

model parameter, separately); this color assignment enhances the

spatial structure in each panel and is therefore more appropriate

for the current study. If the color assignment were made to the

p values across all panels (i.e., across all model parameters), then

the resulting figures would display little to no information on the

spatial structure of the sensitivities. For example, with the alter-

native color assignment, only the panels corresponding to param-

eters 3 and 7 in Fig. 5 would display any spatial structure at all

because as seen from Fig. 3a, those two parameters dominate the

other model parameters. Said differently, the alternative color

scheme, like Fig. 3, would be more appropriate for ranking the

model parameters, while Fig. 5 is more conducive to an examina-

tion of spatial structure of sensitivities.
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significant in the east, especially over the Atlantic. This

pattern may be an indication of preferred locations for

vertical mixing in the boundary layer.

With respect to surface air temperature, Fig. 7 shows

the spatial structure of all model parameters, where blue

(red) colors correspond to low (high) p values, that is,

high (low) sensitivity.3 Although it is possible to use

Fig. 3c as a starting point for discussing Fig. 7, in which

case parameters 1, 2, 4, 5, and 7 are the most important,

FIG. 5. As in Fig. 4, but for each of the 11 model parameters. Black-colored grid points correspond to small p values, thereby suggesting

that the corresponding model parameter has a significant effect on at least one of the grid points in the MMR window.

3 There are two reasons why the blue/red color scheme is

adopted in Fig. 7 (and Fig. 8) instead of the black/white scheme

used in Figs. 5 and 6. First, the blue/red color scheme visually en-

hances the spatial structure. Second, this scheme is more appro-

priate for continuous fields, such as temperature and water vapor;

discrete fields like precipitation have geographic regions where no

precipitation may occur at all, to which it is natural to assign the

color white, indicating lack of sensitivity. For continuous fields,

there exists no geographic region where there exists no field value

at all, and so there is no need for a white color.
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that is not necessary because the spatial structures in the

various panels in Fig. 7 are sufficiently different to allow

for a meaningful discussion independently of the relative

strength of the parameters.

Parameters 1, 2, and 7 are related to the KF cumulus

parameterization. The largest sensitivity to these pa-

rameters is over land, especially over Mexico and over

the southeastern United States, where there exists sig-

nificant convective activity on many of the 40 days ex-

amined here. It is interesting that parameter 7 shows a

distinct preference for land sensitivity, especially on the

entire length of the western coast.

Parameters 4 and 5 are important nearly everywhere

across the domain, with the exception of a small pocket of

the southern Gulf states. This pattern can be understood

by noting that parameters 4 and 5 are the PBL mixing

length factor and the surface flux factor, respectively, and

so they influence the heat transfer in the boundary layer

and across the air–sea/land surface, thus influencing the

surface air temperature. The greatest sensitivity to these

parameters is in the north and especially over water,

where the surface flux and themixing causemore influence

between the sea surface temperature and the air

temperature.

FIG. 6. As in Fig. 5, but for grid-scale precipitation.
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Parameter 9 (an autoconversion factor for the mi-

crophysics) shows sensitivity over the southern Rockies

and Mexico. This finding is consistent with the expec-

tation that temperature over that mountainous region is

substantially influenced by thermodynamic processes in

the clouds, such as condensation heating/evaporation

cooling and cloud–radiation interaction.

Parameters 10 and 11 demonstrate a strong spatial

pattern of sensitivity in the north. These parameters

control size distribution of rain droplets and snow

particles, respectively. Over the northeastern United

States, physical processes associated with both rain and

snow have roughly equal contributions to temperature

changes near the surface.However, over the northwestern

United States, the snow processes play a dominant role

over the rain in modulating the surface air temperature.

