
Mixture Models for Estimating Maximum
Blood Flow Velocity

he importance of estimating blood flow in major cerebral
arteries has been well documented.1–5 The reduction of
blood flow through a major cerebral artery, such as caused

by cerebral vasospasm, can lead to a wide range of disorders; there-
fore, monitoring blood flow has important clinical consequences.6
Transcranial Doppler ultrasound imaging is one of the methods for
assaying blood flow.7,8 Vasospasm leads to reduced blood flow but an
increased blood flow velocity; therefore, estimating the maximum
blood flow velocity is of particular importance.9

The time series of a flow velocity histogram is called a spectro-
gram, and the time series of the maximum flow velocity is called an
envelope. Despite their clinical importance, neither the spectrogram
nor the maximum flow velocity can be observed directly. From a sta-
tistical perspective, they must be considered population parameters
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ORIGINAL RESEARCH

Objectives—A gaussian mixture model (GMM) was recently developed for estimating
the probability density function of blood flow velocity measured with transcranial
Doppler ultrasound data. In turn, the quantiles of the probability density function allow
one to construct estimators of the “maximum” blood flow velocity. However, GMMs
assume gaussianity, a feature that is not omnipresent in observed data. The objective of
this work was to develop mixture models that do not invoke the gaussian assumption.

Methods—Here, GMMs were extended to a skewed GMM and a nongaussian kernel
mixture model. All models were developed on data from 59 patients with closed head
injuries from multiple hospitals in the United States, with ages ranging from 13 to 81
years and Glasgow Coma Scale scores ranging from 3 to 11. The models were assessed
in terms of the log likelihood (a goodness-of-fit measure) and via visual comparison
with the underlying spectrograms.

Results—Among the models examined, the skewed GMM showed a significantly (P < .05)
higher log likelihood for 56 of the 59 patients and produced maximum flow velocity
estimates consistent with the observed spectrograms for all patients. Kernel mixture
models are generally less “robust” in that their quality is inconsistent across patients.

Conclusions—Among the models examined, it was found that the skewed GMM pro-
vided a better model of the data both in terms of the quality of the fit and in terms of visual
comparison of the underlying spectrogram and the estimated maximum blood flow
velocity. Nongaussian mixture models have potential for even higher-quality assess-
ment of blood flow, but further development is called for. 

Key Words—blood flow; brain; head injury; noninvasive; transcranial Doppler ultrasound
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that are to be estimated from data. Moreover, the very
notion of maximum flow velocity is ambiguous because the-
oretically flow velocity has no upper bound. Many envelope
estimation algorithms have been proposed10–15; one that is
frequently16 used is the modified geometric method
(MGM).10 That method essentially searches for a “kink” in
the cumulative histogram of flow velocity and defines the
maximum flow velocity as the flow velocity at which
the kink occurs. It provides reliable envelope estimates but
lacks the important feature of allowing one to quantify the
uncertainty in maximum flow velocity. By contrast, the mix-
ture model described by Marzban et al15 allows one to
quantify flow velocity in terms of percentiles. For example,
one may examine the envelope corresponding to the 90th,
95th, and 99th percentiles of flow velocity. Each of these
provides a unique and well-defined measure of “maximum”
flow velocity, and the ability to do this is the main advan-
tage of mixture models. Furthermore, the maximum flow
velocity as defined by the MGM is in close agreement with
that produced by the 90th percentile envelope in a mixture
model.15 As such, mixture models enjoy two important
features: (1) they produce envelopes corresponding to
multiple percentiles of flow velocity; and (2) one of the per-
centiles (ie, the 90th) produces an envelope that is approx-
imately equal to the envelope estimated by the MGM.

