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Abstract

The prediction from most regression models - be it multiple regression, neural networks, trees, etc. -
is a point estimate of the conditional mean of a response (i.e., quantity being predicted), given a set of
predictors. However, the conditional mean measures only the ”center” of the conditional distribution of
the response. A more complete summary of the conditional distribution is provided by its quantiles. The
0.5 quantile (i.e., the median) can serve as a measure of the center, and the 0.9 quantile marks the value
of the response below which resides 90quantile and the 0.05 quantile serves as the 90thereby conveying
uncertainty. Quantiles arise naturally in environmental sciences. For example, one may desire to know
the lowest level (e.g., 0.1 quantile) of a river, given the amount of snowpack; or the highest tempera-
ture (e.g., the 0.9 quantile), given cloud cover. Recent advances in computing allow the development
of regression models for predicting a given quantile of the conditional distribution, both parametrically
and nonparametrically. The general approach is called Quantile Regression, but the methodology (of
conditional quantile estimation) applies to any statistical model, be it multiple regression, support vector
machines, or random forests. In this talk, the principles of quantile regression are reviewed and the
methodology is illustrated through several examples. The technique and the examples display many of
the features common in both machine learning and statistics.

Motivation

Q: Given data yi, i = 1, 2, ..., n, what prediction α minimizes MSE

E =
1

n

n∑
i

ε2
i =

1

n

n∑
i
(yi − α)2 ?
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A: The sample mean of y. Proof:

dE

dα
∼ 1

n

n∑
i
(yi − α) ∼ 1

n

n∑
i

yi − α ⇐⇒ α̂ =
1

n

n∑
i

yi .

Q: Given data yi, i = 1, 2, ..., n, what prediction α minimizes the MAE

E =
1

n

n∑
i
|εi| =

1

n

n∑
i
|yi − α| ?

A: The sample median of y. Proof: Similar.

Q: Given data (xi, yi), what prediction ŷ(x) = α0 + α1x minimizes MSE

E =
1

n

n∑
i

εi =
1

n

n∑
i
[yi − (α0 + α1 xi)]

2?

A: The conditional sample mean of y. I.e.,

ŷ(x) = α̂0 + α̂1x = mean of y, given x
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Moving on ...

E[y|x] = conditional mean = location of conditional distribution.

Width of conditional distribution ∼ uncertainty.

Why conditional mean? Why not conditional median?

And if median (i.e., 0.5 quantile), why not other quantiles?

Why not output = 0.1, ..., 0.5, ..., 0.9 conditional quantile (given x)?

Hence Quantile Regression (QR).

Effectively, QR produces the whole conditional distribution of y.

With it one can estimate and conduct inference on conditional quantile func-

tions. (∼ Extreme Value Theory).

90% Prediction Interval (not CI) = 0.95 quantile - 0.05 quantile.
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History

Google counts:

meteorology regression 655,000

meteorology “artificial intelligence” 495,000

meteorology “neural networks” 153,000

meteorology “quantile regression” 296

QR: Roger Koenker and Gilbert Bassett (1978), Econometrica.

QR Neural Nets: James W. Taylor (2000), Journal of Forecasting.

QR Forests: Nicolai Meinshausen (2006), Jour. of Machine Learning Research.

Nonparametric QR: Takeuchi, Le, Sears, Smola, (2006), Jour. of Machine

Learning Research.

In meteorology:

QR: John Bjrnar Bremnes (2004): Probabilistic forecasts of precipitation in

terms of quantiles using NWP model output. Mon. Wea. Rev.

Friedrichs and Hense (2007): Statistical Downscaling of Extreme Precipitation

Events Using Censored Quantile Regression. Mon. Wea. Rev.

Jeremie Juban , Lionel Fugon, George Kariniotakis (2007): Probabilistic short-

term wind power forecasting based on kernel density estimators. European

Wind Energy Conference. (QR Forests)
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Quantile Regression (Forests)

Instead of minimizing
∑n

i [yi − (α0 + α1 xi)]
2, minimize

n∑
i

f (yi − (α0 + α1 xi))

where

f (y − q) =

 β (y − q) y ≥ q

(1− β) (q − y) y < q

to obtain the βth quantile.

Instead of

E[y|x] = α0 + α1x

QR gives, for each quantile

Q[y|x] = α0 + α1x

Nonparametric QR gives

Q[y|x] = splines

QR Forests∗ give

Q[y|x] = piece-wise constant

∗ Breiman (2001): Take a bootstrap sample, develop a regression tree, repeat,

average the outputs over the samples.

5



Examples

1) No. tornadoes/month, 1950-1998 (technically, not regression).

