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Various spaces are singled-out as candidates for the space of all 2D N= 1 and 2 supersymmetric quantum field theories, respec- 
tively. This is done by treating the c-function as a Morse function on these spaces. 

1. Introduction 

The study of  string theory and that of  critical phe- 
nomena in two dimensional systems has made the 
plan of  the classification o f  conformal field theories 
(CFTs) one of  paramount importance. However, the 
concept o f  classification is not one that renders itself 
to a precise definition. The latest program, which in 
a self-evident way qualifies to be called one of  classi- 
fication, is based on singularity theory [ 1 ]. Another, 
motivated mostly by the hope of  gaining some under- 
standing of  non-perturbative phenomena in string 
theory, is the idea of  treating CFTs as "special points" 
in the space, Q, o f  all 2D quantum field theories 
(QFTs)  [2].  Although different in approach, there 
exist certain common  grounds in these two ideas. For 
instance, renormalization group (RG)-f lows play a 
central role in both strategies. 

The space Q and the RG-flows are addressed in an 
elegant and unifying fashion in a theorem, due to 
Zamolodchikov [3],  called the "c-theorem". In this 
theorem, in addition to advocating the existence of  a 
function c, defined over Q, whose critical points cor- 
respond to CFTs (i.e, fixed points of  the RG-flow),  
one also demands that the RG-flows decrease the 
value of  the function c. The setting in the c-theorem 
is one which is most suitable for the application of  
Morse theory. There, knowledge of  the behaviour of  
a function, defined over a manifold, near its critical 
points provides one with a great deal o f  global (top- 
ological) information regarding the manifold itself. 
In this way we can learn about the space Q, solely 

from the knowledge of  the c-function defined on it. 
The subspace, Qo = Q, corresponding to N =  0 un- 

itary CFTs (i.e. c<  1 ) was treated in this way by Vafa 
[4 ] and, with a slightly different emphasis, by Das et 
al. [5].  Mostly in the spirit of  the former paper, in 
this letter we apply Morse theory to N =  1 and N =  2 
unitary super-CFTs (i.e. c<  3 and c < 3 ,  respec- 
tively). This will allow us to explore the topology of  
a larger subspace of  Q than that of  Q0. We will be 
cavalier in our handling of  the space Q; in addition 
to the various technicalities which arose in the N =  0 
case (which were addressed in ref. [4] ), the N =  1 
and 2 cases call for further "restrictions" on the rele- 
vant subspaces of  Q, which will be discussed below. 

2. Morse theory and N=O CFTs 

In this section we briefly recall elementary ideas 
from Morse theory, and review its application to the 
N =  0 case, as treated by Vafa [4].  

First, let us develop what is often referred to as 
"baby Morse theory" [6].  Given a compact mani- 
fold M, and a non-degenerate function f d e f i n e d  on 
it, one defines a Morse polynomial (MP)  for f b y  
M(f ;  t) - ~p, t n', where P, are the critical points o f f  
at which ni is the index off ,  i.e. the number  of  nega- 
tive eigenvalues of  the hessian (or, in other words, 
the number  of  directions in which fdecreases) ,  t is 
an arbitrary parameter between 0 and 1. For the 
manifold M, one defines a Poincar6 polynomial 
(PP) ,  P(M;  t ) - ~ d i m M b k ( M )  t k , =  k=o where b k ( M ) -  
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dim Hk(M) are the Betti-numbers of M. Now, given 
the function f the "weak" Morse inequalities place 
upper-bounds on the bk of M: P(M; t) ~<M(f; t). The 
"strong" form of the inequalities, however, serves our 
purpose better. It states 

M(f ;  t ) - P ( M ;  t ) =  ( l + t ) Q ( t ) ,  (1)  

where the coefficients of Q (t) are non-negative. No- 
tice the following consequence of ( 1 ): 

M(f ;  - I ) = P ( M ;  - 1) .  (2) 

The "lacunary principle" [ 6 ] states that if the prod- 
uct of all the consecutive coefficients in M(f ;  t) are 
zero, then M0C; t ) = P ( M ;  t). A function for which 
this equality holds is called a perfect Morse function. 
Thus, if one can find a function on M whose MP sat- 
isfies the lacunary principle (i.e. a perfect function), 
then one can simply read-off the bk of M from the 
coefficients o fM(f ;  t), or simply look up spaces which 
have M(f ;  t) as their PP. 

