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Background: Most methods for the noninvasive prediction of Intracranial Pressure (ICP) from 

Arterial Blood Pressure (ABP) and maximum Flow Velocity (FV) measured by Doppler ultrasound rely 

on morphology (i.e., shape of the time series across one cardiac cycle). Estimation of the morphology is 

a complex task requiring sophisticated statistical methods, which in turn jeopardizes model robustness. 

The quality of the predictions from these models varies across a wide range, with reported typical 

precision ranging from 3 to 20 mmHg.  There exists one method for ICP prediction which does not rely 

on morphology, and employs only standard statistical models. This model employs a quantity called 

Zero-Flow-Pressure (ZFP) to predict ICP. Here several ZFP-based models are developed, and it is 

shown that when between-patient and within-patient variability are taken into account, then the 

performance the models is within the range of contending model performance values.

Methods: Standard linear regression models are developed using data on 104 patients, using 

leave-one-out cross-validation. The regression models do not involve the wave form morphology. The 

accuracy and precision of the predictions is gauged with bias B and standard deviation of the errors Se, 

respectively. To properly assess the quality of the predictions, the variability of these measures is 

decomposed into between-patient and within-patient components.

Results: It is shown that large between-patient variability of B and Se renders all of the ZFP-based 

models developed here statistically indistinguishable.  However, the within-patient variability of Se is 

sufficiently small (i.e., the model is sufficiently robust) to allow for the identification of one of the 

models as being "better." The between-patient standard deviation of error (i.e., typical precision) for 

that model is 10.7 mmHg.

Conclusions: It is possible to develop simple - and therefore, robust - regression models to predict 

ICP from ABP and FV, without the difficult task of estimating the shape of the ABP or FV time series. 

Although the quality of the predictions is too poor to be clinically useful, all performance numbers are 

well within the range of those found in the literature. 
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The importance of noninvasively predicting (or estimating) Intracranial Pressure (ICP) has been 

thoroughly documented1-5. There exist several broad categories of methods. In one category, ICP is 

predicted from Arterial Blood Pressure (ABP) and maximum Flow Velocity (FV), with the latter 

estimated by Doppler ultrasound6-8.  The majority of these models employ features of the ABP and FV 

time series as predictors of ICP. For example, Kim et al.7,8 construct complex features from the peaks 

and troughs of the wave form across a cardiac cycle.  Other complex features are inferred from 

examining the time series of ABP and FV across multiple cardiac cycles, and in turn mapping the 

results to ICP in Schmidt et al.6  All of these models involve the identification of the morphology (i.e., 

shape or wave-form) of the time series across one or multiple cardiac cycles of ABP and/or FV.

Inferring shape or wave-form generally involves complex and sophisticated statistical methods. 

For example, Kim et al.7 develop a feature-extraction method called the Morphological Clustering and 

Analysis of Intracranial Pressure Pulses (MOCAIP). Schmidt et al.6 use Systems Analysis9 to extract 

features of ABP and FV relevant for ICP prediction. The complexity of these models introduces 

undesirable variability in the predictions.  For instance, consider the spectrogram shown in Figure 1; 

the time series of the FV for this patient is quite typical, and yet, there are no identifiable peaks or 

troughs necessary for MOCAIP. Consequently, the MOCAIP algorithm would likely fail on such data. 

Systems Analysis relies on a high-dimensional parameterization of the morphology of the ABP, FV, 

and ICP time series, and so, such a method is likely to suffer from large variability of errors.

By contrast there is one ICP-prediction method which does not involve the shape of the time 

series of ABP and FV. It is based on the Zero-Flow Pressure (ZFP), also known as the critical closing 

pressure.10-17 The ZFP, defined as the ABP at which FV is zero, has been shown to approximate ICP.16,17 

In practice, FV in a living patient is never zero, and so, ZFP is normally estimated by examining the 

scatterplot of ABP versus FV, and then extrapolating to the point where FV is zero. The fact that ICP is 

correlated with ZFP, and that ZFP can be estimated from ABP and FV, in turn, suggests that one can 
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develop a model for predicting ICP directly from ABP and FV.  Here, several ZFP-motivated models 

are developed. As seen below, these models are extremely simple with no more than eleven parameters 

to be estimated by hundreds of observations, thereby significantly reducing the variability of the 

predictions. (The paucity of the number of parameters also tames overfitting. Overfitting occurs when a 

model has a sufficiently large number of parameters to allow the model to fit the noise component of 

data, resulting in poor predictions on future/independent data.)