12-month period filtered out with running median filter.

Courtesy of Joseph Schaefer, Storm Prediction Center.

2) This month’s vs. last month’s number of tornadoes.

3) Global temperature, 1851-1996 (Ibid).

http://www.image.ucar.edu/GSP/Data/Climate/observed.dat

4) Max water-level (above NAVD88) vs. Max 1-hr change, 23 sites in south-

western Louisiana and southeastern Texas following Hurricane Rita, Sep 2005.

http://pubs.usgs.gov/ds/2006/220/ (Table 3).

5) Six-minute obs. water-level vs. water temperature, San Fransisco, CA,

12/29/07-12/31/07

http://tidesonline.nos.noaa.gov/data read.shtml?station info=9414290+San+Francisco,+CA

6) Annual stream flow vs. prcp, 1948-1997, Big Sioux, Dell Rapids, SD.

Courtesy of Dennis Lettenmaier, Univ. of Washington.

7) Avg. (over 1931-1960) Jan. daily-min. temp. for 56 US cities, vs. lat. lon.

Code: R (packages: splines, quantreg, quantregForest).

Plot 0.05, 0.25, 0.5, 0.75, 0.95 quantiles, and the least-square fit (dashed).

Disclaimer: All substantive conclusions are cursory.
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Tornado Time Series
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No. of tornadoes is increasing with time.

The quantiles fan out slightly.
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The max (i.e., 0.95 quantile) number of tornadoes grows faster than the min

(i.e., 0.05 quantile) number of tornadoes.

More realistically, min is constant in time but max gows?
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This Month’s vs. Last Month’s No. of Tornadoes
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More/less tornadoes yesterday means more/less tornadoes today.

Center of distribution shifts up, but it spreads out too.

Median below mean, etc., i.e., distribution has a long tail on the high-y side.
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Shape of conditional distribution of y changes with x.
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Global Temperature
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Global temperature is increasing with time.

No fanning, i.e., whole conditional distribution shifts up.

See next.
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Global temperature is increasing/undulating.

The central spread (i.e., 0.75 - 0.25 quantile) is constant.

The full spread (i.e., 0.95 - 0.05 quantile) shrinks with time.
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Hurricane Rita
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There is a positive relationship between max water-level and max change in

water-level.

Insufficient data for anything else!
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Crossing Quantiles?

Probably overfitting!
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Water Level vs. Temperature at San Fransisco
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Surge inversely related to water temperature.

Reverse-fanning, i.e., less uncertainty in water-level at high temperatures.
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Nonlinear, but why?

Shape of distribution of y changes with x.
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Stream Flow vs. Precipitation
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Increasing prcp leads to increasing flow.

But not for the lowest quantile (0.05)! The upper quartile (0.95) doesn’t

increase as fast as the middle portion of the distribution.
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The middle portion of the distribution of flow shifts up with prcp.

Beware of extrapolation (0.05 quantile)!
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Flow vs. Prcp with Quantile Random Forrest
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Abrupt shifts in flow when prcp is about 5.5 and 7.5.

Again, lower quantile (0.05) is mostly insensitive to prcp.
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Jan. Min. Temperatures vs. Lat. and Lon.
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Quantiles: 0.99 (top), 0.5 (middle), 0.01 (bottom).

Top vs. median: SE and W mostly same; SW and NE warmer in top.

Bottom vs. median: SW and East of Mississippi cooler in bottom; No gradient

across Mexican border. (Acknowledment: Scott Sandgathe)
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Conclusions I

“Ordinary” regression, linear or not, provides only a single summary measure

for the conditional distribution of response (predictand) - the mean - given the

predictor.

Quantile regression provides a more complete picture of the conditional distri-

bution.

The idea naturally lends itself to all the generalizations that have followed

ordinary regression.

Many problems would actually benefit more from the prediction of extreme

values (rather than the mean), anyway.

Even when the expected value is of interest, QR assays uncertainy via predic-

tion intervals.
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Juvenile Conclusions

The number of tornadoes is on the rise.

Max grows faster than min, the latter being mostly constant.

The whole shape of the conditional distribution of the number of tornadoes

today varies as a function of the number of tornadoes yesterday.

Global temperature is on the rise.

The variation (between years) is dropping.

Max water level is positively associated with max change in water level.

Beware of overfitting.

Water level is negatively associated with water temperature.

The shape of the conditional distribution of the former varies with the latter.

Increased prcp leads to increased stream flow (for one station).

But not for the lowest quantiles of stream flow.

The strong temperature gradient across the Mexican border exists only in the

median, and not in the tails of the distribution.
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