The fact that parameters 1–7 all appear to have sensi-

tivity across nearly the entire domain can be attributed to

the various physics processes that can directly or indirectly

change surface air temperature. For example, evaporative

FIG. 7. As in Fig. 5, but for surface air temperature. To enhance visual acuity, a colored scale is used to display the p values. Blue (red)

grid points correspond to low (high) p values, that is, a significant (nonsignificant) effect. The colors are assigned to the range of p values

across all 11 model parameters.
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cooling of the rain drops can lower the surface air tem-

perature. The radiative cooling at the cloud top can alter

boundary layer structure and result in locations ofwarming/

cooling of air temperature at the surface.

The patterns of spatial sensitivity for forecasts of

water vapor (Fig. 8) are similar to those of surface air

temperature. Essentially, the sensitivity of water vapor

on all parameters, with the exception of parameter 8,

appears to have nontrivial spatial structure. This de-

pendence on themodel parameters is expected, as all the

parameters are related to the availability and conversion

of moisture. The only difference between the sensitivity

of water vapor and surface air temperature is in the ef-

fect of parameters 9–11, where the spatial extent of the

sensitive regions is smaller in the former (i.e., the blue

regions in Fig. 8 are generally smaller than those in

Fig. 7); however, this difference is sufficiently small that

it may not be significant.

It is worth emphasizing that parameter 8 (determining

the fraction of the clouds to be converted to rain) is not

significant for any of the four forecast fields examined, and

so it would be reasonable to conclude that it has little to no

effect on the spatial structure of forecasts. This lack of

sensitivity may be because the grid spacing (81km) is too

coarse to properly resolve the autoconversion process.

4. Summary and discussion

The work reported here describes a proposed meth-

odology for analyzing the spatial structure of the sensi-

tivity of forecasts with respect to model parameters.

Although the specific ingredients of the approach are

not novel, their application to sensitivity analysis is. The

main ingredients are as follows.

(i) Use of Latin hypercube sampling to optimally

perturb the model parameters, all assumed to be

continuous; the case of discrete or categorical

parameters will be reported elsewhere.

(ii) Use of multivariate multiple regression to assess

the effect of multiple model parameters on several

grid points simultaneously.

(iii) Use of multivariate multiple regression to account

for spatial correlations.

(iv) Use of the map of p values to display the spatial

structure of sensitivities.

(v) Use of the uniformity of p values (under the null

hypothesis of no effect) to assess the statistical

significance of the sensitivities across time

(i.e., across 40 days).

Together, these steps lead to a geographic map of

p values that visually displays the spatial structure of

sensitivities for each model parameter.

When applied to the 11 model parameters listed in

Table 1, it is found that all of the parameters have sig-

nificant effects, but the spatial structure of the sensitiv-

ities varies with the forecast quantity. The one exception

is parameter 8 (an autoconversion factor for the mi-

crophysics), which appears to have no effect and no

spatial structure at all. The spatial patterns of sensitivity

are complex, but can be summarized as follows.

The spatial structure of sensitivities for convective

precipitation is most distinct for parameter 3 (fraction of

grid-scale precipitation in KF fed back to the grid scale),

where the sensitivity is strongest over the southeast of

the forecast domain, regardless of whether the forecast

is over land or over water. By contrast, the spatial

structure of sensitivities for grid-scale precipitation is

similar across all of the model parameters (except for

parameter 8), and they do show a land–water distinction.

Surface air temperature and water vapor have similar

spatial structures. Specifically, parameters 1, 2, 3, and 7

(all related toKF) have a strong effect on land but nearly

no effect over the oceans. Parameters 9–11 (all related to

microphysics) appear to have an influence in three

relatively small regions—in the southwest, northeast,

and north, respectively. It should be emphasized that

because of the coarse model resolution used in the

simulation, these sensitivity results (especially those

related to precipitation) must be viewed mostly as a

demonstration of the methodology developed here.