Although the ultimate aim of all of the above-mentioned methods is to produce accurate and 

precise predictions of ICP, it is currently impossible to compare the various methods in terms of their 

performance. The main reason is that they have not been applied/tested on the same data set. The above 

studies differ in 1) the number of patients, varying from 8 to 98, 2) the medical condition of the 

patients, including closed and open TBI, presence or absence of vasospam, and ranging from healthy to 

near-death, 3) the hospitals and their clinical management practices, and 4) the devices with which ICP 

is measured invasively, e.g., intraventricular catheters and fiber optic pressure sensors.

The absence of such control factors across studies extends into the manner in which prediction 

errors are assessed. For example, in many of the studies it is not clear if the prediction errors are 

estimated from an independent data set (e.g., from cross-validation), or from the training set (i.e., the 

data set on which the models are developed). Prediction errors from the latter are smaller than one 

might expect on future/independent data. Furthermore, the separation of errors18 into between-patient 

and within-patient is often not performed.  Consequently, it is unclear if the typical errors reported are 

expected for a random patient, across time, or across patients at a given time. The measures of 

performance are equally varied, including Root-Mean-Squared-Error (RMSE), 

Mean-Absolute-Distance (MAD), and standard deviation of errors. Although all of these quantities are 

estimators of typical deviation of error (i.e., typical precision), they are not identical. As such, it is 

difficult to definitively compare the various models in the form they have been reported in the 
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literature.  

These uncontrolled factors explain the wide range of prediction errors reported.  Based on a 

study of 11 patients Schmidt et al.6 report an MAD of 4 ± 1.8 mmHg.  The same method but applied to 

17 patients19 led to an MAD of 8 ± 5 mmHg.  On a much larger group of patients, a ZFP-based 

method20 yielded a standard deviation (SD) of error of 12.7 mmHg, while Thees et al.21 reports SD = 8 

mmHg based on 70 patients, and  Buhre et al.22 found SD = 15 mmHg in a study of 20 patients. More 

recently, Behrens et al.23 finds SD = 10 mmHg in a study that included 8 patients. On the lower end of 

the range of reported error values, Chacón et al.24 find SD = 1.7 mmHg, which is in fact smaller than 

the instrumental error standard deviation of 3.3 mmHg.25  Most recently, Xu et al.26 study 23 patients 

and report a measure of typical error in the 6.0-6.7 mmHg range. In another study of 57 patients Kim et 

al.27 report a typical error of 4-6 mmHg. As mentioned previously, in many of these studies it is not 

clear whether the reported errors are from cross-validation or from a training set, or whether they 

pertain to between-patient or total variability.

It is worth noting that all of the measures reported in the above studies are measures of 

precision, and that none of these studies reports any measure of accuracy.  A complete assessment of 

the performance of the predictions must assess both.  Accuracy is important because it gauges the 

agreement between the average of the predictions with the average of the observations. Precision, on 

the other hand, measures the average of the spread (or deviations) of the predictions about the 

observation. Here, both of these facets of performance are examined; they are measured by the bias and 

the variance (or standard deviation) of the predictions, respectively, both defined below. Moreover, 

each of these measures (bias and variance) has two sources of variability (between-patient and 

within-patient) which must be taken into account because they capture different types of errors. None 

of the aforementioned studies address both sources of variability.  For clinical purposes the most 

important of the metrics is the between-patient precision, in terms of which the models developed here 
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will be compared to those in the literature.