Now, in ref. [4 ], f a n d  M were identified with the 
c-function Co and the space Qo, respectively. Also, in 
that case, the critical values and the index of Co were 
nothing but c ( m ) = l - 6 / [ m ( m + l ) ]  with m>~2, 
and the number of relevant operators (i.e. 2 ( m - 2 ) ,  
excluding the identity) in the N = 0  CFT, respec- 
tively. Then, M(co; t ) - ~  ~ -  r n = 2  tZ{m--2)=l+t2+t4 
+ . . . .  1/(  1 -  t 2 ) .  Since the lacunary principle does 
apply to this MP, Co is then perfect, i.e. the PP of the 
space Qo is P(Qo; t) = 1 / ( 1 - t 2 ). Among the infinity 
of topologically distinct spaces which share this PP, 
Vafa discussed ( 1 ) the loop-space of SU ( 2 ), and (2) 
CP ~. Two more examples of such a space are (3) the 
space of all paths, joining two arbitrary points, on S 3 
and (4) the connected sum of S 2, S 4, S 6, .... We shall 
generically refer to all these spaces, which are homo- 
logically equivalent, as Qo, i.e. the space relevant to 
the N =  0 unitary CFTs. 

3. Morse theory and the N =  1 super-CFTs 

Let us now apply the paraphernalia of  Morse the- 
ory to the N =  1 superdiscrete series. The space under 
consideration is then the space of all 2D N =  1 super- 
symmetric QFTs, which we shall call Q1. Of course, 
as in the N =  0 case, we are assuming that the various 
technical difficulties regarding the application of 

Morse theory (e.g. orbifold singularities, and the in- 
finite-dimensional nature of Q~, etc.) have been 
properly taken into account. 

In computing the MP it is important to realize what 
the definition of "the index of the c-function" truly 
is. For the N =  0 case, the index is simply the number 
of relevant fields in the CFT, since this is the number 
of RG-trajectories in the direction of which Co de- 
creases. In the N =  1 case, since we are considering 
RG-flows which preserve N =  1 SUSY, the index of 
the c-function c~ must be identified with the number 
of relevant super-fields (excluding the identity). Also 
note that since there are no SUSY-preserving mar- 
ginal operators here, c~ is non-degenerate. From refs. 
[ 7,8 ] it can be seen that this number is ( m -  2 ). Thus 
the MP for cl is 

M ( c ~ ; t ) =  t m - 2 = l + t + t 2 + t 3 +  . . . .  l - t "  (3) 
m=2 

In contrast to Co, the perfectness of c~ cannot be de- 
cided on the basis of the lacunary principle, since 
every power of t is present. Thus, it is not possible to 
identify Q~ (or the homology OfQl ) uniquely. How- 
ever, Morse theory does provide us with restrictions 
on the possible Betti-numbers of Q~, as shown below. 

The weak form of the inequalities already place 
limits on the bk - that bo(Ql) = 1, and bk(Q~) = 0  or 
1 for Vk~0. The former relation implies that QI is 
connected. To further explore the possible allowed 
0/1 configurations of the bk(Q~ ), we must go on to 
consider the strong form of the inequalities. 

The strong form of the Morse inequalities places 
strong restrictions on the possible values of the 
bk(Ql ). Substituting (3) in ( 1 ) gives 

bk = 1 - -qk - -qk - I  , (4) 

where for clarity of notation I have suppressed the Q~ 
appearing in the argument of bk (Q1). Since (4) can 
be inverted, 

qn= ~ (--1)kbk f o r n = o d d ,  
k=0 

= ~ ( -1 )k+ lb  k forn=even,  (5) 
k=l  

the non-negativeness of the qk allows us to develop 
an algorithm for enumerating all the possible 0/1 
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configurat ions of  the bk. The result is as follows: I f  we 
indicate  the 0 or 1 value o f a  bk by ,,{o,,, then in the 
sequence of  bk (s tar t ing with bo = 1 ), any value is fol- 
lowed by a {o, except the 0 in {o which is followed by 
a single 0 (not  1 ). This can best be seen, schemati-  
cally, in the following scheme: 

• I f °  
0 0 ... 

f°l ° ,  
1 {0 ..., 

1 f0 0 ... 

i0, 0 

where from left to right, the columns correspond to 
the allowed values of  bo(Ql ), bl (Ql) ,  b2(Q1 ), etc. 

Although, at this stage we cannot  enumera te  all the 
possibilities, for there are infinite of  them, we see that 
there are stringent restr ict ions on the allowed Betti- 
numbers.  For  example,  as seen in the above scheme, 
spaces whose PP begin with 1 + t  2, or with 1 + t + t  3 
are not allowed. The former  implies  that  the Qo-can- 
didates,  in part icular ,  are not legi t imate as candi-  
dates for Q~. The lat ter  corresponds to examples  of  
non-s imply connected  spaces which are again not al- 
lowed (however,  see below).  