The spatial structure of sensitivities for grid-scale

precipitation (Fig. 5) strongly resembles its climatol-

ogy (Fig. 2). In other words, it appears that the most

sensitive grid points are where the most grid-scale pre-

cipitation occurs. First, it is important to emphasize that

in spite of this general pattern, the spatial structure of

sensitivities does appear to vary across the model pa-

rameters. Regardless, the authors have attempted to

explain this resemblance by performing a number of

different analyses. For example, given that here, sensi-

tivity is measured by regression coefficients, it is possible

that the resemblance is due to a mean–variance re-

lationship (Montgomery 2009). Briefly, this condition

refers to the situation when the mean of a response is a

function of the variance of the errors. When a mean–

variance relationship exists in data, not only are the basic

probabilistic assumptions of regression violated, but also

the variance of the regression coefficients will no longer

be constant. In the present application, a mean–variance

relationship would lead to a map of p values that reflects

nothing more than the spatial variability of grid-scale

precipitation itself, that is, the climatology. To test the

prevalence of amean–variance relationship, the residual

plots were visually examined at each grid point.With the

exception of a few (2 to 10, depending on the day being
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modeled) grid points, no such relationship was noted.

And when appropriate data transformations were per-

formed to stabilize the variance, the resulting spatial

maps of p values was not affected at all. In short, the

similarity of the spatial structure of sensitivities and cli-

matology is not due to a mean–variance relationship. A

mean–variance relationship does exist when one exam-

ines the scatterplot of mean precipitation versus the

variance of precipitation across grid points, as that is a

direct consequence of the nearly lognormal distribution

of precipitation.However, themean–variance relationship

that is being discussed in the body of the paper refers to the

mean and variance of the response across the cases (i.e., the

99 values of the model parameters). It is the latter that is

problematic in regression. The former relationship is not

problematic because here, no regression is performed

across the grid points.

In another attempt to understand the above re-

semblance, the regression models for sensitivity were

also developed with the response set to the anomalies

(i.e., forecast 2 climatology). But, again, the same map

of sensitivities was obtained. In summary, the spatial

FIG. 8. As in Fig. 7, but for water vapor.
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structure of sensitivity in grid-scale precipitation does

not appear to be a direct consequence of climatology.

All of the spatial patterns noted in this work deserve

some sort of an explanation based on the underlying

physics and/or the type of weather events included in the

dataset. Although some explanations have been offered,

more can be done. For example, it will be useful to

cluster the 40 days of data examined here into small

groups that are meteorologically homogeneous and re-

peat the above analysis on each group. Of course, that

exercise will lead to generally degraded levels of statis-

tical significance because of the smaller sample sizes in

each group; however, that limitation is not a concern

because it is the spatial structure of the p values that is

under examination, not the magnitude of the p values at

each grid point.

On a more technical side, the methodology itself can

be extended in several directions. For example, it will be

interesting to compare theMMR’s ability to account for

spatial correlations with that of alternative methods

(Douglas et al. 2000; Elmore et al. 2006; Wilks 1997).

Although comparisons between the various methods

have already been made by DelSole and Yang (2011),

such comparisons within the context of sensitivity

analysis have not been made.

It may also be important to account for temporal

correlations; although the 40 days examined here were

taken several days apart in order to minimize temporal

dependence, it may be useful to account for any

remaining correlation as well. The results are unlikely to

change the major conclusions reported here, but they

may reveal other spatial structures unseen here. Such

hidden spatial structures may also emerge if higher-

resolution forecasts are examined, but the results of such

an analysis can only reveal smaller-scale structures in

the spatial structures already established in this study.

Although all 11 model parameters are used simulta-

neously in the MMR model, here, the model does not

include any interaction terms. There are 55 (i.e., 11

choose 2) such terms, and so a full model with in-

teractions will have 66 (111 55) regression coefficients.

As such, the size of the Latin hypercube sample may

have to be increased beyond 99, and the generation of

those data will require more computational effort. To

tame the effort, one may introduce interactions only for

the parameters that have been found to have an effect

on forecasts based on the no-interaction model used

here. For example, given that parameter 8 has been

found to have generally no effect on any of the forecasts

examined here, it is reasonable to assume that it will

have little or no interaction with the other parameters

either. This assumption is generally borne out due to

several principles: the principle of hierarchical ordering,

the principle of effect sparsity, and the principle of effect

hierarchy (Montgomery 2009, p. 192, 230, 272, 314, 329;

Li et al. 2006, 33–34). Alternatively, one may choose to

include only interactions that affect only the domain

mean of the forecast quantities; for mean convective

precipitation, all interactions are already analyzed in

Marzban et al. (2014).