The wide range of values of precision reported in the literature - from 1.7 to 15 mmHg - can be 

partially attributed to the complexity of the underlying models, because complex models are more 

likely to have higher variability; see, for example, “Bias versus Variance”.28 Here, several very simple, 

ZFP-based regression models are developed using leave-one-out cross-validation on 104 patients. It is 

shown that all of the models are statistically equivalent in terms of all of the metrics considered here, 

except when they are compared in terms of within-patient standard deviation of errors, in terms of 

which one of the models emerges as “better” than the other models. The between-patient precision (i.e., 

the clinically most relevant metric) of that model is found to be comparable to the corresponding 

quantities reported in the literature. The advantage of the models developed here is that they do not 

involve the morphology of the time series, and as such are relatively robust.

Material and Methods

A total of 104 patients were examined in this study. 59 patients were selected from hospitals 

within the United States, specifically Harborview Medical Center (Seattle, Washington), Columbia 

University Medical College (New York City, New York) and the University of Texas Medical School 

(Houston, Texas). The remaining 45 patients were from Cambridge, England.  Schmidt and 

co-workers29 describe that data. Further details of the entire data set can be found in Marzban et al.17 

and Marzban et al.30  In accordance with the institutional review board for each hospital, informed 

consent was obtained from all patients or their families.

The data contains Doppler ultrasound measurements of blood Flow Velocity (FV) in the middle 

cerebral artery using clinically approved Transcranial Doppler units.  Additionally, ABP was measured 

by radially-placed arterial blood pressure sensor, and ICP was measured by a Codman® fiber optic 

pressure sensor.  For each patient, the duration of collected data varied from 5 to 30 minutes.  For the 
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present study, only 5 minutes of the time series of ABP, FV, and ICP was used.  Retrospective data 

processing and analysis was performed at the Applied Physics Laboratory, University of Washington. 

The Doppler time series for all patients were sampled at 40 Hz. This resolution was sufficient to 

resolve each patient’s systolic rise, diachrotic notch, and diastolic minimum, although none of these 

features were used in the analysis.

Figure 2 shows a scatterplot of the mean (across 120 time-steps, i.e., about 3 seconds in 

duration) of ICP vs. ABP (top panel), and ICP vs. FV (bottom panel). Different colors/clusters 

correspond to different patients, and each cluster consists of 100 dots corresponding to 100 

non-overlapping time intervals across the patients time series. A wide range of linear associations can 

be seen, but only within each patient's cluster. There appears to be no between-patient association, 

linear or otherwise. Therefore, any useful model for the prediction of ICP must involve ABP and FV, 

jointly.

Data Processing and Statistical Analysis

Statistical Models

As mentioned above, several statistical models are developed for predicting mean ICP (denoted 

ICP) from mean ABP and mean FV, where the mean is taken over some specified duration of time, 

here, about 3 seconds. This duration - henceforth, called interval - is sufficiently long to contain several 

cardiac cycles. A longer duration would be desirable from a statistical point of view, for it would lead 

to a larger sample size for estimating the true mean; but a longer time interval complicates the 

estimation process because a patient's mean ICP may significantly change during that interval - a 

change that will not be detectable, if the interval is too long. For these reasons, the interval over which 

the mean of ICP is to be predicted is set to about 3 seconds (i.e., 120 time-steps).

The structure of the models is motivated by the definition of ZFP. The estimator of ZFP 

proposed by Weyland et al.16 is based on a least-squares fit of ABP versus FV when the two have been 
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aligned to have the same phase. Marzban et al.17 proposed a revision wherein the least-squares fit is 

replaced by another - called the SD line.  The advantage of the SD line, for estimating ZFP, is that it 

does not require the time series of ABP and FV to be in phase. As shown in Marzban et al.17, the 

original and the revised ZFP estimators are given by

ZFP= x1−
r x2 y1

y2

,       ZF P '
=x1−

x 2 y1

y2

             (1)

respectively, where x1 = ABP, x2 =  FV, y1 = sd(ABP), y2 = sd(FV), and r is the correlation coefficient 

between ABP and FV.  mean() and sd() denote sample mean and sample standard deviation, 

respectively.  Note that the only difference between the two estimators is the r. As shown in Marzban et 

al.17, of the two estimators (ZFP, ZFP'), the latter is better correlated with ICP.