However, the specific type of mixture model devel-
oped by Marzban et al15 assumes that the distribution of
flow velocity, at any point in time, as measured by a tran-
scranial ultrasound device, is gaussian. The agreement
between an envelope produced by such a gaussian mixture
model (GMM) and that produced by the MGM suggests
that either the distribution of flow velocity truly is gaussian,
or that the envelope is not sensitive to violations of that
assumption. As shown below, the distribution of flow veloc-
ity varies with time; at certain times, it is gaussian (or at least,
near gaussian), while at other times it is not. The deviations
from normality manifest themselves mostly as a skew.
For this reason, one of the models described here assumes
that the underlying distributions of flow velocity are skewed
gaussian. Data are used to estimate the mean, the variance,
and the shape (or skew) parameter of the distributions.
Here, this model is referred to as a skewed GMM.17–19

Another model discussed (briefly) does not assume a para-
metric form for the distribution of flow velocity at all;
instead, the distribution is inferred by using kernel esti-
mates.20–24 Such kernel mixture models (KMMs) are flex-
ible in that they accommodate a wide range of distributions
(including gaussian). However, kernel methods involve a
smoothing parameter whose value is a priori unknown.
Generally, extreme values of the parameter correspond to

either a smooth distribution (eg, gaussian) or a highly
irregular distribution. One often uses some criterion (such
as the maximization of likelihood) to optimize the smooth-
ing parameter.

In this study, the skewed GMM and KMM were
developed for estimating the envelope for each of 59
patients in our data set. Although quantitative measures
for goodness of fit were used to compare the various mod-
els, qualitative comparisons were also used. This practice is
necessary because, as the true envelope is not directly
observable, the estimated envelope is assessed by visually
comparing it with the underlying spectrogram. 

Materials and Methods

Data
The data for this work were collected from a preclinical
study involving 59 patients with closed head injuries from
multiple hospitals in the United States, with ages ranging
from 13 to 81 years and Glasgow Coma Scale scores rang-
ing from 3 to 11. A PowerMode 100 transcranial Doppler
device (Spencer Technologies, Northborough, MA) was
used at the Harborview Medical Center (Seattle, WA),
Columbia University Medical College (New York, NY), and
the University of Texas Medical School (Houston, TX).
The device has an ultrasound carrier frequency that ranges
between 1.75 and 2 MHz and pulse repetition frequencies
of 8000 to 10,000 Hz. The transcranial Doppler probe was
placed on the temple of the patient by the sonographer
after application of ultrasound gel. In all cases, the sonogra-
pher sought to produce an optimal spectrographic signal,
defined here as one with a maximum systolic flow velocity
in the main branch of the middle cerebral artery. To do
so, the sonographer manipulated the angle of insonation of
the middle cerebral artery by the probe, the power of the
ultrasound, as well as the depth within the brain from
which the Doppler spectral data were obtained. Further
details on this data set can be found in previous studies by
Marzban et al.15,25 The former used only the ultrasound-
derived transcranial Doppler spectra for the purpose of
developing the aforementioned GMMs for envelope esti-
mation. In the latter, the data were used to develop a model
of arterial blood pressure, which can in turn be used to pre-
dict intracranial pressure. In accordance with the Institu-
tional Review Board for each hospital, informed consent
was obtained from all patients or their families.

With clinically approved transcranial Doppler units,
blood flow velocity in the middle cerebral artery was meas-
ured with Doppler ultrasound. Data were collected for
periods from 5 to 30 minutes. All retrospective data pro-
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cessing and analysis were conducted at the Applied Physics
Laboratory of the University of Washington. Although the
Doppler spectral time series were initially sampled at 125 Hz,
they were down-sampled at 40 Hz. This resolution was suf-
ficient to resolve each patient’s systolic rise, diachrotic
notch, and diastolic minimum. For each patient, envelopes
were produced over a fixed duration (118 sampled points,
or about 3 minutes). This duration is sufficiently long to
include several cardiac cycles while allowing details of the
envelopes to be visually evident. 

Data Processing and Statistical Analysis
In previous work, it was shown that the GMM is a natural
extension of the MGM in that the former provides for
multiple estimators of maximum flow velocity based on per-
centiles of the probability density function of the flow veloc-
ity. It was found that the envelope corresponding to the
90th percentile of the probability density function is
comparable with the envelope estimated by the MGM.15

As such, the GMM is superior (to the MGM) in that it
allows one to estimate the highest blood velocities, and effec-
tively their uncertainty, through multiple percentiles of the
probability density function of flow velocity. The MGM is
included in the analysis here only for the purpose of provid-
ing a comparison with the GMM. In fact, since the GMM
outperforms the MGM, the skewed GMM and KMM
were both compared with the GMM. The KMM leads to
envelopes that are moderately superior to those based
on the skewed GMM but not for all patients; for this rea-
son, the KMM is discussed only briefly and only for the
purpose of discussing future work.