In all methods that rely on a ‘‘window’’ of some kind,

the window size usually requires some consideration.

Here, theMMRwindow has a fixed size (33 3), and that

size is selected by qualitative considerations; for exam-

ple, it is large enough to account for some spatial

structure and small enough to yield a map with a rea-

sonably large number of grid points. However, it is

possible to allow for the window size to vary across the

spatial domain, adaptively, with the size determined by

an estimate of the spatial correlation (e.g., via vario-

grams; see Cressie 1993).

It is worth pointing out that the role played by the

MMR window is more than simply smoothing the map

of p values. Although the very existence of an MMR

window does lead to smoother maps, that smoothing is

only a side effect. The main purpose of the MMR win-

dow is to account for spatial correlations in assessing

sensitivity. As mentioned above, failure to take such

correlations into account leads to wrong (biased) esti-

mates of sensitivity. Another way to highlight the effect

of the MMR window is to note that a generic smoother

would operate on the p values directly; by contrast, any

smoothing that may be occurring in MMR is based on

the correlations across grid points and between model

parameters.

Acknowledgments. This work has received support

from the Office of Naval Research (N00014-12-G-0078

Task 29) and National Science Foundation (AGS-

1402895). We are grateful to Paul Roebber for a dis-

cussion on the differences between a sensitivity analysis

and model tuning. Ethan P. Marzban is acknowledged

for generating the flowchart in Fig. 1.

REFERENCES

Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of

numerically simulated cyclic mesocyclogenesis to variations in

model physical and computational parameters. Mon. Wea.

Rev., 130, 2671–2691, https://doi.org/10.1175/1520-0493(2002)

130,2671:TSONSC.2.0.CO;2.

Ancell, B., andG.Hakim, 2007: Comparing adjoint- and ensemble-

sensitivity analysis with applications to observation targeting.

Mon. Wea. Rev., 135, 4117–4134, https://doi.org/10.1175/

2007MWR1904.1.

Benjamini, Y., and Y. Hochberg, 1995: Controlling the false dis-

covery rate: A practical and powerful approach to multiple

testing. J. Roy. Stat. Soc., 57B, 289–300.

APRIL 2018 MARZBAN ET AL . 981



Bowman, K. P., J. Sacks, and Y.-F. Chang, 1993: Design and analysis

of numerical experiments. J. Atmos. Sci., 50, 1267–1278, https://

doi.org/10.1175/1520-0469(1993)050,1267:DAAONE.2.0.CO;2.

Boyle, J. S., S. A. Klein, D. D. Lucas, H.-Y. Ma, J. Tannahill, and

S. Xie, 2015: The parametric sensitivity of CAM5’s MJO.

J. Geophys. Res. Atmos., 120, 1424–1444, https://doi.org/

10.1002/2014JD022507.

Bretz, F., T. Hothorn, and P. Westfall, 2010:Multiple Comparisons

Using R. Chapman and Hall/CRC, 208 pp.

Cacuci, D. G., M. Ionescu-Bujor, and I. M. Navon, 2005: Sensitivity

and Uncertainty Analysis, Volume II: Applications to Large-

Scale Systems. Chapman and Hall/CRC, 368 pp.

Cioppa, T., and T. Lucas, 2007: Efficient nearly orthogonal and

space-filling Latin hypercubes. Technometrics, 49, 45–55,

https://doi.org/10.1198/004017006000000453.

Cressie, N. A. C., 1993: Statistics for Spatial Data. John Wiley and

Sons, 900 pp.

Crook, N. A., 1996: Sensitivity of moist convection forced by

boundary layer processes to low-level thermodynamic fields.

Mon. Wea. Rev., 124, 1767–1785, https://doi.org/10.1175/

1520-0493(1996)124,1767:SOMCFB.2.0.CO;2.