Table 1 lists the various models examined in this work.  Model 1 corresponds to the situation 

where neither ABP nor FV are used for prediction.  As such, the only available quantity for the 

prediction of future ICP values is the ICP values in the current data set. In order to assess the quality of 

the predictions, leave-one-out cross-validation is employed.28  Briefly, one patient is selected (left out), 

and the sample mean of ICP across the remaining patients is used as the prediction for the ICP of the 

selected patient.  This procedure is repeated 104 times, each time leaving out one of the 104 patients.  

The prediction error (i.e., predicted ICP - observed ICP) for each of the left-out patients is computed. 

This model serves as a benchmark in that it should be outperformed by any alternative model which 

employs ABP and FV for the prediction of  ICP. For this reason, it is referred to as the “Null model.”

Model 2 employs ZFP' as a predictor of  ICP. In other words, it uses the specific combination of 

ABP and FV given in Eq. (1). Model 3 is simply an algebraic generalization of the definition of ZFP'. 

Model 4 is, in turn, a generalization of model 3 in that an additional linear term (in x2) is introduced. 

Model 5 additionally includes linear terms in y1 and y2, and model 6 additionally includes all interaction 

terms.  Note that each successive model in Table 1 has more parameters than the preceding model. 
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More complex models are possible, but are not considered here in order to avoid overfitting.

The prediction errors for the models 2-8 are assessed in the same manner as model 1, i.e., with 

leave-one-out cross-validation. Specifically, a patient is left out, while the model is developed on the 

remaining patients.  The model is then used to predict the ICP for the left-out patient, and the prediction 

error is computed.

Performance Assessment

The aforementioned methodology leads to one value of prediction error, per model, per patient, per 

interval, where prediction error is given by (predicted ICP  - observed ICP), and  ICP  is a mean over 

the interval.  This design allows one to separate the sources of variability in the errors into two 

components: between-patient, and within-patient.  Consideration of each of these components is 

important, because the total variability of the errors is sufficiently large so as to preclude any useful 

comparison of the various models.

The quality of the predictions is assessed in terms of the accuracy and precision of the 

predictions. Here, these two facets are measured with the bias (B) and standard deviation of the errors 

(Se), respectively, both defined in the Appendix. The variability of these quantities is assessed through 

the distribution (technically, histogram) of the prediction errors. To allow easy comparison of these 

histograms across the various models, each histogram is summarized by a boxplot. The Appendix 

provides further details of the performance metrics and their between-patient and within-patient 

decomposition.

Results

The top panels in Figure 3 show the boxplots of bias B for all models, and the boxplots of the 

standard deviation of the errors (Se) is shown in the bottom panels.  The boxplots in left panels show 

the variability between patients, and those in the right panels convey the within-patient variability.  In 
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other words, the left panels assess how well the models predict ICP across patients, for a random 

interval, while the right panels gauge the quality of the predictions across time intervals, for a random 

patient. In comparing two models, a significant overlap between their boxplots is indication that there 

is no statistically significant difference between the models. Generally, a model with the lowest overall 

bias and standard deviation is desirable.  Numerical values for the “center” (mean) and “width” 

(standard deviation) of these boxplots are presented in Table 2.

Examination of the top/left panel in Figure 3 suggests that in terms of bias, the variability 

between-patients is sufficiently large to preclude any useful comparison of the models in terms of B 

(between patients). All models have near-zero bias between-patients and are statistically 

indistinguishable.  The same conclusion follows when standard deviation of the errors between-patients 

is considered (bottom/left panel); all of the models are generally comparable. 

Consideration of the distribution of bias within-patients (top/right panel) is more informative. 

For example, whereas models 2 and 3 are negatively biased, models 4 and 5 are positively biased. 