As explained in Appendix 1, in a GMM, the distribution
(more accurately, the probability density function) of flow

velocity for each patient and at any time is assumed to be
a linear combination of two gaussians. The coefficients,
called mixing coefficients, as well as the parameters of the
gaussians are estimated from data. In the study by Marzban
et al,15 it was shown that the two gaussians represent the
“signal” and the “background” portions of the distribution,
respectively. Those, then, allow one to use the upper per-
centiles of the former to quantify the maximum flow velocity.
The left panel of Figure 1 shows an instance of the signal
gaussian (blue), the background gaussian (red), the 90th,
95th, and 99th percentiles of the former (blue vertical
lines), and the maximum flow velocity according to the
MGM (black vertical line). The data (black circles) are
from a single patient and at a given time.

The generalization from a GMM to a skewed GMM
is relatively straightforward in that each gaussian in the mix-
ture model is replaced by a skewed gaussian (Appendix 1).
This process introduces only 1 more parameter: namely,
the shape parameter, which affects the skew of the gaussian.
The difference in the models may be visualized by the
example in Figure 1. The middle panel of Figure 1 shows
the various components. The data are for the same patient
and same time as in the left panel. Note the evident skew in
the signal and the background components. The skewed
GMM algorithm is implemented by an R package called
mixsmsn,18,19 available online from the Comprehensive R
Archive Network.26

In the KMM the distribution of flow velocity is assumed
to be a linear combination of two distributions, but unlike
the GMM and skewed GMM, each distribution is estimated
by using kernel methods (Appendix 1). The kernel method
followed here uses the expectation maximization algorithm
for fitting multivariate nonparametric mixtures with com-
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Figure 1.  Distribution (more accurately, probability density function) for the signal (blue) and background (red), as determined by the GMM, skewed

GMM, and KMM. The blue vertical lines denote the 90th, 95th, and 99th percentiles of the signal flow velocity (FV), and the black vertical line marks

the maximum flow velocity according to the MGM.
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pletely unspecified component densities,19–21 except for a
conditional independence assumption described by
Benaglia et al.23 The kernel is the standard normal density
function. The algorithm is implemented in an R package
called mixtools,23–25 available from the Comprehensive R
Archive Network.

The right panel of Figure 1 shows the resulting distri-
butions. Note that the distributions are now more irregu-
lar, capturing the nonsmooth structure evident in the data
(black circles). Appendix 1 explains the manner in which
the smoothing parameter is set. 

Results

As mentioned previously, the comparison of the various
models examined here has both a quantitative component
as well as a qualitative (visual) component. The “visual
envelope” suggested by a visual inspection of the spectro-
gram is contingent on the color coding underlying the
spectrogram.15 Given that the true envelope is unknown,
the visual envelope can be considered yet another estimate,
and despite its qualitative nature, the visual envelope pro-
vides a background against which all of the other estimates
may be viewed. Then a model is declared as useful if the
estimated envelope is visually consistent with the underlying
spectrogram. Another qualitative criterion that is applied to
assess the usefulness of the models is the consistency (in
time) with which the estimated envelope agrees with the
spectrogram. For example, if the estimated envelope has
stand-alone peaks or troughs interspersed throughout the
time window of the spectrogram, then the model is deemed
not useful, or at least worthy of further research.

The spectrograms and envelopes for the GMM,
skewed GMM, and KMM for a single patient are shown
in Figure 2. (The corresponding patient is different than

that for Figure 1; the reason why different patients were
used for different figures was to illustrate different charac-
teristics of the various methods.) For this particular patient,
it can be seen that the 3 percentiles according to the GMM
(left panel) are close to one another and generally lower than
the envelope based on a visual inspection of the spectrogram.
By contrast, the 3 envelopes based on the skewed GMM
are more widely spread and more consistent with the spec-
trogram (middle panel). The KMM’s envelopes (right
panel) have similarities with and differences from the GMM
and the skewed GMM. For example, they underestimate
the flow velocities (as for the GMM) but are relatively
spread out (as for the skewed GMM). These patterns are
generally true across many patients. Also, note the complete
disagreement between the spectrogram and the 99th per-
centile envelope at the time just before 20 (0.025 seconds).
This type of failure is characteristic of the KMM, and it is
discussed further in the “Discussion” section.