Daescu, D. N., and R. H. Langland, 2013: Error covariance sensi-

tivity and impact estimation with adjoint 4D-Var: Theoretical

aspects and first applications to NAVDAS-AR.Quart. J. Roy.

Meteor. Soc., 139, 226–241, https://doi.org/10.1002/qj.1943.

Davis, C. A., andK.Emanuel, 1991: Potential vorticity diagnostics of

cyclogenesis. Mon. Wea. Rev., 119, 1929–1953, https://doi.org/

10.1175/1520-0493(1991)119,1929:PVDOC.2.0.CO;2.

DelSole, T., and X. Yang, 2011: Field significance of regression

patterns. J. Climate, 24, 5094–5107, https://doi.org/10.1175/

2011JCLI4105.1.

Dmitrienko, A., F. Bretz, P. H. Westfall, J. Troendle, B. L. Wiens,

A. C. Tamhane, and J. C. Hsu, 2009: Multiple testing meth-

odology. Multiple Testing Problems in Pharmaceutical Statis-

tics, A. Dmitrienko, A. Tamhane, and F. Bretz, Eds.,

Chapman and Hall, 35–98.

Douglas, E. M., R. M. Vogel, and C. N. Kroll, 2000: Trends in

floods and low flows in the United States: Impact of spatial

correlation. J. Hydrol., 240, 90–105, https://doi.org/10.1016/

S0022-1694(00)00336-X.

Duan, Q., and Coauthors, 2006: Model Parameter Estimation

Experiment (MOPEX): An overview of science strategy and

major results from the second and third workshops. J. Hydrol.,

320, 3–17, https://doi.org/10.1016/j.jhydrol.2005.07.031.

Elmore, K. L., M. E. Baldwin, and D. M. Schultz, 2006: Field sig-

nificance revisited: Spatial bias errors in forecasts as applied to

the Eta Model. Mon. Wea. Rev., 134, 519–531, https://doi.org/

10.1175/MWR3077.1.

Fang, K.-T., R. Li, andA. Sudjianto, 2006:Design andModeling for

Computer Experiments. Chapman & Hall/CRC, 290 pp.

Fox, J., M. Friendly, and S. Weisberg, 2013: Hypothesis tests for

multivariate linear models using the car package. The R J., 5,

39–52.

Gallus, W. A., Jr., 1999: Eta simulations of three extreme pre-

cipitation events: Sensitivity to resolution and convective pa-

rameterization.Wea. Forecasting, 14, 405–426, https://doi.org/

10.1175/1520-0434(1999)014,0405:ESOTEP.2.0.CO;2.

Gombos, D., and J. A. Hansen, 2008: Potential vorticity regression

and its relationship to dynamical piecewise inversion.

Mon. Wea. Rev., 136, 2668–2682, https://doi.org/10.1175/

2007MWR2165.1.

Gómez-Navarro, J. J., C. C. Raible, and S. Dierer, 2015: Sensitivity

of the WRF Model to PBL parametrisations and nesting

techniques: Evaluation of wind storms over complex terrain.

Geosci. Model Dev., 8, 3349–3363, https://doi.org/10.5194/

gmd-8-3349-2015.

Hacker, J. P., C. Snyder, S.-Y. Ha, andM. Pocernich, 2011: Linear

and non-linear response to parameter variations in a meso-

scale model. Tellus, 63, 429–444, https://doi.org/10.1111/

j.1600-0870.2010.00505.x.

Hodur,R.M., 1997: TheNavalResearchLaboratory’sCoupledOcean/

Atmosphere Mesoscale Prediction System (COAMPS). Mon.

Wea. Rev., 125, 1414–1430, https://doi.org/10.1175/1520-

0493(1997)125,1414:TNRLSC.2.0.CO;2.