Models 6 and 7 display a sufficiently large variability so as to preclude any conclusion regarding their 

bias. Although such comparisons are useful for model comparison and model selection, it is important 

to point out that all of these bias values are extremely small; as seen in Table 2, the mean of all of these 

boxplots is in the -0.06 mmHg to +0.06 mmHg range. As such, in terms of within-patient bias, all of 

these models can be considered adequate.

Examination of the precision of the predictions within-patient (bottom/right panel) leads to 

more discriminating information. It can be seen that model 5 has the lowest values of Se. The 

significant overlap of the boxplots for models 5, 6, and 7, suggests that they are statistically 

indistinguishable in terms of Se.  The slight increase in Se across models 5, 6, and 7, may be due to 

overfitting, because the number of parameters for these models is successively larger. Following the 

principle of parsimony, it is reasonable to declare model 5 as “the best” model.  Having selected the 
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best model, one can turn attention to the most clinically-relevant metric, namely between-patient 

standard deviation of errors (i.e., the between-patient standard deviation of B).  According to the values 

in Table 2, that quantity for model 5 is 10.7 mmHg.

It is important to reiterate that model 5 emerges as “the best” because of the lower variability of 

the prediction errors across time intervals (for a random patient). Consideration of between-patient 

variability alone does not allow one to identify the best model(s). It is only when variability across time 

is assessed separately that one can distinguish between the various models. 

Having selected the best model (i.e. model 5), it is possible to diagnose its performance in a 

variety of ways. One useful tool is the scatterplot of the predictions versus the observed values of  ICP 

(Figure 4, top).  Each cluster/color represents a different patient, and each dot represents the mean 

across a time interval. The dashed line is a diagonal line of slope one and intercept zero.  Ideally, all of 

the dots would be along the diagonal line if the predictions were exactly equal to the observed values. 

However, in practice that is not the case. The correlation coefficient - as a measure of the scatter - 

between the centers of the clusters, i.e., between-patient correlation31 is 0.60. It is reassuring that all of 

the dots are randomly and symmetrically distributed about the diagonal.  This suggests that the 

prediction errors are randomly distributed - a desirable feature for a model.  Another useful method for 

visually evaluating the errors is the Bland-Altman plot (Figure 4, bottom). Again, it can be seen that the 

errors (predicted ICP  - observed ICP) are randomly scattered across the diagram. The horizontal lines 

mark the overall B (near zero), and the one- and two-standard-deviation lines.

Discussion

In this paper it is shown that relatively simple multiple regression models, using ABP and FV as 

predictors, can be developed for predicting ICP noninvasively.  The prediction error of the best of the 

models is not sufficiently low to make the model clinically useful. However, the errors are within the 
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range of those produced by more complex models reported in the literature. It is difficult to compare 

the errors of the model developed here to those reported in the literature more closely, because access 

to the data and the models is limited; however, see below.

In addition to the simplicity of the models developed here, another novel feature of this work is 

the way the errors are decomposed into between- and within-patient components. It is found that the 

between-patient variability of the prediction errors is so large that one cannot distinguish between the 

models developed here.  Indeed, it is possible that the same is true when more complex models are 

included in the comparison. Here, it is the within-patient component of the variability of the errors that 

allows for the selection of “the best” model.

In many ICP-related articles between-patient RMSE is used for both model selection and for 

assessing the precision of the predictions. That practice has two flaws: 1) in using a between-patient 

measure one ignores within-patient variability.  As seen here, to distinguish between the models one 

requires a consideration of both between- and within-patient variability. 2) Although RMSE is an 

adequate measure for model selection, it is inadequate as a measure or precision, because RMSE is 

related to the sum of two different measures - one measure of precision (Se 
2) and a measure of accuracy 

(B). The exact relationship is  RMSE2 = ((n-1)/n) Se
2 + B2 , where n denotes sample size; for the 

between-patient component,  n=104 , i.e., the number of patients, while  n=100  for the within-patient 

component. Said differently, RMSE is not a measure of precision, when bias is non-zero. Although in 

some special circumstances (e.g., if the errors are residuals from a least-squares fit),  B=0  by 

construction, in other cases especially those involving cross-validation, B is non-zero. Given that bias 

and variance are both important facets of quality, here they are assessed separately. Given that the 

values of B are generally small, RMSE for these models is approximately equal to Se.