Another noteworthy feature in Figure 2 is that GMM
envelopes are generally lower than the aforementioned
visual envelope but only for relatively high flow velocity
values. This characteristic is evident in the manner in which
the envelope is “below” the highest flow velocities in the
spectrogram but only when flow velocities are highest.
The skewed GMM solves that problem. It is a consequence
of the fact that low flow velocity values are consistent with
gaussian distributions, but for high flow velocity values, the
distributions are more skewed.

The time dependence of the shape of the distributions
can be confirmed by examining the values of the shape
parameter as a function of time. Figure 3 shows the time
series for the estimated shape parameter for the signal (left
panel) and background (right panel). It can be seen that
for most of the time series, the values of the shape param-
eters are approximately 0; ie, the distribution of the flow
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Figure 2. Spectrograms (color background) and 90th, 95th, and 99th percentile envelopes (black) according to the GMM, skewed GMM, and

KMM for a single patient.
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velocity is gaussian. However, there are also times at which
the shape parameters are unambiguously not 0. The times
correspond to regions of the spectrogram where flow veloc-
ities take their highest values. Note that when the shape
parameters are not 0, they are positive for the signal and
negative for the background components of the mixture
model. (A positive shape parameter value corresponds to
a right-skewed gaussian.)

As seen for the patient corresponding to Figure 3, the
shape parameter is 0 for most times. However, that is not
true for all patients; Figure 4 shows a histogram of the esti-
mated shape parameters for a different patient. Note the
bimodal structure; the left mode corresponds to the back-
ground, whereas the right mode is for the signal. It follows
that the background component is consistently left skewed
(with shape parameters in the –30 range), and the signal
component is either gaussian (corresponding to the peak
at 0) or right skewed (with shape parameters between 0
and +30).

Figures such as those in Figure 2 are useful for assess-
ing the quality of an envelope. However, they were imprac-
tical for addressing the quality of the envelopes for all 59
patients. Consequently, although we performed this visual
inspection for all patients, the results are not shown here.
Instead, one can rely on the goodness-of-fit measure itself,
not the envelope, to compare the various models devel-
oped here. There are numerous quantities that can be used
for measuring how well a model fits the data. One com-
monly used measure is the log likelihood (LL). Given that
the fitting of the model is performed at each time, there exists
a time series for the LL as well (not shown). For the purpose

of comparing two models, however, it is sufficient to
examine the difference between LL values of the models.
Therefore, for each patient, the histogram, or box plot, of
this quantity provides a visual assessment of the relative
performance of the models. If two models are comparable
in terms of goodness of fit, then the box plot will be centered
on the number 0. Otherwise, the models can be deemed
different. It is important to point out that the LL assesses
the goodness of fit of the mixture model used for estimating
an envelope, not the quality of the estimated envelope
itself; an assessment of the quality of the estimated
envelope would require the true envelope, which is unob-
servable. The reason for evaluating the models here in
terms of LL and the quality of envelopes is to allow for the
possibility that one model may outperform another model
in terms of LL but not necessarily in terms of the quality of
the envelope; or vice versa.

Figure 5 shows a box plot of LL (skewed GMM)
minus LL (GMM) for all 59 patients. (Recall that the vari-
ability of these box plots is due to time.) The fact that most
box plots are “above” the vertical line at 0 implies that for
most of the patients, the LL of the skewed GMM is generally
higher than that of the GMM across time. In other words,
on average (across time), the skewed GMM is a better
model of the data than the GMM. A few exceptions are
patients 19, 41, and 53, for whom the box plots are mostly
centered around 0, and as such, there is no significant dif-
ference between the GMM and skewed GMM. To assess
whether the skewed GMM has higher LL values than the
GMM, a 1-sided t test was performed. All of the P values
were found to be less than .05, except those for patients 19,

Figure 3. Time series of the estimated shape parameter for the signal and background distribution for a single patient.
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41, and 53 (shaded box plots in Figure 5). (The assump-
tion of normality for the t test is confirmed by a visual
inspection of the normal quantile-quantile plot.26)