Holt, T. R., J. A. Cummings, C. H. Bishop, J. D. Doyle, X. Hong,

S. Chen, and Y. Jin, 2011: Development and testing of a

coupled ocean–atmosphere mesoscale ensemble prediction

system. Ocean Dyn., 61, 1937–1954, https://doi.org/10.1007/

s10236-011-0449-9.

Hourdin, F., and Coauthors, 2017: The art and science of climate

model tuning. Bull. Amer. Meteor. Soc., 98, 589–602, https://

doi.org/10.1175/BAMS-D-15-00135.1.

Houston, A. L., and D. Niyogi, 2007: The sensitivity of convective

initiation to the lapse rate of the active cloud-bearing layer.

Mon. Wea. Rev., 135, 3013–3032, https://doi.org/10.1175/

MWR3449.1.

Järvinen,H.,M. Laine, A. Solonen, andH.Haario, 2012: Ensemble

prediction and parameter estimation system: The concept.

Quart. J. Roy. Meteor. Soc., 138, 281–288, https://doi.org/

10.1002/qj.923.

Kain, J. S., and J.M. Fritsch, 1993: Convective parameterization for

mesoscale models: The Kain–Fritsch scheme. The Represen-

tation of Cumulus Convection in Numerical Models, Meteor.

Monogr., No. 46, Amer. Meteor. Soc., 165–170.

Kucherenko, S., D. Albrecht, and A. Saltelli, 2015: Exploring

multi-dimensional spaces: A comparison of Latin hypercube

and quasi Monte Carlo sampling techniques. Cornell Uni-

versity Rep., 30 pp., https://arxiv.org/abs/1505.02350.

Laine,M., A. Solonen,H.Haario, andH. Järvinen, 2012: Ensemble

prediction and parameter estimation system: The method.

Quart. J. Roy. Meteor. Soc., 138, 289–297, https://doi.org/

10.1002/qj.922.

Li, X., N. Sudarsanam, and D. D. Frey, 2006: Regularities in

data from factorial experiments. Complexity, 11, 32–45,

https://doi.org/10.1002/cplx.20123.

Marzban, C., 2013: Variance-based sensitivity analysis: An illus-

tration on the Lorenz ’63 model. Mon. Wea. Rev., 141, 4069–

4079, https://doi.org/10.1175/MWR-D-13-00032.1.

——, S. Sandgathe, J. D. Doyle, andN. C. Lederer, 2014: Variance-

based sensitivity analysis: Preliminary results in COAMPS.

Mon. Wea. Rev., 142, 2028–2042, https://doi.org/10.1175/

MWR-D-13-00195.1.

McKay, M. D., R. J. Beckman, and W. J. Conover, 1979: A com-

parison of threemethods for selecting values of input variables

in the analysis of output from a computer code. Techno-

metrics, 21, 239–245, https://doi.org/10.2307/1268522.

Mölders, N., M. Laube, and G. Kramm, 1995: On the parameteri-

zation of ice microphysics in a mesoscale a weather forecast

model. Atmos. Res., 38, 207–235, https://doi.org/10.1016/

0169-8095(94)00094-T.

Montgomery, D. C., 2009:Design and Analysis of Experiments. 7th

ed. John Wiley & Sons, 656 pp.

Noble, W. S., 2009: How does multiple testing correction work? Nat.

Biotechnol., 27, 1135–1137, https://doi.org/10.1038/nbt1209-1135.
Ollinaho, P., H. Järvinen, P. Bauer, M. Laine, P. Bechtold,

J. Susiluoto, andH.Haario, 2014: Optimization of NWPmodel

982 MONTHLY WEATHER REV IEW VOLUME 146



closure parameters using total energy norm of forecast error as a

target. Geosci. Model Dev., 7, 1889–1900, https://doi.org/10.5194/

gmd-7-1889-2014.

Qian, Y., and Coauthors, 2015: Parametric sensitivity analysis of

precipitation at global and local scales in the Community

AtmosphereModel CAM5. J. Adv.Model. Earth Syst., 7, 382–

411, https://doi.org/10.1002/2014MS000354.