In order to better assess the utility of the models developed here, an attempt was made to 

implement some of the methods mentioned in the Introduction, specifically the systems method of 
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Schmidt et al.6,19,20,29 and the MOCAIP method of Kim et al.7,8  The latter has proven difficult to 

implement mostly because many of the details of the approach have not been completely expressed in 

the published literature.  However, the systems method of Schmidt et al. was implemented and 

evaluated as in the models above. The resulting model was found to be far inferior to any of the models 

developed above in terms of B and Se; see “model 8” in Table 2.  It is especially disconcerting that the 

performance of model 8 is even poorer than that of the Null model, i.e., where neither ABP nor FV are 

used for prediction. Such a poor level of performance may be attributed to errors in the present 

implementation of the algorithm proposed by Schmidt et al.6,19,20,29

The critical quantity that decides whether a model has clinical utility is the between-patient precision. 

For the best model developed here, it is  ±10.7  mmHg.  Smaller values have been reported in the 

literature: Schmidt et al.19 report  ±8  mmHg, and Kim et al.27 find precision values in the 4 to 6 mmHg.  

However, as explained previously, such comparisons are non-informative because the patients in the 

corresponding groups are different. It is important to point out that the device used here for making 

invasive ICP measurements itself has an error in the  ±3.3  mmHg range, and so, it is possible (in 

theory) to increase the between-patient precision. More sophisticated techniques are being developed to 

that end, but all of them appear to have lower within-patient precision.

Another avenue of research currently under investigation is the incorporation of autoregulation 

in the analysis. Schmidt et al.29 have proposed a non-invasive measure of the status of autoregulation, 

and have shown that ICP predictions can be improved when the predictions are analyzed separately, for 

those with intact and impaired autoregulation. That work is underway.

Conclusion

It is possible to develop relatively simple regression models for predicting ICP from ABP and FV, 

without the need to perform the generally difficult task of extracting the shape of the time series of 
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ABP and/or FV. The quality of the predictions is comparable to those reported in the literature from 

more sophisticated models. The main advantage of the model developed here is its robustness, which is 

manifested in the small within-patient standard deviation of errors. 

Appendix

This appendix provides details of how the prediction error is decomposed into bias (B) and standard 

deviation of errors (Se), respectively assessing the accuracy and precision of the predictions. Each of 

these two components is then further decomposed into between-patient and within-patient components, 

which respectively gauge how the errors vary across patients and across time.

Recall that the prediction error is defined as the mean of the difference (predicted - observed) of 

ICP, where the mean is computed across an interval of length 120 points (approximately 3 seconds). 

For this study 100 non-overlapping time intervals across the entire time series of each patient are used. 

Also recall that the predicted ICP is arrived at through leave-one-out cross-validation. As such, for each 

of the 104 patients there are 100 prediction errors. 

Let єij denote the leave-one-out prediction error for the  ith  interval of the  jth  patient. Here, i 

varies from 1 to 100, and j varies from 1 to 104. The marginal means and standard deviations of this 

error matrix represent all of quantities of interest.  Specifically, let є.j and s.j respectively denote the 

sample mean and standard deviation of the errors for the  jth patient. Similarly, let  єi. and si. respectively 

denote the sample mean and standard deviation of the errors for the ith interval. In short, 

ϵ⋅ j=
1

100
∑

i

100

ϵij ,       s⋅ j
2
=

1
100−1

∑
i

100

(ϵij−ϵ⋅ j )
2 ,        (2a )

ϵi ⋅=
1

104
∑

j

104

ϵij ,       si ⋅
2 =

1
100−1

∑
j

104

(ϵij−ϵi ⋅)
2 .         (2b)