Notice that  as a result of  (2)  not all the solut ions 
in the scheme are allowed. This equat ion places the 
following const ra int  on the bk: 

~ ( - -  1)kbk=½ . (6)  
k = 0  

However,  it is impor tan t  to realize that  the evalua- 
t ion of  the infini te sum in M(c~; t) (which, at t =  - 1 
gives the ½ in ( 6 ) )  has already taken us into the realm 
of  analysis. In other  words, to impose  (6)  requires 
some sort of  a " regular iza t ion"  of  the infini te sum on 
the left-hand side; recall that  the bk are 0 or  1. Intui-  
tively, (6)  means that the 0s and the 1 s must  be evenly 
dis t r ibuted among the bk with k =  even and odd. 

One way of  "regular iz ing"  the sum in (6)  is by 
placing a cu t -of fon  it. This  amounts  to treating Q~ as 
a finite d imens iona l  space - call it Q~. For  our pur-  
poses it does make sense to treat  QI as finite d imen-  
sional, since we can consider  only those super-CFTs 
(i.e. all the points  of  QL at which c~ is equal to 
c ~ ( m ) = 3 [ 1 - 8 ~ r e ( m + 2 ) ]  with m>~2) to which a 

given super-CFT (m ¢ oo) flows; with rn = ~ re- 

moved,  Qt can be finite dimensional .  
In fact, for Q~, we can discard the constraint  (6)  

altogether, since it is nothing but  a consequence of  
the Morse inequali t ies  (at  t =  - 1 ) which we have al- 
ready taken into account. Instead, though, we have 
the Poincar6 dual i ty  at our disposal  (assuming Q~ is 
or ien table) ,  i.e. bk=bD_k.  Then, of  the configura- 
t ions appear ing in the scheme, those which satisfy the 
Poincar6 duality have the following PPs: For  D = odd, 

P ( Q ~ ;  t ) = l + t  D,  

= l  + t + t D - l  + t  o , 

= 1 +l+t2+tD--2"l t - t  D-I  + t  D , 

= l + t + t z + t 3 + . . . + t  ° ,  

and for D = even, 

P ( Q ~ ;  t) = l + t + t 2 + t 3 + . . . + t  ° .  

Before going any further, we can compute  the Euler 

number  of  Q~:  

x ( Q D ) = P ( Q ~ ; t = - I ) = O  f o r D = o d d ,  

=1  f o r D = e v e n .  (7)  

For  the D =  odd case, except for the first solut ion 
which is the PP of  S D, and for the last solut ion which 
we shall discuss below, the rest are difficult to iden- 
tify with " c o m m o n "  spaces. Of  course, to visualize 
their  homology one can think in terms of  connected 
sums of  the S N (see below).  Even without  knowledge 
of  the specific spaces, we can extract some useful in- 
format ion  for D = o d d  or even. For  instance, all of  
our PPs have bo= 1, implying that  Q~ is connected.  
Except for the case Q~ = S  D, we have b~ = 1 which 

means  that  Q~ is in fact not s imply connected - there 
exists exactly one non-contract ible  curve. In other  
words, Q~ has a hole in it. The Euler numbers  (7)  
are also helpful in visualizing these spaces. A conve- 
nient  representat ion which captures at least the hom- 
ological structure o f  these spaces is given in terms of  
connected sums of  S N. Corresponding to the various 
D = odd solutions we have 
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Q~ ~ S D , 

~S lvSD-I  vS D, 

~ S  1 V S2 v s D - 2  v S D - I  v S  D ' 

~ S  1 v S2 v S3 v . . .  v S D ' 

and for the D=even  case we have only 

Q D ~ S '  v S 2 v  S3 v . . .  v S D ' 

where " ~ "  indicates homological equivalence. The 
actual topology of QD may be quite different from 
these. 

Finally, it is amusing that the only PP that appears 
in both the D=even  and odd case is P(Q~; 
t ) =  1 +t+t2Wt3+...+tD, which is equal to the MP 
itself, i.e. that c~, as a function defined on this space, 
is perfect. A non-rigorous argument for the perfect- 
ness of cl would follow upon consideration of the 
D-- .~ limit. In that limit the only consistent solution 
(i.e. common to both D=even  and odd) is 

P(Q,;  t ) =  lim p(QD; t)=l+t+t2+... 
D~ov 

1 
- = M ( c ~  ; t )  . 

1-t  

Thus, we see that, although the lacunary principle 
could not decide the perfectness of cl, the MP for c~ 
is special enough (i.e. with all coefficients equal to 1 ) 
so that one can at least entertain the possibility of the 
perfectness of c~. Now, as an infinite dimensional 
space, other than S~ v S 2 v S 3 v..., another candidate 
space for Q~ is the space of paths, joining two arbi- 
trary points, on S 2. 