Robock, A., and Coauthors, 2003: Evaluation of the North

American Land Data Assimilation System over the southern

Great Plains during warm seasons. J. Geophys. Res., 108, 8846,

https://doi.org/10.1029/2002JD003245.

Roebber, P. J., 1989: The role of surface heat and moisture fluxes

associated with large-scale ocean current meanders in mari-

time cyclogenesis. Mon. Wea. Rev., 117, 1676–1694, https://

doi.org/10.1175/1520-0493(1989)117,1676:TROSHA.2.0.CO;2.

——, and L. F. Bosart, 1998: The sensitivity of precipitation

to circulation details. Part I: An analysis of regional

analogs.Mon.Wea. Rev., 126, 437–455, https://doi.org/10.1175/

1520-0493(1998)126,0437:TSOPTC.2.0.CO;2.

Rosenblatt, J., 2013: A practitioner’s guide to multiple hypothesis

testing error rates. Cornell University Rep., 32 pp., https://

arxiv.org/abs/1304.4920.

Rutledge, S. A., and P. Hobbs, 1983: The mesoscale and microscale

structure and organization of clouds and precipitation in mid-

latitude cyclones. VIII: A model for the ‘‘seeder-feeder’’ process

in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206, https://
doi.org/10.1175/1520-0469(1983)040,1185:TMAMSA.2.0.CO;2.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn, 1989: Design

and analysis of computer experiments. Stat. Sci., 4, 409–423,

https://doi.org/10.1214/ss/1177012413.

Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto, 2004:

Sensitivity Analysis in Practice: A Guide to Assessing Scientific

Models. John Wiley & Sons, 232 pp.

——, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and

S. Tarantola, 2010: Variance based sensitivity analysis of

model output: Design and estimator for the total sensitivity

index. Comput. Phys. Commun., 181, 259–270, https://doi.org/

10.1016/j.cpc.2009.09.018.

Santner, T. J., B. J. Williams, andW. I. Notz, 2003: The Design and

Analysis of Computer Experiments. Springer, 283 pp.

Schumann, M. R., and P. J. Roebber, 2010: The influence of upper-

tropospheric potential vorticity on convective morphology. Mon.

Wea. Rev., 138, 463–474, https://doi.org/10.1175/2009MWR3091.1.

Stensrud, D. J., 2007: Parameterization Schemes: Keys to Un-

derstanding Numerical Weather Models. Cambridge Univer-

sity Press, 459 pp.

Torn, R. D., and G. Hakim, 2008: Ensemble-based sensitivity

analysis. Mon. Wea. Rev., 136, 663–677, https://doi.org/
10.1175/2007MWR2132.1.

Voudouri, A., P. Khain, I. Carmona, O. Bellprat, F. Grazzini,

E. Avgoustoglou, and J. M. Bettems, and P. Kaufmann, 2017:

Objective calibration of numerical weather prediction

models. Atmos. Res., 190, 128–140, https://doi.org/10.1016/

j.atmosres.2017.02.007.

Warner, T. T., 2011: Numerical Weather and Climate Prediction.

Cambridge University Press, 526 pp.

Weisman, M. L., and Coauthors, 2015: The Mesoscale Pre-

dictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96,

2127–2149, https://doi.org/10.1175/BAMS-D-13-00281.1.

Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated

fields. J. Climate, 10, 65–82, https://doi.org/10.1175/1520-0442

(1997)010,0065:RHTFAF.2.0.CO;2.

——, 2006: On ‘‘field significance’’ and the false discovery rate.

J. Appl. Meteor. Climatol., 45, 1181–1189, https://doi.org/

10.1175/JAM2404.1.

——, 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed.

International Geophysics Series, Vol. 100, Academic Press,

704 pp.

Zhao, J., and C. Tiede, 2011: Using a variance-based sensitivity

analysis for analyzing the relation between measurements and

unknown parameters of a physical model. Nonlinear Processes

Geophys., 18, 269–276, https://doi.org/10.5194/npg-18-269-2011.

APRIL 2018 MARZBAN ET AL . 983