The boxplot of the 104 values є.j (top/left panel in Figure 4) conveys information regarding the 
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distribution of B across patients (i.e., between-patient), while a boxplot of the 100 values єi. (top/right 

panel in Figure 4) reflects the distribution of B across the time intervals (i.e., within-patient).  Similarly, 

the boxplot of the 104 values s.j (bottom/left panel in Figure 4) conveys information regarding the 

distribution of between-patient Se, while a boxplot of the 100 values si. (bottom/right panel in Figure 4) 

reflects the distribution of within-patient Se. In this paper, model selection is performed in terms of the 

latter, while comparison with other methods in the literature is performed in terms of the 

between-patient standard deviation of B.
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Table 1. Models for the prediction of mean ICP.  x1  and  x2  are the mean of ABP and FV, respectively; 

and  y1  and  y2  denote the standard deviation of ABP and FV, respectively. The notation used here 

suppresses all regression coefficients; for example, Model 3 as defined below is 

ICP=a1+a2 x1+a3 x2 y1+a4 x2 y2 , where ai are parameters to be estimated from data.

Model

1 ICP=Null Model (i.e.sample mean of ICP )  

2 ICP=1+ZF P '  

3 ICP=1+x1+x2 y1+ x2 y2  

4 ICP=1+x1+x2+ x2 y1+x2 y2  

5 ICP=1+x1+x2+ y1+ y2+x2 y1+ x2 y2  

6 ICP=1+x1+x2+ y1+ y2+x2 y1+ x2 y2+ x1 y1+x1 y2  

7 ICP=1+x1+x2+ y1+ y2+x2 y1+ x2 y2+ x1 y1+x1 y2+ x1 x2+ y1 y 2  



Table 2. The performance of the various models developed here in terms of the between-patient and 

within-patient components of Bias B and the standard deviation of errors Se. Models 1-7 are defined in 

Table 1; model 8 is the Systems Analysis method of Schmidt et al.6,19  The entries in the table are (mean 

±  standard deviation).

Model Between-Patient B Within-Patient B Between-Patient Se Within-Patient Se

1 0.00 ± 13.69 0.00 ± 0.00 1.55 ± 1.35 13.84 ± 0.22

2 -0.04 ± 12.33 -0.04 ± 0.01 2.00 ± 1.41 12.57 ± 0.24

3 -0.03 ± 12.39 -0.03 ± 0.02 1.79 ± 1.19 12.57 ± 0.15

4 0.05 ± 11.52 0.05 ± 0.03 1.95 ± 1.33 11.76 ± 0.22

5 0.05 ± 10.70 0.05 ± 0.05 2.04 ± 1.33 10.97 ± 0.29

6 0.06 ± 10.89 0.06 ± 0.10 2.14 ± 1.65 11.21 ± 0.33

7 -0.06 ± 10.99 -0.06 ± 0.08 2.22 ± 1.79 11.35 ± 0.31

8 -2.80 ± 16.53 -2.80 ± 0.21 2.66 ± 1.76 16.82 ± 0.30



Figure 1. An example of a spectrogram (in color), and the maximum FV envelope (black curve). It can 

be seen that the shape of this patient envelope has no bumps and troughs, quantities which are 

necessary for the MOCAIP method.7,8



Figure 2. A scatterplot of the mean of ICP versus the mean of ABP, for 104 patients (different colors), 

and 100 intervals (dots), where the mean is computed across approximately 3 seconds (120 points).



Figure 3. Assessment of prediction error for the various models in Table 1 (denoted along the x-axis). 

The left panels show the distribution of B (top panel) and Se (bottom panel) between patients, and the 

right panels display the distribution of errors within patients. The y-axis on the bottom panels is 

logarithmic in order to enhance visual clarity.



Figure 4. The scatterplot (top) of the predicted ICP versus the observed ICP, for all 104 patients (in 

color) across 100 time intervals (dots) for model 5.  The Bland-Altman plot (bottom) provides an 

alternative view of the quality of the predictions.