4. Morse theory and the chiral N =  2 super-CFTs 

Q2, the space of all 2D chiral, N=  2 super-CFTs re- 
quires a slightly more careful analysis of the pattern 
of RG-flows. We have restricted our attention to the 
subspace of chiral theories, because it is these whose 
algebra's chiral rings have a correspondence with the 
local rings of the respective super-potentials, thereby 
equipping one with a rigorous geometric foundation 
[ 1 ]. Also, it is known that the unitary, chiral, theo- 
ries have a Landau-Ginzburg (LG) description [ 1 ], 

which makes the study of RG-flows, and the matter 
of counting the number of relevant operators an easy 
task. 

It turns out that the LG-superpotentials for chiral 
N =  2 super-CFTs fall into the ADE pattern that ap- 
pears in the classification of modality-zero, complex 
singularities [ 1 ]. This fact is more than sufficient to 
provide us with all the information we need for con- 
structing the MP. Firstly, with the LG-superpoten- 
tials at hand, it is easy to see that, as in N= 0 and 1, 
RG-flows keep one within the A-series [9]. There- 
fore we are justified, again, to compute the MP for 
only the A-series. Secondly, the number of relevant 
chiral superfields (including the identity) is simply 
equal to the index of the singularity, as a result of the 
above-mentioned ring correspondence; for the case 
of the A~+ wseries, with k>~0, this number is (k+  1 ) 
(or simply k, excluding the identity). Thirdly, the 
modality-zero condition, i.e. the absence of (SUSY- 
preserving) marginal operators, assures us that the c- 
function is non-degenerate. The final point is in re- 
gards to the complex nature of the superfield; as a re- 
sult of this, the coupling constant in front of the rel- 
evant perturbation can also be complex. Recall that 
Q, in general, can be considered a space of coupling 
constants, ~ la Zamolodchikov [7]. Thus, Q2 is a 
complex space. 

It is tempting to interpret the number of relevant 
chiral superfields, k, as the index of the c-function c2. 
However, recalling that the index of a function is the 
number of negative eigenvalues of the hessian (i.e. a 
quadratic form), the attempt of defining an "index" 
for a complex function, defined over a complex space, 
becomes hopelessly obstructed. This obstruction is 
essentially due to the fact that the field of complex 
numbers cannot be totally ordered ~1. Although one 
can define critical points for a complex function, one 
cannot decide the maximum/minimum behaviour of 
the function at the critical points. In other words, 
whether c2 increases or decreases, in a given (com- 
plex) direction, cannot be decided upon. This non- 
existence of an analog of Morse theory, for complex 
spaces ~2, destroys all hope of learning about the 

~ On this point, we acknowledge many fruitful discussions with 
M. Mahdavi-H. 

~2 There does exist an anolog of Morse theory for complex spaces, 
and it is called the Picard-Lefschetz theory (see ref. [10] ). 
However, it lacks the analog of Morse inequalities. 
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complex cohomology ( in the sense of Dolbeault  co- 
homology, HP,q(Q2) ) of Q2. 

The situation is however not entirely bleak, for 
since the value of c2 at the critical points is real (this 
being c2 (k) = 3k/( k + 2 ) with k >~ 0 ), we can shift our 
at tention from Q2 to its real "covering", QZR. Indeed, 
since every compact complex (D-dimensional)  man- 
ifold is equivalent to a compact real (2D-dimen- 
sional) manifold, we can still apply Morse theory and 
extract information about the real (de Rham)  co- 
homology of the space QzR. In short then, we now 
have a real space, QZR, and a real-valued c-function, 
CzR, defined on it, available for the application of 
Morse theory. The only subtlety is that the index of 
CzR at a critical point  is not simply k (see above),  but 
rather 2k ~3, since at a given critical point  there are 
now 2 independent  real directions, associated to each 
relevant chiral superfield, in which c2R decreases. 

Finally, the MP for C2R is M(C2R; t ) =  52~=0 t2k= 
1 + t 2 + t 4 +  . . . .  1/(  1 --t2). We see that, as in the N = 0  
case, the lacunary principle implies that CZR is perfect 
which in turn  means that P(Q2R; t) = 1/(1 _ /2 ) .  In 
fact, this is the same as the PP of Qo (i.e. the N = 0  
space)! Thus, although Qo and Q2R can be topologi- 
cally different spaces, they are homologically equiv- 
alent. So, one may recall the same Qo candidate spaces 
for Q2R - loop space of SU (2),  space of paths on S 3 
jo in ing  two arbitrary points, S 2 v S 4 v S 6 v .... and 
Cp~  ~4. 

,3 We would like to thank C. Vafa for pointing out this crucial 
fact to us. 

~4 This latter space is, in fact, suggested by the relation between 
the minimal N=2 models and coset constructions of them 
based on SU(N)/SU(N-I)×U(I),~CP ~Jv-l). This was 
pointed out to us by C. Vafa. 
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