The comparison between the KMM and GMM can
be done in the same fashion. A box plot for the difference
between their LL is shown in Figure 6. Given the systematic
presence of the boxes to the right of the vertical line at LL =
0, it is evident that the KMM has a generally higher 
LL than the GMM. (All of the P values were <.05.) It is
important to emphasize that this conclusion is not unex-
pected. The KMM allows for more flexible distributions
and, consequently, leads to higher LL values than the
GMM. The more important question is whether the
KMM also leads to better envelopes than the GMM, and
the answer to that is no. The KMM envelopes for all
59 patients were compared with the corresponding
envelopes from the GMM (both skewed and not) in terms
of a visual comparison of the envelopes, a scatterplot of two
envelopes (eg, Figure 5 of Marzban et al15), and a com-
parison of scalar summary measures (eg, Figure 6 of
Marzban et al15). Although the details of the comparison
are not shown here, the results suggest that the KMM
envelopes are no better than those of the GMM and are
often comparable with those produced by the skewed
GMM. The KMM is also not as consistent (across time) as
the GMM or skewed GMM, as seen by the “peak” in the
right panel of Figure 2. Therefore, although there is suffi-
cient evidence to advocate the use of the skewed GMM,
that is not the case for the KMM. Further discussion of the
KMM is provided in the next section. 

Discussion

In an earlier study, it was shown that the GMM has numer-
ous advantages over the MGM for estimating the envelope.
Here, it has been shown that a skewed GMM has the same
qualitative advantages as the GMM (eg, allowing for a
percentile-based notion of maximum flow velocity) but
also outperforms it in terms of both the quality of the enve-
lope (assessed through a visual comparison of the spec-
trogram and the envelopes) and a quantitative comparison
(in terms of the goodness of fit). One may wonder whether
the higher goodness-of-fit values for the skewed GMM
(compared with the GMM) may be a consequence of
overfitting. This concern is unwarranted because the
skewed GMM has only 2 additional parameters: the shape
parameters for the signal and background components. 
As such, the total number of independent parameters to
be estimated is only 7 (mean, standard deviation, and
shape parameter for each of the signal and background
components, plus 1 for the mixing coefficient). There
exists a large body of theoretical work on the relationship
between the number of parameters and the number of
observations; eg, see the Vapnik-Chernovenkis dimen-
sion in the work by Hastie et al27 (page 210). On the prac-
tical side, one guideline that is often followed is from the
classic book by Ryan28 (page 20), who recommends at least 10
times as many observations as the number of parameters.
Here, the data used for estimating the 7 parameters number
in the hundreds; therefore, overfitting is not a concern.

An issue that arises in the mixture model approach to
envelope estimation is the identifiability of the two com-
ponents with signal and background. More specifically, a
mixture model with two components will identify two com-
ponents in the distribution of flow velocity values; however,
an additional criterion must be introduced to decide which
of the components should be identified as the signal. This
factor is important because it is the percentiles of the signal
component that lead to the envelope. Visually, the sig-
nal component can be identified as the one on the left, but
quantifying what is meant by “on the left” is nontrivial. The
approach adopted here for identifying the signal and back-
ground components of the mixture model is outlined in
Appendix 2. That proposal is somewhat ad hoc, so it would
be desirable to develop a more statistically sound method
for identifying the signal component of mixture models.

As described above, the smoothing parameter of the
KMM determines the shape of the kernel estimate of
the probability density function. Here, an algorithmic cri-
terion is used to set the values of that parameter, but the
criterion optimizes the goodness of fit (ie, LL). As such,
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Figure 4. Histogram of the estimated shape parameter for a single

patient. The left (right) mode in this histogram corresponds to the back-

ground (signal) component of the mixture model.
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the criterion does not automatically lead to improved
envelopes. An instance of this is shown in Figure 2, where
the KMM envelope displays an abrupt peak at approxi-
mately time 15 (0.025 sec), which is clearly inconsistent
with the observed spectrogram. This is one of the main rea-
sons why the KMM is not wholeheartedly advocated here.

Another reason is more computational: the procedure for
estimating kernels is rather computer intensive and, there-
fore, slow. In fact, for this study, the KMM was developed
on data for which the lowest 5% of flow velocity values

J Ultrasound Med 2016; 35:93–101 99
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Figure 5. Box plot of LL for the skewed GMM minus LL for the GMM for

all 59 patients. The shaded boxes indicate P > .05.

Figure 6. Same as Figure 5 but for LL for the KMM minus LL for the GMM.
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were trimmed (deleted). This process substantially
increases computational speed but introduces an ad hoc
parameter (ie, the 5%). In short, more work is required
before one can benefit from the flexibility the of KMM as
a useful envelope estimation method.

Appendix 1: Mixture Models 

In a mixture model, one generally assumes that the data
are generated from an underlying probability density func-
tion [f(x)] that can be written as a linear combination of
more well-known probability density functions. For exam-
ple, for the case of two components (as considered in this
study), the probability density function is written as

(1) f(x) = ∑λk fk(x),

where λk are called mixing coefficients and must sum to 1.
For GMMs, fk(x) is given by

where μ and σ2 are mean and variance parameters, and
φ(.) is the standard gaussian probability density function.
Consequently such a mixture model has 5 independent
parameters: the mean and variance parameters for each of
the two gaussian probability density functions and one for
the mixing weights, which must be estimated from data.

In a skewed GMM, the component probability den-
sity functions are assumed to be given by

(2)

where Φ(x) is the gaussian cumulative probability distri-
bution, and a is called the shape (or skew) parameter.19

Large positive values of the shape parameter lead to a prob-
ability density function with a more pronounced tail for
large values of x (ie, a right-skewed distribution), whereas
large negative values of a have the same effect but for large
negative values of x (ie, a left-skewed distribution). In this
application, the skewed GMM, therefore, has 2 more
parameters than the 5 parameters in the GMM. Estimated
values of the shape parameter are shown in Figure 3, and
the skewed probability density functions are shown in the
middle panel of Figure 1. The presence of the shape param-
eter allows one to fit a more general class of data than can be
fit with GMMs.

Even more general data can be fit with kernel meth-
ods, in which the component probability density functions
in the mixture model are themselves assumed to be a sum

of the form
(3)

where xi are the observed data; n is the sample size; and the
function K(.), which is called the kernel, can be any function
that integrates to 1; commonly, and in the present applica-
tion, K(.) is taken to be the standard gaussian probability
density function.27 The additional parameter h, called the
bandwidth, effectively determines the smoothness of the
probability density function; a small value of h will lead to
a highly “spiky,” nonsmooth probability density function,
whereas larger values of h will lead to smoother, more
gaussian- looking, probability density functions. For this
study, its value was determined as follows: The default
choice of the bandwidth h minimizes a quantity called
asymptotic mean integrated squared error29 and is given by 

(4)

where SD and IQR are the standard deviation and inter -
quartile range of all n observations, respectively. It has been
shown that this estimate is somewhat smaller than the true
optimal value,24 so the value chosen here is taken to be
larger than the default value, which in turn leads to
smoother fits. As a result, at each time, and for each patient,
h = 10 is used, unless equation 4 gives a larger value, in
which case the larger value is selected. The fits are visually
inspected to ensure that the chosen value of the bandwidth
does not lead to overfitting. 

Appendix 2: Identifying the Signal Distribution

As described above, the mixture model identifies two
components in the distribution of flow velocity values.
However, the task of identifying which of the components
is the signal (and which is the background), is nontrivial.
Here, the following 3 criteria are used to derive an algo-
rithm for the identification task: The signal component is
more likely the one with (1) a lower mean, (2) a higher
peak, and (3) a larger standard deviation. The means, peaks,
and standard deviations of the two components are
denoted as (μ1, μ2), (p1, p2), and (s1, s2), respectively. 
The ratios are defined as a = μ1/μ2; b = p1/p2; and c = s1/s2.
As such, the signal component is more likely to be the com-
ponent labeled 1 when a is small and b and c are large.
Therefore, if x = (1/a) × b × c is larger than 1, then the
component labeled 1 should be identified as the signal.
Similarly, x < 1 indicates that the component labeled 1
should be identified as the background. 

fk(x) = 1 ∑ K x – xi ,
nh ( h )

ϕ x – μ( σ   ),

fk(x) = 2ϕ x – μ    Φ (ax),( σ  )

h = 0.9n –1/5 min {SD, IQR} ,1.34
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